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Motivated by the negative thermal expansion observed for silicon between 20 K and 120 K, we present an
ab initio study of the volume dependence of interatomic force constants, phonon frequencies of transverse-
acoustic TA(X) and TA(L) modes, and of the associated mode Gru¨neisen parameters. The influence of suc-
cessive nearest-neighbor shells is analyzed. Analytical formulas, taking into account interactions up to second-
nearest neighbors, are developed for phonon frequencies of TA(X) and TA(L) modes and the corresponding
mode Gru¨neisen parameters. We also analyze the volume and pressure dependence of various thermodynamic
properties~specific heat, bulk modulus, and thermal expansion!, and point out the effect of the negative mode
Grüneisen parameters of the acoustic branches on these properties. Finally, we present the evolution of the
mean-square atomic displacement and of the atomic temperature factor with the temperature for different
volumes, for which the anomalous effects are even greater.

INTRODUCTION

In the past few years, theoretical and algorithmic ad-
vances have made it possible to determine the thermody-
namical properties of solids~such as the specific heat or
thermal-expansion coefficient! from first principles
calculations.1,2

Silicon is a choice system for testing these methods, since
accurate measurements on high-purity samples exist over a
wide range of temperatures. Moreover, it presents a negative
thermal-expansion coefficient between 20 K and 120 K
which is of fundamental interest. This unusual thermal-
expansion behavior can be attributed to the negative Gru¨n-
eisen parameters~i.e., phonon frequency increases as crystal
volume increases! of the transverse-acoustic~TA! phonons
near the Brillouin-zone boundary. It is interesting to note that
this anomalous behavior also affects other properties of sili-
con, such as the mean-square atomic displacement~as shown
later in this paper!.

This anomalous negative thermal expansion has been ana-
lyzed in previous studies, most of them relying on the quasi-
harmonic approximation.3 In this approach, the volume de-
pendence of phonon frequencies must be determined.
Kagaya, Shuoji, and Soma4 used a perturbation treatment
with a model pseudopotential to calculate the specific heat
and the thermal-expansion coefficient. Biernacki and
Scheffler5 employed a Keating model with two parameters,
which were extracted from local-density pseudopotential cal-
culations, to compute the thermal-expansion coefficient.
Fleszar and Gonze6 performed a model-free computation of
the thermal expansion, using a linear-response technique
within density-functional theory.7 Xu et al.8 used a tight-
binding model to calculate the thermal-expansion coefficient
and mode Gru¨neisen parameters; they also showed by using
a simple model that the negative values of the mode Gru¨n-
eisen parameter could be attributed to a larger contribution
from the central part of forces than the angular part of forces.

More recently, Wei, Li, and Chou9 extracted interatomic
force constants fromab initio calculations of planar forces,10

and calculated the specific heat, the overall Gru¨neisen pa-
rameter, and the thermal-expansion coefficient.

In this paper, we use a variational approach to density-
functional perturbation theory to calculate the volume-
dependent dynamical properties of silicon~see Sec. I!. We
present anab initio study of the volume dependence of in-
teratomic force constants up to 25th nearest neighbors. Wei
and Chou had also presented such a calculation but only for
one volume and up to eighth-nearest neighbors.10,11 Phonon
frequencies of TA(X) and TA(L) modes, and of the associ-
ated mode Gru¨neisen parameters are also calculated for dif-
ferent volumes. The influence of successive nearest-neighbor
shells is analyzed. We confirm that the contribution of atoms
connected by the zigzag chain along the@1 1 0# direction is
the most important, as suggested by Mazur and Pollmann.12

But we show that the contributions of the fifth, sixth, and
seventh atoms along the chain~respectively 13th, 18th, and
25th nearest neighbors! are not negligible, contrary to what
had been speculated by Wei and Chou.10Analytical formulas,
taking into account interactions up to second-nearest neigh-
bors, are developed for phonon frequencies of TA(X) and TA
(L) modes and the corresponding mode Gru¨neisen param-
eters. In Sec. II, we analyze the volume and pressure depen-
dence of various thermodynamic properties~specific heat,
bulk modulus, and thermal expansion!. The effect of zero-
point motion on static equilibrium properties~lattice constant
and bulk modulus! is also analyzed. We point out the effect
of the negative mode Gru¨neisen parameters of the acoustic
branches on these properties. In Sec. III, we present the evo-
lution of the mean-square atomic displacement and of the
atomic temperature factor with the temperature for different
volumes. Anomalous effects present at all temperatures are
investigated, using a band-by-band decomposition. Finally,
we present our conclusions in the last section.
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I. DYNAMICAL PROPERTIES

