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Abstract
We discuss various decomposition schemes for analysing the dielectric
constants of Zr silicates in terms of local properties. Such schemes serve the
purpose of predicting the dielectric constants of amorphous alloys, when their
system size precludes the possibility of performing accurate first-principles
calculations. In particular, we compare two decomposition schemes which
have found application in the recent literature. The first scheme is based on a
decomposition into basic structural units characterized by effective parameters.
While this scheme was originally developed for cation-centred structural units,
we here also consider its application to anion-centred structural units. In the
second scheme, the difference between the static and optical dielectric constants
is formally decomposed into atomic contributions. We analyse the results of
these two schemes when applied to a set of (ZrO2)x(SiO2)1−x model structures,
for which the dielectric properties are computed from first principles. The most
promising results are recorded for the first scheme when applied to cation-
centred structural units.

1. Introduction

As CMOS devices are built with smaller and smaller features, the scaling laws for their
operation impose continuous reductions of the thickness of the silicon dioxide gate. The
current International Technology Roadmap for Semiconductors projects that the SiO2 layer at
the gate electrode will be only 7 Å thick by 2012 [1]. At this scale, the oxide consists of only
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a few atomic layers and direct tunnelling of electrons through the oxide significantly increases
the leakage current, thereby impairing the device performance.

In order to avoid this materials limit, the microelectronics industry has intensively been
searching for alternative gate materials of high permittivity (κ). The increase of the dielectric
constant compared to SiO2 allows the use of gates with larger physical thicknesses (tphys),
while preserving the same capacitance as SiO2 gates of smaller thickness (tox):

tox = κox

κ
tphys,

κox being the dielectric constant of SiO2. The larger physical thickness solves the leakage
problems, as well as other problems resulting from the penetration of the gate dopants in the
substrate. However, replacing the SiO2 is not as simple as it may seem. Indeed, besides
showing a high dielectric constant, a potential high-κ replacement must satisfy many stringent
requirements, such as the thermodynamic stability with the Si interface or the high level
interface quality.

The leading candidates for meeting these criteria are the silicates of hafnium and zirconium
in the form of amorphous films. The dielectric properties of these materials have therefore
been studied quite intensively. Early experimental measurements tend to show a superlinear
dependence of the static dielectric constant κ0 on the Hf/Zr concentration [2, 3]. This behaviour
has been addressed by several phenomenological theories [4, 5]. However, a close to linear
dependence has emerged from more recent experiments [6, 7]. The latter dependence has
found support in a recent theoretical analysis based on first-principles calculations [8].

First-principles calculations based on density-functional theory (DFT) indeed constitute
a valuable tool for understanding the properties of materials at the atomic scale. In particular,
these calculations have demonstrated a high predictive power as far as the dielectric properties
are concerned. This makes these calculations particularly useful when the experimental
situation is unclear. However, in this particular field, one faces the general issue of predicting
the dielectric properties of amorphous alloys. Brute force calculations of numerous large
supercells are at present beyond the reach of first-principles methods. Therefore, it is necessary
to devise viable schemes for extending first-principles results achieved on selected model
structures to the case of large disordered structures.

We have recently introduced such a scheme by relating the dielectric constants to the local
bonding of Si and Hf/Zr atoms [8]. This scheme is based on a decomposition into cation-
centred structural units, characterized by a set of effective parameters. In a subsequent study
on amorphous ZrO2 [9], Zhao, Cersoli and Vanderbilt proposed a different analysis, in which
the lattice contribution to the dielectric constant is decomposed into atomic parts. Applied to
amorphous Zr silicates, the first scheme has been found to provide a good description of both
the optical and static dielectric constants [8]. The second scheme offers the advantage of a
formally exact decomposition, but its usefulness for predicting dielectric constants has so far
not been addressed.

In this paper, we compare various available schemes leading to analyses of dielectric
constants in terms of local properties. In particular, we carry out decompositions into
contributions pertaining to structural units and to atoms. We also consider variants in which
either the anions or the cations assume the central role. The ultimate aim is to identify the
most promising scheme for predicting the dielectric properties of amorphous Zr silicates.

2. Technical details

All our calculations are performed using the ABINIT package [10]. The exchange–correlation
energy is evaluated within the local density approximation (LDA) to DFT, using Perdew–
Wang’s parametrization [11] of Ceperley–Alder electron-gas data [12].
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Table 1. Description of the various model structures in terms of cation-centred and anion-centred
structural units. The symbols indicated between parentheses refer to figures 2 and 3.

