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Finding optimal operating modes for bioprocesses has been, for a long time, a relevant issue
in bioengineering. The problem is of special interest when it implies the simultaneous optimiza-
tion of competing objectives. In this paper, we address the problem of finding optimal steady
states that achieve the best tradeoff between yield and productivity by using nonmodel - based
extremum-seeking control with semiglobal practical stability and convergence properties. A
special attention is paid to processes with multiple steady states and multivalued cost functions.
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Introduction

Finding optimal operating modes for bioprocesses has
been, for a long time, a relevant issue in bioengineering. The
problem is of special interest when it implies the simultane-
ous optimization of competing objectives. This situation
arises in particular in many continuous or fed-batch biopro-
cesses that are characterized by a conflict between the yield
and the productivity. Under the assumption that a kinetic
model of the process is known to the user, the problem of
finding steady states or operating modes that achieve the
best trade off between yield and productivity has been
addressed for instance by Modak and Lim,1 Sarkar and
Modak,2 Shimizu3 and Jadot et al.4

In this paper we address the issue of optimizing bioreac-
tors by using so-called extremum seeking (ES) techniques. A
nonmodel-based approach to extremum seeking for bioreac-
tors was first intitiated by Wang et al.5 An alternative
model-based approach was then pursued in a series of papers
by Guay and coworkers.6–8

Here we follow the nonmodel-based approach. We assume
that neither the process kinetics nor the cost function are
known to the user. It is just assumed that the numerical
value of the cost is obtained online from process measure-
ments. We want to examine how the automatic seeking of
an optimal steady state can be achieved by using nonmodel-
based extremum-seeking control, especially in the case
where the cost function is a multivalued function.

Our paper is organized as follows. First in yield-productiv-
ity Tradeoff Section, we provide a self-content characteriza-
tion of the steady states that achieve an optimal trade-off
between yield and productivity maximization in biochemical
processes. Then, in Extremum-Seeking Control section, we

show how this optimization problem can be solved by using
a novel feedback extremum seeking scheme with semiglobal
stability and convergence properties. This novel ES scheme
has been proposed in a recent paper by Tan et al.9 and is
simpler than the original scheme which was used in Wang
et al.5 (see also the book,10 Chapter 8). Furthermore, instead
of using linearization about the equilibrium to prove local
stability as in Wang et al.5 the method of Tan et al.9 allows
to analyse the semiglobal stability of the system. Then, our
main contribution is in sections next two where we show
how the semiglobal stability analysis of9 can be exploited to
address situations with multiple steady states and a multival-
ued cost function by using generalized singular perturbation
results as presented, for example, in Teel et al.11 In this anal-
ysis, the Aumann integral12 is used to define the average of
all possible behaviors of the slow system and as a result the
average of the slow system is a differential inclusion. We
consider the very simplest case where the cost is a multival-
ued function and we demonstrate a new phenomenon where
the system trajectory is stuck in a nonextremum bifurcation
point. Then we propose a way to overcome this difficulty
and we provide a theoretical sketch of the analysis of its effi-
ciency. We believe that viewing the problem in this manner
is novel and could lead to solutions of various other prob-
lems not considered in this paper.

For the sake of simplicity and clarity, we limit ourselves
to processes where a single monomolecular irreversible reac-
tion takes place. However, even though we deal only with
the simplest possible situation, the issues that emerge from
our analysis are relevant for more general situations involv-
ing multimolecular enzymatic reactions or cell growth
reactions.5

Yield-Productivity Tradeoff

The objective of this preliminary section is to give a char-
acterization of the steady states that achieve an optimal
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trade-off between yield and productivity maximization in
biochemical processes. We present the very simplest case
where a conflict between yield and productivity may occur.
We consider a single irreversible enzymatic reaction of the
form:

X1 ! X2

with X1 the substrate (or reactant) and X2 the product. The
reaction takes place in the liquid phase in a continuous
stirred tank reactor. The substrate is fed into the reactor with
a constant concentration c at a volumetric flow rate u. The
reaction medium is withdrawn at the same volumetric flow
rate u so that the liquid volume V is kept constant. The pro-
cess dynamics are described by the following standard mass-
balance state space model:

_x1 ¼ �rðx1Þ þ ðu=VÞðc� x1Þ (1a)