A. Interatomic force constants

To obtain accurate interatomic force constants~IFC’s!, we
first calculate from first principles the dynamical matrices for
ten different wave vectors in the irreducible Brillouin zone
~IBZ! ~the special points mentioned in Ref. 13! using a varia-
tional approach to density-functional perturbation theory.14

Then, we perform a Fourier transform of these dynamical
matrices in order to get the IFC’s, following Refs. 1 and 15.
This sampling of dynamical matrices allows us to obtain
IFC’s in a real space box containing 512 atoms. This is more
accurate than what had been done in Ref. 6, where the IFC’s
had only been calculated for two different wave vectors in
the IBZ, which corresponds to a real space box of 64 atoms.
It is also better than the work of Wei and Chou,10,11who had
included interatomic interactions up to eighth-nearest neigh-
bors, which corresponds to 99 atoms.

Our calculations, performed within the local-density ap-
proximation~LDA !,16 use a preconditioned conjugate gradi-
ent algorithm.17,18We use a rational polynomial parametriza-
tion of the exchange-correlation energy functional,19 which
is based on the Ceperley-Alder gas data.20 The electronic
wave functions are sampled on a mesh of ten specialk points
in the IBZ and expanded in terms of a set of plane waves
whose kinetic energy is limited to 10 hartree. The ‘‘all-
electron’’ potentials are replaced by anab initio, separable,
norm-conserving pseudopotential built following the scheme
proposed in Ref. 21. The calculated equilibrium lattice con-
stant is 10.18 bohrs~Ref. 22! ~the influence of the zero-point
motion on this value will be discussed in Sec. II!, whereas
the experimental one is 10.26 bohrs.

The calculation of IFC’s is performed for three different
volumes, corresponding to lattice constantsa of 10.00,
10.18, and 10.26 bohrs, respectively. The IFC’s for these
different lattice constants are listed in Table I, in which co-
ordinates are in units ofa/4 and notations for the force con-
stants follow Ref. 23.

In Table I, the results are presented with a precision of
1025 hartree/bohr2. However, we did not analyze the influ-
ence on the IFC of changing either the pseudopotential or the
exchange-correlation potential. Thus, it has to be noted that
the conclusions drawn hereafter hold only for the specific
pseudopotential and exchange-correlation potential used in
our calculations.

As already noticed in Refs. 10 and 12, IFC’s for atoms
connected by the zigzag chain along the@1 1 0# direction~or
the directions related to it by symmetry! are the most impor-
tant. The magnitude of IFC’s along these peculiar directions
decays quite slowly. The contribution of the first nearest
neighbors (a1 and b1) is about four to five times smaller
than the on-site contribution (a0). Going up to second-
nearest neighbors reduces the IFC’s by another factor of 5
(l2) or 10 (m2 andn2). The contributionl25 of the seventh
atoms along the chain@coordinates~7,7,1! in units of a/4#,
which are already the 25th nearest neighbors, is still of the
order of 1% of the contribution of the first-nearest neighbors,
and of 5% of that of the second ones. Comparatively, the
biggest contribution of the seventh-nearest neighbors~these
do not belong to the chain, but are twice as close as the
seventh atoms along the chain! is about two times smaller.

In order to visualize these IFC’s, we compute the forces
induced along the zigzag chain by the displacement of a
generic atom of this chain in three perpendicular directions
~along @1 1 0#, parallel to the chain direction, along@0 0 1#,
perpendicular to the chain direction; but in the plane of the
chain, and along@1 1̄ 0#, perpendicular to the chain direction,
but out of the plane of the chain!, all the other atoms being
kept fixed. These forces can easily be obtained from IFC’s by

Fka52Fab~k;k8!~R2R0!k8b , ~1!

whereR2R0 is the displacement of the generic atom, and
the IFC Fab(k;k8) is the force exerted on ionk in the
directiona due to the displacement of ionk8 in the direction
b.

The resulting forces have been reproduced in Fig. 1. The
directions of the forces induced by the displacement of the
generic atom in the@1 1 0# and @0 0 1# directions show that
the bonds along the chain will tend to bend in order to keep
constant the bond angles: at sufficient distance, the forces are
nearly perpendicular to the last connecting bond. The decay
of the magnitude of these forces along the chain is similar to
that of the IFC’s. On the contrary, the forces induced by the
displacement in the@1 1̄ 0# direction are much smaller. In-
deed, they have the generic form (m2n,n2m,0), wherem
andn are of the same order of magnitude~see Table I!. It is
thus more difficult to interpret them.

B. TA„X… and TA„L … phonon frequencies
and associated mode Gru¨neisen parameters

In previous studies, the negative mode Gru¨neisen param-
eters associated with the modes of the acoustic branches,
near the zone boundaries, has been shown to drive the nega-
tive thermal expansion. We now focus on the analysis of the
high symmetry TA(X) and TA(L) modes because analytical
results can be obtained for them.

