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GW study of the metal-insulator transition of bcc hydrogen

Je-Luen Li, G.-M. Rignanese,* Eric K. Chang, Xavier Blase,† and Steven G. Louie
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and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
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We study the metal-insulator transition in a model Mott system, a bcc hydrogen solid, by performingab
initio quasiparticle band-structure calculations within theGW approximation for a wide range of lattice con-
stants. The value of the critical electron densitync is consistent with Mott’s original criterion. For smaller
lattice constants, our spin-polarizedGW results agree well with previous variational quantum Monte Carlo
calculations. For large lattice constants, the computed quasiparticle band gap corresponds to the difference
between the ionization energy and electron affinity of an isolated hydrogen atom. Near the metal-insulator
transition, we investigate the quality of the quasiparticle wave functions obtained from different starting
approximations in density-functional theory. Finally, we gain new insight into theGW method and its appli-
cability to spin-polarized systems, for which several refinements are introduced.
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f-
ot
s
p
ll

e
it

iti

ti
s;
t o
r
tz

of
a

ys

e

,

d

al
n-

of
of

ith
rely

onal
r

a-
ate
ran-
ta-
re-

p-
of
t
udy

to
ms

ues.
d

rate
the
asis
he
t

e-

ute
in-
I. INTRODUCTION

A metal-insulator transition induced by a correlation e
fect is an old problem in condensed-matter physics. M1

first described this kind of transition by considering a cry
talline array of hydrogenlike atoms. Depending on the se
rations between neighboring atoms, the material is meta
~small lattice constant! or insulating~large lattice constant!.
Mott discussed the transition based on a screening argum
and concluded that the transition is first order. Together w
a number of approximations, a simple criterion for the cr
cal electron densitync at the transition was derived,

nc
1/3a0* .0.26,

where

a0* 5
k\2

e2m*
,

k is the static dielectric constant, andm* is the effective
mass of the electron in the crystal. This equation is in sa
factory agreement for a range of doped semiconductor2,3

however, the transition for these systems may be of Mot
Anderson type depending on the doping conditions. Fok
51 and m* 5me , the transition occurs at a Wigner-Sei
radiusr s.2.39 a.u.

Following Mott’s seminal work and the development
modern electronic structure calculation, several groups
plied ab initio methods to compute the band gap of a cr
talline atomic hydrogen solid as a function ofr s within the
density functional theory~DFT!. Early studies based on th
local spin density approximation~LSDA! ~Refs. 4–7! sup-
ported a second-order transition picture. Two transitions
paramagnetic-antiferromagnetic~PM-AFM! transition in the
metallic phase and a metal-insulator transition, were foun
occur at r s52.55 and 2.85 a.u. respectively.7 Svane and
Gunnarsson8 used a self-interaction-corrected~SIC! LSDA
and found a simultaneous first order PM-AFM and met
insulator transition atr s52.45 a.u. Recently, using the ge
0163-1829/2002/66~3!/035102~5!/$20.00 66 0351
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eralized gradient approximation~GGA! with DFT, Pfrommer
et al.9 obtained a PM-AFM transition atr s52.25 a.u. and a
metal-insulator transition atr s52.50 a.u.

Although it is suspected that the metallic solid form
atomic hydrogen is an important constituent of the core
the large planets, it is still unrealizable in the laboratory w
present day high-pressure techniques. Thus we can only
on calculations such as those performed using the variati
quantum Monte Carlo~VQMC! method to compare with ou
present study. For example, Zhu10 reported a PM-AFM tran-
sition at r s52.2 a.u. and a metal-insulator transition atr s
52.222.3 a.u. from his VQMC studies. However, the st
tistical noise in those calculations is too large to discrimin
between a weak first-order transition or a second-order t
sition. Furthermore, since the VQMC method is a compu
tionally demanding method, these calculations have been
stricted to small values ofr s ~up to 4 a.u.! and small
supercells.

In this paper, we reportab initio quasiparticle~QP! band-
structure calculations in theGW approximation for bcc
atomic hydrogen. This many-body Green’s-function a
proach is known to be quite accurate for a wide variety
bulk insulators.11,12 It is also computationally more efficien
than the VQMC method, so we are able to extend the st
over a broader range of lattice constants. This allows us
obtain results in the dilute limit where the hydrogen ato
are isolated and compare to atomic data.

