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Motivated by the negative thermal expansion observed for silicon between 20 K and 120 K, we present an
ab initio study of the volume dependence of interatomic force constants, phonon frequencies of transverse-
acoustic TAK) and TA(L) modes, and of the associated mode r@isen parameters. The influence of suc-
cessive nearest-neighbor shells is analyzed. Analytical formulas, taking into account interactions up to second-
nearest neighbors, are developed for phonon frequencies of)TAfd TA(L) modes and the corresponding
mode Gruneisen parameters. We also analyze the volume and pressure dependence of various thermodynamic
properties(specific heat, bulk modulus, and thermal expansiand point out the effect of the negative mode
Gruneisen parameters of the acoustic branches on these properties. Finally, we present the evolution of the
mean-square atomic displacement and of the atomic temperature factor with the temperature for different
volumes, for which the anomalous effects are even greater.

INTRODUCTION More recently, Wei, Li, and Chduextracted interatomic
. L force constants fromab initio calculations of planar forcé$,
In the past few years, theoretical and algorithmic ad- o Ny

. ) . and calculated the specific heat, the overall iigigen pa-
vances have made it possible to determine the thermody-

i . . e rameter, and the thermal-expansion coefficient.
namical properties of solidésuch as the specific heat or ; . .
. S . o In this paper, we use a variational approach to density-
thermal-expansion coefficient from first principles

. 2 functional perturbation theory to calculate the volume-
calculations- . . ”
. . . . . dependent dynamical properties of silicgee Sec.)l We
Silicon is a choice system for testing these methods, since o .
X X : present arab initio study of the volume dependence of in-
accurate measurements on high-purity samples exist over;a

) . . teratomic force constants up to 25th nearest neighbors. Wei
wide range of temperatures. Moreover, it presents a negative

: . nd Chou had also presented such a calculation but only for
thermal-expansion coefficient between 20 K and 120 ) .
e . : one volume and up to eighth-nearest neight®r$ Phonon

which is of fundamental interest. This unusual thermal- : .

; : . L frequencies of TAK) and TA(L) modes, and of the associ-
expansion behavior can be attributed to the negativenGru N .

: . . ted mode Gnoeisen parameters are also calculated for dif-

eisen parameters.e., phonon frequency increases as crystal

volume increasdsof the transverse-acousti@A) phonons ferent volumes. The influence of successive nearest-neighbor
tshells is analyzed. We confirm that the contribution of atoms

near the Brillouin-zone boundary. It is interesting to note thal 4 by the i hain al direction i
this anomalous behavior also affects other properties of siliconnected by the zigzag chain along ftiel 0] direction is

con, such as the mean-square atomic displacefasrghown  the most important, as suggested by Mazur and Rollrﬁ%mn.
later in this paper But we show that the contrlb_utlons Qf the fifth, sixth, and
This anomalous negative thermal expansion has been ang€venth atoms along the chairespectively 13th, 18th, and
lyzed in previous studies, most of them relying on the quasi25th nearest neighborare not negligible, contrary to what
harmonic approximation.In this approach, the volume de- had been speculated by Wei and CHBanalytical formulas,
pendence of phonon frequencies must be determinedaking into account interactions up to second-nearest neigh-
Kagaya, Shuoji, and Sorhaised a perturbation treatment bors, are developed for phonon frequencies of XA&nd TA
with a model pseudopotential to calculate the specific heatL) modes and the corresponding mode i@isen param-
and the thermal-expansion coefficient. Biernacki andeters. In Sec. I, we analyze the volume and pressure depen-
Scheffle? employed a Keating model with two parameters,dence of various thermodynamic propertispecific heat,
which were extracted from local-density pseudopotential calbulk modulus, and thermal expansjoThe effect of zero-
culations, to compute the thermal-expansion coefficientpoint motion on static equilibrium properti@sttice constant
Fleszar and GonZeperformed a model-free computation of and bulk modulusis also analyzed. We point out the effect
the thermal expansion, using a linear-response techniquef the negative mode Gnegisen parameters of the acoustic
within density-functional theor{.Xu et al® used a tight- branches on these properties. In Sec. Ill, we present the evo-
binding model to calculate the thermal-expansion coefficientution of the mean-square atomic displacement and of the
and mode Groeisen parameters; they also showed by usingitomic temperature factor with the temperature for different
a simple model that the negative values of the modénGru volumes. Anomalous effects present at all temperatures are
eisen parameter could be attributed to a larger contributioinvestigated, using a band-by-band decomposition. Finally,
from the central part of forces than the angular part of forceswe present our conclusions in the last section.
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I. DYNAMICAL PROPERTIES In order to visualize these IFC’s, we compute the forces

induced along the zigzag chain by the displacement of a

generic atom of this chain in three perpendicular directions
To obtain accurate interatomic force constaffeC’s), we  (along[1 1 0], parallel to the chain direction, alorig 0 1],

first calculate from first principles the dynamical matrices forperpendicular to the chain direction; but in the plane of the

ten different wave vectors in the irreducible Brillouin zone chain, and alon§l 1 0], perpendicular to the chain direction,