_x2 ¼ rðx1Þ � ðu=VÞx2 (1b)

where x1 is the substrate concentration, x2 is the product con-
centration, and r(x1) is the reaction rate (called kinetics).
Obviously this system makes physical sense only in the non-
negative orthant x1 � 0, x2 � 0. Moreover, the flow rate u
(which is the control input) is nonnegative by definition and
physically upper-bounded (by the feeding pump capacity):

0 � u � umax: (2)

In this paper we shall investigate two different cases
depending on the form of the rate function r(x1). We begin
with Michaelis–Menten kinetics which is the most basic
model for enzymatic reactions (e.g. [Ref. 13, Chapter 4]) :

rðx1Þ ¼ vmx1
Km þ x1

with vm the maximal reaction rate and Km the half-saturation
constant. To normalize the model we use vmV and v�1

m as the
units of u and time, respectively. So the normalized model
becomes

_x1 ¼ � x1
Km þ x1

þ uðc� x1Þ (3a)

_x2 ¼ x1
Km þ x1

� ux2: (3b)

It can be readily verified that, for any positive constant
input flow rate u 2 ð0; umax�, there is a unique steady-state
x1 ¼ u1ðuÞ, x2 ¼ u2ðuÞ solution of the following equations:

x1 þ uðc� x1ÞðKm þ x1Þ ¼ 0 (4a)

ðc� x2Þ � u x2ðKm þ c� x2Þ ¼ 0: (4b)

Furthermore, each admissible steady-state belongs to the
set

X ¼ fðx1; x2Þ : x1 � 0; x2 � 0; x1 þ x2 ¼ cg

and is globally asymptotically stable in the nonnegative
orthant.

The industrial objective of the process is the production of
the reaction product. For process optimization, two steady-
state performance criteria are considered : the productivity JP
and the yield JY. The productivity is the amount of product
harvested in the outflow per unit of time :

JP ¼ u x2 ¼ uu2ðuÞ
The yield is the amount of product made per unit of sub-

strate fed to the reactor:

JY ¼ x2
c
¼ u2ðuÞ

c

The sensitivity of JP and JY with respect to u is illustrated
in Figure 1. A conflict between yield and productivity is
clearly apparent: the productivity JP is an increasing function
(from 0 to 100%) of u while the yield JY is decreasing (from
100 to 0%). Operating the process at a yield JY close to
100% can result in a dramatic decrease of the productivity
JP (and vice-versa): it does not really make sense to optimize
one of the criteria disregarding the other one. The process
must be operated at a steady-state that achieves a trade-off
between yield and productivity. This is typically a ‘multicri-
teria’’ optimization problem since the two criteria are antago-
nistic. A standard way to address the problem is to define an
overall performance index as a convex combination of JP
and JY:

JTðuÞ ¼D kJP þ ð1� kÞJY ¼ u2ðuÞ kuþ 1� k
c

� �
k 2 ½0; 1�:

(5)

This cost function is illustrated in Figure 2 where it is
readily seen that it has a unique global maximum u*. The
corresponding optimal steady-state is naturally defined as
x�1 ¼ u1(u*), x

�
2 ¼ u2(u*).

Extremum-Seeking Control

Our concern is to design a nonmodel-based ES feedback
controller able to automatically drive the process to the opti-
mal operating point (x�1,x

�
2) that maximizes JT without any

precise knowledge of u*. It is assumed that the process is

Figure 1. Productivity JP and yield JY for system (3) with c 5
3 and Km 5 0.1.
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equipped with an online sensor that measures the product
concentration x2 in the outflow. We then define a scalar ES
scheme of the form proposed in Ref. 9:

yðtÞ ¼ kuðtÞx2ðtÞ þ ð1� kÞ x2ðtÞ
c

(6a)

dðtÞ ¼ a sinðxtÞ (6b)