We also address in this paper several theoretical iss
First theGW formalism is generalized to treat spin-polarize
systems13 in a plane wave basis set. Second, we demonst
the necessity to account for the off-diagonal elements of
self-energy operator evaluated in the DFT eigenstate b
~i.e., mixing of different DFT eigenstates in determining t
QP wave functions!. Our calculations provide further insigh
into the ‘‘orbital stability’’ problem, i.e., the closeness b
tween QP wave functions and DFT eigenfunctions.

II. SPIN-POLARIZED GW APPROXIMATION

In this section, we present the formalism used to comp
the quasiparticle energies and wave functions of sp
©2002 The American Physical Society02-1
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polarized systems. A rigorous formulation for the quasipa
cle properties is based on Green’s function approach.11,14The
quasiparticle energiesEn,k

QP and wave functionscn,k
QP are ob-

tained by solving the equation

~T1Vext1VH!cnsk
QP ~r!

1(
s8

E Sss8~r,r8,Ensk!cns8k
QP

~r8!dr85Enskcnsk
QP ~r!,

~1!

where the spin indexs has been explicitly labeled in add
tion to band indicesn and wave vectorsk. T is the kinetic-
energy operator,Vext is the external potential due to the ion
and VH is the Hartree potential. In this equation, the e
change and correlation effects are described by the elec
self-energy operatorSss8(r,r8,Ensk), which is nonlocal and
energy dependent. The real part ofEnsk is the energy of the
quasiparticleEnsk

QP , while the imaginary part gives its life
time.

In the following, we assumethat there is no spin-flip
when an electron is propagating in the system. As a con

quence, the one-particle Green’s functionGss8(r,r8;v) and
in

ut
we
ss

n

n
th

io
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the self-energy operatorSss8(r,r8,Ensk) are diagonal in spin
space. Equation~1! thus decouples into

~T1Vext1VH!cnsk
QP ~r!1E Sss~r,r8,Ensk!cnsk

QP ~r8!dr8

5Enskcnsk
QP ~r!. ~2!

Within the GW approximation, the self-energy operator
given by

Sss~r,r8,v!5
i

2pE Gss~r,r8,v

2v8!W~r,r8,v8!e2 idv8dv8. ~3!

The screened Coulomb interactionW is

WG,G8~q,v!5eG,G8
21

~q,v!V~q1G8!, ~4!

where V(q1G) is the bare Coulomb interaction 4p/uq
1Gu2 expressed in Fourier space.

Within the random phase approximation~RPA!, the static
polarizability is evaluated in DFT and is also diagonal in t
spin dimension:
PG,G8
ss8 ~q,v50!5ds,s8 (

nn8k

^ns,kue2 i (q1G)•run8s,k2q&^n8s,k2quei (q1G8)•r8uns,k&

En8sk2q
DFT

2Ensk
DFT

. ~5!
licit

en
ble

P

Here the indexn runs over all occupied states, andn8 over
all unoccupied states. In terms of the polarizability, the
verse of the static dielectric functioneG,G8

21 (q,v50) is given
by the matrix inversion of

eG,G8~q,v50!5dG,G82V~q1G!@PG,G8
↑↑

~q,v50!

1PG,G8
↓↓

~q,v50!#, ~6!

so that the local field corrections are included. To comp
the dielectric function at finite, nonzero frequencies,
make use of a generalized plasmon-pole model as discu
in Ref. 11.

When one tries to solve the quasiparticle equation~2!,
usually the first step is to take quasiparticle wave functio
from the DFT or Hartree-Fock theory. We may expandcnsk

QP

in DFT eigenfunctions:

cnsk
QP 5(

m
anmskfmsk

DFT . ~7!

In this basis set, Eq.~2! can be expressed as a matrix eige
value equation and one faces the task of diagonalizing
self-energy operator̂fnk

DFTuSufmk
DFT&. Alternatively, we can

treat S(E)2Vxc as a perturbation term whereVxc is the
exchange correlation potential in the Kohn-Sham equat
-

e

ed

s

-
e

n.