(IBZ) (the special points mentioned in Ref.)1&ing a varia-  but out of the plane of the chainall the other atoms being

tional approach to density-functional perturbation théfry. kept fixed. These forces can easily be obtained from IFC’s by

Then, we perform a Fourier transform of these dynamical

matrices in order to get the IFC's, following Refs. 1 and 15. Fra=—Pop(i;k")(R=Rp) 15 (D)

This sampling of dynamical matrices allows us to obtain

IFC’s in a real space box containing 512 atoms. This is mor&vhereR—Ry is the displacement of the generic atom, and

accurate than what had been done in Ref. 6, where the IFC®€ IFC ®,5(x;«') is the force exerted on ior in the

had only been calculated for two different wave vectors indirectiona due to the displacement of iotf in the direction

the IBZ, which corresponds to a real space box of 64 atomd3-

A. Interatomic force constants

It is also better than the work of Wei and Chttt!who had ~ The resulting forces have been reproduced in Fig. 1. The
included interatomic interactions up to eighth-nearest neighdirections of the forces induced by the displacement of the
bors, which corresponds to 99 atoms. generic atom in th¢l 1 0] and[0 O 1] directions show that

Our calculations, performed within the local-density ap_the bonds along the chain will te.nq to b.end in order to keep
proximation(LDA),® use a preconditioned conjugate gradi- constant the bo'nd angles: at sufficient d|_stance, the forces are
ent algorithm'”8We use a rational polynomial parametriza- Néa@rly perpendicular to the last connecting bond. The decay
tion of the exchange-correlation energy functiolfalhich of the magnitude of these forces along the ch_am is similar to
is based on the Ceperley-Alder gas d®tahe electronic that of the IFC’s. On the contrary, the forces induced by the
wave functions are sampled on a mesh of ten spégimints ~ displacement in th¢l 1 0] direction are much smaller. In-
in the IBZ and expanded in terms of a set of plane wavesleed, they have the generic form { v,»—u,0), whereu
whose kinetic energy is limited to 10 hartree. The “all- andv are of the same order of magnitu@ie Table)l It is
electron” potentials are replaced by ab initio, separable, thus more difficult to interpret them.
norm-conserving pseudopotential built following the scheme
proposed in Ref. 21. The calculated equilibrium lattice con- B. TA(X) and TA(L) phonon frequencies
stant is 10.18 bOhl’GRef. 22 (the influence of the Zel’o-point and associated mode Graoeisen parameters
motion on this value will be discussed in Seg, lvhereas

the experimental one is 10.26 bohrs. In previous studies, the negative mode @isen param-

The calculation of IFC's is performed for three different eters associated with the modes of the acoustic branches,
volumes, corresponding to lattice constamtsof 10.00 near the zone boundaries, has been shown to drive the nega-

10.18, and 10.26 bohrs, respectively. The IFC’'s for thes&%i\_’e thermal expansion. We now focus on the analysis Qf the
different lattice constants are listed in Table I, in which co-gh symmetry TAK) and TA(L) modes because analytical

ordinates are in units af/4 and notations for the force con- "€Sults can be obtained for them. .
stants follow Ref. 23 The phonon frequencies can be calculated by solving the
In Table I, the results are presented with a precision oflynamical equation
105 hartree/boht. However, we did not analyze the influ-
ence on the IFC of changing either the pseudopotential or the o C ' Ry — 2
. . . a( Kk U, =M, wiu, , 2
exchange-correlation potential. Thus, it has to be noted that KE’B sl k" )Uy(K”B) 05Uo(Ka) @
the conclusions drawn hereafter hold only for the specific
pseudopotential and exchange-correlation potential used iwhereu,(««) is the displacement in the directian of ion

our calculations. k for the normal moder, M, is the mass of ionk, and
As already noticed in Refs. 10 and 12, IFC's for atomsw,, is the frequency of the normal mode
connected by the zigzag chain along ftiel 0] direction (or In order to analyze the influence of the successive nearest-

the directions related to it by symmeltrgre the most impor- neighbor shells for TAX) and TA(L) modes, we artificially
tant. The magnitude of IFC’s along these peculiar directiondimit the interactions taken into account in the IFC matrix
decays quite slowly. The contribution of the first nearest® ,;(«;«") of Table | to the atoms whose distance is less
neighbors &, and B;) is about four to five times smaller than a cutoff radius. Then, we increase the cutoff radius shell
than the on-site contributiona). Going up to second- by shell until the sphere contains all the atoms included in
nearest neighbors reduces the IFC’s by another factor of ghe real space box defined by our sampling of the Brillouin
(\5) or 10 (u, andv,). The contribution\ ,5 of the seventh  zone.

