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GW study of the metal-insulator transition of bcc hydrogen
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We study the metal-insulator transition in a model Mott system, a bcc hydrogen solid, by perfaining
initio quasiparticle band-structure calculations within @&/ approximation for a wide range of lattice con-
stants. The value of the critical electron dengityis consistent with Mott’s original criterion. For smaller
lattice constants, our spin-polariz&l results agree well with previous variational quantum Monte Carlo
calculations. For large lattice constants, the computed quasiparticle band gap corresponds to the difference
between the ionization energy and electron affinity of an isolated hydrogen atom. Near the metal-insulator
transition, we investigate the quality of the quasiparticle wave functions obtained from different starting
approximations in density-functional theory. Finally, we gain new insight into@N¢ method and its appli-
cability to spin-polarized systems, for which several refinements are introduced.
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[. INTRODUCTION eralized gradient approximatid@®GA) with DFT, Pfrommer
et al® obtained a PM-AFM transition at,=2.25 a.u. and a
A metal-insulator transition induced by a correlation ef- metal-insulator transition at,;=2.50 a.u.

fect is an old problem in condensed-matter physics. Mott ~ Although it is suspected that the metallic solid form of
first described this kind of transition by considering a crys-atomic hydrogen is an important constituent of the core of
talline array of hydrogenlike atoms. Depending on the sepathe large plant_ats, it is still unreall_zable in the laboratory with
rations between neighboring atoms, the material is metalli®reSent day high-pressure techniques. Thus we can only rely
(small lattice constaptor insulating(large lattice constant " calculations such as those performed using the \(ar|at|onal
Mott discussed the transition based on a screening argumergu@ntum Monte Carl®vQMC) method to compare with our

and concluded that the transition is first order. Together witrPresent study. For example, Zlueported a PM-AFM tran-

- ; L .. sition atr¢=2.2 a.u. and a metal-insulator transitionrat
a number of approximations, a simple criterion for the criti-~>" " 3 . :
cal electron density. at the transition was derived, =2.2-2.3 a.u. from his VQMC studies. However, the sta-

tistical noise in those calculations is too large to discriminate
3% 0 26 between a weak first-order transition or a second-order tran-
c 70 ' sition. Furthermore, since the VQMC method is a computa-
where tionally demanding method, these calculations have been re-
stricted to small values ofg (up to 4 a.u. and small
Kt 2 supercells.
ag= P In this paper, we reposdb initio quasiparticld QP) band-
e'm structure calculations in th&W approximation for bcc
« is the static dielectric constant, amd* is the effective &tomic hydrogen. This many-body Green’s-function ap-
mass of the electron in the crystal. This equation is in satisProach is knOV\inlzto be quite accurate for a wide variety of
factory agreement for a range of doped semiconduétrs: bulk insulators:>*? It is also computationally more efficient
however, the transition for these systems may be of Mott of"an the VQMC method, so we are able to extend the study

Anderson type depending on the doping conditions. kor OVer & broader range of lattice constants. This allows us to
=1 andm*=m,, the transition occurs at a Wigner-Seitz obtain results in the dilute limit where the hydrogen atoms

radiusr.=2.39 a.u. are isolated and compare to atomic data. o
Following Mott's seminal work and the development of __ We also addres_s m_thls paper several theo_retlcal issues.
modern electronic structure calculation, several groups ag-IrSt theGW formalism is generalized to treat spin-polarized
plied ab initio methods to compute the band gap of a Crys_systemé3 ina plane wave basis set. Second, we demonstrate
talline atomic hydrogen solid as a function f within the the necessity to account for the _off-dlagonal e]ements of the
density functional theoryDFT). Early studies based on the S€lf-energy operator evaluated in the DFT eigenstate basis
local spin density approximatiofLSDA) (Refs. 4—7 sup- (i.e., mixing of _d|fferent DFT elg_enstates_m determlr_ung the
ported a second-order transition picture. Two transitions, &P Wave functions Our calculations provide further insight
paramagnetic-antiferromagnetiBM-AFM) transition in the into the “orbital stab|!|ty problem, ie., the clqseness be-
metallic phase and a metal-insulator transition, were found tdveen QP wave functions and DFT eigenfunctions.
occur atrg=2.55 and 2.85 a.u. respectivélySvane and
Gunnarssohused a self-interaction-correcté8!C) LSDA
and found a simultaneous first order PM-AFM and metal- In this section, we present the formalism used to compute
insulator transition ats=2.45 a.u. Recently, using the gen- the quasiparticle energies and wave functions of spin-