Model Cation-centred SUs Anion-centred SUs

C0 (◦) 4 SiO4 8 OSi2
C1 (�) 3 SiO4 + 1 ZrO4 4 OSi2 + 4 OSiZr
Q0 (•) 3 SiO4 6 OSi2
Q1 ( ) 2 SiO4 + 1 ZrO4 2 OSi2 + 4 OSiZr
S0 (•) 2 SiO6 4 OSi3
S1 ( ) 1 SiO6 + 1 ZrO6 2 OSi2Zr + 4 OSiZr2

Z0 ( ) 2 SiO4 + 2 SiO6 4 OSi2 + 4 OSi3
Z1 ( ) 2 SiO4 + 1 SiO6 + 1 ZrO8 2 OSiZr + 6 OSi2Zr
Z2 ( ) 2 SiO4 + 2 ZrO8 8 OSiZr2

A (�) 17 SiO4 + 1 ZrO7 + 2 ZrO6 26 OSi2 + 7 OSiZr + 2 OSi2Zr + 5 OSiZr2

Only valence electrons are explicitly considered using pseudopotentials to account for
core–valence interactions. We use norm-conserving pseudopotentials [13] with Zr(4s, 4p,
4d, 5s), Si(3s, 3p), and O(2s, 2p) levels treated as valence states. The pseudopotentials are
generated using the following atomic valence configurations: Zr(4s24p64d25s0), Si(3s23p2),
and O(2s22p4). In the case of Zr, we take core radii of 1.75, 1.55, and 1.70 au for describing
angular waves from s to d. For the Si pseudopotential, the same cut-off radius of 2.00 au is used
for the three lowest angular momentum waves. For the O pseudopotential, we use a cut-off
radius of 1.50 au for both s and p waves. We adopt a separable form for the pseudopotentials [14]
treating the following angular momentum waves as local: d for Zr, d for Si, and p for O. The
wavefunctions are expanded in plane waves up to a kinetic energy cut-off of 30 Ha. The chosen
kinetic energy cut-off and k-point sampling of the Brillouin zone ensure convergence of all the
calculated properties.

In this work, we use the same model structures of (ZrO2)x(SiO2)1−x as introduced
previously [8]. These model structures, nine crystalline and one amorphous, show different Zr
contents with x ranging from 0 to 0.5. For the convenience of the reader, we here summarize
their salient features. The set includes three different SiO2 polymorphs (x = 0): [C0] α-
cristobalite, [Q0] α-quartz, and [S0] stishovite. Substitution of one of the Si atoms by a Zr
atom in each of these models gives three new crystal structures: [C1] ZrSi in α-cristobalite
(x = 0.25), [Q1] ZrSi in α-quartz (x = 0.33), [S1] ZrSi in stishovite (x = 0.5). The other
crystalline structures are obtained from [Z2] zircon. The replacement of Zr by Si gives [Z1] SiZr

for one substitution per unit cell (x = 0.25), and [Z0] for fully Si-substituted zircon (x = 0).
The amorphous structure [A] corresponds to a periodically repeated cubic model containing
3 Zr, 17 Si, and 20 O atoms (x = 0.15) at a fixed density of 3.12 g cm−3 [15]. All the Si atoms
are fourfold coordinated and the Zr atoms show an average coordination of 6.3, in accord with
experimental data [4]. We refer to [8] for a detailed description of the generation procedure.

Apart from the amount of Zr incorporated in the silica (x), the different structures differ by
the coordination of the atomic species Zr, Si, and O. This appears very clearly when describing
the various structures in terms of cation-centred (CC) or anion-centred (AC) structural units
(SUs). In a recent paper [8], we considered cation-centred structural units, which were centred
on Si or Zr atoms and included the nearest-neighbour O atoms. Here, we also consider the
alternative standpoint in which the SUs are centred on O atoms and include their nearest-
neighbour Si and Zr atoms. The description of the various model structures in terms of both
CC and AC structural units is provided in table 1.