atoms along the chaifcoordinates7,7,1) in units of a/4], In truncating the interaction to different shells, we break
which are already the 25th nearest neighbors, is still of théhe acoustic sum rulévhich states that moving all atoms as
order of 1% of the contribution of the first-nearest neighborsa whole should not create any fojagnless it is reimposed
and of 5% of that of the second ones. Comparatively, thdy artificially changing the on-site IFG,.%* We analyzed
biggest contribution of the seventh-nearest neighlfitrsse  the results obtained both with and without reimposing the
do not belong to the chain, but are twice as close as thacoustic sum rule and found no significant difference regard-
seventh atoms along the chpis about two times smaller.  ing the convergence with respect to the number of nearest-
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TABLE I. Interatomic force constant matrix elements and associated forcee@an parameters for
silicon at three different volumes, corresponding to lattice constara$ 10.00, 10.18, and 10.26 bohrs,
respectively. The convention of Ref. 23 for labeling the matrix elements has been followed. One atom is at
the origin, while the coordinates of the second atom are expressed in unit4; dhe asterisks indicate the
atoms belonging to the zigzag chain along fthel 0] direction. The first column indicates the number of the
shell NN to which the second atom belongs. The forcenBisen parameters of IFC matrix elements that are
smaller than 10* hartree/boht are not mentioned. The interatomic force constant matrix elements are
expressed in hartree/boRrs

NN  Coordinate a=10.00 a=10.18 a=10.26 a=10.00 a=10.18 a=10.26

0  (000* a 015629 0.13904 0.13201 y(ay) 1.0766  1.1034  1.1047
1 (11,0* @ -0.03779 -0.03385 -0.03225 y(a;) 1.0215  1.0336  1.0275
B, -0.02880 -0.02348 -0.02137 y(B,) 1.8264  1.9817  2.0338
(22,0*  u, -0.00203 -0.00182 -0.00173 y(u,) 0.9600  1.0682  1.1216
v, -0.00200 -0.00178 -0.00168 y(v,)  1.0879  1.1641  1.1951
5, 000120 0.00111 0.00108 y(5,)  0.6487  0.6997  0.7234
N, 0.00445 0.00433 0.00428 y(\,) 0.2476  0.2456  0.2437
3 (11,3 @3 0.00035 0.00032 0.00031 y(u;) 0.6911  0.8662  0.9617
vs -0.00033 -0.00035 -0.00036 y(v;) -0.6046 -0.5696  -0.5546
5, 0.00032 0.00029 0.00028 y(8;) 0.8368  0.9285  0.9736
Az 0.00006 0.00006 0.00006 y(\s3)
0,04  m,; -0.00020 -0.00020 -0.00019 y(u,) 0.2788  0.2831  0.2843
A, -0.00007 -0.00005 -0.00004 y(\,)
5  (332%* us -0.00022 -0.00020 -0.00019 y(us) 11211  1.1069  1.0819
vs -0.00032 -0.00026 -0.00024 y(vs) 1.8115  1.9104  1.9240
85 0.00064 0.00058 0.00055 y(&s)  0.9110  0.9660  0.9882
As -0.00183 -0.00183 -0.00183 y(Ag) 0.0062  0.0312  0.0435
6 (22,4  ps -0.00016 -0.00015 -0.00014 y(us) 05894  0.6875  0.7383
v 0.00026 0.00026 0.00026 y(vs) 0.0120  0.0023  -0.0024
8 -0.00003 -0.00004 -0.00004 (&)
ve -0.00012 -0.00012 -0.00011 y(ys) 0.1326  0.1893  0.2179
A¢ 0.00004 0.00003 0.00002 y(\g)
(1,15 @, 0.00009 0.00009  0.00010 ()
v;  0.00001 0.00001 0.00001 y(v;)
5, 0.00000 -0.00001 -0.00001 y(&,)
_\; -0.00001 -0.00001 -0.00001 y(X\7)
(333  a; 0.00006 0.00006 0.00005 y(a;)
B, 0.00000 0.00000 0.00000 ¥(3;)
8  (44,0%* pug -0.00002 0.00000 0.00000 ¥(ug)
vg -0.00013 -0.00011 -0.00011 y(vg) 0.9582  0.9260  0.8957
8 0.00027 0.00025 0.00024 y(8) 0.7319  0.7755  0.7940
Ag 0.00107 0.00105 0.00104 y(Ag) 0.1332  0.1423  0.1465

