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1. Introduction

Balance laws are hyperbolic partial differential equations that
are commonly used to express the fundamental dynamics of
open conservative systems (e.g. Serre, 2001). Many physical
systems having an engineering interest are described by systems
of one-dimensional hyperbolic balance laws. Typical examples are
the telegrapher equations for electrical lines, the shallow water
(Saint-Venant) equations for open channels, the Euler equations
for gas flow in pipelines or the Aw-Rascle equations for road traffic.
In this paper, our concern is to analyse the exponential stability (in
the sense of Lyapunov) of the steady-states of such systems. The
analysis is developed for a general class of linear systems of one-
dimensional hyperbolic balance laws. As a matter of illustration, an
application to linearised Saint-Venant-Exner equations for open
channels with a moving sediment bed is presented.

We are concerned with n x n linear hyperbolic systems of
balance laws of the form:

0E+ARE—ME=0 €0, +00), x€ (0,L) (1)

* Research supported by the Belgian Programme on Interuniversity Attraction
Poles (IAP V/22), by the “Agence Nationale de la Recherche” (ANR), Project C-QUID,
number BLAN-3-139579, France, and by the “International Science Programme”,
Sweden. This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Nicolas Petit
under the direction of Editor Miroslav Krstic. This paper was prepared when the
first author was a visiting Ph.D. student at Louvain University.

E-mail addresses: babacar16@yahoo.fr (A. Diagne),
Georges.Bastin@uclouvain.be (G. Bastin), coron@ann.jussieu.fr (J.-M. Coron).

1 Tel.: +32 10478038; fax: +32 10472180.

0005-1098/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2011.09.030

where & : [0, +00) x [0, L] — R", A and M are real n x n matrices.
Without loss of generality, we may assume that A is diagonal with
non-zero real diagonal entries such that

A = diag{iq, Az, ..., A},
Ai>0 Vie{l,...,m},
Ai<0 Vie{m+1,...,n}.
We introduce the notations

& Em +
B &
£ = &= such that § = <$_> )
En &n
and
AT = diag{)q, ey }\m}v
AT = diag{|)\-m+l|7 ey |)"n|}!
such that

A = diag{AT, —A7},

|A| = diag {A*, A7},
With these notations, the linear hyperbolic system (1) is written
as

+ +
oY <§_> + <’t)+ _‘["_> 3 <§_> —ME=0. 2)

Our concern is to analyse the exponential stability of this system
under boundary conditions of the form

EN(0)) _ (Koo Kor) (&7t D) 3)
E (@, L)) \Kwo KiiJ\E(t0)
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and an initial condition of the form

£0,x) =&, xe(0,L). (4)
The classical definition of a solution to the Cauchy problem (2)-(4)
inI%((0,L); R") is

Definition 1. Let £&° € [2((0, L); R"). Amap & : [0, +00) x (0, L)
— R" is a solution of the Cauchy problem (2)-(4) if & €
C°([0, +00); L*((0, L); R™)) is such that, for every ¢ = (¢, ¢")"
e C1([0, +00) x [0, L]; R™) with compact support and satisfying

(p+(t5L)
p_(t,0)
(AN TIKAT
ATk AT

we have

(AH)TKjpATY ((@4(t.0)
(A 'KL AT ) \o-(t, 1)

+00 L
f @ + @1 A+ ¢ M)gdxdt
0 0
L
+ / @ (0, x)E°(x)dx = 0.
0

With this definition, we have the following classical result (see e.g.
Coron, 2007, Sections 2.1 and 2.3 for methods to get this result).

Proposition 1. For every £&° € [2((0, L); R"), the Cauchy problem
(2)-(4) has a unique solution. Moreover, for every T > 0, there exists
C(T) > 0 such that, for every §0 € [%((0, L); R™), the solution to the
Cauchy problem (2)-(4) satisfies

1§, iz o,0:mm) < C(T)HEOHLZ((QL);R"), vt € [0, T].

We adopt the following definition for the exponential stability of
the linear hyperbolic system (2)-(3).