The phonon frequencies can be calculated by solving the
dynamical equation

(
k8b

Fab~k;k8!us~k8b!5Mkvs
2us~ka!, ~2!

whereus(ka) is the displacement in the directiona of ion
k for the normal modes, Mk is the mass of ionk, and
vs is the frequency of the normal modes.

In order to analyze the influence of the successive nearest-
neighbor shells for TA(X) and TA(L) modes, we artificially
limit the interactions taken into account in the IFC matrix
Fab(k;k8) of Table I to the atoms whose distance is less
than a cutoff radius. Then, we increase the cutoff radius shell
by shell until the sphere contains all the atoms included in
the real space box defined by our sampling of the Brillouin
zone.

In truncating the interaction to different shells, we break
the acoustic sum rule~which states that moving all atoms as
a whole should not create any force! unless it is reimposed
by artificially changing the on-site IFCa0 .

24 We analyzed
the results obtained both with and without reimposing the
acoustic sum rule and found no significant difference regard-
ing the convergence with respect to the number of nearest-
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TABLE I. Interatomic force constant matrix elements and associated force Gru¨neisen parameters for
silicon at three different volumes, corresponding to lattice constantsa of 10.00, 10.18, and 10.26 bohrs,
respectively. The convention of Ref. 23 for labeling the matrix elements has been followed. One atom is at
the origin, while the coordinates of the second atom are expressed in units ofa/4; the asterisks indicate the
atoms belonging to the zigzag chain along the@1 1 0# direction. The first column indicates the number of the
shell NN to which the second atom belongs. The force Gru¨neisen parameters of IFC matrix elements that are
smaller than 1024 hartree/bohr2 are not mentioned. The interatomic force constant matrix elements are
expressed in hartree/bohrs2.

NN Coordinate a510.00 a510.18 a510.26 a510.00 a510.18 a510.26

0 ~0,0,0!* a0 0.15629 0.13904 0.13201 g(a0) 1.0766 1.1034 1.1047
1 ~1,1,1!* a1 -0.03779 -0.03385 -0.03225 g(a1) 1.0215 1.0336 1.0275

b1 -0.02880 -0.02348 -0.02137 g(b1) 1.8264 1.9817 2.0338
2 ~2,2,0!* m2 -0.00203 -0.00182 -0.00173 g(m2) 0.9600 1.0682 1.1216

n2 -0.00200 -0.00178 -0.00168 g(n2) 1.0879 1.1641 1.1951
d2 0.00120 0.00111 0.00108 g(d2) 0.6487 0.6997 0.7234
l2 0.00445 0.00433 0.00428 g(l2) 0.2476 0.2456 0.2437

3 ~1̄,1̄,3̄! m3 0.00035 0.00032 0.00031 g(m3) 0.6911 0.8662 0.9617
n3 -0.00033 -0.00035 -0.00036 g(n3) -0.6046 -0.5696 -0.5546
d3 0.00032 0.00029 0.00028 g(d3) 0.8368 0.9285 0.9736
l3 0.00006 0.00006 0.00006 g(l3)

4 ~0,0,4! m4 -0.00020 -0.00020 -0.00019 g(m4) 0.2788 0.2831 0.2843
l4 -0.00007 -0.00005 -0.00004 g(l4)

5 ~3,3,1!* m5 -0.00022 -0.00020 -0.00019 g(m5) 1.1211 1.1069 1.0819
n5 -0.00032 -0.00026 -0.00024 g(n5) 1.8115 1.9104 1.9240
d5 0.00064 0.00058 0.00055 g(d5) 0.9110 0.9660 0.9882
l5 -0.00183 -0.00183 -0.00183 g(l5) 0.0062 0.0312 0.0435

6 ~2,2,4! m6 -0.00016 -0.00015 -0.00014 g(m6) 0.5894 0.6875 0.7383
n6 0.00026 0.00026 0.00026 g(n6) 0.0120 0.0023 -0.0024
d6 -0.00003 -0.00004 -0.00004 g(d6)
g6 -0.00012 -0.00012 -0.00011 g(g6) 0.1326 0.1893 0.2179
l6 0.00004 0.00003 0.00002 g(l6)

7 ~1,1,5! m7 0.00009 0.00009 0.00010 g(m7)
n7 0.00001 0.00001 0.00001 g(n7)
d7 0.00000 -0.00001 -0.00001 g(d7)
l7 -0.00001 -0.00001 -0.00001 g(l7)