N

N

~

13 (55D* w3 -0.00005 -0.00004 -0.00004 (w13

vz 0.00001  0.00001  0.00002 ¥(vy3)

813 0.00013 0.00011 0.00011 y(8) 0.9835  1.0328  1.0499

A1z -0.00059 -0.00058 -0.00057 y(\;9 0.2270  0.2052  0.1932
18 (6,6,0* ;g -0.00001 0.00000  0.00000 y(w1g)

vig  -0.00006 -0.00005 -0.00005 y(v1g)

S1g 0.00006  0.00005  0.00005 y(8:g)

Nig 0.00034 0.00033 0.00033 y(A;g 0.2448  0.1989  0.1748
25  (7,7.0* s -0.00002 -0.00001 -0.00001 (s

vps 0.00001  0.00002  0.00002 ¥(vys)

8,5 0.00004 0.00004  0.00004 (8,

N5 -0.00021 -0.00020 -0.00020 y(A,9 0.3781  0.3210  0.2892
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TABLE II. Phonon frequencies of TA() mode and associated
mode Grueisen parameters for silicon at three different volumes,
107° 105° corresponding to lattice constanés of 10.00, 10.18, and 10.26
bohrs, respectively. The reference valus.) is obtained by taking
into account interactions with all the atoms included in the real
space box defined by our sampling of the Brillouin z¢t@® special
points. The other values are obtained by limiting the interactions to
the successive nearest-neighlfiiN) shells. The phonon frequen-
cies are expressed in crh.

0.0556 0.0020 0.0006 0.0002
116°

110°
0.0048 0.0011 0.0004

WTA(X) YTA(X)

0.0781 0.0004

NN a=10.00 a=10.18 a=10.26 a=10.00 a=10.18 a=10.26

0 383.462 361.688 352.426 1.080  1.102  1.107
1 196.622 206.021 209.256 -1.016 -0.727  -0.598
(®) *0.0044  0.0011  0.0002 0.00006 2 148.056 161.684 166.347 -1.961 -1.340 -1.082
3 135.107 150.376 155576 -2.413 -1.609 -1.287
4  131.783 147576 152.949 -2560 -1.695 -1.352
0.0060 0.00007 0.00004 0.00002 5 106.607 128.275 135460 -4.389 -2.633  -2.016
B < ® 5 6 105.327 127.507 134.829 -4557 -2.705 -2.060
& 7 105.390 127.438 134.725 -4525 -2.692 -2.053
(o) &) 0% 8 122.392 142.025 148.656 -3.438 -2.180 -1.711
©) 0.00002 0.00008 0.00004 13 128111 146.863 153.222 -3.131 -2.019  -1.595
18 122.443 142.249 148.906 -3.473 -2.189 -1.710
5 1001] 25 119.535 140.618 147.431 -3.690 -2.280 -1.762
J rv. 119.903 140.466 147.347 -3.690 -2.295 -1.782
. X [110]
z a3
110 V:NAZ. 4

FIG. 1. Forces inducedinear responsealong thg 1 1 Q] zigzag
chain by the unit displacement of a generic attmgrey) of this ~ The results, reproduced in Tables Il and I, are very sensi-
chain in the(a) [1 1 0], (b) [0 0 1], and(c) [1 1 0] directions. The tive to the volume variations. The calculated mode 1Gru
unit vectors corresponding to these directions are, respectigly,
andz. The arrows starting from white atoms represent the direction TABLE IIl. Phonon frequencies of TA() mode and associated
of the forces, while the absolute value of it is written close to it. mode Grneisen parameters for silicon at three different volumes,
Forces along th¢1 1 0] direction are indicated by dots, whereas corresponding to lattice constangs of 10.00, 10.18, and 10.26
crosses refer to forces in the opposite direction. The forces arbohrs, respectively. The reference value.) is obtained by taking
expressed in hartree/bohrs. into account interactions with all the atoms included in the real
space box defined by our sampling of the Brillouin zdiea special
points. The other values are obtained by limiting the interactions to
the successive nearest-neighlfiN) shells. The phonon frequen-
Qies are expressed in crh.

neighbor shells included. Thus, in the following, we will
only reproduce the results obtained without reimposing th
acoustic sum rule.