Definition 2. The linear hyperbolic system (2)-(3) is exponen-
tially stable if there exist v > 0 and C > 0 such that, for every
& e I2((0,L); R, the solution to the Cauchy problem (2)-(4)
satisfies

R
IECE, 2o < Ce 1€ 1l 20nymmy  VE € [0, +00).

The problem of analysing the exponential stability of the
equilibrium & = 0 for nonlinear systems of conservation laws 9;& +
C(&)0,& = 0 has been considered in the literature for more than 25
years. To our knowledge, first results were published in Greenberg
and Li (1984) and Slemrod (1983) for the special case of 2 x 2
systems. A generalisation to n x n systems of conservation laws
was given in Li (1994) and was recently extended to the case of
conservation laws with a small perturbation source term in Prieur,
Winkin, and Bastin (2008). All these results rely on the method
of characteristics and establish the exponential convergence of
the solutions in C'(0, L)-norm under suitable dissipative boundary
conditions.

In a different approach, a strict Lyapunov function introduced
in Coron (1999) was used in Coron, Bastin, and d’Andréa-Novel
(2008); Coron, d’Andréa-Novel, and Bastin (2007) in order to
analyse the exponential stability of the equilibrium of nonlinear
systems of conservation laws in H2(0, L)-norm. This Lyapunov
approach has also been used in Xu and Sallet (2002) to analyse the
exponential stability of linear hyperbolic systems of balance laws of
the form (1) in the special case where the matrix M is symmetric.
The same kind of Lyapunov function is also considered in Gugat
and Herty (2011) for the special case of gas pipelines represented
by isentropic Euler equations.

In the present paper, our main contribution is to explain how
this Lyapunov stability analysis can be further extended to the
case of linear hyperbolic systems of the form (1). In Theorem 1
we first give a general implicit formulation of sufficient stability
conditions. Then in Theorem 2, we show that, when the matrix
M is diagonally marginally stable, an explicit boundary dissipa-
tivity condition holds for exponential stability in L?(0, L)-norm.
Finally, in Section 4, we present an application to the boundary
feedback stabilisation of open channels represented by linearised
Saint-Venant-Exner equations.

2. Lyapunov stability: general sufficient conditions

The system (2)-(4) is rewritten as

0E+ ARE—ME=0 te[0,+00), x e (0,L), (5a)
Ko&(t,0) + Ki&(t,L) =0, t € [0, +0o0), (5b)
£0,x) =&, xe(0,L) (5¢)

with

— I —Km _ —Koo 0
Ko := (0 —1<n>’ K = (—Km 1)'
The following candidate Lyapunov function is introduced:

L
V= / ETP(x)&dx. (6)
0

A

The weighting matrix P(x) is defined as follows: P(x) = diag
{pie " i=1,...,n},with u > 0, p; > 0 positive real numbers
and o; = sign(A;).

The time derivative of V along the solutions of (5) is

. L
V= f (3:E"P(OE + E'P(x)0;£) dx
0
= / L<—axsTAP<x)£ — E'P(0)ADE
0

+EM'P(x)E + ‘;‘TP(x)MS) dx.
Then, integrating by parts, we obtain:
L
V=- / 3 [£" AP(0)E] dx
0

L
+ / & (—1lAIPG) +M'P() + PCOM )£ dx
0
= —[£" APRE];

L
+ / & (~u1AIPG) + MTPG) + PO )£ dx
0

AP(L 0 t, L
=—(E@wDn £to0) ( 0( ) —AP(O)) (ggt 0%)

L
+ / ET<—M|A|P(X) +M'P(x) + P(x)M)§ dx.
0
We then have the following exponential stability result.

Theorem 1. The system (5) is exponentially stable if there exist y >
Oandp; > 0i=1,...,nsuchthat

C1. The boundary quadratic form

AP(L 0 L
(€D £T(f’0>)< 0 —AP(O)> (ggo))>
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is positive definite under the constraint of the linear boundary
condition Koé(t, 0) + K &(t, L) = 0, Vt > 0 along the solutions
of system (2)-(4);

C2. The matrix —u|A|P(x) + MTP(x) + P(x)M is negative definite
vx € (0, L).