n

Il. SPIN-POLARIZED GW APPROXIMATION
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polarized systems. A rigorous formulation for the quasipartithe self-energy operat&“ (r,r',E,,,) are diagonal in spin
cle properties is based on Green's function apprdac¢fithe  space. Equatiof) thus decouples into

guasiparticle energieESE and wave functionssbﬁ{f are ob-

tained by solving the equation
Y sowing fhe €4 <T+vext+vH)¢ka<r>+fzf"'(r,r',Engkwﬁfk(r')dr'

(T+ Vexit Vi) Yroi(r) or

= Erw'klpno’k(r)- (2)

+2 fzm (N1 Engld Y (1A =EpoithR0(1), Within the GW approximation, the self-energy operator is
7 given by
D .

where the spin indexr has been explicitly labeled in addi- zva(r,r’,w)zl—j Go(r,r',w
tion to band indices and wave vector&. T is the kinetic- 27
energy operatoly,,; is the external potential due to the ions, W )W’ w')e 1% do’ 3)

and Vy is the Hartree potential. In this equation, the ex-
change and correlation effects are described by the electrofhe screened Coulomb interactivviis

self-energy operatoi‘”'(r,r’,Enok), which is nonlocal and

-1 ,

energy dependent. The real partif, is the energy of the W,/ (Q, @)= €5 5 (0, 0)V(q+G'), 4

quasiparticleEka, while the imaginary part gives its life- |, nere V(g+G) is the bare Coulomb interaction |q
time. , , _ +G|? expressed in Fourier space.

In the following, we assumethat there is no spin-flip Within the random phase approximati@RPA), the static

when an electron is propagating in the system. As a Consgo|arizability is evaluated in DFT and is also diagonal in the
guence, the one-particle Green’s functi@fi’ (r,r’';w) and  spin dimension:

(no,kle 1@ 9" n’ ¢ k—g)(n’ o, k— g €' @) " |ng k)
’2 EOFT  _ EDFT ) ®)

nn’k n’ok—q nok

Péo (Qo=0)=8,,

Here the indexh runs over all occupied states, and over  Assuming thatS (E) is a slowly varying function ofE, a

all unoccupied states. In terms of 'Ehf polarizability, the in-second order perturbation calculation gives rise to an explicit
verse of the static dielectric functian, ¢, (9,0 =0) is given  formula for ngki

by the matrix inversion of

Eroi=Enok + Znoid bk |2 (Engid) ~ Vil b
' s HRETIS (EDED) -V, d 60012
+PG’Gr(qiw:0)]y (6) m#n EDFT_EDFT

nok mak

€6.6/(0,0=0)= g6 —V(4+G)[Pg s (q,0=0)

so that the local field corrections are included. To computavhere
the dielectric function at finite, nonzero frequencies, we

make use of a generalized plasmon-pole model as discussed . 1 ®
in Ref. 11. nok= - DFT DFT DFT| ,DFTy

When one tries to solve the quasiparticle equati) 1=( ok | 9% no( Engic )/ d Engic [ o
usually the first step is to take quasiparticle wave functionsthe coefficientsx,,, to first order are given by
from the DFT or Hartree-Fock theory. We may expa#ff,
in DFT eigenfunctions: Anmek=1 (N=m)

(S| (Ene) ~ Ve drok.
lzanal?k: 2 anmakqsa(';[ . (7) Anmok ™ DET DFT (ni m) . (9)
m Enok - Emak

