
First-principle studies of the lattice dynamics of crystals,
and related properties

Xavier Gonze*, I, Gian-Marco RignaneseI and Razvan CaracasII
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Abstract. The crystal lattice is never rigid. Due to tem-
perature, external fields or pressure, the nuclei vibrate,
the lattice distorts, and instabilities can induce phase
transitions. We review the basic concepts of density-func-
tional perturbation theory, a computational method espe-
cially suited to determine from first-principles the micro-
scopic parameters governing such behaviour. Then, we
present the additional formalism leading to the following
properties of minerals: the infra-red and Raman spectra;
the prediction of (meta)stability or instability of a crystal-
line phase, based on the phonon spectrum; the computa-
tion of thermodynamics quantities like the free energy,
entropy, specific heat; the atomic temperature factors. For
each property, examples are given. When appropriate, we
mention the computation of related properties, like di-
electric tensor and Born effective charges that are needed
to get infra-red spectra. Finally, we discuss briefly, on
one hand, other applications of the density-functional
perturbation theory, and, on the other hand, an alternative
technique, the finite-difference computation of dynamical
matrices.

1. Introduction

The ability to investigate, from first-principles, properties
of minerals for a static lattice at zero temperature, appears
as an important step in crystallography and mineralogy.
However, many effects, like phase transitions, infra-red or
Raman spectra, require the ability to describe fluctuations
of the nuclei positions with respect to their static equili-
brium positions. The treatment of such effects, once the
properties of the static lattice system are established, can
be done in a coherent framework, treating small deforma-
tions by way of perturbation theory inside density func-
tional theory (DFT) [1, 2]. The corresponding formalism,
called density-functional perturbation theory (DFPT) [3–
14] has been implemented in several computer programs

(see e.g. Refs. [15–23]). One of the goal of this review
article will be to present enough of this formalism for the
reader to be able to use such programs.

The application of this technique has already generated
a large number of studies. In particular, the computation
of selected vibrational frequencies, e.g. for comparison
with infra-red and Raman data, is now routine, and can
be performed for rather complicated crystal structures
(e.g. see Ref. [24]). Although more involved, the compu-
tation of a full vibrational spectrum is an invaluable
source of information on the behaviour of the crystal. It
allows, inter alia, to determine whether a crystalline struc-
ture will present local instabilities, or, on the contrary,
whether it is stable against all possible small deformations
(e.g. see Ref. [25]). For high-pressure investigations, such
predictions are crucial. The same vibrational spectrum will
allow to deduce important thermodynamical data, like the
temperature-dependent entropy, specific heat, internal en-
ergy or free energy, and give access to the atomic tem-
perature factors, that are typical crystallographic experi-
mental data.

For each property, we will deduce from the first-princi-
ples raw data, the specific quantities that can be linked to
experimental results. Examples will be given for typical
minerals, with special emphasis on oxides.

In section 2, we present the interatomic force con-
stants and dynamical matrices, and emphasize that they
are second-order derivatives of the energy. We present the
vibrational spectrum of diamond. Such second-order deri-
vatives can be computed within density-functional pertur-
bation theory, described in section 3. In section 4, we
focus on infra-red and Raman spectra, that are often com-
plementary. In the same section, we examine the Born
effective charges [26], and the associated quantity, the
polarity of a vibrational mode. Zircon (ZrSiO4) and bar-
ium titanate are taken as illustrative examples. The com-
putation of the vibrational spectrum, and the prediction of
instabilities will be the subject of section 5, illustrated
with high-pressure MgSiO3. Then, in section 6 and 7, we
will present respectively the computation of thermody-
namic quantities and the computation of atomic tempera-
ture factors, for which we will use SiO2-quartz and SiO2-
stishovite as examples. We end with some discussion and
perspectives.
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2. Dynamical matrix and phonon frequencies

We consider a system of nuclei and electrons, in its electro-
nic ground-state. In the framework of the Born-Oppenhei-
mer (BO) approximation, the energy of such a system is a
well-defined function of the position of the nuclei, that can
be computed on the basis of density functional theory, or
any many-body approach to the electronic structure prob-
lem. We will refer to this energy as the Born-Oppenheimer
energy of the system, to which the kinetic energy of the
nuclei should be added to obtain a total energy.

With respect to the periodic arrangement of nuclei, cor-
responding to the perfect classical crystal at zero tempera-
ture, small displacements around the equilibrium positions
occur, and, in a classical viewpoint, evolve as a function
of time. Such nuclear displacements induce changes in the
BO energy, that can be expressed by a truncated second-
order Taylor expansion, i.e. [14, 12]

EBO ¼ E
ð0Þ
BO þ
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where Dta
ja is the displacement along direction a of the

nucleus j in the cell labeled a (with vector Ra), from its
equilibrium position tj. When all displacements vanish,
the BO energy is minimal, and is equal to E

ð0Þ
BO. First-order

derivatives vanish at the minimum, hence there are no lin-
ear terms in Eq. (1). The expansion of the BO energy
truncated at second order is called the “harmonic approxi-
mation”.

Forces and BO energies are related through the princi-
ple of virtual works: the force exerted on one nucleus in a
specific direction is the opposite of the derivative of the
BO energy due to an infinitesimal change of position of
this nucleus along that direction. At the minimum of the
BO energy, the forces vanish, in agreement with the first-
order derivative of the energy being zero. When the nuclei
are not at their equilibrium position, forces appear. In the
harmonic approximation, they are linearly related to the
displacement of every nucleus:
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In order to describe the force on one nucleus, that
arises because of the displacement of another nucleus (or
of itself), in Eq. (2), one introduces the matrix of intera-
tomic force constants (IFCs), defined as

Cja;j0bða; bÞ ¼
@2EBO

@ta
ja @tb

j0b

 !
: ð3Þ

The classical dynamics of the lattice is governed by New-
ton’s law, giving the acceleration of each nucleus due to
the forces acting upon it:

Fa
jaðtÞ ¼ Mj

@2ta
jaðtÞ
@t2

: ð4Þ

In the harmonic approximation, the general solutions of
the evolution equation, Eq. (4), consist in a superposition

of so-called normal modes of vibrations, labeled by the
index s, with amplitude as (to be determined by initial
conditions),

Dta
jaðtÞ ¼

P
s

asUa
sðjaÞ eiws t þ ðc:cÞ ; ð5Þ

where the normal mode angular frequency, ws, corre-
sponds to a pattern of nuclear displacements Ua

sðjaÞ.
Both quantities are determined by the solution of a gener-
alized eigenvalue equation, involving the interatomic force
constants, as well as the masses of the nucleiP

j0bb

Cja; j0bða; bÞ Ub
sðj0bÞ ¼ Mjw2

sUa
sðjaÞ : ð6Þ

Thanks to the periodicity of the lattice, and thus, the
periodicity of the interatomic force constants (the intera-
tomic force constants between equivalent pairs of nuclei
related by the same translation are equal), the normal
modes of vibrations can be characterized by a wavevector
q. They have the form of a Bloch wave, namely, the pro-
duct of a wavevector-dependent phase factor, that varies
from cell to cell, by a wavevector-dependent periodic func-
tion UmqðjaÞ:

Ua
sðjaÞ ¼ eiq �Ra UmqðjaÞ : ð7Þ

In the framework of quantum mechanics, such patterns of
displacements are quantized and are called phonons. Note
that in the right-hand side of Eq. (7) the index s has been
replaced by the composite index mq, where the depen-
dence on the wavevector appears explicitly.