~3̄,3̄,3̄! a7 0.00006 0.00006 0.00005 g(a7)
b7 0.00000 0.00000 0.00000 g(b7)

8 ~4,4,0!* m8 -0.00002 0.00000 0.00000 g(m8)
n8 -0.00013 -0.00011 -0.00011 g(n8) 0.9582 0.9260 0.8957
d8 0.00027 0.00025 0.00024 g(d8) 0.7319 0.7755 0.7940
l8 0.00107 0.00105 0.00104 g(l8) 0.1332 0.1423 0.1465

13 ~5,5,1!* m13 -0.00005 -0.00004 -0.00004 g(m13)
n13 0.00001 0.00001 0.00002 g(n13)
d13 0.00013 0.00011 0.00011 g(d13) 0.9835 1.0328 1.0499
l13 -0.00059 -0.00058 -0.00057 g(l13) 0.2270 0.2052 0.1932

18 ~6,6,0!* m18 -0.00001 0.00000 0.00000 g(m18)
n18 -0.00006 -0.00005 -0.00005 g(n18)
d18 0.00006 0.00005 0.00005 g(d18)
l18 0.00034 0.00033 0.00033 g(l18) 0.2448 0.1989 0.1748

25 ~7,7,1!* m25 -0.00002 -0.00001 -0.00001 g(m25)
n25 0.00001 0.00002 0.00002 g(n25)
d25 0.00004 0.00004 0.00004 g(d25)
l25 -0.00021 -0.00020 -0.00020 g(l25) 0.3781 0.3210 0.2892
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neighbor shells included. Thus, in the following, we will
only reproduce the results obtained without reimposing the
acoustic sum rule.

The results are reproduced in Tables II and III. The well-
converged calculated frequencies of TA(X) and TA(L)
modes are, respectively, 140.46 cm21 and 108.626 cm21 at
the calculated equilibrium lattice constant and 147.37
cm21 and 112.86 cm21 at the experimental one. These val-
ues are in very good agreement with the experiment in Ref.
25: 149.77 cm21 and 114.41 cm21.

The associated mode Gru¨neisen parameters are calculated
by

gs52
dlnvs

dlnV
, ~3!

wheres is the index of the mode andV is the molar volume
(NA multiplied by the volume of the unit cell! linked to the
lattice constant by

V5NA

a3

4
. ~4!

The results, reproduced in Tables II and III, are very sensi-
tive to the volume variations. The calculated mode Gru¨n-

FIG. 1. Forces induced~linear response! along the@1 1 0# zigzag
chain by the unit displacement of a generic atom~in grey! of this
chain in the~a! @1 1 0#, ~b! @0 0 1#, and~c! @1 1̄ 0# directions. The
unit vectors corresponding to these directions are, respectively,x̂, ŷ,
andẑ. The arrows starting from white atoms represent the direction
of the forces, while the absolute value of it is written close to it.
Forces along the@1 1̄ 0# direction are indicated by dots, whereas
crosses refer to forces in the opposite direction. The forces are
expressed in hartree/bohrs.

TABLE II. Phonon frequencies of TA(X) mode and associated
mode Gru¨neisen parameters for silicon at three different volumes,
corresponding to lattice constantsa of 10.00, 10.18, and 10.26
bohrs, respectively. The reference value~r.v.! is obtained by taking
into account interactions with all the atoms included in the real
space box defined by our sampling of the Brillouin zone~ten special
points!. The other values are obtained by limiting the interactions to
the successive nearest-neighbor~NN! shells. The phonon frequen-
cies are expressed in cm21.

vTA(X) gTA(X)

NN a510.00 a510.18 a510.26 a510.00 a510.18 a510.26
0 383.462 361.688 352.426 1.080 1.102 1.107
1 196.622 206.021 209.256 -1.016 -0.727 -0.598
2 148.056 161.684 166.347 -1.961 -1.340 -1.082
3 135.107 150.376 155.576 -2.413 -1.609 -1.287
4 131.783 147.576 152.949 -2.560 -1.695 -1.352
5 106.607 128.275 135.460 -4.389 -2.633 -2.016
6 105.327 127.507 134.829 -4.557 -2.705 -2.060
7 105.390 127.438 134.725 -4.525 -2.692 -2.053
8 122.392 142.025 148.656 -3.438 -2.180 -1.711
13 128.111 146.863 153.222 -3.131 -2.019 -1.595
18 122.443 142.249 148.906 -3.473 -2.189 -1.710
25 119.535 140.618 147.431 -3.690 -2.280 -1.762

r.v. 119.903 140.466 147.347 -3.690 -2.295 -1.782

TABLE III. Phonon frequencies of TA(L) mode and associated
mode Gru¨neisen parameters for silicon at three different volumes,
corresponding to lattice constantsa of 10.00, 10.18, and 10.26
bohrs, respectively. The reference value~r.v.! is obtained by taking
into account interactions with all the atoms included in the real
space box defined by our sampling of the Brillouin zone~ten special
points!. The other values are obtained by limiting the interactions to
the successive nearest-neighbor~NN! shells. The phonon frequen-
cies are expressed in cm21.