In this basis set, E((2) can be expressed as a matrix eigen- The assumptiony,m,k= énm. Namely, that the QP wave
value equation and one faces the task of diagonalizing thfunctions are identical to the DFT eigenfunctions, is often
self-energy operatofgr, '|2|40p ). Alternatively, we can used since this assumption is found to lead to negligible
treat 2 (E) —V,. as a perturbation term wheié,. is the errors in the quasiparticle energies in simplp bonded

exchange correlation potential in the Kohn-Sham equationsemiconductors'? However, as is shown below, the QP
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FIG. 1. Band structure of bcc hydrogen calculated in the GGA
(dashed ling and the GW approximation (solid ling) at r FIG. 2. The energy gap of AF bce hydrogen as a function of the
=2.6 au. Wigner-Seitz radiug, computed in the LSDAsolid diamonds

and dotted ling the GGA(solid squares and dashed linand the
wave functions can be different from the DFT eigenstatessW approximation starting from either the LSD@pen diamonds
near the metal-insulator transition of bcc hydrogen. This dif-and solid ling or GGA (open squares and solid Iineesults. The
ference has also been observed in other systénfs. lines are guides to the eyes.

is systematically larger than the LSDA gafthe magnitude

of the GW corrections to the band gap of bcc hydrogen is
Our DFT calculations are performed using a local hydro-more dramatic when compared to the case of typical semi-

gen pseudopotential of the Kerker typavith a cutoff radius ~ conductors. This is particularly true for large valuesrgf

0.7 a.u. The wave functions are expanded in plane waves uput note that, for small values of, due to the steep slope of

to an 85-Ry energy cutoff. For;=3.0 a.u. a 44x4 the curves near the metal-insulator transition, even a small

Monkhorst-Pact grid is used to sample the Brillouin zone, change in the band gap yields a large difference of the criti-

whereas for <3.0 a.u. the sampling has to be increased tccal electron density for the metal-insulator transition.

an 8x8x8 grid. These grids include 10 and 85points in Figure 2 also shows that the quasiparticle band gap de-

the irreducible wedge of the bce Brillouin zone, respectively.pends on the zeroth-order self-energy operator which is con-

For the LSDA calculation, we use the Ceperley-Alder structed from wave functions and dielectric functions ob-

exchange-correlation functional, and for the GGA calculationtained in either the LSDA or GGA. On the one hand, LSDA

we make use of the PBE exchange-correlation functithal. and GGA band gaps are different and therefore yield differ-
In the GW calculation, we compute the static dielectric ent dielectric functions within the RPA. At the charge density

function eg ¢/ (g, @=0) for G vectors of kinetic energy up to fs=2.6, the LSDA dielectric constant i0)=9.74 and the

24 Ry. The self-energy operatdr is obtained by summing GGA dielectric constant i(0)=3.58. On the other hand,

over the Brillouin zone, and over 49 conduction bands. All ofLSDA and GGA wave functions have different degree of

these cutoffs guarantee a numerical convergence of bettécalization. To estimate the effect of these two slightly dif-
than 0.1 eV in the quasiparticle energies. ferent wave functions, we compute the bare exchange‘term

which depends solely on the wave functions:

IIl. COMPUTATIONAL DETAILS

IV. RESULTS AND DISCUSSION occ
We first obtain eigenfunctions and eigenvalues in the 2x:_nZ E (nokle' "9y k—q)
LSDA and the GGA. These are then used to construct the 1 aG6
spin-polarized Green’s functions in tf@W approximation. X(nyo,k—qle @) " ngk)V(g+G’). (10)

A typical band structure in the antiferromagnetic insulating

phase (s=2.6) is shown in Fig. 1 where we compare the The difference in the value of this term between LSDA and
GGA andGW calculation. When the magnetic ordering is GGA wave functions is about 1-2 eV for the bcc hydrogen
taken into account, the crystal has two atoms in a cubic unisystem.