The atomic coordinates and the cell parameters of all our model structures are fully
relaxed within our first-principles approach. The corresponding dynamical and dielectric
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Table 2. Composition (x), optical (ε∞) and static (ε0) dielectric constants, volume (V̄ ) in bohr3,
polarizabilities ᾱ∞ and ᾱ0 in bohr3, characteristic dynamical charge (Z̄ ), and characteristic force
constant (C̄) in hartree/bohr2 for the various model systems.

Model x ε∞ ε0 V̄ ᾱ∞ ᾱ0 Z̄ C̄

C0 0.00 2.38 4.30 264.77 19.92 33.11 4.21 0.4391
C1 0.25 2.76 5.25 273.21 24.12 38.23 4.59 0.3895
Q0 0.00 2.54 4.83 240.34 19.46 32.17 4.28 0.4169
Q1 0.33 2.91 5.84 275.28 25.56 40.57 4.85 0.3661
S0 0.00 3.36 10.33 153.74 16.16 27.77 4.81 0.2716
S1 0.50 4.44 24.20 201.88 25.74 42.68 6.14 0.1188
Z0 0.00 3.37 10.11 167.80 17.68 30.14 4.76 0.2512
Z1 0.25 3.94 18.36 189.74 22.42 38.62 5.29 0.1287
Z2 0.50 4.13 11.81 213.28 26.00 39.86 5.58 0.2385
A 0.15 3.24 8.92 213.12 21.75 36.30 4.83 0.2424

properties are computed within a variational approach to density-functional perturbation theory,
as implemented in the ABINIT package [10]. This method is presented in detail in [16] and [17].
We adopt here the same notations as in these references. In particular, κ and α run over the
atoms in the unit cell and over the three Cartesian directions, respectively.

The key quantities to be calculated are second-order derivatives of the energy. For
obtaining the phonon frequencies and the related eigendisplacements Um(κα), we consider
second derivatives with respect to collective atomic displacements. The second derivatives
with respect to the macroscopic electric field give us access to the optical dielectric tensor
ε∞
αβ . The Born effective charge tensors Z∗

κ,αβ [17] are obtained by considering mixed second
derivatives with respect to the electric field and the atomic displacements. The static dielectric
constant ε0

αβ is obtained from

ε0
αβ = ε∞

αβ +
4π

�0

∑

m

Sm,αβ

ω2
m

. (1)

where the mode-oscillator strength Sm,αβ is defined as

Sm,αβ =
(

∑

κα′
Z∗

κ,αα′U∗
mq=0(κα′)

) (
∑

κ ′β ′
Z∗

κ ′,ββ ′Umq=0(κ
′β ′)

)
. (2)

The optical and static dielectric constants5 calculated for our model structures are given
in table 2. Due to the well known limitations of the LDA, the theoretical values are larger than
the experimental ones (when available) by about 10%.

3. Modelling of dielectric constants

The crudest scheme for modelling dielectric constants consists in assuming that these can be
obtained from a sum of local quantities associated with structural units:

ε =
∑

i

xiεi , (3)

where εi is the dielectric constant (either optical or static) and xi is the molecular fraction for
each SU i . The structural units can be either cation centred, in which case i ≡ SiOn (with
n = 4 or 6) or ZrOn (with n = 4, 6, or 8), or anion centred, in which case i ≡ OSin (with

5 Orientational averages are given.
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Table 3. Characteristic parameters of cation-centred and anion-centred structural units obtained
using the unphysical, the physical, and the alternative schemes: optical dielectric constant (ε∞),
difference between static and optical dielectric constants (�ε), polarizabilities (α∞ and α0 in
bohr3), charge (Z ), and force constant (C in hartree/bohr2).

CC SUs Scheme SiO4 SiO6 ZrO4 ZrO6 ZrO8

Unph. ε∞ 2.56 3.58 3.51 5.30 5.97
�ε 3.02 8.88 2.07 30.64 18.42

Phys. α∞ 19.68 16.14 37.37 35.35 32.69
Z 4.29 4.92 5.66 7.16 6.73
C 0.3597 0.2176 0.4202 0.0817 0.1153

Alt. α0 32.85 28.25 55.43 57.10 49.60

AC SUs Scheme OSi2 OSi3 OSiZr OSi2 Zr OSiZr2

Unph. ε∞ 2.55 3.53 3.01 4.38 4.20
�ε 2.68 7.74 1.85 22.08 9.63

Phys. α∞ 19.72 16.06 28.14 21.82 26.73
Z 4.31 4.89 4.91 5.76 5.77
C 0.3917 0.2483 0.3978 0.0967 0.2149

Alt. α0 32.73 27.73 43.62 39.20 41.12

n = 2 or 3), OSiZr, OSi2Zr, or OSiZr2. Note that a similar relation can be defined for the
difference between the static and optical dielectric constants (�ε):

�ε = ε0 − ε∞ =
∑

i

xi�εi . (4)

Equations (3) and (4) do not rely on any physical argument. Worse, the dielectric constants
are intensive quantities, hence not additive. Therefore, hereafter we will refer to this approach
as to the unphysical scheme.