Remark 1. Boundary conditions that satisfy condition C1 are
called Dissipative Boundary Conditions. Condition C1 is satisfied if
and only if the leading principal minors of order >2n of the matrix

0 Ko K;
—K, —AP(0) 0
—K] 0 AP(L)

are strictly positive (see Vdliaho, 1982, Theorem 2.1).

Remark 2. For > 0 sufficiently small, condition C2 is satisfied if
there exist p; > 0 such that MTP(0) + P(0)M is a negative semi-
definite matrix. A question that has attracted some attention in
the literature concerns the conditions on a matrix M for which
there exist a diagonal positive matrix P such that M'P 4+ PM is
negative definite (see e.g. Barker, Berman, & Plemmons, 1978 for
an early reference and Shorten, Mason, & King, 2009 for a recent
reference). When such a matrix P exists, the matrix M is said to be
diagonally stable (because it is stable and the associated Lyapunov
equation is satisfied with a diagonal P). Here, with condition C2,
we are rather concerned with a diagonally marginally stable matrix
M which means that we require only that M'P + PM be negative
semidefinite.

For general systems of the form (1), it is rather clear that more
explicit stability conditions can be derived only on a case by case
basis when the internal structure and the numerical values of
the involved matrices A, M, Ky, K; are at least partially specified.
In the next section, we investigate the special case of system
(5) when M is diagonally marginally stable and we show that a
fairly simple explicit dissipative boundary condition can be given
in that case. This is of great practical interest since models with
diagonally marginally stable M appear in many concrete physical
and engineering applications as we illustrate in Section 4 with the
example of Saint-Venant-Exner equations for open channels with
non-constant bathymetry.

3. Dissipative boundary condition when M is diagonally
marginally stable

In this section, we will present a variant of Theorem 1 with
an explicit characterisation of a sufficient dissipative boundary
condition which guarantees the system exponential stability in the
case where M is diagonally marginally stable. We consider again
the system written in the form (2)-(4) and we define the matrix

s (Koo Kon
K= (1(10 1<n> :
Let O, denote the set of diagonal p x p real matrices with strictly
positive diagonal entries. We define the set # as follows:
2 £ {P € D, such that M'P + PM is negative semidefinite}.

With the above notations, the candidate Lyapunov function (6) is
written

L
V= / [(E"TPoET)e ™ + (§7TP1E7 )] dx )
0

with Py € Dy, Py € Dy_1 and u > 0. We introduce the following
norm for the matrix K:

p(K) 2 inf{nAKA”II, Ac 5}

where || || denotes the usual matrix 2-norm and the set § is defined
as follows:

52 A =diag (D, Dy}, D = Pya™, (8)
D} =PiA”, P=diag(P, Pi) € . (9)
We have the following theorem.

Theorem 2. If M is diagonally marginally stable, if the boundary

dissipative condition p(K) < 1 is satisfied, then the linear hyperbolic
system (2)-(3) is exponentially stable.

Proof. The time derivative of the Lyapunov function V is

V=Vi+V, (10)
with
Vi 2 — [£TPAtE e ] + [ETPAE ],
L
v, 2 f £ (—uP®)|A| + M'P(x) + P(X)M) & dx
0

and P(x) 2 diag {Poe™"*, P1e*} | |A| 2 diag {AT, A7 }.

In order to prove that the boundary condition (3) is dissipative
we will show that Py, P; and p can be selected such that V is a
negative definite function. In order to prove that V; is a negative
definite quadratic form, we introduce the following notations:

£ (O 2E(60) & (©2E (D).