cell where the spin polarizations of the center and the corner Since it is known that GGA wave functions are more lo-
hydrogen are antiparallel. Note that bcc hydrogen has analized and closer to the exact solution than the LSTahd
indirect gap fromR to X, which we simply refer to as a band also that the GGA energies are closer to the quasiparticle
gap in the following discussion. Now in Fig. 2 we show the spectrum, the RPA dielectric screening is better represented
variation of the band gap as a functionrgfcomputed in the  in the GGA than in the LSDA? Consequently, th&W self-
LSDA, the GGA, and th&sW approximation. The two dif- energy corrections based on the GGA are more accurate than
ferent GW results are based on taking the LSDA or GGAthose based on the LSDA. For valuesrgfnear the metal-
results as the zeroth-order approximation in constructing thesulator transition, outGW results, based on the GGA,
self-energy operator. It is readily seen that the GGA band gapgree well with the VQMC calculation of Zh4,as shown in
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12 " " TABLE I. Comparison of the results obtained in this study for
o--a VQMC the PM-AFM and metal-insulator transition point with those of pre-
10f ©—° GW+GGA vious studies of bce hydrogen.
%‘ 81 re at the re at the Band gap for
S 6} PM-AFM metal-insulator rs—o (eV)
(‘g A transition(a.u) transitior(a.u)
LSDA 2.50 2.78 4.7
2r GGA 2.25 2.50 7.0
0 f E LMTO-LSDA 2.55 2.85
. . . . . . . (Ref. D
20 25 30 35 40 45 50 55 60 SIC-LSDA 2.45 2.45 10.9
fs [a.u.] (Ref. 8
FIG. 3. The energy gafin eV) of bcc hydrogen as a function of (C;c;f ;ng 2.25 2.0
the Wigner-Seitz radius, (in a.u), computed within theGW ap- )
. . . o VQMC 2.20 2.20-2.30
proximation(open diamonds and solid linbased on GGA results, (Ref. 10
and with the VQMC methodRef. 10. Lines are guides to the eyes. ’
LSDA+GW - 2.65 10.8

GGA+GW - 2.42 12.6

Fig. 3. The metal-insulator transition from the present stud xpt _ _ 12.8
Xpt :

is predicted to occur at 2.42 a.u., in agreement with the resu
obtained with the SIC-LSDA methddand consistent with
the VQMC prediction of 2.30 a.t. which has a significant

error bar. For large values of, our GGA+GW band gap of wave functions are preferred based on this criterion. Al-
12.6 eV approaches the experimental value of 12.8 eV fothough the second-order correction does not affect the band
isolated atomic hydrogens {—). This is a noticeable im- gap, it gives an indication as to which basis to choose from
provement over results from the LSDA.7 eV), GGA (7.0 between LSDA and GGA wave functions when performing
eV), and SIC-LSDA(10.9 e\}.2 The GGA+ GW band gaps GW calculations.

resemble the ones from the VQMC calculation for small lat- \We also studied the difference between GGA and QP
tice constants, but they differ significantlyrat=4, the larg- ~ wave functions. Using the perturbation scheme outlined in
estrg value studied in Zhu's work. Being at the end of the Eqgs. (7)—(9), the off-diagonal elements are taken into ac-
data points, this value might have a larger statistical errorcount to expand quasiparticle wave functions in the DFT
The overall trend of our band gaps indicates thatsat5.5  basis. For example, as discussed above, near the metal-
(equivalent to a 9.7-a.u. separation between nearest gtomsnsulator transition regionr(=2.5 a.u.), the quasiparticle

the wave functions of the neighboring hydrogen atoms havgvave function for the first valence bandts a linear com-
very little overlap. VQMC data would have suggested thatbination of the GGA eigenfunctions:
one needs to go to larger valuesrqfto attain the isolated

hydrogen atom limit. A summary of previous studies regard- YR = dix +0.025 pSLA. (11)
ing the charge density at the metal-insulator transition and
the band gap in the atomic limit is shown in Table I. This 2.5% difference is much larger than the mixing in semi-