The results are reproduced in Tables Il and Ill. The well- O7A(L) YTAL)
converged calculated frequencies of F3( and TA()
modes are, respectively, 140.46 chand 108.626 cm! at NN a=10.00 a=10.18 a=10.26 a=10.00 a=10.18 a=10.26
the calculated equilibrium lattice constant and 147.370  383.462 361.688 352426 1.080  1.102  1.107
cm™ ! and 112.86 cm? at the experimental one. These val- 1~ 147.432 151.460 152.695 -0.609 -0.396  -0.295
ues are in very good agreement with the experiment in Re  119.157 127.508 130.363 -1.494  -1.041  -0.845

25: 149.77 cm* and 114.41 cm . 3 120.881 129.204 132.089 -1.459 -1.033 -0.848
The associated mode Greisen parameters are calculated4  124.496 132.393 135.122 -1.346 -0.954  -0.783
by 5 90.610 103.339 107.667 -3.001 -1.951 -1.547

6  79.247 93544 98.304 -3.889 -2.390 -1.845
7 76.339 91.167 96.078 -4.197 -2.534  -1.942

o dine,, (3 8 98491 110644 114798 2630 -1745 -1396
7 dinv "’ 13 101.679 113.235 117.210 -2.416 -1.628 -1.312
18 96.809 108.985 113.149 -2.680 -1.776  -1.420

whereo is the index of the mode ard is the molar volume 25 96631 108.918 113.746 -2532 -1.959 -1.737

(N, multiplied by the volume of the unit cellinked to the v, 96239 108.626 112.867 -2.742 -1.814 -1.451
lattice constant by
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eisen parameters of TX() and TA(L) modes are, respec-
tively, —2.295 and—1.814 at the calculated equilibrium @)
lattice constant. These values are not in very good agreement &
with the experiment in Ref. 26+ 1.4 and—1.3. However, if
we consider the values 1.782 and—1.451 obtained at the
experimental equilibrium lattice constant, the agreement is
much better. (
Considering for reference the values obtained by taking
into account all the atoms included in the real space box we (
see that the contribution of atoms connected by the zigzag
chain along th¢1 1 0] direction is the most important for the
convergence of the phonon frequencies of X\(and TA
(L) modes, and of the associated mode r&igen param-
eters. Beyond the fourth atom along th& 1 O] chain
(eighth-nearest neighbgrsthe contribution of successive
nearest neighbors not belonging to the chains is not signifi- [001]
cant. But the contributions of fifth, sixth, and seventh atoms
along the chain(respectively, 13th, 18th, and 25th nearest
neighborg are not negligible in our calculations, contrary to
what had been speculated by Wei and CHb@nce more,
we emphasize that we have not tested the influence of the (b)
pseudopotential and exchange-correlation potential on these
contributions. Z g
Including still further atoms along the chains would ne-
cessitate using another sampling of the dynamical matrix
wave vectors in order to get a bigger real space box. Tables I
and Il also show that, once interactions with the first-nearest C
neighbors are included, the anomalous behavior of TA modes
at X andL points(negative Graeisen parameterss repro-
duced. This reinforces the pertinence of the model proposed
in Ref. 8.
For TA(X) and TA(L) modes, the eigenmodes,(««)
are known for any ion from symmetry consideratidisge
Fig. 2). It is thus even possible to obtain an analytical ex-
pression of phonon frequencies from the knowledge of the

fE

[010]
[100]

TN,

IFC’s.
If we only consider on-site interactigjust atomx) in the FIG. 2. Vibrational motion corresponding to the) TA(X)
sum of the left-hand side of Eq?), we get mode andb) TA(L) mode in silicon. The displacements of ions are
along the[1 1 Q] direction in(a) and along thg 112] direction in
ag (b).
0=\ 5

for the TA(X) mode, and
for both TA(X) and TA(L) modes, wheren is the mass of

the silicon ion. The associated mode Geisen parameters Oens = [aot2a1+2[, 9)
can easily be obtained by inserting this result in B, TA(L) m
(6) for the TA(L) mode. In fact, whatever the number of nearest

= a L . . . .
7= "0) neighbors taken into account, the phonon frequencies will
where y(ap) is the “force Grineisen parameter” that we always be written as the square root of the ratio of a linear

define as combination of the IFC’s and the mass. The associated mode
Grineisen parameters can be written aswéghted sunof
~ ldinag 7 the force Grueisen parameters corresponding to the IFC's
N@0) == 5 v - (7 under the radical in Eq<8) and (9) . For example, for the