Using the boundary condition (3), we have

Vi = — [6TPoAE e, + [£TPIATE e,

— (ETPoATE e + & TP1ATE))

+ (E77Kgo + & 'Kg1) PoA™ (KookT + Kor&y )

+ (877K + & TKD) PrA™ (Ko + Kin&y ) et

Since M is diagonally marginally stable and p(K) < 1 by assump-
tion, we know that the set & is not empty and we can select ma-
trices Py and P; such that

P = diag {Py, P} € P, D3 = PyAt, D} =PA",

A =diag{Dy,D;} and ||AKA7'| < 1. (11)

We define

s (Dok7
 (05)

Then, using inequality (11), we have
(E7"Kgo + &5 'Koy) PoA™ (Koo&T + Ko1&y)
+ (877K{y + & K;) PrA™ (KiokT + Kni&y)
= ||[AKA™'z|?
< lzl* = & PoATES + & P1ATE; .
It follows readily that u can be taken sufficiently small such that V1

is a negative definite quadratic form with respect to (STT & Yyt >
0 along the solutions of system (2)—(4). O

Moreover, since M’ P4-PM is negative semidefinite (because P €
&), i > 0 can be taken sufficiently small such that —uP(x)|A| +
M'P(x) +P(x)M is negative definite for all x in [0, L]. It follows that
for u sufficiently small there exist @ > 0 such that

V2<_O,V:>V:V1+V2<—av VE;&O

Consequently the solutions of the system (2)-(4) exponentially
converge to 0 in L2-norm.
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4. Application to the Saint-Venant-Exner model

In the previous section, we have shown that for systems with
M diagonally marginally stable, the dissipative boundary condition
p(K) < 1is asufficient exponential stability condition. This is true
in particular for hydraulic systems described by linearised shallow-
water equations as long as the subcritical flow condition is satisfied
as we shall illustrate in the present section for an open channel
with variable bathymetry.

We consider a pool of a prismatic sloping open channel with a
rectangular cross-section, a unit width and a moving bathymetry
(because of sediment transportation). The state variables of the
model are: the water depth H(t, x), the water velocity V (¢, x)
and the bathymetry B(t, x) which is the depth of the sediment
layer above the channel bottom. The dynamics of the system are
described by the coupling of Saint-Venant and Exner equations
(see e.g. Hudson & Sweby, 2003):

oH oH av

m +Va —l—Ha =0,
8fv+V8—V+gai1+g%=gsb—cfv—2, (12)
at ox ox ox H

B L g

ot 0

In these equations, g is the gravity constant, Sy is the bottom slope
of the channel, (; is a friction coefficient and a is a parameter
that encompasses porosity and viscosity effects on the sediment
dynamics.

4.1. Steady-state and linearisation

A steady-state is a constant state H*, V*, B* which satisfies the
relation

ngH* = CfV*Z.

In order to linearise the model, we define the deviations of the state
H(t, x), V(t, x), B(t, x) with respect to the steady-state:

h(x,t) = H(x,t) — H*,

ux, t)y =V, t) — V*,

b(x, t) = B(x, t) — B*.

Then the linearised Saint-Venant-Exner model (12) around a
steady-state is

on L yedh e (13a)
at ax ax

du \yulu O b VR eV (13b)
du yplu o bV eV

at ax " Cox Eax T Thn T

ob ou

— 4av®— =0 13c
ot 9 (13¢)

4.2. Characteristic (Riemann) coordinates

In matrix form, the linearised model (13) can be written as

W LW .
— +AW")— =BW"HW (14)
ot 0x
where
h v* H* 0
"= (u) ., AawH=|g v gl,
b 0 av? o0
0 0 0
. V*Z V*
BW*) = |G 0 —2Cfm 0
0 0 0

Exact, but rather complicated expressions of the eigenvalues of
A(W™) can be obtained by using the Cardano-Vieta method, see
Hudson and Sweby (2003). Once the eigenvalues A; of the matrix
A(W™) are obtained, the corresponding left eigenvectors can be
computed as

) (V* — A (V* — aj) + gH*
Lk = H*)\k s
(A — A) (A — Ap) gH*

k#i#je(1,2,3).