In the following, we consider equation (3) for the optical dielectric constant, whereas we
prefer to work with equation (4) for the static dielectric constant. The optimal values for ε∞

i
and �εi for the various structural units are reported in table 3. They are obtained by solving
in a least square sense the over-determined system based on the first-principles values of ε∞
and �ε for the nine crystalline models (table 2).

By introducing the values of ε∞
i and �εi from table 3 in equations (3) and (4), the

dielectric constants ε∞ and �ε can be obtained and compared with the first-principles results.
The relative errors on ε∞ and �ε are reported in figure 1. These errors are found to be
quite large irrespective of the choice of cation- and anion-centred structural units. This is a
clear consequence of the unphysical character of this scheme. The smallest relative errors are
found for ε∞: they are of the order of 5% for the nine crystalline models, and of 10% for the
amorphous model. For �ε, the error is about 20% for both crystalline and amorphous models.

To go beyond this crude approach, we have recently introduced a more physical scheme to
relate the dielectric constants to the underlying atomic structure [8]. We refer to this approach
as to the physical scheme. It consists in determining quantities that can be considered local
and additive and from which ε∞ and �ε can be obtained.

For the optical dielectric constant, we use the Clausius–Mossotti relation [5, 7] to establish
a link with the electronic polarizability ᾱ∞:

ε∞ − 1

ε∞ + 2
= 4π

3

ᾱ∞
V̄

(5)
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Figure 1. Relative errors on ε∞ and �ε obtained when using the unphysical [U] (in black),
the physical [P] (in dark grey), and the alternative [A] (in light grey) schemes on the basis of a
description of the model structures in terms of cation-centred [CC] (solid bars) or anion-centred
[AC] (hatched bars) structural units. For the crystal systems, the reported errors correspond to an
average over the nine models.

where V̄ is the average SU volume. We then assume that

ᾱ∞ =
∑

i

xiα
∞
i . (6)

For the difference between the static and optical dielectric constants, the phonon
contributions preclude a description in terms of a single local and additive quantity. We
find it convenient to express �ε as

�ε = 4π

�0

∑

m

Sm

ω2
m

= 4π

V̄

Z̄ 2

C̄
, (7)

where ωm and Sm are the frequency and the oscillator strength of the vibrational mode m. The
volume of the primitive unit cell �0 is related to the volume V̄ and to the number of SUs N̄ by
�0 = N̄ V̄ . The characteristic dynamical charge Z̄ and the characteristic force constant C̄ are
defined by Z̄ 2 = (

∑
κ Z 2

κ)/N̄ and C̄−1 = (
∑

m Sm/ω2
m/Z̄ 2)/N̄ , where Zκ are the atomic Born

effective charges. By analogy with the polarizability, we define Zi and Ci values for each SU
such that

Z̄ 2 =
∑

i

xi Z 2
i , and C̄−1 =

∑

i

xi C
−1
i , (8)

though the locality and the additivity of these parameters is not guaranteed a priori.
Alternatively to equations (7) and (8), the Clausius–Mossotti relation can also be used

with the static dielectric constant [5] to define the ionic polarizability ᾱ0,

ε0 − 1

ε0 + 2
= 4π

3

ᾱ0

V̄
, (9)

which is assumed to be additive:

ᾱ0 =
∑

i

xiα
0
i . (10)

The approach based on equations (5), (6), (9), and (10) will be referred to as the alternative
scheme.
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The optimal values for the parameters α∞
i , α0

i , Zi , and Ci associated with the various
structural units are reported in table 3. They are obtained by solving in a least square sense
the three overdetermined systems based on the first-principles values of ᾱ∞, ᾱ0, Z̄ , and C̄ for
the nine crystalline models. These first-principles values are reported in table 2.