_h0ðtÞ ¼ kxyðtÞd ðtÞ (6c)

hðtÞ ¼ h0ðtÞ þ dðtÞ (6d)

uðtÞ ¼ aðhðtÞÞ (6e)

where u ¼ a(h) is a smooth sigmoid function as depicted in
Figure 3 while (a,k,x) are positive tuning parameters. In this
feedback control law, the exogenous signal d(t) is a so-called
dither that activates the extremum seeking and can be any
periodic function of time. Here we work with a sinusoidal
dither d(t) ¼ a sin (xt).
In order to avoid any confusion, it must be stressed here

that the ES algorithm (6) is a genuine nonmodel-based con-
trol algorithm. This means that the controller needs no
knowledge of the model (it does not involve any kind of
explicit or implicit internal model of the process). From the
controller viewpoint, the plant is a black box whose input
can be manipulated and whose output is measured. In partic-
ular, as we have mentioned in the Introduction, the kinetic
rate function r(x1), the dynamical model (1) and the function
JTðuÞ are unknown to the user and do not appear in the con-
trol scheme (6). More precisely, we can say that the user has
decided to maximize the composite cost JT ¼ kux2 þ (1 �
k)c�1 x2 but he does not know that JT is a function of u of
the form (5) shown in Figure 2. The rationale behind the
control law is to use online measurements of x2 to progres-
sively learn the shape of the cost function and try to climb
up to the top by adjusting the input u.

But, obviously, we may use the model (1) as a benchmark
process for testing the feasibility and the efficiency of the
proposed ES algorithm in simulations. In Figure 4 the opera-
tion of the ES control algorithm (6) is illustrated for appro-
priately tuned parameters a ¼ 0.02, k ¼ 1, x ¼ 0.1. We see
that there is a time scale separation between the system itself
and the climbing mechanism. Starting from an initial condi-

tion (x1(0), x2(0)), there is first a fast convergence of the
state to the nearest (stable) steady-state which is followed by
a slow quasi-static climbing along the cost function up to the
maximum. This behavior is guaranteed from any initial con-
dition so that we have the following semiglobal convergence
property.

Property 1. For any initial condition (x1(0) � 0, x2(0) �
0, h0(0)) and for any m [ 0, there exist parameters (a,k,x)
such that, for the closed-loop system (3)–(6), x1(t) � 0, x2(t)
� 0, h0(t) bounded and

lim sup
t!1

ðjx1ðtÞ:� x�1j þ jx2ðtÞ � x�2j þ juðtÞ � u�jÞ � m:

This property* obviously implies that lim supt!1 jyðtÞ�
JTðu�Þj can be made arbitrarily small: from any initial condi-
tion, the output y(t) can be driven and regulated arbitrarily
close to the optimal performance value y* ¼ JT(u*).

Property 1 is a straightforward consequence of Theorem 1
in Ref. 9 which notably involves a singular perturbation and
an averaging Lyapunov stability analysis that can be sum-
marized in the following way. From (4), for each h 2 R, the
system (3) with input u ¼ aðhÞ has a single equilibrium
x1 ¼ u1ðaðhÞÞ; x2 ¼ u2ðaðhÞÞ which is globally asymptoti-
cally stable. The cost function JT can then be viewed as a
function of h expressed as

Figure 2. Overall performance index JT for system (3) with c
5 3, Km 5 0.1 and k 5 0.5.

Figure 3. Sigmoid function a(y).

Figure 4. Extremum seeking for system (3) with a 5 0.02, k 5
1, and x = 0.1.

*Actually a stronger property can be shown to hold: For any
compact set of initial conditions the parameters (a, k, x) can be
selected such that boundedness and convergence holds uniformly
on the compact set of initial conditions (see Ref. 9 for details).
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JT ¼ QðhÞ ¼ kaðhÞ þ ð1� kÞ
c

� �
u2ðaðhÞÞ:

This function is convex and has a unique global maximum
at h* ¼ a�1(u*) with the property that

Q0ðh� þ fÞft0 8f 6¼ 0: (7)

The change of variables ~h ¼D h0 � h� and the change of
time scale r ¼D xt are introduced. Then, the ‘slow’’ h0-dy-
namics (6c) along the static characteristic x1 ¼ u1ðaðhÞÞ;
x2 ¼ u2ðaðhÞÞ are rewritten as

d~h
dr

¼ kQðh� þ ~hþ a sin rÞa sin r: (8)