We multiply (14) by LZ in order to rewrite the model in terms of
the characteristic coordinates v (k = 1, 2, 3). Then we obtain

B 0
%'{‘)“k 816(’( :LgBW, k= 1,2,3, (15)
where
1
N 4 VA A YAY Y S W H*)h
V= G Oa (T R =) 8
+ H* A + gH*b).

Conversely, we can express h, u and b in terms of the characteristic
coordinates:

h =Y+ 92+ s,

1
u= m[(h — VY1 + (A2 — VY2 + (A3 — V)],

1
gH* [(M — V*)? — gH") ¥

+ (02 =V = gH) s + (O3 = V)? — gH") 3],
Using the new variables 1, the RHS of (15) writes:
LI BW

b =

yilsh + yalu

As—VE\
D TR el 23 (16)

s=1

where

V*Z V*
)’1:Cfﬁv sz—chm,

and l’; is the second component of L{. Eq. (16) can be rewritten as:

v Ak 2
BW=¢—— % (3v* —2 )w,
: TH (e = 2 O — &) ; A
k#£i#£je{1,2,3}.
For the sake of simplicity, we introduce the following notation 6:
v* Ak
h=C 0 -
H* (A — X)) (Ax — A5)
Then Eq. (15) writes:

0

a—g"+x 3—5"+23:(2)\ —3V90E =0 (k=1,2,3) (17)
ot kaX s s sSs — = 1,4,

where the characteristic coordinates are now defined as
b=~
k= —Vk.
Ok

From (17), the linearised model (15) in characteristic form may
now be written as
0& &

— 4+ A= —ME=0,
ot ox §
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where

E=(5,6.8), A = diag(Aq, A2, A3),

a1 Oy O3
M=o a oa3],
a1 Oy O3

with
o = (3v* - 2k,<)0,(.

From Hudson and Sweby (2003), the three eigenvalues of the
matrix A are such that

M <0<t K23 (18)

with A1 and A, the characteristic velocities of the water flow and X,
the characteristic velocity of the sediment motion. Obviously the
sediment motion is much slower than the water flow. On the basis
of (18), we are now going to determine the sign of the coefficients
Oy in M.

For a1, we have:

Ve, A
o =cf—(3v —2i4) .

H* (A1 = A2) (A1 — A3)
Since A1 < 0, we have 3V* — 21, > 0. Using 4.2, we infer that:
}\.1—)\2<0 and )\,1—)\.3<0.

From the above inequalities, we conclude that &y < 0.
For «r», we have

Ve A2
o = cf—(av - 2,\2) .
H* (A2 = A (A2 — A3)

Since the sediment motion is much slower than the water flow, we
may assume that 3V* — 24, > 0. Moreover from 4.2, we have also

)\.2>0, )\.2—)\,]>0 and )\.2—)»3<0.

From these inequalities, we conclude that o, < 0.
Finally, for o3, we have

v A3
s = Cf—(av* - 2A3> .
H* (A3 —2A2)(A3 — Ay)

From 4.2, we have

Az >0, A —A1 >0 and A3 — Xy > 0.
Using the trace of A, we have also

3V* — 23 = 241 42X, — V*.

Since A, is small, 3V* — 243 has the same sign as 24, — V*. Since
M1 < 0 is negative, we obtain: 3V* — 213 < 0 and consequently
a3 < 0.

Hence all the coefficients ¢, in matrix M are strictly negative.

4.3. Lyapunov stability under boundary feedback control

We are now going to show how Theorem 2 may be applied to
analyse the stability of an open channel under boundary feedback
control.