Like the original pattern of displacement, the periodic
part of the Bloch wave fulfills a generalized eigenvalue
equation, compare with Eq. (6),P

j0b

~CCja; j0bðqÞ Umqðj0bÞ ¼ Mjw2
mqUmqðjaÞ ; ð8Þ

in term of the dynamical matrices, the Fourier transforms
of the interatomic force constants

~CCja; j0bðqÞ ¼
P

b
Cja; j0bð0; bÞ eiq �Rb : ð9Þ

We normalize the eigendisplacements according toP
ja

Mj½UmqðjaÞ�* UmqðjaÞ ¼ 1 : ð10Þ

The dynamical matrix, whose eigenvalues must be
found, has dimension 3Nn � 3Nn, where Nn is the number
of nuclei in the unit cell. Hence, there are 3Nn compo-
nents in each eigenmode of displacement, as well as 3Nn

distinct eigenmodes, corresponding to 3Nn eigenfrequen-
cies (possibly degenerate), labeled by m ¼ 1 . . . 3Nn.

The dispersion relations, giving the frequency of the
phonons as a function of the wavevector q, form ‘‘phonon
bands”. As for all waves propagating in a periodic medi-
um, e.g. as electronic waves, the wavevectors are re-
stricted in a portion of the reciprocal space, the Brillouin
zone, whose boundaries are Bragg planes. Traditionally,
the phonon dispersion relations are represented for a se-
lected set of (high symmetry) lines in the Brillouin zone.
As an example, we represent in Fig. 1 the phonon disper-
sion relations for diamond, as well as the corresponding
Brillouin zone. Diamond has 2 nuclei per unit cell. Note
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that the six phonon bands are clearly seen, along the G-K-
X direction, where the possible degeneracies are lifted.

The G point, with q ¼ ð000Þ, is the center of the Bril-
louin zone. Phonons with that wavevector have a pattern
of displacement that is periodic (identical in all unit cells).
By contrast, all the other points in the Brillouin zone cor-
respond to waves with a phase varying from cell to cell,
i.e. propagating waves. In Fig. 1, three phonon branches
go to zero frequency when q! 0. They are called the
acoustic branches. This effect is due to the translational
invariance of the energy of the crystal. Such acoustic
branches are found in all phonon spectra.

The computation of the dynamical matrix at one speci-
fic q wavevector is a routine task, if performed in the fra-
mework of DFPT (see next section). Still, it takes a non-
negligible amount of computer time. Because of this, it is
not a good strategy to perform band structure calculations,
like for the one of diamond, based on hundreds of single
q wavevector direct evaluations of dynamical matrices.
Special techniques have been set up to interpolate the pho-
non dispersion relations throughout the whole Brillouin
zone, from the knowledge of selected dynamical matrices.
Such techniques, building upon the knowledge of asymp-
totic behaviour of the interatomic force constants, are
based on Fourier transforms, and specific treatment of the
dipole-dipole interaction. The interested reader might con-
sult Refs. [7, 12] for more information about this.

The derivation of the existence and properties of the
phonon band structure presented until now is purely clas-
sical. In quantum mechanics, at the level of the Born-Op-
penheimer and harmonic approximations, the basic equa-
tions defining interatomic force constants, dynamical
matrices, dispersion relations and Bloch waves are exactly
the same as in classical mechanics. Still, the dynamics of
the lattice cannot be described by Newton’s law anymore,
but by a many-body nuclear time-dependent wavefunction,
related to the static ground-state by phonon creation opera-
tors. In the framework of this review, this difference with

classical mechanics will have negligible consequences, ex-
cept at the level of the computation of the phonon contri-
bution to thermodynamical quantities or the atomic tem-
perature factors. Interestingly, the differences can all be
subsummed by the use of the Bose-Einstein statistical dis-
tribution, instead of the Maxwell-Boltzmann one. This will
be the subject of Secs. 6 and 7.

In the following section, we will focus on DFPT, that
allows the efficient computation of the second-order deri-
vatives of the Born-Oppenheimer energy with respect to
arbitrary nuclei displacement, needed to obtain the dyna-
mical matrices, Eq. (9).

3. Density-functional perturbation theory

Density-functional perturbation theory focuses on the com-
putation of the derivative of the DFT electronic energy
with respect to different perturbations. This electronic en-
ergy is only a part of the Born-Oppenheimer energy : the
nuclei-nuclei interaction energy must be added to it. How-
ever, the treatment of this additional contribution is much
easier, because it involves only computing the electrostatic
repulsion between classical point charges. See Ref. [12]
for a complete treatment of this contribution.

The perturbations treated in DFPT might be external
applied fields, as well as changes of potentials induced by
nuclear displacements, or any type of perturbation of the
equations that define the reference system. This powerful
generic theory is able to deal with perturbations character-
ized by a non-zero, commensurate or incommensurate wa-
vevector [27], with a workload similar to the one needed
to deal with a periodic perturbation. Hence, it is particu-
larly efficient for dealing with phonons. We first review
briefly the DFT computation of the electronic energy, then
proceeds with the computation of responses to perturba-
tions. The description given here is far from complete.
The interested reader will consult Refs. [11, 12, 14] for
more information.

3.1 DFT equations

In the DFT [1, 2], we can derive the ground-state energy of
the electronic system from the following minimum principle:

Eelfwag ¼
Pocc

a
hwaj T þ vext jwai þ EHxc½n� ; ð11Þ

where the wa’s are the Kohn-Sham orbitals (to be varied
until the minimum is found), T is the kinetic energy op-
erator, vext is the potential external to the electronic sys-
tem, that includes the one created by nuclei, EHxc is the
Hartree and exchange-correlation energy functional of the
electronic density nðrÞ, and the summation runs over the
occupied states a. For sake of simplicity, we do not treat
varying occupation numbers, that would be needed for
metals [10, 14], and consider only paramagnetic systems,
with equal spin-up and spin-down densities.

The occupied Kohn-Sham orbitals are subject to the
orthonormalization constraints,Ð

w*
aðrÞ wbðrÞ dr ¼ hwa j wbi ¼ dab ; ð12Þ
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Fig. 1. Phonon dispersion relations for diamond. The frequencies are
given in cm�1. Experimental data are also indicated for comparison:
the open diamonds have been obtained by neutron scattering [86] and
the open circle (upper branch along the G � X [100] direction) result
from synchrotron scattering [87]. The corresponding Brillouin zone is
also represented as an inset.



where a and b label occupied states (d is Kronecker’s
symbol, 1 if a ¼ b, 0 otherwise). The density is generated
from

nðrÞ ¼
Pocc

a
w*

aðrÞ waðrÞ : ð13Þ

The minimization of Eelfwag under the orthonormality
constraints Eq. (12) can be achieved using the Lagrange
multiplier method. The problem turns into the minimiza-
tion of

Eþelfwag ¼
Pocc

a
hwaj T þ vext jwai þ EHxc½n�

�
Pocc

ab

Eba

�
hwa j wbi � dab

�
; ð14Þ

where Eab are the Lagrange multipliers corresponding to
the set of constraints Eq. (12). The canonical Euler-La-
grange equations are

H jwai ¼
Pocc

b

Eba jwbi ; ð15Þ

where the Hamiltonian operator is

H ¼ T þ vext þ
dEHxc

dn
¼ T þ vext þ vHxc : ð16Þ

Since H is Hermitian, it is always possible to make a uni-
tary transformation of the wavefunctions in Eq. (15) in
such a way that

Hjwai ¼ Eajwai : ð17Þ
In this way, we recover the usual Kohn-Sham equations.