. . . TA(X) mode, inserting Eq8) in Eq. (3), we get
The force Grmeisen parameters have been listed in Table |

Lorhall IFC’s whose magnitude is higher than TOhartree/ \Y dVap+48,
onr-. YTA) = —

If we consider interactions up to first-nearest-neighbor Vaot+48; dv
atom, we get 1V dagt4p,

B \/m . 2 agt4p; dv
OTAX) m ® This can be rewritten as follows:

(10
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_ 1 ao V da’o 1 4ﬁ1 V dBl
YTAX) = 2\ ap+4B1) ag dV 2\ ap+4B;,) B, AV -2.0826

-2.0827

The definition of force Graeisen parameters, E(f), leads &
to £ -2.0828

~
Z 2.0829

ag ) 484 ) B C

= ———— | Yag) +| ——— ) (12 -
YT g+ 4B, rao agt4p,; e o -2.0830
for the TA(X) mOde, and -2.0831
B g (@) + 204 (@) -2.0832

yTA(L)_ a0+2a1+2,81 Y @o a0+2a1+2,31 yiay l l : .

2.30 2.32 2.34 2.36 2.38 2.40

2P V (m®mol
H o 31) ¥(B) 13 (m*/mol)

FIG. 3. Volume dependence of the Helmholtz free endrdpr
for the TA(_L) mode. four different temperatures. The smallest is Qupper curvg the
Interestingly, the same argument holds whatever the nunyiggest is 300 Klower curve, with an increment of 100 K between
ber of nearest neighbors taken into account. And thus, thghe curves. The equilibrium volumé,(T) is located at the mini-

same kind of formulas will be obtained for phonon frequen-mum of each curve. Between 20 K and 120 K, this volume de-

cies and associated mode ‘@eisen parameters. creases due to the negative thermal-expansion coefficient.
Indeed, if we consider interactions up to second-nearest
neighbor atoms, we get eisen parameters are positil@ee Table ), a negative mode

Gruneisen parameter can be obtained.

apt4B,—4N; For example, in Eq(12), we get fora=10.18 bohrs,
o= N Ty (14)

Y1ac0 = 3.08X 1.1034+ (—2.08 X 1.9817= —0.72,

for the TA(X) mode, and (18)
which is just what is obtained in Table II. If all force Gru
° _ \/ao+ 201+ 2B,—4v; (15) eisen parameters were equal to 1, we would also get 1 for the
TA(L) m mode Gruneisen parameter. This shows that the origin of the

negative Graeisen parameter is the rather important differ-

for the TA(L) mode. The associated mode Geisen param- ence between(B;) and y(ag).

eters can be written as the weighted sum of the forcenGru

eisen parameters corresponding to the IFC’s under the radi-
cal in Egs.(14) and (15): Il. THERMODYNAMIC PROPERTIES

Using the calculated phonon frequencies, the temperature-
451 )7(,3 ) dependent phonon contributiohF to the Helmholtz free
agt4B1—4N; ! energy F(V,T) is calculated as described in Ref. 2. This
an contribution is added to the energy of the static latB(¥),
+ —2) Y(\o) (16) calculated previousl§? to getF(V,T) for a set of three vol-
agt4p1—4N; umes and for various temperatures. This function is then in-
for the TA(X) mode, and terpolated as a function &f by a second order fit. The equi-
! librium volumes(or lattice constanjsat various temperatures

0

03
=l =+
YTA(X) (a0+4ﬂ1—4)\2 y(ap)

@ are determined by minimizing(V,T) as a function oW/, as
YTAL) = — )’y(ao) shown in Fig. 3. FronF(V,T) any other thermodynamical
apt2a;+2f,~4v, property can be accessed.
2a, We first analyze briefly the specific effect of the zero-
+( Iy — )'y(al) point motion. We find that the zero-point contribution to
aot2a,+2p,~4v; Helmholtz free energf is AF,=12 J/mol, which is about
28, 2.5% of the cohesive energ®60 kJ/mol(Ref. 27]. This
+(ao+2a1+2ﬁl—47}2)7(ﬁl) zero-point contribution causes the lattice constant to be

shifted from 10.1894 bohrs to 10.1974 bohrs, which is a
—4v, change smaller than 0.1%, and the bulk moduhjsfrom

+ ( aot 2a, 25— 4v ) ¥(v2) (17)  1.0387 Mbar to 1.0292 Mbar, which is a change of 1%. Note,