vTA(L) gTA(L)

NN a510.00 a510.18 a510.26 a510.00 a510.18 a510.26
0 383.462 361.688 352.426 1.080 1.102 1.107
1 147.432 151.460 152.695 -0.609 -0.396 -0.295
2 119.157 127.508 130.363 -1.494 -1.041 -0.845
3 120.881 129.204 132.089 -1.459 -1.033 -0.848
4 124.496 132.393 135.122 -1.346 -0.954 -0.783
5 90.610 103.339 107.667 -3.001 -1.951 -1.547
6 79.247 93.544 98.304 -3.889 -2.390 -1.845
7 76.339 91.167 96.078 -4.197 -2.534 -1.942
8 98.491 110.644 114.798 -2.630 -1.745 -1.396
13 101.679 113.235 117.210 -2.416 -1.628 -1.312
18 96.809 108.985 113.149 -2.680 -1.776 -1.420
25 96.631 108.918 113.746 -2.532 -1.959 -1.737

r.v. 96.239 108.626 112.867 -2.742 -1.814 -1.451
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eisen parameters of TA(X) and TA(L) modes are, respec-
tively, 22.295 and21.814 at the calculated equilibrium
lattice constant. These values are not in very good agreement
with the experiment in Ref. 26:21.4 and21.3. However, if
we consider the values21.782 and21.451 obtained at the
experimental equilibrium lattice constant, the agreement is
much better.

Considering for reference the values obtained by taking
into account all the atoms included in the real space box we
see that the contribution of atoms connected by the zigzag
chain along the@1 1 0# direction is the most important for the
convergence of the phonon frequencies of TA(X) and TA
(L) modes, and of the associated mode Gru¨neisen param-
eters. Beyond the fourth atom along the@1 1 0# chain
~eighth-nearest neighbors!, the contribution of successive
nearest neighbors not belonging to the chains is not signifi-
cant. But the contributions of fifth, sixth, and seventh atoms
along the chain~respectively, 13th, 18th, and 25th nearest
neighbors! are not negligible in our calculations, contrary to
what had been speculated by Wei and Chou.10 Once more,
we emphasize that we have not tested the influence of the
pseudopotential and exchange-correlation potential on these
contributions.

Including still further atoms along the chains would ne-
cessitate using another sampling of the dynamical matrix
wave vectors in order to get a bigger real space box. Tables II
and III also show that, once interactions with the first-nearest
neighbors are included, the anomalous behavior of TAmodes
at X andL points ~negative Gru¨neisen parameters! is repro-
duced. This reinforces the pertinence of the model proposed
in Ref. 8.

For TA(X) and TA(L) modes, the eigenmodesus(ka)
are known for any ion from symmetry considerations~see
Fig. 2!. It is thus even possible to obtain an analytical ex-
pression of phonon frequencies from the knowledge of the
IFC’s.

If we only consider on-site interaction~just atomk) in the
sum of the left-hand side of Eq.~2!, we get

v5Aa0

m
~5!

for both TA(X) and TA(L) modes, wherem is the mass of
the silicon ion. The associated mode Gru¨neisen parameters
can easily be obtained by inserting this result in Eq.~3!,

g5g~a0!, ~6!

where g(a0) is the ‘‘force Grüneisen parameter’’ that we
define as

g~a0!52
1

2

dlna0

dlnV
. ~7!

The force Gru¨neisen parameters have been listed in Table I
for all IFC’s whose magnitude is higher than 1024 hartree/
bohr3.

If we consider interactions up to first-nearest-neighbor
atom, we get

vTA~X!5Aa014b1

m
~8!

for the TA(X) mode, and

vTA~L !5Aa012a112b1

m
~9!

for the TA(L) mode. In fact, whatever the number of nearest
neighbors taken into account, the phonon frequencies will
always be written as the square root of the ratio of a linear
combination of the IFC’s and the mass. The associated mode
Grüneisen parameters can be written as theweighted sumof
the force Gru¨neisen parameters corresponding to the IFC’s
under the radical in Eqs.~8! and ~9! . For example, for the
TA(X) mode, inserting Eq.~8! in Eq. ~3!, we get

gTA~X!52
V

Aa014b1

dAa014b1

dV

52
1

2

V

a014b1

da014b1

dV
. ~10!