3.2 Perturbation expansion

The DFT equations have been defined for generic external
potentials vext. We now choose a reference (unperturbed)
external potential vð0Þext and expand the perturbed potential
vext in terms of a small parameter l, as follows, [4, 8]

vextðlÞ ¼ vð0Þext þ lv
ð1Þ
ext þ l2v

ð2Þ
ext þ � � � : ð18Þ

We are interested in the change of physical quantities, due
to the perturbation of the external potential [28]. So, we
expand the different perturbed quantities XðlÞ using the
same form as for vextðlÞ,

XðlÞ ¼ Xð0Þ þ lXð1Þ þ l2Xð2Þ þ � � � ; ð19Þ
where X can be the electronic energy Eel, the electronic
wavefunctions waðrÞ, the density nðrÞ, the electron eigen-
energies Eab, or the Hamiltonian H. For example, the low-
est-order expansion of Eq. (17) is simply

Hð0Þ jwð0Þa i ¼ Eð0Þa jwð0Þa i : ð20Þ

We suppose that all the zero-order quantities are known,
as well as the change of external potential vext through all
orders. In what follows, we suppose that the latter terms
are the only applied perturbation, although the theory can
be generalized to other forms of perturbation. For the
computation of dynamical matrices, and other quantities
presented in this review, only the first and second-order
derivatives vð1Þext and vð2Þext , are needed. Thus, we are looking

for the first-order changes of the wavefunctions, the den-
sity, the eigenenergies, as well as the first- and second-
order changes of electronic energy. The DFPT allows to
build them, as follows. We will not present the demonstra-
tions of these DFPT equations, that fall outside of the
scope of this review [3–5, 11].

Thanks to the variational property of the DFT electro-
nic energy, the first-order derivative of the electronic en-
ergy can be evaluated without knowing any first-order
quantity, except the change of external potential:

Eð1Þel ¼
Pocc

a
hwð0Þa j v

ð1Þ
ext jwð0Þa i : ð21Þ

By contrast, the first-order change of wavefunctions, den-
sity, and Hamiltonian must be obtained self-consistently
(or through a variational approach), in the same spirit as
the self-consistent determination of the unperturbed wave-
functions, density and Hamiltonian. Indeed, supposing the
first-order changes of wavefunctions w

ð1Þ
a ðrÞ are known,

then, the first-order change of density can be obtained
through [3]

nð1ÞðrÞ ¼
Pocc

a
w*ð1Þ

a ðrÞ wð0Þa ðrÞ þ w*ð0Þ
a ðrÞ wð1Þa ðrÞ : ð22Þ

Knowing the first-order change of density, one can compute
the first-order change of Hamiltonian Hð1Þ thanks to [3]

Hð1Þ ¼ vð1Þext þ v
ð1Þ
Hxc

¼ vð1Þext þ
ð

d2EHxc

dnðrÞ dnðr0Þ

����
nð0Þ

nð1Þðr0Þ dr0 : ð23Þ

Then, for the first-order wavefunctions, the self-consis-
tent Sternheimer Eq. [11, 29], that depends on Hð1Þ must
be solved:

PcðHð0Þ � Eð0Þa Þ Pc jwð1Þa i ¼ �PcHð1Þ jwð0Þa i ; ð24Þ

where Pc is the projector upon the unoccupied states
(conduction bands). As for the unperturbed quantities,
powerful algorithms are available to solve the self-consis-
tent cycle, Eqs. (22), (23), and (24).

For the second-order derivative of the electronic en-
ergy, different expressions can be used, whose ingredients
are zero- and first-order quantities only. There is a simple
non-variational expression

E
ð2Þ
el ¼

Pocc

a
hwð0Þa j v

ð1Þ
ext jwð1Þa i þ

Pocc

a
hwð0Þa j v

ð2Þ
ext jwð0Þa i ; ð25Þ

or a more complex, and more accurate variational expres-
sion [5, 6, 11]:

E
ð2Þ
el fwð0Þ;wð1Þg

¼
Pocc

a
½hwð1Þa j Hð0Þ � Eð0Þa jwð1Þa i

þ ðhwð1Þa j v
ð1Þ
ext jwð0Þa i þ hwð0Þa j v

ð1Þ
ext jwð1Þa iÞ

þ hwð0Þa j v
ð2Þ
ext jwð0Þa i�

þ 1

2

ð ð
d2EHxc

dnðrÞ dnðr0Þ

����
nð0Þ

nð1ÞðrÞ nð1Þðr0Þ dr dr0 ;

ð26Þ
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where the first-order changes in wavefunctions w
ð1Þ
a (these

quantities will be referred to as the first-order wavefunc-
tions, for brevity), can be varied under the constraints

hwð0Þa j w
ð1Þ
b i ¼ 0 ; ð27Þ

for all occupied states a and b. Since E
ð2Þ
el fwð0Þ;wð1Þg is

variational with respect to wð1Þ, one can deduce Euler-La-
grange equations, that turn out to be the self-consistent
Sternheimer equation, Eq. (24).

This Sternheimer equation can be solved by algorithms
based on Green’s functions or, within some basis set, by
standard algorithms for dealing with inhomogeneous sys-
tems of Eq. [14].

Except for symmetry breaking effects due to perturba-
tions, the computer time needed to compute the self-con-
sistent response to one perturbation is comparable to the
computer time needed to compute the self-consistent
ground-state properties of the crystalline system, at fixed
nuclei positions.

3.3 Periodic systems: treatment of incommensurate
perturbations

By Bloch’s theorem, each wavefunction of a periodic sys-
tem, whose external potential is left unchanged by a trans-
lation,

v
ð0Þ
extðrþ RaÞ ¼ vð0ÞextðrÞ ; ð28Þ

can be characterized by a wavevector k, and written as a
product of a phase factor by a periodic function u

ð0Þ
mk. Ex-

plicitly, for the ground-state wavefunctions,

w
ð0Þ
mkðrÞ ¼ ðNcellW0Þ�1=2 eik � r u

ð0Þ
mkðrÞ ; ð29Þ

where Ncell is the number of unit cells repeated in the
Born-von Karman periodic box, and W0 the volume of the
unperturbed unit cell. m and k label the number of the
electronic band and the wavevector of the wavefunction
respectively. Eq. (29) is especially important: it is the key
to the representation of the electronic system in the primi-
tive unit cell, periodically repeated, instead of the full
macroscopic space. The density is also periodic, and is
obtained by performing an integral over the wavevectors
in the whole Brillouin zone and summing on all the occu-
pied bands:

nð0ÞðrÞ ¼ 1

ð2pÞ3
ð

BZ

Pocc

m
su
ð0Þ�
mk ðrÞ u

ð0Þ
mkðrÞ dk ; ð30Þ

where s ¼ 2 is the spin factor (unlike in Eq. (13), both
spin bands are taken into account in the summation over
m).