07T el e however, that the change in the bulk modulus includes two
for the TA(L) mode. effects: first, it is linked to the second derivativefefV) that
It should be noted that the weights in E¢k2) to (15) are  includes the zero-point motion contributiakF,; and sec-

not necessarily included in the intenjd,1] and can thus be ond, it is calculated for a different volume due to the shift of

negative. This explains why, though almost all force'iGru the lattice constant. In Fig. 4, we present the temperature
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FIG. 4. Temperature dependence of the theoretical bulk modulus FIG. 6. Temperature dependence of the volumic thermal-
By for four different pressures. The smallest is O(Raver curve;  expansion coefficientp for four different pressures. The smallest
the biggest is &10° Pa (upper curvg with an increment of s 0 Pa(upper curvg the biggest is & 10° Pa(lower curve, with
2x10° Pa between the curveB is expressed in Mbar. Tempera- an increment of X 10° Pa between the curvess is expressed in
ture is in K. K ~1. The crosses indicate experimental d&ef. 28. Temperature

is in K.
dependence dB+ for different pressures.

The entropy can be calculated following Ref. 2. We get S IV
S(298.15 K=19.3 J K ! mol~%, to be compared to the (&—P) :_<0_T)
experimental value of 18.81 J ¥ mol~1.28 We have also T P
calculated the variation of enthalpf=F+TS—PV be- g write
tween 0 and 298.15 K. We get 3.285 J mb] whereas the
experimental value is 3.217 J mdl.?® We present in Fig. 5 (07Cp,m) ( %S ) (a2v>

P

(19

the molar constant-pressure specific h€at,, for various 9P N oPaT -T T2
pressures. This result agrees quite well with experimental

work2%3% |t is interesting to note that, for temperatures Ja
higher than 85 KCp ,, is higher for low values of the pres- =—TV| —P) } (20
sure, whereas for temperatures lower than 85 K, it is just the JT P

contrary. This means that there exists a temperature around _ i

85 K for which Cp ,, is independent of pressure. In order to NS shows that in order to havp ,, independent of pres-

understand this observation, we use the following relatiorsU'®, one must have a decreasing. This is precisely the
case of silicon between 20 K and 100 K, where the thermal-

a,%—i—

(see Ref. 31 . e .
expansion coefficient gets more and more negative.
This thermal-expansion coefficient is well reproduced by
50 our calculationgsee Fig. &. It is worth noting that increas-

o P= 0P ing the pressure reinforces the anomalous negative behavior
| P=610"Pa =0ra of this property. This is confirmed by the strong negative

iV 40 value of the overall Gmeisen parameter at high pressure
- 0 50 100 150 200 250 300 (see Fig. 7. This anomalous behavior also has consequences
S 30 e 0 for other properties. We present in Fig. 8 the difference
€ Cpm—Cy m between the molar constant-pressure specific
2 oo b 130 heat Cp, and the molar constant-volume specific heat

QE_. 120 Cym for various pressures. At high temperature
O oL 110 Cp.m— Cv m increases with increasing pressure, while at low
temperature, it is the contrary and the curve presents a bump.

0 This can be deduced from the following relatith:
0 1 I N !
0 200 400 600 800 1000 a2VT
T (K) Cpm=Cyum= oy (21)

FIG. 5. Temperature dependence of the constant-pressure sp¢herexr=1/Br. Similarly, the differenceBs— By between
cific heatCp,, for two different pressures. The smallest is 0 PaBs the bulk modulus calculated frof at constant entropy
(upper curve at high temperatiiréhe biggest is & 10° Pa(lower ~ andBy the bulk modulus calculated frofa at constant tem-
curve at high temperatureCp , is expressed in J molt K 1. The ~ perature presents the same behavic€ag,— Cy ,, as shown
crosses indicate experimental déRef. 29. Temperature is in K. in Fig. 9. Indeed, we can writé
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FIG. 7. Temperature dependence of overallf&igen parameter
y for four different pressures. The smallest is O (Bpper curvé  the bulk modulus calculated frof at constant entropy arg}; the
the biggest is &10° Pa (lower curve, with an increment of  pylk modulus calculated frorfF at constant temperature, for four
2X 109 Pa between the curves. The crosses indicate eXperimenta‘ﬁ‘erent pressures. The smallest is O(Ruver curve at h|gh tem-
data(Ref. 33. Temperature is in K. peraturg; the biggest is & 10° Pa (upper curve at high tempera-
ture), with an increment of X10° Pa between the curves.