At this point we would like to stress the significance of conductors. If we plot the square of the wave functions, the
the off-diagonal elementsn| — V,|n) expressed in the ba- GGA wave-function peak is more pronounced while the qua-
sis of DFT eigenfunctions. Contrary to what is commonly Siparticle wave function spreads out slightly over the region
assumed in bulk semiconductors, they p|ay a more importar‘hetween the atomic sites of different spin. The contrast be-
role in this system near the transition. As the distance between GGA and QP wave functions is more obviousr as
tween neighboring hydrogen atoms becomes smaller, there Rgcomes smaller.
more overlap between wave functions originating from Under the assumption that the imaginary partQfy is
nearby atomic sites and the energy bands become more digmall, the charge density can be written as
persive. We can apply Eq9) to assess the difference be-
tween the DFT eigenfunctions and QP wave functions. It has QP >
been shown that for typical semiconductors like silicon, the p(,(l‘)=;( | k(T Enor | (12)
overlap between the LDA and QP wave functions is better '
than 99.9%"! Near the metal-insulator transition density whereE,, is the energy allowed in the quasiparticle [E2).
(r¢=2.5 a.u.), we found the mixing due to nonzero off- The difference between QP and DFT charge densities is
diagonal elementém|> —V,|n) can be as large as 2.5% at much less than that for the wave functions, because the den-
the k-point X, while at other specidt points they often van- sity is related to the square of the wave functions. At the
ish due to selection rules. It is found that these nonzero offsame condition given by E@11), the mixing coefficient for
diagonal terms evaluated in the LSDA eigenfunction basighe charge density is less than 0.1%. On more general
are larger than in the GGA eigenfunction basis. The GGAgrounds, within the Kohn-Sham formulation of DFT, the

occ
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charge density is exact while the single-particle eigenstatethe 3 —V,. (when expressed in the DFT eigenstate hasis

do not have a formal direct connection to the quasiparticléhe quasiparticle energy, wave function, and charge density.
wave functions. As a result, there is no significant differenceThis effect is more pronounced near the metal-insulator tran-
between DFT and>W charge densities. The PM-AFM tran- sition region. We have shown, in particular, that the quasi-
sition point is found to be the same within the DFT and theparticle wave function at the top of the valence band can be

GW approximation(see Table )L expanded as a linear superposition of the DFT valence and
conduction wave functions, and that the mixing of valence
V. CONCLUSION character causes the quasiparticle wave function to be differ-

] ] ent from the corresponding LSDA or GGA eigenfunctions.
In this paper, we have formulated and implemented theginally, the charge density from tf@W calculation is found

GW approximation for spin-polarized systems employing aig he almost identical to the DFT results.
plane-wave basis. Within this formalism, we have calculated
the quasiparticle band structure of bcc hydrogenrfarang-
ing from 2.4 a.u(near the metal-insulator transitijoto 5.5
a.u. (approaching the isolated atomic limitThe metal- The authors would like to thank M. Rohlfing for discus-
insulator transition point is found to be very close to bothsions on theGW formalism for spin-polarized systems, and
VQMC and SIC-LSDA results, and for large valuesrqf, Young-Gui Yoon for enlightening discussions and assistance
the band gap correctly approaches the experimental valuen the GGA calculations. This work was supported by the
We found a difference in the band gap calculated by LSDANSF under Grant No. DMR0087088, and by the Office of
+GW and GGA+GW methods, and concluded that the Energy Research, Office of Basic Energy Sciences, Materials
GGA+GW method is in better agreement with VQMC and Sciences Division of the U.S. Department of Energy under
experiment. The difference is attributable to the LSDA andContract No. DE-AC03-76SF00098. Computer time was
GGA energy spectrum. The GGA eigenfunctions and eigenprovided by the NSF at the National Center for Supercom-
values are closer to the quasiparticle calculation results. Weuting Applications and by the DOE at the Lawrence Berke-
have also discussed the effect of the off-diagonal elements d¢y National Laboratory’s NERSC center.
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