We now investigate the form of the responses to pertur-
bations characterized by a wavevector [4, 11, 45], namely,
those with the following property (compare with Eq. (28)):

v
ð1Þ
ext; qðrþ RaÞ ¼ eiq �Ra v

ð1Þ
ext;qðrÞ: ð31Þ

Applying a translation to the first-order wavefunctions and
densities, the corresponding behaviours are

w
ð1Þ
m; k; qðrþ RaÞ ¼ eiðkþqÞ �Ra w

ð1Þ
m; k; qðrÞ ; ð32Þ

and

nð1Þq ðrþ RaÞ ¼ eiq �Ra nð1Þq ðrÞ : ð33Þ

The factorization of the phase, in order to map the wave-
vector-characterized (often incommensurate) problem to an
equivalent one presenting the periodicity of the unper-
turbed problem is the crucial point in the treatment of per-
turbations like v

ð1Þ
ext; q. For this purpose, inspired by Eqs.

(32) and (33), one defines the periodic functions

u
ð1Þ
m; k; qðrÞ ¼ ðNcellW0Þ1=2 e�iðkþqÞ � r w

ð1Þ
m; k; qðrÞ ð34Þ

and

�nnð1Þq ðrÞ ¼ e�iq � r nð1Þq ðrÞ : ð35Þ

The periodic part of the first-order change in density is
given by

�nnð1Þq ðrÞ ¼
2

ð2pÞ3
ð

BZ

Pocc

m
su
ð0Þ�
mk ðrÞ u

ð1Þ
mk;qðrÞ dk : ð36Þ

In the same spirit, the factorization of the phase can
also be accomplished at the level of Sternheimer equation.
As a final result, all the first-order quantities can be ob-
tained by solving equations in which the translational
symmetry has been restored, that is, all the basic quanti-
ties to be determined are periodic.

3.4 Response to an homogeneous, static electric field

For the computation of the infra-red response, one must
treat not only changes in the potential due to the collec-
tive nuclei displacements, but also changes associated
with an homogeneous, low-frequency electric field (low-
frequency compared to the typical electronic excitation
energy). Two important problems arise when one at-
tempts to deal with the response to such an electric field
Emac. The first problem comes from the fact that the po-
tential energy of the electron, placed in such a field, is
linear in space, and breaks the periodicity of the crystal-
line lattice:

vscrðrÞ ¼
P
a
Emac;ara : ð37Þ

Second, this macroscopic electric field corresponds to a
screened potential: the change of macroscopic electric
field is the sum of an external change of field and an
internal change of field, the latter being induced by the
response of the electrons (the polarization of the material).
In order to indicate this fact, the subscript “scr” has been
used in Eq. (37). In the theory of classical electromagnet-
ism, one writes the connection between the macroscopic
displacement, electric and polarization fields as

DmacðrÞ ¼ EmacðrÞ þ 4pPmacðrÞ ; ð38Þ
where PmacðrÞ is related to the macroscopic charge den-
sity by

nmacðrÞ ¼ �r � PmacðrÞ : ð39Þ
The long-wave method is commonly used to deal with

the first problem: a potential linear in space is obtained as
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the limit for q tending to 0 of

vðrÞ ¼ lim
q!0

l
2 sin q � r
jqj ¼ lim

q!0
l

�
eiq � r

ijqj �
e�iq � r

ijqj

�
;

ð40Þ
where q is in the direction of the homogeneous field. The
detailed theoretical treatment of the response to an electric
field, using the long-wave method, and treating the screen-
ing adequately (in order to solve the above-mentioned sec-
ond problem) is given in Ref. [12]. It is found that an
auxiliary quantity is needed: the derivative of the ground-
state wavefunctions with respect to their wavevector. Inter-
estingly, this quantity, being a derivative, can also be com-
puted within DFPT. Once this quantity has been obtained,
the computation of the response to an homogeneous elec-
tric field per se can be performed, also within DFPT.

3.5 Derivatives of the electronic energy with respect
to mixed perturbations

Until now, we have focused on one perturbation of the
system, and the corresponding first- and second-order deri-
vatives. However, the dynamical matrices or interatomic
force constants are mixed second-order derivatives of the
Born-Oppenheimer energy, corresponding to two different
(groups of) nuclear displacements. Also, we will need
mixed derivatives of the energy with respect to atomic dis-
placements and an homogeneous electric field, in order to
obtain the coupling between phonon and electric field.

DFPT is able to deal straightforwardly with such
mixed derivatives. We consider two or more simultaneous
Hermitian perturbations, combined in a Taylor-like expan-
sion of the following type (see Ref. [4, 12] for the nota-
tion):

vextðlÞ ¼ vð0Þext þ
P
j1

lj1v
j1
ext þ

P
j1j2

lj1 lj2v
j1j2
ext þ � � � ð41Þ

(the indices j1 and j2 are not exponents, but label the dif-
ferent perturbations). The mixed derivative of the energy
of the electronic system

Ej1j2
el ¼

1

2

@2Eel

@lj1 @lj2

ð42Þ

is obtained from the simple expression

Ej1j2
el ¼

Pocc

a
hwj2

a j v
j1
ext jwð0Þa i þ

Pocc

a
hwð0Þa j v

j1j2
ext jwð0Þa i : ð43Þ

In the expression Eq. (43), the first-order derivative of the
wavefunctions with respect to the first perturbation jwj1

a i
are not needed, while the computation of vj1

ext and
hwð0Þa j vj1j2

ext jw
ð0Þ
a i takes little time. Similar expressions, that

do not involve jwj2
ai but jwj1

ai are also available, as well as
more accurate stationary expressions.

Thus, the ability to compute the first-order responses
(i.e., changes in wavefunctions and densities) to the basic
perturbations described previously gives us also, as by-
products, mixed second-order derivatives of the electronic
energy. Actually, even third-order mixed derivatives of the
energy might be computed straightforwardly, thanks to the
2nþ 1 theorem of perturbation theory, within DFPT [4].

We will not present the corresponding formalism, but only
briefly mention some of its applications, in Sec. 8.

We are now in a position to examine selected proper-
ties of minerals, that can be computed thanks to the pre-
sent formalism.

4. Infra-red and Raman spectra

Electromagnetic (EM) radiation, or photons (in quantum
theory) interact in several ways with a mineral. For an
insulating solid, and considering EM frequencies in the
infra-red range, phonons are the predominant cause of fea-
tures in the absorption or reflection spectra.

Only phonons with a very small wavevector q � 0 in-
teract with photons. Indeed, the photons absorbed and
emitted should have an energy comparable to the one of
phonons, that is, 0.3 eV at most. Such photons have a
very large wavelength (larger than 3 mm), compared to the
typical unit cell size, hence a very small wavevector. Even
in the case of scattering of photons of higher energies
(e.g. the Raman scattering, with photon energies around a
few eV), the involved phonons all have negligible wave-
vectors.

For this q � 0 limit, symmetry considerations, forma-
lized in the framework of group theory, allow to classify
the phonons according to the irreducible representations
of the crystal point group. We refer to standard textbooks
(e.g. see Ref. [30]) for a detailed explanation of these
concepts. In particular, for crystals possessing a center of
inversion, there will be representations invariant with re-
spect to inversion (‘‘gerade” or ‘‘g” modes), as well as
representations associated with phonon modes whose ei-
gendisplacement pattern changes sign under inversion
(‘‘ungerade” or ‘‘u” modes). Further classification will ex-
amine the behaviour of phonon modes under other sym-
metry operations. Beyond phonon modes, many properties
of crystals, like dielectric tensors, elastic constants, ther-
mal expansion coefficients, spontaneous polarization,
might be classified according to irreducible representa-
tions. Group theory allows to deduce transformation laws
of these objects, and even predict the vanishing of some
effects, or selected components of the response tensors.
For example, in the case of the spontaneous polarization
(a vector), one should examine the way a vector trans-
forms under the operations of the point group. In particu-
lar, a vector always changes signs under inversion, hence
a crystal with inversion symmetry cannot have a sponta-
neous polarization.