FIG. 9. Temperature dependence of the difference betBeen

a,%VT Bs— By is expressed in Mbar. Temperature is in K.
Ks—KT="5 (22)
P.m where G, is the component of scattering wave vectsr
where ks=1/Bs. which is a reciprocal lattice vector, amd}, ;(«) is the mean-
square atomic displacemérif atom « along the directions
lll. ATOMIC TEMPERATURE FACTOR a andg:
At finite temperaturel, the intensity of x-ray diffraction B - 1 hoo trﬁw(QJ)
from the crystal is reduced, due to atomic motion. The ap(K) = NaM & 20(q,N 0 2kaT

atomic temperature facte () characterizes the oscilla-
tions of atom « around its equilibrium position. It is
defined? by

Xei(K|qu)e}k(K|q1|)! (24)

whereM . is the mass of atomx, ande;(«|q,l) is theith
component of the eigenvector associated with modegliat
the lattice coordinates.

In the case of silicon, there is only one kind of atom.
Thus, for all atoms~"() is identical. The reduction of the
diffusion intensity is given bye 2W(®) which is usually
called the Debye-Waller factor. The symmetry of the dia-
mond structure imposes that

) 1
e™W >:exp(—§a2ﬁ B.p(1)G.Gpgl, (23)

(This B is not to be confused with the bulk modulus.

] 50

100

150

T (K)

200

250

In Table IV, the results obtained for the mean-square
atomic displacement, at three different volumes, correspond-
ing to lattice constanta of 10.00, 10.18, and 10.26 bohrs,
respectively, are compared with experimental results. The
agreement is on the order of a few percent.

Interestingly, even at room temperature, the mean-square
atomic displacement decreases with increasing volume, con-
trary to intuition. This can easily be understood from the
definition of B [see Eq.(24)]. Indeed, it is written as a sum
over all phonon bands of a term which is proportional to the

. 72 -
FIG. 8. Temperature dependence of the difference between th&VErse §9uare of the frequency of the mode” (since
constant-pressure specific he ,, and the constant-volume spe- COthx—x"~ for small x). Thus, it is determined mostly by
cific heatCy ,, for four different pressures. The smallest is 0 Paa@coustic branches. This is confirmed by a band-by-band de-

(lower curve at high temperatytethe biggest is & 10° Pa(upper
curve at high temperaturewith an increment of X10° Pa be-

tween the curveCp ,, is expressed in J mof K 1.

composition oB (see Table 1Y, where the two lowest bands
account for more than 2/3 @&. As the TA band and the first
longitudinal-acoustic(LA) band exhibit a negative mode
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TABLE IV. Mean-square atomic displacemeBitof silicon atoms af =295 K for three different volumes
(lattice constants of 10.00, 10.18, and 10.26 bolrand the corresponding experimental dataatl0.26
bohrs. The lower part of the table presents a band-by-band decompositoriTbe values are expressed in

Az
Present work Experimental data£10.26
a=10.00 a=10.18 a=10.26 Ref. 34 Ref. 35 Ref. 36 Ref. 37
B 0.4967 0.4745 0.4707 0.4613 0.4500 0.4515 0.4660
B(TA) 0.2298 0.2052 0.1992
B(LA ) 0.1592 0.1510 0.1482
B(LA ) 0.0496 0.0543 0.0563
B(LO+TO) 0.0582 0.0641 0.0672

Gruneisen parameter, we see that their contributioB e-  are not negligible. Analytical formulas, taking into account
creases with increasing volume, contrary to the contributiorinteractions up to second-nearest neighbors, have been de-
of the second LA band and optic bands. veloped for phonon frequencies of T&] and TA(L) modes

The thermal parametd and the atomic temperature fac- and the corresponding mode @eisen parameters. The vol-
tor e_W(K),A for diffraction with scattering vector ume and pressure dependence of various thermodynamic
G=(2m/ap)z, are also calculated as a function of tempera-properties(specific heat, bulk modulus, and thermal expan-
ture (see Figs. 10 and 11The atomic temperature factor is sjor) were also analyzed. We have pointed out the effect of

not 1 even &0 K due to the zero-point motion. the negative mode Gneisen parameters of the acoustic
branches on these properties. The effect of zero-point motion
CONCLUSIONS was also investigated. Finally, we have presented the evolu-

tion of the mean-square atomic displacement and of the

In this paper, dynamical properties of silicon have beergtomic temperature factor with the temperature for different
calculated using a variational approach to density-functionavolumes, emphasizing the anomalous effects due to the nega-
perturbation theory. We have presentedasninitio study of  tive mode Grameisen parameters, present at all investigated
the volume dependence of interatomic force constants up temperatures.
25th nearest neighbors. Phonon frequencies ofX)Aé&nd
TA(L) modes, and of the associated mode r@igen param-
eters, have also been calculated for different volumes. The ACKNOWLEDGMENTS
influence of successive nearest-neighbor shells has been ana- .
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