Assuming thatS(E) is a slowly varying function ofE, a
second order perturbation calculation gives rise to an exp
formula for Ensk

QP :

Ensk
QP 5Ensk

DFT1Znsk^fnsk
DFTuS~Ensk

DFT!2Vxcufnsk
DFT&

1 (
mÞn

u^fmsk
DFTuS~Ensk

DFT!2Vxcufnsk
DFT&u2

Ensk
DFT2Emsk

DFT

where

Znsk5
1

12^fnsk
DFTudSnsk~Ensk

DFT!/dEnsk
DFTufnsk

DFT&
. ~8!

The coefficientsanmsk to first order are given by

anmsk51 ~n5m!

anmsk5
^fmsk

DFTuS~Ensk
DFT!2Vxcufnsk

DFT&

Ensk
DFT2Emsk

DFT
~nÞm!. ~9!

The assumptionanmsk5dnm , namely, that the QP wave
functions are identical to the DFT eigenfunctions, is oft
used since this assumption is found to lead to negligi
errors in the quasiparticle energies in simples-p bonded
semiconductors.11,12 However, as is shown below, the Q
2-2



te
if

ro

s

,
t

ly
r
io
l.
ic

o
et

th
th

ng
he
is
un
rn

a
d
he

A
th
ga

is
mi-

f
all

riti-

de-
on-
b-
A
er-
ity

,
of
if-
rm

nd
en

o-

ticle
nted

than

,

GA
the

GW STUDY OF THE METAL-INSULATOR TRANSITION . . . PHYSICAL REVIEW B 66, 035102 ~2002!
wave functions can be different from the DFT eigensta
near the metal-insulator transition of bcc hydrogen. This d
ference has also been observed in other systems.15,16

III. COMPUTATIONAL DETAILS

Our DFT calculations are performed using a local hyd
gen pseudopotential of the Kerker type17 with a cutoff radius
0.7 a.u. The wave functions are expanded in plane wave
to an 85-Ry energy cutoff. Forr s>3.0 a.u. a 43434
Monkhorst-Pack18 grid is used to sample the Brillouin zone
whereas forr s,3.0 a.u. the sampling has to be increased
an 83838 grid. These grids include 10 and 35k points in
the irreducible wedge of the bcc Brillouin zone, respective
For the LSDA calculation, we use the Ceperley-Alde19

exchange-correlation functional, and for the GGA calculat
we make use of the PBE exchange-correlation functiona20

In the GW calculation, we compute the static dielectr
functioneG,G8(q,v50) for G vectors of kinetic energy up to
24 Ry. The self-energy operatorS is obtained by summing
over the Brillouin zone, and over 49 conduction bands. All
these cutoffs guarantee a numerical convergence of b
than 0.1 eV in the quasiparticle energies.

IV. RESULTS AND DISCUSSION

We first obtain eigenfunctions and eigenvalues in
LSDA and the GGA. These are then used to construct
spin-polarized Green’s functions in theGW approximation.
A typical band structure in the antiferromagnetic insulati
phase (r s52.6) is shown in Fig. 1 where we compare t
GGA and GW calculation. When the magnetic ordering
taken into account, the crystal has two atoms in a cubic
cell where the spin polarizations of the center and the co
hydrogen are antiparallel. Note that bcc hydrogen has
indirect gap fromR to X, which we simply refer to as a ban
gap in the following discussion. Now in Fig. 2 we show t
variation of the band gap as a function ofr s computed in the
LSDA, the GGA, and theGW approximation. The two dif-
ferent GW results are based on taking the LSDA or GG
results as the zeroth-order approximation in constructing
self-energy operator. It is readily seen that the GGA band

FIG. 1. Band structure of bcc hydrogen calculated in the G
~dashed line! and the GW approximation ~solid line! at r s

52.6 a.u.
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is systematically larger than the LSDA gap.9 The magnitude
of the GW corrections to the band gap of bcc hydrogen
more dramatic when compared to the case of typical se
conductors. This is particularly true for large values ofr s ,
but note that, for small values ofr s , due to the steep slope o
the curves near the metal-insulator transition, even a sm
change in the band gap yields a large difference of the c
cal electron density for the metal-insulator transition.