Using equations (5), (6), (7) and (8) (or alternatively (5), (6), (9) and (10)) with the
parameters of table 3, we calculate approximate values for ε∞ and ε0. The relative errors
on ε∞ and ε0 with respect to the first-principles results are reported in figure 1. While the
relative errors do not depend significantly on the description that is adopted (cation-centred or
anion-centred SUs) within the unphysical and alternative schemes, this choice has a crucial
effect within the physical scheme. First, for the crystalline systems, the relative error on
ε∞ is less than 1% when adopting the description in terms of cation-centred SUs, whereas
it becomes roughly three times larger with the description based on anion-centred SUs. The
relative error on �ε is large in both cases (see discussion below); it is actually slightly larger for
the description in terms of CC structural units (20% compared to 15% with the AC structural
units). Second, for the amorphous system, the difference is very pronounced, particularly for
�ε. A description in terms of CC structural units gives relative errors of about 1% for both
ε∞ and �ε. By contrast, the description based on AC structural units gives relative errors of
∼3% for ε∞ and of more than 25% for �ε.

The comparison for the amorphous system is particularly meaningful, since this structure
was not used for determining the optimal values of the parameters for the various SUs. It is
clear that the physical scheme with a description in terms of CC structurals provides the best
results by far. The alternative scheme provides better results for the crystalline systems but for
the amorphous model the relative errors are about 10%.

A careful analysis of the physical scheme reveals that the errors mainly originate from the
estimation of C̄ . For the crystalline systems, the descriptions in terms of CC and AC structural
units lead to average relative errors of less than 2% and 3% for Z̄ , whereas we find the relative
errors are 18% and 10% for C̄ . A posteriori, C̄ appears to be less local and additive than Z̄ .
In fact, the locality of C̄ is closely related to the dynamical charge neutrality of the SUs. The
most important contributions to C̄ arise from infrared active modes of low frequency. To the
extent that the dynamical charge carried by the SUs vanishes, long-range vibrations in which
the SUs move as rigid units will be infrared inactive and the dominating contributions to C̄
will come from rather localized distortive vibrations. Therefore, the closer the SUs are to
dynamical charge neutrality, the more local C̄ , and the more valid the physical scheme.

In figure 2, we report the relative effective charge of both the cation-centred and anion-
centred SUs as a function of the cation charge. The anionic charge of CC structural units is
defined as the sum of the effective charges of its O atoms weighted by the inverse of the number
of SUs to which the O atom belongs. The cationic charges of AC structural units are defined
similarly. The relative charge of the SUs is the total charge expressed relatively to the cationic
charge: it is positive when the cationic charge is larger than the anionic charge, and vice versa.
In figure 2, the data points referring to CC and AC structural units fall in distinct regions
because of the different cation charge carried by the SUs in the two alternative descriptions.
CC structural units carry a cation charge corresponding to that of its central atom, whereas
AC structural units show cationic charges which roughly correspond to the negative of the
charge carried by the central oxygen atom. In figure 2, the dispersion of the relative charge for
the crystalline models is very similar for both CC and AC structural units. However, for the
amorphous system, the CC structural units clearly appear to be more neutral. This explains
why the physical scheme works better with cation-centred SUs.

It is interesting to note the dynamical charge neutrality of cation-centred SUs has also been
found to be well respected in disordered silica [18]. We expect that the physical scheme based
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Figure 2. Relative charge of the structural units as a function of their cationic charge (see text) for
the various model structures. The cation-centred and anion-centred SUs are on the right-hand and
left-hand side of the graph, respectively, as indicated by the arrows and the vertical separation line.
The symbols are those of table 1.

on a description in terms of CC structural units should be very effective in a variety of oxide
glasses. Applied to amorphous (ZrO2)x(SiO2)1−x , this scheme has been found to successfully
describe the observed dependence of the dielectric constants on the Zr concentration [8].