Two experimental techniques are commonly used for
phonon spectroscopy with EM fields: intra-red reflectivity
(or absorption), and Raman scattering. They are quite
complementary, because the involved phonon often be-
longs to different irreducible representations. We first fo-
cus on the infra-red reflectivity.

4.1 Infra-red spectrum

The reflectivity of EM waves normal to the surface, hav-
ing their electric field with direction q along an optical
axis of the crystal, is given in terms of the frequency-de-
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pendent dielectric permittivity Eq̂q:

RðwÞ ¼
E1=2

q̂q ðwÞ � 1

E1=2
q̂q ðwÞ þ 1

������
������
2

: ð44Þ

More general expressions for the reflectivity, or for the
absorption, may be found in classical textbooks [31]. The
dielectric permittivity along direction q̂q is computed from
the dielectric permittivity tensor

Eq̂qðwÞ ¼
P
ab

q̂qaEabðwÞ q̂qb : ð45Þ

Let us examine the first-principle approach to this ten-
sor. In the infra-red frequency regime, the dielectric per-
mittivity tensor obtained in the harmonic approximation
can be split in two parts, the electronic contribution E1ab,
taken as frequency independent, and the phonon contribu-
tion. We describe now the coupling between phonons and
an homogeneous electric field.

There are two connected effects : forces created by an
applied electric field, and polarization created by nuclear
displacements. The Born effective charge tensor Z*

j; ba is
defined as the proportionality coefficient relating, at linear
order, the polarization per unit cell created along the direc-
tion b, to the displacement along the direction a of the
nuclei belonging to the sublattice j, under the condition of
zero electric field [3, 12, 26]. The same coefficient also
describes the linear relation between the force on a nu-
cleus and the macroscopic electric field, because both ef-
fects can be connected to the mixed second-order deriva-
tive of the energy with respect to nuclei displacements and
macroscopic electric field:

Z*
j;ba ¼ W0

@Pmac; b

@tjaðq ¼ 0Þ ¼
@Fj;a

@Eb
¼ � @EBO

@Eb @tjaðq ¼ 0Þ :

ð46Þ
The Born effective charge tensors fulfill an important sum
rule stemming from the fact that a global translation of a
neutral crystal, as a whole, should not change its polariza-
tion. This sum rule implies that the charge neutrality is
fulfilled at the level of the Born effective charges. For
every directions a and b, one must have [32]:P

j

Z*
j;ab ¼ 0 ; ð47Þ

i.e., the sum of the Born effective charges of all nuclei in
one cell must vanish, element by element. In DFT computa-
tions, this sum rule will be broken because of the incomple-
teness of the basis set used to represent wave functions, be-
cause of the discreteness of special point grids, or because
of the discretization of the real space integral (needed for
the evaluation of the exchange-correlation energies and po-
tentials). Techniques to reinstall the Born effective charge
neutrality sum rule are described in Ref. [12].

The knowledge of Born effective charge tensors for
each nuclei, and the eigenvectors of the dynamical matrix
at the Brillouin zone center, is sufficient to describe fully
the photon-phonon interaction in the harmonic approxima-
tion. Following Ref. [33], the quantity

pma ¼
P
jb

Z*
j;abUmq¼0ðjbÞ ; ð48Þ

that combines Born effective charges with the phonon ei-
gendisplacements, is referred to as the polarity of the pho-
non mode m. The three components pma form a vector pm,
whose sign is arbitrary (Eq. (10) leaves the sign of the
eigendisplacement vector unspecified) [34]. In term of
mode polarities, the dielectric tensor EabðwÞ has a rather
simple expression:

EabðwÞ ¼ E1ab þ
4p

W0

P
m

pmapmb

w2
m � w2

; ð49Þ

and the dielectric permittivity along some direction q̂q, Eq.
(45), becomes

Eq̂qðwÞ ¼
P
ab

q̂qaE1abq̂qb þ
4p

W0

P
m

ðpm � qÞ2

w2
m � w2

: ð50Þ

Equations (49) and (50) express EabðwÞ and Eq̂qðwÞ as com-
ing from an electronic contribution E1ab (approximated as
frequency-independent in the IR regime), and contribu-
tions from each possible phonon mode m at the Brillouin
zone center. The phonon contributions have a characteris-
tic frequency dependence : there is a resonant behaviour
when the frequency of light matches the one of a phonon,
in which case the denominator of Eq. (50) vanishes. The
latter equation shows that, if the vector pm is perpendicular
to q, the direction of the electric field, the mode m does
not contribute to the dielectric permittivity constant along
q. For each mode m, there will thus be one direction along
which the mode contributes to the dielectric permittivity
constant, in which case it is referred to as longitudinal,
while for the perpendicular directions, the mode will be
referred to as transverse. In this way, we find the (well-
known) distinction between the longitudinal optic (LO)
modes and the transverse optic (TO) modes. This distinc-
tion will be the subject of further explanation later.

Alternatively, the same value of the dielectric permittiv-
ity tensor might be obtained in terms of the Born effective
charge tensors and the zone-center dynamical matrix, see
Eq. (52) of Ref. [11], from which one deduces the following
expression of the static w ¼ 0 dielectric permittivity tensor,

E0
ab ¼ E1ab þ

4p

W0

P
jj0

P
a0b0

� Z*
j;aa0

~CCðq ¼ 0Þ
� ��1

ja0;j0b0
Z*
j0; bb0

� 	
: ð51Þ

This equation highlights that, when the frequency is suffi-
ciently small as to allow nuclei to relax to their equili-
brium position under the applied field, their masses do not
play a role anymore : the static w ¼ 0 dielectric permittiv-
ity tensor is independent of the masses.

As an application of this theory we examine the case
of barium titanate. BaTiO3 crystallizes in the perovskite
structure (with one formula unit per cell). Above 130 �C,
it is cubic, and undergoes three phase transitions when the
temperature is lowered, with slight departure of the nuclei
positions from their reference ones, accompanied by small
lattice vector changes, reaching a rhombohedral structure
around �90 �C. Figure 2 presents the theoretical reflectiv-
ity spectrum of rhombohedral BaTiO3 [35], following Eq.
(44). Experimental results for the cubic phase have been
obtained in Ref. [36]. The major experimental trends are
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reproduced by the theory. The characteristic frequencies of
the spectrum (minima and plateaus) directly related to
phonon frequencies at the Brillouin zone center, agree
with those of the experiment. However, there are notice-
able differences. In particular, the experimental reflectivity
never reaches 100%, it is always lower than about 85%.
Such an effect is due to the damping of phonon modes,
absent in the theoretical treatment (e.g. the phonon-pho-
non interaction is neglected in the harmonic theory).