Figure 2 also shows that the quasiparticle band gap
pends on the zeroth-order self-energy operator which is c
structed from wave functions and dielectric functions o
tained in either the LSDA or GGA. On the one hand, LSD
and GGA band gaps are different and therefore yield diff
ent dielectric functions within the RPA. At the charge dens
r s52.6, the LSDA dielectric constant ise(0)59.74 and the
GGA dielectric constant ise(0)53.58. On the other hand
LSDA and GGA wave functions have different degree
localization. To estimate the effect of these two slightly d
ferent wave functions, we compute the bare exchange te21

which depends solely on the wave functions:

Sx52(
n1

occ

(
q,G,G8

^nskuei (q1G)•run1s,k2q&

3^n1s,k2que2 i (q1G8)•r8unsk&V~q1G8!. ~10!

The difference in the value of this term between LSDA a
GGA wave functions is about 1–2 eV for the bcc hydrog
system.

Since it is known that GGA wave functions are more l
calized and closer to the exact solution than the LSDA,9 and
also that the GGA energies are closer to the quasipar
spectrum, the RPA dielectric screening is better represe
in the GGA than in the LSDA.22 Consequently, theGW self-
energy corrections based on the GGA are more accurate
those based on the LSDA. For values ofr s near the metal-
insulator transition, ourGW results, based on the GGA
agree well with the VQMC calculation of Zhu,10 as shown in

FIG. 2. The energy gap of AF bcc hydrogen as a function of
Wigner-Seitz radiusr s , computed in the LSDA~solid diamonds
and dotted line!, the GGA~solid squares and dashed line!, and the
GW approximation starting from either the LSDA~open diamonds
and solid line! or GGA ~open squares and solid line! results. The
lines are guides to the eyes.
2-3
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Fig. 3. The metal-insulator transition from the present stu
is predicted to occur at 2.42 a.u., in agreement with the re
obtained with the SIC-LSDA method,8 and consistent with
the VQMC prediction of 2.30 a.u.10 which has a significan
error bar. For large values ofr s , our GGA1GW band gap of
12.6 eV approaches the experimental value of 12.8 eV
isolated atomic hydrogens (r s→`). This is a noticeable im-
provement over results from the LSDA~4.7 eV!, GGA ~7.0
eV!, and SIC-LSDA~10.9 eV!.8 The GGA1GW band gaps
resemble the ones from the VQMC calculation for small l
tice constants, but they differ significantly atr s54, the larg-
est r s value studied in Zhu’s work. Being at the end of th
data points, this value might have a larger statistical er
The overall trend of our band gaps indicates that atr s55.5
~equivalent to a 9.7-a.u. separation between nearest ato!,
the wave functions of the neighboring hydrogen atoms h
very little overlap. VQMC data would have suggested th
one needs to go to larger values ofr s to attain the isolated
hydrogen atom limit. A summary of previous studies rega
ing the charge density at the metal-insulator transition
the band gap in the atomic limit is shown in Table I.

At this point we would like to stress the significance
the off-diagonal elementŝmuS2Vxcun& expressed in the ba
sis of DFT eigenfunctions. Contrary to what is common
assumed in bulk semiconductors, they play a more impor
role in this system near the transition. As the distance
tween neighboring hydrogen atoms becomes smaller, the
more overlap between wave functions originating fro
nearby atomic sites and the energy bands become more
persive. We can apply Eq.~9! to assess the difference b
tween the DFT eigenfunctions and QP wave functions. It
been shown that for typical semiconductors like silicon,
overlap between the LDA and QP wave functions is be
than 99.9%.11 Near the metal-insulator transition densi
(r s52.5 a.u.), we found the mixing due to nonzero o
diagonal elementŝmuS2Vxcun& can be as large as 2.5%
thek-point X, while at other specialk points they often van-
ish due to selection rules. It is found that these nonzero
diagonal terms evaluated in the LSDA eigenfunction ba
are larger than in the GGA eigenfunction basis. The G

FIG. 3. The energy gap~in eV! of bcc hydrogen as a function o
the Wigner-Seitz radiusr s ~in a.u.!, computed within theGW ap-
proximation~open diamonds and solid line! based on GGA results
and with the VQMC method~Ref. 10!. Lines are guides to the eye
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wave functions are preferred based on this criterion.
though the second-order correction does not affect the b
gap, it gives an indication as to which basis to choose fr
between LSDA and GGA wave functions when performi
GW calculations.