We assume that the channel is provided with hydraulic control
devices (pumps, valves, mobile spillways, sluice gates,...) which
are located at both ends and allow to assign the values of the
flow-rate. On-line measurements of the water levels at both ends
h(t, 0) + b(t, 0) and h(t, L) + b(t, L) are assumed to be available
for feedback control. Obviously, instead of the flow-rates, we may
as well consider the velocities u(t, 0) and u(t, L) as being the
control actions. Therefore we introduce the following boundary
conditions:

u(t, 0) = —kqh(t, 0), (19a)
u(t, L) = —ko(h(t, L) + b(t, L)), (19b)
b(t,0) = 0. (19¢)

Conditions (19a)-(19b) are linear feedback static control laws with
the tuning parameters k; and k,. The third condition is supposed
to be a physical constraint. In order to invoke Theorem 2, we have

(1) to find a matrix P = diag{py, p>, p3} such that &' (M'P + PM)§&
is a negative semi definite quadratic form,

(2) to find the range of admissible values of the tuning parameters
k; such that the boundary conditions are dissipative.

For the matrix P, a straightforward choice is p; = |a;| (i =
1, 2, 3) since then the quadratic form is

3 2
&' (M'P+PM)§ = —2 (Z |a,»|sf) :
i=1

In order to check the dissipativity condition p(K) < 1, we have to
compute the matrix K and the matrix A. It is easy to verify that,
in the Riemann coordinates £, the boundary conditions (19) can be
written in the form (3) as follows:

&1(t, L) 0 x2(k2)  x3(kz) &1(t,0)
£(t,0) | = | ma(ky) 0 0 &(t, L)
&(t, 0) 3 (k) 0 0 &(t, L)

K

where m; and x; are the following homographic transformations of
the tuning parameters k1 and k:
21 — C21k1

a
my (k) = ,
asy — c3k;

a3 — Ci3k
m3(k) = ————,
asy — ¢k

with

ajj = ()\,j—)»j)<1+ (Ai_vgi[(j:j_v )>

A
cy=g"<xj—x,->, k#i#je{1,2,3)

and

)\1 — V= g+ ()»1 — V*)kz

Moreover, we have, by definition, that P = diag{|a], |a2], |a3]|}
and |A| = diag{|A1], A2, A3}. Consequently:

4 = diag {V/ Il el vzl Vsl |

and
AKA™!
[A1] o] [A1] o]
0 x2(kz) x3(kz)
Azlo] Aslas|
Ao
— | ) 2lez| 0
|21 loer
Asla
25(ko) 3las] 0 0
|1 loe

Then, it is a matter of tedious but fairly straightforward calculations
to show that

IAKA™Y| < 1
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if and only if the tuning parameters k; and k; can be selected such
that

oz | Aslos|
722 (k)22 72(ky) <1
2 ) e T YT e
and
A
2(12)| 1l e | (])I 1|I0t1|<1'
Azlo| Aslo|

5. Conclusions

We have addressed the issue of stating sufficient boundary
conditions for the exponential stability of linear hyperbolic
systems of balance laws. In Theorem 1 we have first given a general
implicit formulation of sufficient dissipative boundary conditions.
Our analysis relies on the use of an explicit Lyapunov function. The
weight e*#* is essential to get a strict Lyapunov function.

Then in Theorem 2, we have shown that the explicit dissipa-
tivity condition p(K) < 1 gives a convergence in L?(0, L)-norm for
systems of balance laws with a diagonally marginally stable matrix
M. This theorem has been applied to give tuning conditions for
boundary feedback stabilisation of an open channel represented by
the linearised Saint-Venant-Exner model. Obviously, the fact that
the sediment motion is much slower than the water flow induces a
separation of time scales that could also be used in order to design
separate controllers for each motion.

The same Lyapunov function cannot be directly used to analyse
the local stability of the steady-states in the nonlinear case. In order
to extend the Lyapunov stability analysis to the nonlinear case,
the Lyapunov function has to be augmented (as shown in detail
in Coron et al. (2008, 2007)).

References

Barker, G. P., Berman, A., & Plemmons, R. J. (1978). Positive diagonal solutions to the
Lyapunov equations. Linear and Multilinear Algebra, 5(3), 249-256.

Coron, J.-M. (1999). On the null asymptotic stabilization of the two-dimensional
incompressible Euler equations in a simply connected domain. SIAM Journal on
Control and Optimization, 37(6), 1874-1896.