Let us come back to the distinction between LO and
TO modes. When a phonon interact with an electric field,
it can do so even if the electric field is internal (it does
not interact only with applied electric fields, but also with
electric fields that were induced by itself). This phenomen-
on is seen in the analysis of the limiting behaviour of the
dynamical matrix in the long wavelength q! 0 limit [12,
14]. The dynamical matrix ~CCja; j0bðq! 0Þ can be split in
two parts, one that behaves smoothly as a function of the
wavevector, ~CCja;j0bðq ¼ 0Þ, and one that will vary accord-
ing to the direction of the q! 0 limit:

~CCja;j0bðq! 0Þ ¼ ~CCja;j0bðq ¼ 0Þ þ ~CCNA
ja; j0bðq! 0Þ :

ð52Þ
The non-analytical, direction-dependent term
~CCNA
ja; j0bðq! 0Þ is given by

4p

W0

P
g

qgZ*
j; ga

� � P
g0

qg0Z*
j0; g0b

� �
P
ab

qaE1abqb
: ð53Þ

In general, the eigenvectors of the ~CCðq! 0Þ matrix will
not be identical to those of the ~CCðq ¼ 0Þ. However, the
modes that have a polarity vector pm perpendicular to the
direction of q are common to both, and are called trans-
verse optic for that direction of q. Indeed, the non-analyti-
cal term in Eq. (52) does not modify the eigenfrequency
of displacement vectors Umq¼0ðj0bÞ for whichP

j0b

P
g0

qg0Z*
j0; g0b

� �
Umq¼0ðj0bÞ ¼ q � pm ¼ 0 : ð54Þ

All the others modes, that are changed because they cou-
ple to the electro-magnetic field that they induce, will be
called longitudinal optic for that direction of q. It is im-
portant to emphasize that the LO-TO splitting is a direc-
tional effect : considering a q ¼ 0 mode (at the Brillouin
zone center), with a given non-zero polarity vector, there
will be a plane of q vectors perpendicular to pm leaving

the frequency and eigendisplacements unaffected, while
the latter will change if the limiting direction is different.

For selected systems, symmetry constraints will be suf-
ficient to guarantee that some LO eigendisplacements of
~CCðq! 0Þ will be identical to those of ~CCðq ¼ 0Þ, even if
the eigenfrequencies are not the same. In this case, the
following relation, linking LO and TO modes, holds:

w2
mðq! 0Þ ¼ w2

mðq ¼ 0Þ þ
�4p

W0

	 ðq � pmÞ2P
ab

qaE1abqb
: ð55Þ

In general, symmetry considerations will be very im-
portant to understand the IR spectrum. Only the phonon
modes belonging to irreducible representations that trans-
form like a vector, or the components of a vector, will
couple with an electric field. This is because the coupling
between the electric field and the phonon is described by
the polarity of the mode, a vector, and this vector will
vanish for all phonons belonging to an irreducible repre-
sentation that is incompatible with the behaviour of a vec-
tor. In particular, for centro-symmetric materials, only the
ungerade (u) modes interact with an electric field. This
also holds for the interaction with the internal long-wave-
length electric field. Phonons belonging only to selected
irreducible representations will exhibit a LO-TO splitting.

4.2 Raman spectrum

In a Raman experiment, the (polarized) incident light is
scattered by the sample, and the energy as well as polari-
zation of the outgoing light is measured. A Raman spec-
trum, presenting the energy of the outgoing photons, will
consist of rather well-defined peaks, around an elastic
peak (corresponding to outgoing photons that have the en-
ergy of the incident photons).

At the lowest order of the theory, the dominant me-
chanism is the absorption or emission of a phonon by a
photon. A measure of the energy difference between the
outgoing and incident photons gives the energy of the ab-
sorbed or emitted phonon. Thus, even more straightfor-
wardly than the IR spectrum, a Raman spectrum relates to
the energy of phonons at the Brillouin-zone center : when
the zero of the frequency scale is set at the incident light
frequency, the absolute value of the energy of the peaks
corresponds to the energy of the phonons.

However, the coupling between a phonon and a
photon, in a Raman process, is not described by the Born
effective charges, but by the Raman efficiency am

bg, linked
to the change of the electronic linear dielectric susceptibil-
ity tensor c due to the collective displacement of nuclei
corresponding to the phonon mode [33, 67, 70]:

am
bg ¼

ffiffiffiffiffiffi
W0

p P
jd

@c
ð1Þ
bg

@tjd
Umq¼0ðjdÞ : ð56Þ

Such a mechanism does not appear at the level of the har-
monic approximation. It is the change of a linear response
coefficient (the susceptilibity tensor) due to a phonon. As
such, it can be linked to a third-order derivative of the
energy. The DFPT can be extended to handle such third-
order derivatives of the energy, as mentioned previously.
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Fig. 2. Infra-red reflectivity of rhombohedral BaTiO3, with q̂q along
the ferroelectric direction. Reprinted from Ref. [35].



This formalism has been implemented, but the computa-
tions of Raman efficiencies are still quite scarce, see Sec.
8. This situation might change in the future. By contrast,
the computation of phonon frequencies, and their compar-
ison with the data provided by the Raman spectrum, with-
out taking into account the Raman efficiencies, is rather
common and instructive.

This comparison is helped by the fact that one can pre-
dict the vanishing of many Raman efficiencies on the basis
of group theory. Indeed, for a Raman efficiency to be non-
zero, the corresponding phonon mode must transform like a
scalar, or a second-order symmetric tensor, or any compo-
nent thereof. Examination of irreducible representations,
and their compatibility with such quantities will readily al-
low to determine which classes of phonons will scatter light
in a Raman experiment. In particular, in the case of a cen-
tro-symmetric crystal, a phonon must be invariant under in-
version symmetry (‘‘gerade”), in order to have non-vanish-
ing Raman efficiency. This result is the opposite of what is
found for the infra-red spectroscopy. Thus, for centro-sym-
metric crystals, a phonon mode cannot be both infra-red and
Raman active. Quite understandably, these two experimen-
tal techniques often prove to be complementary. However,
not all phonons are either infra-red or Raman active. For
selected point groups, there are some irreducible representa-
tions that are neither compatible with a scalar, or a vector, or
a symmetric tensor behaviour. The phonons belonging to
such classes are called ‘‘silent”.

4.3 An example: zircon

Zircon (ZrSiO4) has a conventional unit cell which is
body-centered tetragonal (space group I41/amd, No 141)
and contains four formula units of ZrSiO4. A primitive
cell containing only two formula units can be defined. The
structure of zircon may be viewed as consisting of
(SiO4)4� anions and Zr4þ cations, as illustrated in Fig. 1
of Ref. [37]. We present now the zircon phonon frequen-
cies at the Brillouin zone center, from Ref. [38].

In Table 1, the calculated phonon frequencies are com-
pared with experimental values [37, 39, 40]. Overall, the
agreement is excellent, with a rms absolute deviation of
9.4 cm�1, and a rms relative deviation of 2.5%. Two Raman
active modes are obtained at 631.7 cm�1 [B1g(3)] and at
922.6 cm�1 [Eg(5)], that could not be detected experimen-
tally. Silent modes, inactive for both IR and Raman experi-
ments, are also observed. They are found to range from 119.6
to 943.3 cm�1. Two of these (B1u and A2g) are very soft, and
correspond, in a first approximation, to vibration modes of
zircon in which the SiO4 tetrahedra rotate as a unit [37].

On the basis of the close correspondence between these
results and experimental data for IR-active and Raman-ac-
tive modes, one is able to shed light on some delicate
issues related to the interpretation of experimental results
and the corresponding symmetry assignment.

Indeed, these calculations do not give any frequency of
Eg symmetry close to the frequency of 1008 cm�1 experi-
mentally observed by Dawson et al. [37]. This lends sup-
port to their interpretation, which suggested that this line
does not result from the perfect crystal, but rather from
some crystal misorientation or imperfection. By contrast,

as mentioned previously, an Eg mode can be identified at
922.6 cm�1.