Applying a Taylor series expansion, this equation is
rewritten as

d~h
dr

¼ ka f ðr; ~hÞ þ a2R
h i

with f ðr; ~hÞ ¼D Qðh� þ ~hÞ sin rþ aQ0ðh� þ ~hÞ sin2 r and R
contains higher-order terms in sin r. The function f ðr; ~hÞ
being 2p-periodic in r, if the parameter a is taken small
enough, we can neglect the higher-order terms we have for
the averaged system

dhav
dr

¼ ka
1

2p

Z2p
0

f ðr; havÞdr ¼D ka2

2
Q0ðh� þ havÞ:

This system is globally asymptotically stable as can be
seen from the Lyapunov function V ¼ (1/2)h2av, since

dV

dr
¼ ka2

2
Q0ðh� þ havÞhav < 0 8hav 6¼ 0

because of condition (7).

The casestudy that we have presented so far is representa-
tive of biochemical processes that exhibit some yield-produc-
tivity decoupling as observed in many practical applications
(see e.g. Refs. 3 or 4). However, it must be emphasized that
Proposition 1 is restricted to situations where the two follow-
ing conditions hold:

C1. For each admissible value of the flow rate u the system
must have a single globally asymptotically stable equilibrium.
C2. The performance cost function must be single-valued
and ‘well-shaped’’ in the sense that, for the admissible range
of flow rate values 0 � u � umax, it must have a single maxi-
mum value JT(u*) without any other local extrema.

There are situations where these conditions are not satis-
fied: the system may have multiple (stable and unstable)
equilibria for some input values u and the yield or productiv-
ity criteria may be multivalued functions. As we shall dis-
cuss in the next section, the problem may happen even with
simple monomolecular reactions when the kinetics are sub-
ject to substrate inhibition or autocatalytic effects.5

Multivalued Performance Cost Function

We consider again the simple model (1) but we now
assume that, in addition to the Michaelis–Menten kinetics,

the reaction rate is subject to exponential substrate inhibi-
tion. The rate function is as follows:

rðx1Þ ¼ vmx1
Km þ x1

e�bxp
1

where b and p are two positive constant parameters. The dy-
namical model is written:

_x1 ¼ � vmx1
Km þ x1

e�bxp
1 þ uðc� x1Þ (9a)

_x2 ¼ vmx1
Km þ x1

e�bxp
1 � ux2 (9b)

Depending on the value of u 2 ð0; umax�, the system may
have one, two or three steady states ðx1; x2Þ with x1 solution
of:

vmx1
Km þ x1

e�bxp
1 ¼ uðc� x1Þ

and x2 ¼ c� x1.

The productvity JP ¼ u x2 is represented in Figure 5 as a
function of u. In this example, JP is clearly a multivalued
function of u. However, it can be seen that it has a unique
global maximum for u ¼ u�. Moreover, the graph of Figure
5 can also be regarded as a bifurcation diagram with respect
to the parameter u where the solid branches correspond to
stable equilibria and the dashed branch to unstable equilibria.
Hence, it can be seen that the maximum point is located on
a stable branch.

Here we assume that the industrial objective is to achieve
the maximization of the productivity JP. Although conditions
C1 and C2 are not satisfied in this case, a fully satisfactory
operation of the ES control law (6) (with y(t) ¼ u(t)x2(t))
can nevertheless be observed in Figure 6 and Figure 7.

The result of Figure 6 is expected since we are in condi-
tions quite similar to the previous case of Extremum-Seeking
Control section. The result of Figure 8 is more informative
since here the convergence toward the maximum of the cost
function is operated in two successive stages. In a first stage,
there is a fast convergence to the nearest stable state which
is located on the lower stable branch followed by a quasi-
steady-state progression along that branch. Then, when the
state reaches the bifurcation point, there is a fast jump up to
the good upper branch and a final climbing up to the

Figure 5. Productivity JP for system (9) with c 5 3, vm 5 2,
Km 5 1, b 5 0.08, and p 5 3.4.
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maximum point. It is very important to emphasize here that,
in order to get the result of Figure 7, the amplitude a of the
dither signal must be large enough. Otherwise, the trajectory
of the closed loop system definitely remains stuck on the
lower branch at the bifurcation point as shown in Figure 8.
On the other side, too large values of the dither amplitude
are also prohibited because they produce cyclic trajectories
as shown in Figure 9. From all these observations, we can
conclude that by tuning the amplitude of the dither signal
properly, it is possible to pass through the discontinuities of
the stable branches of the cost function and to converge to
the global maximum.