Coron, J.-M. (2007). Mathematical surveys and monographs: Vol. 136. Control and
nonlinearity. Providence, RI: American Mathematical Society.

Coron, J.-M., Bastin, G. & d’Andréa-Novel, B. (2008). Dissipative boundary
conditions for one dimensional nonlinear hyperbolic systems. SIAM Journal on
Control and Optimization, 47(3), 1460-1498.

Coron, J.-M., d’Andréa-Novel, B., & Bastin, G. (2007). A strict Lyapunov function for
boundary control of hyperbolic systems of conservation laws. IEEE Transactions
on Automatic Control, 52(1), 2-11.

Greenberg, J. M., & Li, T. (1984). The effect of boundary damping for the quasilinear
wave equations. Journal of Differential Equations, 52, 66-75.

Gugat, M., & Herty, M. (2011). Existence of classical solutions and feedback
stabilisation for the flow in gas networks. ESAIM: Control, Optimisation and
Calculus of Variations, 17(1), 28-51.

Hudson, J., & Sweby, P. K. (2003). Formulations for numerically approximating hy-
perbolic systems governing sediment transport. Journal of Scientific Computing,
19,225-252.

Li, T.-T. (1994). Research in applied mathematics, Global classical solutions for quasi-
linear hyperbolic systems. Masson and Wiley.

Prieur, C., Winkin, J., & Bastin, G. (2008). Robust boundary control of systems
of conservation laws. Mathematics of Control, Signal and Systems (MCSS), 20,
173-197.

Serre, D. (2001). Systems of conservation laws: a challenge for the XXIst century.
In B. Engquist, & W. Schmid (Eds.), Mathematics unlimited (pp. 1061-1080).
Shorten, R., Mason, 0., & King, C. (2009). An alternative proof of the Barker, Berman,
Plemmons (BBP) result on diagonal stability and extensions. Linear Algebra and

its Applications, 430, 34-40.

Slemrod, M. (1983). Boundary feedback stabilization for a quasilinear wave
equation. In Lecture notes in control and information sciences: Vol. 54. Control
theory for distributed parameter systems (pp. 221-237). Springer Verlag.

Viliaho, H. (1982). On the definity of quadratic forms subject to linear constraints.
Journal of Optimization Theory and Applications, 38(1), 143-145.

Xu, C.Z., & Sallet, G. (2002). Exponential stability and transfer functions of processes
governed by symmetric hyperbolic systems. ESAIM: Control, Optimisation and
Calculus of Variations, 7, 421-442.

Ababacar Diagne received a Graduate Degree in Applied
Mathematics and Computer Sciences from the University
Gaston Berger of Saint Louis (Senegal). He is currently
a Ph.D. Student jointly at University Gaston Berger of
Saint Louis (Senegal) and Royal Institute of Technology
(Sweden).

Georges Bastin received the electrical engineering degree
and the Ph.D. degree, both from Université catholique
de Louvain, Louvain-la-Neuve, Belgium. He his presently
Professor in the Department of Mathematical Engineering
at Université catholique de Louvain. His main research
interests are in nonlinear control of compartmental
systems and boundary control of hyperbolic systems with
applications in biology and environmental systems.

Jean-Michel Coron received the Diplome of engineer
from Ecole Polytechnique in 1978 and from the Corps
des Mines in 1981. He received the Thése d’état in 1982.
He has been Researcher at Ecole Nationale Supérieure
des Mines de Paris, Associate Professor at the Ecole
Polytechnique, Professor at Université Paris-Sud 11. He is
currently a Professor at Université Pierre et Marie Curie
(Paris-6) and Institut Universitaire de France. His research
interests include nonlinear partial differential equations
and nonlinear control theory.



	Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws
	Introduction
	Lyapunov stability: general sufficient conditions
	Dissipative boundary condition when  M  is diagonally marginally stable
	Application to the Saint--Venant--Exner model
	Steady-state and linearisation
	Characteristic (Riemann) coordinates
	Lyapunov stability under boundary feedback control

	Conclusions
	References