We also studied the difference between GGA and
wave functions. Using the perturbation scheme outlined
Eqs. ~7!–~9!, the off-diagonal elements are taken into a
count to expand quasiparticle wave functions in the D
basis. For example, as discussed above, near the m
insulator transition region (r s52.5 a.u.), the quasiparticle
wave function for the first valence band atX is a linear com-
bination of the GGA eigenfunctions:

c1,X
QP5f1,X

GGA10.025•f3,X
GGA . ~11!

This 2.5% difference is much larger than the mixing in sem
conductors. If we plot the square of the wave functions,
GGA wave-function peak is more pronounced while the q
siparticle wave function spreads out slightly over the reg
between the atomic sites of different spin. The contrast
tween GGA and QP wave functions is more obvious asr s
becomes smaller.

Under the assumption that the imaginary part ofEnsk is
small, the charge density can be written as

rs~r!5(
n,k

occ

ucnsk
QP ~r,Ensk!u2 ~12!

whereEnsk is the energy allowed in the quasiparticle Eq.~2!.
The difference between QP and DFT charge densities
much less than that for the wave functions, because the
sity is related to the square of the wave functions. At t
same condition given by Eq.~11!, the mixing coefficient for
the charge density is less than 0.1%. On more gen
grounds, within the Kohn-Sham formulation of DFT, th

TABLE I. Comparison of the results obtained in this study f
the PM-AFM and metal-insulator transition point with those of pr
vious studies of bcc hydrogen.

r s at the
PM-AFM

r s at the
metal-insulator

Band gap for
r s→` ~eV!

transition~a.u.! transition~a.u.!

LSDA 2.50 2.78 4.7
GGA 2.25 2.50 7.0
LMTO-LSDA
~Ref. 7!

2.55 2.85

SIC-LSDA
~Ref. 8!

2.45 2.45 10.9

GGA-PW91
~Ref. 9!

2.25 2.50

VQMC
~Ref. 10!

2.20 2.2022.30

LSDA1GW 2 2.65 10.8
GGA1GW 2 2.42 12.6
Expt. 2 2 12.8
2-4
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charge density is exact while the single-particle eigensta
do not have a formal direct connection to the quasipart
wave functions. As a result, there is no significant differen
between DFT andGW charge densities. The PM-AFM tran
sition point is found to be the same within the DFT and t
GW approximation~see Table I!.

V. CONCLUSION

In this paper, we have formulated and implemented
GW approximation for spin-polarized systems employing
plane-wave basis. Within this formalism, we have calcula
the quasiparticle band structure of bcc hydrogen forr s rang-
ing from 2.4 a.u.~near the metal-insulator transition! to 5.5
a.u. ~approaching the isolated atomic limit!. The metal-
insulator transition point is found to be very close to bo
VQMC and SIC-LSDA results, and for large values ofr s ,
the band gap correctly approaches the experimental va
We found a difference in the band gap calculated by LSD
1GW and GGA1GW methods, and concluded that th
GGA1GW method is in better agreement with VQMC an
experiment. The difference is attributable to the LSDA a
GGA energy spectrum. The GGA eigenfunctions and eig
values are closer to the quasiparticle calculation results.
have also discussed the effect of the off-diagonal element
-
,

2

y
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the S2Vxc ~when expressed in the DFT eigenstate basis! to
the quasiparticle energy, wave function, and charge den
This effect is more pronounced near the metal-insulator tr
sition region. We have shown, in particular, that the qua
particle wave function at the top of the valence band can
expanded as a linear superposition of the DFT valence
conduction wave functions, and that the mixing of valen
character causes the quasiparticle wave function to be dif
ent from the corresponding LSDA or GGA eigenfunction
Finally, the charge density from theGW calculation is found
to be almost identical to the DFT results.
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