This can be rewritten as follows:

FIG. 2. Vibrational motion corresponding to the~a! TA(X)
mode and~b! TA(L) mode in silicon. The displacements of ions are
along the@1 1 0# direction in ~a! and along the@112̄# direction in
~b!.
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gTA~X!52
1

2 S a0

a014b1
D V

a0

da0

dV
2
1

2 S 4b1

a014b1
D V

b1

db1

dV
.

~11!

The definition of force Gru¨neisen parameters, Eq.~7!, leads
to

gTA~X!5S a0

a014b1
Dg~a0!1S 4b1

a014b1
Dg~b1! ~12!

for the TA(X) mode, and

gTA~L !5S a0

a012a112b1
Dg~a0!1S 2a1

a012a112b1
Dg~a1!

1S 2b1

a012a112b1
Dg~b1! ~13!

for the TA(L) mode.
Interestingly, the same argument holds whatever the num-

ber of nearest neighbors taken into account. And thus, the
same kind of formulas will be obtained for phonon frequen-
cies and associated mode Gru¨neisen parameters.

Indeed, if we consider interactions up to second-nearest
neighbor atoms, we get

vTA~X!5Aa014b124l2

m
~14!

for the TA(X) mode, and

vTA~L !5Aa012a112b124n2
m

~15!

for the TA(L) mode. The associated mode Gru¨neisen param-
eters can be written as the weighted sum of the force Gru¨n-
eisen parameters corresponding to the IFC’s under the radi-
cal in Eqs.~14! and ~15!:

gTA~X!5S a0

a014b124l2
Dg~a0!1S 4b1

a014b124l2
Dg~b1!

1S 24l2

a014b124l2
Dg~l2! ~16!

for the TA(X) mode, and

gTA~L !5S a0

a012a112b124n2
Dg~a0!

1S 2a1

a012a112b124n2
Dg~a1!

1S 2b1

a012a112b124n2
Dg~b1!

1S 24n2
a012a112b124n2

Dg~n2! ~17!

for the TA(L) mode.
It should be noted that the weights in Eqs.~12! to ~15! are

not necessarily included in the interval@0,1# and can thus be
negative. This explains why, though almost all force Gru¨n-

eisen parameters are positive~see Table I!, a negative mode
Grüneisen parameter can be obtained.

For example, in Eq.~12!, we get fora510.18 bohrs,

gTA~X!53.0831.10341~22.08!31.9817520.72,
~18!

which is just what is obtained in Table II. If all force Gru¨n-
eisen parameters were equal to 1, we would also get 1 for the
mode Gru¨neisen parameter. This shows that the origin of the
negative Gru¨neisen parameter is the rather important differ-
ence betweeng(b1) andg(a0).

II. THERMODYNAMIC PROPERTIES

Using the calculated phonon frequencies, the temperature-
dependent phonon contributionDF to the Helmholtz free
energyF(V,T) is calculated as described in Ref. 2. This
contribution is added to the energy of the static latticeE(V),
calculated previously,22 to getF(V,T) for a set of three vol-
umes and for various temperatures. This function is then in-
terpolated as a function ofV by a second order fit. The equi-
librium volumes~or lattice constants! at various temperatures
are determined by minimizingF(V,T) as a function ofV, as
shown in Fig. 3. FromF(V,T) any other thermodynamical
property can be accessed.

We first analyze briefly the specific effect of the zero-
point motion. We find that the zero-point contribution to
Helmholtz free energyF is DF0512 J/mol, which is about
2.5% of the cohesive energy@460 kJ/mol ~Ref. 27!#. This
zero-point contribution causes the lattice constant to be
shifted from 10.1894 bohrs to 10.1974 bohrs, which is a
change smaller than 0.1%, and the bulk modulusBT from
1.0387 Mbar to 1.0292 Mbar, which is a change of 1%. Note,
however, that the change in the bulk modulus includes two
effects: first, it is linked to the second derivative ofF(V) that
includes the zero-point motion contributionDF0; and sec-
ond, it is calculated for a different volume due to the shift of
the lattice constant. In Fig. 4, we present the temperature

FIG. 3. Volume dependence of the Helmholtz free energyF for
four different temperatures. The smallest is 0 K~upper curve!; the
biggest is 300 K~lower curve!, with an increment of 100 K between
the curves. The equilibrium volumeV0(T) is located at the mini-
mum of each curve. Between 20 K and 120 K, this volume de-
creases due to the negative thermal-expansion coefficient.
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dependence ofBT for different pressures.
The entropy can be calculated following Ref. 2. We get