In the next section, we shall examine how the averaging
Lyapunov stability analysis can be extended to the case of a
multivalued (or ‘‘set-valued’’) cost function, by using the
notion of ‘‘Integral of a set-valued function’’.12 This analysis
will explain why, in contrast with the previous case, it may
be required to increase the parameter a for guaranteeing the
convergence of the averaged system.

Averaging Stability Analysis

In this section, we are concerned with the analysis of a
dynamical system

_x ¼ f ðx; uÞ (10a)

y ¼ hðx; uÞ (10b)

under the ES control law (6) whith a set-valued cost function
having a form similar to Figure 5 (obviously we have system

(9) in mind). Since only the stable branches of the static
characteristic matter, the set-valued cost function Q(h) is
defined as a set of two continuous single-valued functions:

QðhÞ ¼ Q1ðhÞ;Q2ðhÞf g

with the following conditions:

1. Q1 : ½h1;þ1Þ ! R and Q2 : ð�1; h2� ! R with h1 \
h2;

2. For each value of h [ [h1, þ 1), there is a LAS equi-
librium x ¼ ‘1(h) of system (10) such that Q1(h) ¼ h(‘1(h),
a(h));

3. For each value of h [(�1, h2], there is a LAS equilib-
rium x ¼ ‘2(h) of system (10) such that Q2(h) ¼ h(‘2(h),
a(h);

4. 8h 2 ½h1; h2�, Q2ðhÞ > Q1ðhÞ;
5. 8h 2 ½h1;þ1Þ;Q0

1ðhÞ < 0;
6. The function Q2 has a unique global maximum at h1 \

h* \ h2, i.e. Q0ðh� þ fÞf < 0; 8f 6¼ 0 s.t. f [ (�1, h2 �
h*].

We can then state the following qualitative observations.

(a) Under the earlier-stated conditions, it is clear that the
time scale separation applies as in Extremum-Seeking Con-
trol section: if, at some time, the trajectory is not in the vi-
cinity of Q, it will quickly converge to this set. Thus we can
consider, as illustrated by the simulations, that the

Figure 7. Extremum seeking for system (9) with a 5 0.003, k
5 6, and x 5 0.01.

Figure 8. Output signal y(t): when a is too small, the trajectory
is stuck on the lower branch.

Figure 6. Extremum seeking for system (9) with a 5 0.003, k
5 10, and x 5 0.01.

Figure 9. Extremum seeking for system (9) with a 5 0.015, k
5 6, and x 5 0.01.
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trajectories are sequences of alternative fast jumps and
quasi-static motions. Furthermore if the parameter a is cho-
sen sufficiently small, the quasi-static trajectories along Q2

converge to a small neighborhood of the optimal steady-
state.
(b) But the simulations also show that, if the parameter a

is too small, the trajectories on Q1 may be stuck at the local
maximum corresponding to the bifurcation point. Further-
more, when stuck on Q1, condition (5) implies that h0 is
automatically prevented to increase (in order to approach h*)
since climbing along Q1 is enforced by the ES control
algorithm.
(c) Hence, although it is necessary to keep the parameter a

rather small, it may also be necessary to increase a to pass
through the bifurcation point and force a jump from Q1 to
Q2 as in Figure 7 But, unfortunately, if a is too large, a
cyclic behavior as in Figure 9 is also possible.

The set-valued averaging analysis presented below gives a
technical justification of the fact that increasing a may lead
to passing through the bifurcation point. The definition of
the averaged system makes use of the notion of Aumann in-
tegral in order to capture the complex trajectories that can
occur in [h1, h2].
As in Extremum-Seeking Control section, we introduce

the change of coordinates ~h ¼ h0 � h� and the change of
time scale r ¼ xt. But here, the ~h-dynamics become a dif-
ferential inclusion (see e.g. [Ref. 14, Chapter 3]):

d~h
dr

2 kQðh� þ ~hþ a sin rÞa sin r: (11)

where the right-hand side is a set-valued 2p-periodic func-
tion. Then the average of system is defined as the differential
inclusion

dhav
dr

2 kafavða; havÞ (12)

with fav(r,hav) being the set-valued function defined as

favða; havÞ ¼D 1

2p

Z 2p

0

Qðh� þ hav þ a sin rÞ sin r dr

with an Aumann integral on the right hand-side (see Ref.
12). (Given a set-valued map F(�), the Aumann integral of F
is defined as Z

FðsÞds ¼D
Z

f ðsÞds : f 2 U

� �

where U is the set of integrals of all measurable selections
from F.)