In a recent paper [9], a different decomposition scheme for dielectric constants has been
proposed in the context of a study on amorphous ZrO2. This scheme consists in a formally
exact decomposition of the difference between ε0 and ε∞ into atomic parts. By combining
equation (1) and (2) and changing the order of the summations, �ε can first be decomposed
into contributions from pairs of atoms κ and κ ′:

�εαβ =
∑

κκ ′

1

N2
�εκκ ′

αβ with �εκκ ′
αβ = 4π N2

�0

∑

m

(Rκ
m,α)∗ Rκ ′

m,β

ω2
m

(11)

where

Rκ
m,α =

∑

α′
Z∗

κ,αα′Umq=0(κα′). (12)

With respect to the original scheme of [9], we have introduced the number of atoms per unit
cell N in order to make of �εκκ ′

αβ an intensive quantity. The contribution associated with a
given atom κ can then be heuristically defined as

�εκ
αβ =

∑

κ ′

1
2 (�εκκ ′

αβ + �εκ ′κ
αβ ), (13)

so that

�εαβ =
∑

κ

1

N
�εκ

αβ, (14)

where �εκ
αβ is again an intensive quantity.

In figure 3, we report the calculated atomic contributions6 for the various model structures.
For a given atomic species, we distinguish between several bonding environments. The
absolute scales for the various species and bonding environments can differ by as much as an
order of magnitude. For clarity, the various contributions in figure 3 are therefore represented
with respect to the maximal contribution obtained for each atomic species in a given bonding
environment.
6 Orientational averages are given.
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Figure 3. Atomic contributions to the static dielectric constant for the various model structures.
The contributions are reported relative to the maximal contribution yielded for each atomic species
in a given bonding environment (indicated at the top of the figure). The data point located in
between Zr(−O6) and Zr(−O8) corresponds to a sevenfold coordinated Zr atom in the amorphous
model; its contribution is expressed relatively to the maximal contribution of Zr(−O6).

The data present a very large dispersion and it is quite difficult to extract useful information
from figure 3. It can be seen that the largest absolute contribution originates from a Si(−O6)

atom found in the Z1 crystalline model, but the achieved value appears exceptional and is not
matched by similarly bonded Zr atoms in other model structures. Nevertheless, the Zr(−O6)

atoms show the largest average value. In particular, the Zr(−O6) atoms in the amorphous
model are found to contribute significantly to the dielectric constant. Interestingly, when using
the physical scheme, it was also found that the ZrO6 units give the largest contribution to �ε in
amorphous Zr silicates [8]. The maximal contributions associated with the variously bonded
O atoms present less variation than for the other species. However, no definite trend emerges
from this analysis.

It is interesting to note that this scheme based on a decomposition into atomic parts can
be related to the unphysical scheme introduced above. Indeed, once the atomic contributions
to �ε are calculated, it is straightforward to obtain the contribution of the different structural
units by summing the contribution of the central atom and those of its nearest neighbours
weighted by the inverse of the number of SUs to which those neighbours belong. Hence, after
taking an orientational average, equation (14) becomes

�ε =
∑

i

1

N̄
�εi (15)

where the sum now runs over all the structural units. This formula is very similar to (4), apart
from the fact that the SUs are considered on an individual basis rather than by type. The
large dispersion found for the contributions associated with atomic species in given bonding
environments persists when considering the corresponding SUs. This clearly explains the poor
performance of the unphysical scheme, which assumes a unique value of �ε for a given SU
type.
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4. Conclusion

In this paper, we discuss various schemes for decomposing dielectric constants of Zr silicates
into partial contributions carrying a local character. In particular, we address two schemes
which have appeared in the recent literature. The first scheme consists in identifying basic
structural units characterized by effective parameters [8]. We here considered descriptions in
terms of both cation- and anion-centred structural units. The second scheme [9] is based on a
formally exact atomic decomposition of the difference between the static and optical dielectric
constants.

We have shown that the physical scheme is very successful when adopting a description
in terms of cation-centred structural units. In fact, the dynamical charge neutrality of the SUs
is demonstrated to be the key of the success of this scheme. Therefore, we suggest that this
scheme should carry a more general validity and be applicable to any oxide glass respecting
the dynamical charge neutrality within the structural units.

The second decomposition scheme yields atomic contributions showing considerable
dispersion, thereby undermining the possibility of deriving a scheme for predicting the
dielectric constants of amorphous Zr silicates. Since the decomposition in this second scheme
is exact, the observed dispersion provides a clear explanation for the failure of straightforward
decomposition schemes. Applied to the amorphous model, the second scheme reveals that
the most significant contributions to the dielectric constant come from sixfold coordinated Zr
atoms. This result is in agreement with the analysis carried out with the first scheme, which
also identified the ZrO6 structural units as the major contributors.
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