S~298.15 K!519.3 J K21 mol21, to be compared to the
experimental value of 18.81 J K21 mol21.28 We have also
calculated the variation of enthalpyH5F1TS2PV be-
tween 0 and 298.15 K. We get 3.285 J mol21, whereas the
experimental value is 3.217 J mol21.28 We present in Fig. 5
the molar constant-pressure specific heatCP,m for various
pressures. This result agrees quite well with experimental
work.29,30 It is interesting to note that, for temperatures
higher than 85 K,CP,m is higher for low values of the pres-
sure, whereas for temperatures lower than 85 K, it is just the
contrary. This means that there exists a temperature around
85 K for whichCP,m is independent of pressure. In order to
understand this observation, we use the following relation
~see Ref. 31!:

S ]S

]PD
T

52S ]V

]TD
P

~19!

to write

S ]CP,m

]P D
T

5TS ]2S

]P]TD 52TS ]2V

]T2D
P

52TVFaP
21S ]aP

]T D
P

G . ~20!

This shows that in order to haveCP,m independent of pres-
sure, one must have a decreasingaP . This is precisely the
case of silicon between 20 K and 100 K, where the thermal-
expansion coefficient gets more and more negative.

This thermal-expansion coefficient is well reproduced by
our calculations~see Fig. 6!. It is worth noting that increas-
ing the pressure reinforces the anomalous negative behavior
of this property. This is confirmed by the strong negative
value of the overall Gru¨neisen parameter at high pressure
~see Fig. 7!. This anomalous behavior also has consequences
for other properties. We present in Fig. 8 the difference
CP,m2CV,m between the molar constant-pressure specific
heat CP,m and the molar constant-volume specific heat
CV,m for various pressures. At high temperature
CP,m2CV,m increases with increasing pressure, while at low
temperature, it is the contrary and the curve presents a bump.
This can be deduced from the following relation:31

CP,m2CV,m5
aP
2VT

kT
, ~21!

wherekT51/BT . Similarly, the differenceBS2BT between
BS the bulk modulus calculated fromF at constant entropy
andBT the bulk modulus calculated fromF at constant tem-
perature presents the same behavior asCP,m2CV,m as shown
in Fig. 9. Indeed, we can write31

FIG. 4. Temperature dependence of the theoretical bulk modulus
BT for four different pressures. The smallest is 0 Pa~lower curve!;
the biggest is 63109 Pa ~upper curve!, with an increment of
23109 Pa between the curves.BT is expressed in Mbar. Tempera-
ture is in K.

FIG. 5. Temperature dependence of the constant-pressure spe-
cific heatCP,m for two different pressures. The smallest is 0 Pa
~upper curve at high temperature!, the biggest is 63109 Pa ~lower
curve at high temperature!. CP,m is expressed in J mol

21 K21. The
crosses indicate experimental data~Ref. 29!. Temperature is in K.

FIG. 6. Temperature dependence of the volumic thermal-
expansion coefficientaP for four different pressures. The smallest
is 0 Pa~upper curve!; the biggest is 63109 Pa~lower curve!, with
an increment of 23109 Pa between the curves.aP is expressed in
K21. The crosses indicate experimental data~Ref. 28!. Temperature
is in K.
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kS2kT5
aP
2VT

CP,m
, ~22!

wherekS51/BS .

III. ATOMIC TEMPERATURE FACTOR

At finite temperatureT, the intensity of x-ray diffraction
from the crystal is reduced, due to atomic motion. The
atomic temperature factore2W(k) characterizes the oscilla-
tions of atom k around its equilibrium position. It is
defined32 by

e2W~k!5expS 2
1

2(ab
Bab~k!GaGbD , ~23!

whereGa is the component of scattering wave vectorG
which is a reciprocal lattice vector, andBab(k) is the mean-
square atomic displacement2 of atomk along the directions
a andb:

Bab~k!5
1

NAMk
(
q,l

\

2v~q,l !
coth

\v~q,l !

2kBT

3ei~kuq,l !ej* ~kuq,l !, ~24!

whereMk is the mass of atomk, andei(kuq,l ) is the i th
component of the eigenvector associated with mode l atq in
the lattice coordinates.

In the case of silicon, there is only one kind of atom.
Thus, for all atomse2W(k) is identical. The reduction of the
diffusion intensity is given bye22W(k), which is usually
called the Debye-Waller factor. The symmetry of the dia-
mond structure imposes that

Bab~k!5Bdab . ~25!

~This B is not to be confused with the bulk modulus.!
In Table IV, the results obtained for the mean-square

atomic displacement, at three different volumes, correspond-
ing to lattice constantsa of 10.00, 10.18, and 10.26 bohrs,
respectively, are compared with experimental results. The
agreement is on the order of a few percent.