Let us now define the following single-valued function
Q0(h) which is a selection from Q(h):

Q0ðhÞ ¼
Q1ðhÞ h2 < h < þ1

Q2ðhÞ �1 < h � h2

(
:

Then we can write:

favða; havÞ ¼ f̂avða; havÞ þ gða; havÞ

with

f̂avða; havÞ ¼D 1

2p

Z2p
0

Q0ðh� þ hav þ a sin rÞ sin r dr:

Under conditions (1)–(4), it can be shown that the set
g(a,hav) is upper bounded independently of a:

max
w2gða;havÞ

jwj � M:

Then, a sufficient condition to avoid that the trajectory is
stuck on Q1 is obviously that h1 � h* be not a fixed point of
the average system:

0 62 f ða; h1 � h�Þ ¼ f̂avða; h1 � h�Þ þ gða; h1 � h�Þ
We observe that f̂ ð0; hÞ ¼ 0 and therefore, by continuity,

that we may have 0 [ f(a,h1 � h*) for small values of a.
Hence it appears clearly that a sufficient condition for having
0 62 f ða; h1 � h�Þ is that a be sufficiently large to get
jf̂avða; h1 � h�Þj > M. This allows to understand why increas-
ing the parameter a may prevent the trajectory to remain
stuck on the lower equilibrium branch Q1.

The ‘‘global’’ average behavior captured by the Aumann
integral includes all possible jumps between Q1 and Q2

branches that includes cyclic behaviors, such as the one
given in Figure 9. These behaviors are observed in simula-
tions for large values of dither amplitude a. However, as
soon as the jump through the bifurcation point on Q1 has
occurred and the trajectory has converged to Q2 (e.g. Figure
7), we can apply the classical ‘‘local’’ reasoning using the
single-valued average behavior on Q2 only that would be
valid on a neighborhood of Q2 as long as the trajectory stays
close to it. If the dither amplitude a is not too large, Q2 will
act as an invariant manifold for the average system and we
can conclude using results of Tan et al.9 that the ES control-
ler will converge to the global maximum.

Conclusion

In conclusion, our analysis shows that global extremum
seeking is feasible for systems with multivalued discontinu-
ous cost functions, albeit with competing requirements on
the value of the dither amplitude parameter a. To enable
jump conditions (from undesirable to desirable quasi-steady
state) the dither has to be sufficiently large, yet in order to
achieve convergence to the global maximum (in the desira-
ble quasi-steady state), the dither’s amplitude must be suffi-
ciently small. A dither signal whose amplitude is too large is
easily detected as this will lead to (quasi-)cyclic behavior
where the plant will periodically switch between the undesir-
able and desirable quasi-steady state. A possible solution is
to have a time varying amplitude of dither which is initially
large and then is adaptively reduced. This solution that is
reminiscent of simulated annealing was used for global ES
in presence of local extrema in Tan et al.15 However, it is
obvious that the quasi-steady states, the initial value of am-
plitude a(0) and its rate of change will have to satisfy restric-
tive conditions in order for this strategy to work.
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An alternative is to choose a constant dither amplitude
that is large enough to avoid getting stuck in the bifurcation
point (item (b)) but small enough so that the desirable quasi-
steady state is an invariant manifold for the (classical) local
average (item (c)). Again a set of restrictive conditions will
have to hold in order for this strategy to work and a loss of
performance is to be expected, as the larger amplitudes will
lead to larger variations of the real trajectories around the
desired maximum.

Obviously, the possible theoretical results that could be
proved using the aforementional arguments will be of limited
use, since our underlying assumption is that the model and the
cost to optimize are not known to the control designer. Never-
theless, the insights that we obtained suggest that the practi-
tioners of ES controllers should explore experimenting with
the size of dither amplitudes as the performance gains may be
tremendous and may lead to global extremum seeking.
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