Interestingly, even at room temperature, the mean-square
atomic displacement decreases with increasing volume, con-
trary to intuition. This can easily be understood from the
definition ofB @see Eq.~24!#. Indeed, it is written as a sum
over all phonon bands of a term which is proportional to the
inverse square of the frequency of the modev22 ~since
cothx→x21 for small x!. Thus, it is determined mostly by
acoustic branches. This is confirmed by a band-by-band de-
composition ofB ~see Table IV!, where the two lowest bands
account for more than 2/3 ofB. As the TA band and the first
longitudinal-acoustic~LA ! band exhibit a negative mode

FIG. 7. Temperature dependence of overall Gru¨neisen parameter
g for four different pressures. The smallest is 0 Pa~upper curve!,
the biggest is 63109 Pa ~lower curve!, with an increment of
23109 Pa between the curves. The crosses indicate experimental
data~Ref. 33!. Temperature is in K.

FIG. 8. Temperature dependence of the difference between the
constant-pressure specific heatCP,m and the constant-volume spe-
cific heatCV,m for four different pressures. The smallest is 0 Pa
~lower curve at high temperature!, the biggest is 63109 Pa ~upper
curve at high temperature!, with an increment of 23109 Pa be-
tween the curves.CP,m is expressed in J mol21 K21.

FIG. 9. Temperature dependence of the difference betweenBS

the bulk modulus calculated fromF at constant entropy andBT the
bulk modulus calculated fromF at constant temperature, for four
different pressures. The smallest is 0 Pa~lower curve at high tem-
perature!; the biggest is 63109 Pa ~upper curve at high tempera-
ture!, with an increment of 23109 Pa between the curves.
BS2BT is expressed in Mbar. Temperature is in K.
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Grüneisen parameter, we see that their contribution toB de-
creases with increasing volume, contrary to the contribution
of the second LA band and optic bands.

The thermal parameterB and the atomic temperature fac-
tor e2W(k), for diffraction with scattering vector
G5(2p/a0) ẑ, are also calculated as a function of tempera-
ture ~see Figs. 10 and 11!. The atomic temperature factor is
not 1 even at 0 K due to the zero-point motion.

CONCLUSIONS

In this paper, dynamical properties of silicon have been
calculated using a variational approach to density-functional
perturbation theory. We have presented anab initio study of
the volume dependence of interatomic force constants up to
25th nearest neighbors. Phonon frequencies of TA(X) and
TA(L) modes, and of the associated mode Gru¨neisen param-
eters, have also been calculated for different volumes. The
influence of successive nearest-neighbor shells has been ana-
lyzed. This study has confirmed that the contribution of at-
oms connected by the zigzag chain along the@1 1 0# direc-
tion is the most important. It has also proven that the
contributions of fifth, sixth, and seventh atoms along the
chain ~respectively, 13th, 18th, and 25th nearest neighbors!

are not negligible. Analytical formulas, taking into account
interactions up to second-nearest neighbors, have been de-
veloped for phonon frequencies of TA(X) and TA(L) modes
and the corresponding mode Gru¨neisen parameters. The vol-
ume and pressure dependence of various thermodynamic
properties~specific heat, bulk modulus, and thermal expan-
sion! were also analyzed. We have pointed out the effect of
the negative mode Gru¨neisen parameters of the acoustic
branches on these properties. The effect of zero-point motion
was also investigated. Finally, we have presented the evolu-
tion of the mean-square atomic displacement and of the
atomic temperature factor with the temperature for different
volumes, emphasizing the anomalous effects due to the nega-
tive mode Gru¨neisen parameters, present at all investigated
temperatures.
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TABLE IV. Mean-square atomic displacementB of silicon atoms atT5295 K for three different volumes
~lattice constantsa of 10.00, 10.18, and 10.26 bohrs!, and the corresponding experimental data ata510.26
bohrs. The lower part of the table presents a band-by-band decomposition ofB. The values are expressed in
Å 2.

Present work Experimental data (a510.26!

a510.00 a510.18 a510.26 Ref. 34 Ref. 35 Ref. 36 Ref. 37
B 0.4967 0.4745 0.4707 0.4613 0.4500 0.4515 0.4660

B~TA! 0.2298 0.2052 0.1992
B~LA 1) 0.1592 0.1510 0.1482
B~LA 2) 0.0496 0.0543 0.0563

B~LO1TO! 0.0582 0.0641 0.0672

FIG. 10. Temperature dependence of mean-square atomic dis-
placementB for silicon atoms in bulk silicon at three different
volumes, corresponding to lattice constantsa of 10.00 ~dashed
line!, 10.18~solid line!, and 10.26 bohrs~dotted line!, respectively.
The values ofB are expressed in Å2. Temperature is in K.
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