Furthermore, one can propose that the weak band
found in experiments at 547 cm�1 should not be inter-
preted as a difference band between lines at 989 cm�1

(A2u symmetry) and at 439 cm�1 (A1g symmetry) [37], but
rather as the frequency of a real eigenmode. In fact, a
phonon frequency of Eg symmetry is found at 536 cm�1,
quite close to this weak band (547 cm�1). This reassign-
ment has been taken into account in Table 1.

5. Instabilities predicted by phonon band
structures

The availability of the phonon band structure in the whole
Brillouin zone for a crystalline phase allows to determine
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Table 1. Fundamental frequencies of zircon (in cm�1) with their sym-
metry assignments. The experimental values are taken from Ref. [37]
(first experimental data column), Ref. [39] (for A2u mode in the sec-
ond experimental data column), and Ref. [40] (for Eu mode in the
second experimental data column).

Mode This work Experiment

Raman

A1g(1) 442.0 439

A1g(2) 971.4 974

B1g(1) 225.4 214

B1g(2) 396.9 393

B1g(3) 631.7 �
B1g(4) 1016.7 1008

B2g 251.8 266

Eg(1) 194.3 201

Eg(2) 224.7 225

Eg(3) 375.4 357

Eg(4) 536.0 547

Eg(5) 922.6 �
Infra-red

A2u (TO1) 347.8 338 339

A2u (LO1) 475.9 480 478

A2u (TO2) 601.2 608 605.7

A2u (LO2) 646.0 647 641.5

A2u (TO3) 979.9 989 977

A2u (LO3) 1096.2 1108 1100

Eu (TO1) 285.2 287 281

Eu (LO1) 340.6 352 354

Eu (TO2) 383.0 389 381

Eu (LO2) 420.2 419 417

Eu (TO3) 422.2 430 429

Eu (LO3) 466.4 471 468

Eu (TO4) 867.4 885 871

Eu (LO4) 1028.6 1035 1034

Silent

B1u 119.6 �
A2g 241.7 �
A1u 392.3 �
B2u(1) 566.4 �
B2u(2) 943.3 �



the (meta) stability of this phase, that is, its stability with
respect to any possible small distortion of the crystal struc-
ture.

Indeed, let us suppose that one has determined a
structure for which the forces on all nuclei vanish. In the
case there is a pattern of displacements that does not
experience a restoring force towards the structure under
investigation, but on the contrary, a force that amplifies
it, the change of energy, at second order, described by
Eq. (1), will be negative. Thus, the matrix of interatomic
force constants will not be definite-positive. There will
be some eigenmode of Eq. (6) associated with a negative
value of w2

s (the corresponding eigenfrequency ws is
imaginary). Furthermore, the Bloch analysis is still valid,
and an imaginary eigenfrequency should also be seen in
Eq. (9).

A contrario, if all the eigenfrequencies of the phonon
band structure are real, any pattern of displacements, with
a sufficiently small amplitude, will always raise the en-
ergy, and will feel a restoring force towards the starting
configuration.

Figure 3 presents an example of a crystal where an
instability is identified in the phonon band structure. In
part (a) the ideal cubic phase of MgSiO3 perovskite, the
major component of the Earth’s lower mantle, presents

several unstable phonon modes. Along the X-M line, the
frequency decreases, reaches the base line, and then be-
comes imaginary (in this graph, the negative frequencies
actually corresponds to imaginary frequencies of same
modulus). The phonon frequency still decreases along the
MR line and reaches its minimum in the R point. This
phase is unstable. On the contrary, in part (b), the Pnma
orthorhombic phase, obtained from condensation of the
unstable phonons from R and M, presents all real positive
frequencies, hence this phase is (meta) stable.

Of course even if all ws are real, when large displace-
ments are present, anharmonic effects may be such that
another ‘‘basin of attraction” is reached, and the structure
will feel a force towards that other local minimum of en-
ergy. Temperature effects might allow the system to evolve
spontaneously from one phase to the other if the energy of
the latter is lower. This possibility will be likely only if
the barrier of energy between the two structures is suffi-
ciently small, compared to the kT temperature factor of
the Boltzmann distribution. On the contrary, if the tem-
perature is quite low, no phase transition will take place
spontaneously, even if there is a lower-energy structure.

Thus, the knowledge of the full phonon band structure
in mineralogy allows either to predict a phase instability,
or, on the contrary, to give a positive answer concerning
the (meta) stability of a phase.

6. Thermodynamical properties

We will focus on the Helmholtz free energy, the internal
energy, the constant-volume specific heat, and the entropy
as functions of temperature. Such thermodynamic func-
tions of a solid are determined mostly by the vibrational
degrees of freedom of the lattice, since, generally speak-
ing, the electronic degrees of freedom play a noticeable
role only for metals at very low temperatures [31]. How-
ever, the complete knowledge of the phonon band struc-
ture, with sufficient accuracy, is required for the calcula-
tion of these thermodynamic functions. The formula
presented here neglect all anharmonic effects. For most
solids, the harmonic approximation will be accurate for a
temperature smaller than a significant fraction of the
melting temperature or the temperature of the lowest so-
lid-solid phase transition (e.g. about 500 K for quartz,
that undergoes a phase transition above 800 K). On the
other hand, the quantum effects are correctly included,
unlike in an approach based on the classical dynamics of
nuclei.

The above-mentioned thermodynamic functions require
summations over phonon eigenstates labeled by the pho-
non wavevector q and the phonon mode m. Interestingly,
the expressions f to be evaluated at each q and m depend
on q and m only through the frequency wmq. One can
then turn

P
mq

f ðwmqÞ into a one-dimensional integral

ð3NnÞ
ÐwL

0

f ðwÞ gðwÞ dw, where Nn is the number of nuclei

per unit cell, wL is the largest phonon frequency, and
gðwÞ dw is defined to be the fractional number of phonon
frequencies in the range between w and wþ dw. The pho-

First-principle studies of the lattice dynamics of crystals, and related properties 467

a�

b�
Fig. 3. Phonon dispersion relations for MgSiO3. The ideal cubic
phase (a) is unstable, while condensations of the unstable phonon
modes from M and R of the cubic structure generate a (meta) stable
orthorhombic phase (b). The notation of the q-wavevectors is:
G ¼ (0, 0, 0); X ¼ (1=2, 0, 0), M ¼ (1=2, 1=2, 0), R ¼ (1=2, 1=2, 1=2),
A ¼ (1=2, 0, 1=2) and Z ¼ (0, 0, 1=2).



non density of states gðwÞ can be normalized so thatÐwL

0

gðwÞ dw ¼ 1, namely,

gðwÞ ¼ ð2pÞ3

W0ð3NnÞ
P
m

ð
BZ

dðw� wmqÞ dq : ð57Þ

Specifically, the phonon contribution to the Helmholtz
free energy DF, the phonon contribution to the internal
energy DE, as well as the constant-volume specific heat
Cv, and the entropy S, at temperature T , and evaluated for
one unit cell, have the following expressions within the

harmonic approximation [41], where x ¼ �hw

kBT
and kB is

the Boltzmann constant:

DF ¼ ð3NnÞ kBT

ðwL

0

ln ex � 1ð Þ � x=2f g gðwÞ dw

DE ¼ ð3NnÞ
ðwL

0

ex þ 1

ex � 1

� �
�hw

2
gðwÞ dw

Cv ¼ ð3NnÞ kB

ðwL

0

x

ex=2 � e�x=2

� 	2
gðwÞ dw

S ¼ ð3NnÞ kB

ðwL

0

x ex

ex � 1
� ln ex � 1ð Þ

� �
gðwÞ dw :

As examples, we apply these formulas to the computa-
tion of thermodynamical functions for two polymorphs of
silica : quartz and stishovite [9]. In SiO2-quartz (3 formula
unit per primitive cell), each oxygen atom is bonded to
two silicon atoms, with a rather open 145� angle between
the vectors pointing toward these atoms. The silicon atoms
are bonded to four oxygen atoms, in a tetrahedral config-
uration. Thus the quartz lattice is made of tetrahedra,
rather rigid, linked by Si––O––Si bonds, that have the abil-
ity to rotate. By contrast, in SiO2-stishovite (2 formula
unit per primitive cell), a high-pressure form of SiO2, the
oxygen atoms are three-fold coordinated, and the silicon
atoms are six-fold coordinated, with the oxygen and three
silicon lying in a plane. This structure, as a whole, is
more rigid than the quartz structure, but does not contain
a compact building block like the SiO4 tetrahedron of
quartz.

The phonon densities of states of a-quartz and stisho-
vite are presented in Ref. [9] (Fig. 1). These two densities
of states are quite different; a-quartz has more complex
structure with a very high peak at around 1060 cm�1, a
wide gap between 846 and 1038 cm�1, and the largest
frequency 1218 cm�1, whereas stishovite has a continuous
distribution and the largest frequency 1050 cm�1. a-quartz
has a significant density at low frequencies, while stisho-
vite has a low density until the first peak (around
350 cm�1) is reached. On the basis of this phonon fre-
quency analysis, the stishovite lattice could be character-
ized as more rigid than the a-quartz lattice, as mentioned
earlier, if it were not for the presence of the large fre-
quency modes of quartz, beyond 1050 cm�1. The latter

modes can be associated with the breathing and distortion
of the tetrahedral building blocks SiO4. Due to the fact
that at low temperature more phonon states are available
in a-quartz than in stishovite, a difference is expected in
the thermodynamic functions.

The temperature-dependent phonon contributions DF
and DE to the Helmholtz free energy F (see Fig. 4) and
the internal energy E (see Fig. 5) are calculated from the
phonon densities of states [9]. The temperature-dependent
DE is higher for stishovite between 0 and 200 K and
higher for a-quartz above 200 K, whereas DF is higher
for stishovite at all temperature due to the lower entropy
of the more rigid structure of stishovite. The zero-tempera-
ture values, DF0 and DE0, do not vanish, due to the zero-
point motion. They can be computed:

DF0 ¼ DE0 ¼ ð3NnÞ
ðwL

0

�hw

2
gðwÞ dw : ð58Þ

We find DF0 ¼ DE0 ¼ 30.0 kJ/mol for a-quartz and
31.5 kJ/mol for stishovite. Note that the harmonic approx-
imation will break down for a-quartz as soon as the tem-
perature approaches 846 K, where a second-order phase
transition to b-quartz takes place.

Next, the constant-volume specific heats Cv are calcu-
lated and compared to the experimental data from Refs. [42,
43]. The agreement between calculated specific heats and
the experimental data is excellent as shown in Fig. 6. The
discrepancies between the calculated and experimental spe-
cific heat become larger at high temperature as the lattice
undergoes thermal expansion due to the anharmonic interac-
tions. Stishovite has lower specific heat than a-quartz at
temperature below 480 K and the specific heats of a-quartz
and stishovite are very close above 480 K. Also, the two
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Fig. 4. The phonon contribution to the Helmholtz free energies DF of a-
quartz (solid line) and stishovite (dashed line). Reprinted from Ref. [9].

Fig. 5. The phonon contribution to the internal energies DE of a-quartz
(solid line) and stishovite (dashed line). Reprinted from Ref. [9].



specific heats approach at high temperatures the classical
asymptotic limit of 74.8 J/mol � K. The entropies are also
calculated (see Fig. 7). Stishovite is found to have lower
entropy than a-quartz over the entire temperature range, due
to its smaller density of states for low frequency modes.

7. The atomic temperature factors

The knowledge of interatomic force constants allows one
to compute the atomic temperature factors, which describe
the attenuation of X-ray diffraction intensities due to the
thermal motion of the atoms. A wealth of information on
these atomic temperature factors, gathered by crystallogra-
phers, is available.

If the nuclei occupied definite positions in the crystal,
the intensity of diffraction would be proportional to the
square of the structure factor F defined as

P
j

fj e2piG � tj ,

where fj is the scattering amplitude of the atom j, G is
the scattering wavevector, and tj is the position of the
nucleus j. The diffraction condition requires G to be a
reciprocal lattice vector. At finite temperature, the nuclei
oscillate around their equilibrium positions and the struc-
ture factor is modified as FðTÞ ¼

P
j

fj e�Wðj;TÞ e2piG � tj

where the atomic temperature factor e�Wðj;TÞ at tempera-
ture T is defined [44] as

e�Wðj;TÞ ¼ exp � 1

2

P
ab

Babðj; TÞ GiGj

 !
: ð59Þ

The mean-square displacement matrix Babðj; TÞ is given
in terms of ‘‘generalized” density of states gabðj j wÞ as

follows, x ¼ �hw

kBT

�
, and kB is the Boltzmann constant

�
:

Babðj; TÞ ¼
1

Mj

ðwL

0

�h

2w

ex þ 1

ex � 1

� �
gabðj j wÞ dw ; ð60Þ

with

gabðj j wÞ ¼
ð2pÞ3

W0

P
m

ð
BZ

� ðMjUmqðjaÞ U*mqðjbÞ dðw� wmqÞ dqÞ :
The generalized density of states gabðj j wÞ has to be cal-
culated only once for each atom j and is normalized in

such a way that
ÐwL

0

gabðj j wÞ dw ¼ dab for each atom j.

When there is only one kind of atom with sufficient
local symmetry, all the e�Wðj; TÞ are identical and
jFðTÞj2 ¼ jFj2 e�2Wðj; TÞ. In this case, the intensity of dif-
fraction is reduced by a factor of e�2Wðj;TÞ, which is
usually called the Debye-Waller factor. For two or more
kinds of atoms, the relation between jFj2 and jFðTÞj2 is
not as simple.

As an application, the mean-square displacement ma-
trix elements Babðj; TÞ for Si and O atoms in a-quartz
and stishovite were calculated as a function of temperature
[9]. Crystallographers, however, often provide the thermal
parameters babðjÞ (usually at room temperature) which

First-principle studies of the lattice dynamics of crystals, and related properties 469

Fig. 6. The constant-volume specific heats of a-quartz (solid line:
calculated values; filled circles, experimental data from Ref. [42]) and
stishovite (dashed line: calculated values; empty circles, experimental
data from Ref. [43]). Reprinted from Ref. [9].

Fig. 7. The entropy of a-quartz (solid line) and stishovite (dashed
line). Reprinted from Ref. [9].

Table 2. The thermal parameter bij of Si and O atoms in a-quartz at
room temperature. bij’s are in �A

2
. Ref. [9] is the theoretical predic-

tion. Other data are experimental.

Atom b11 b22 b33 b12 b13 b23

Ref. [9] Si 0.0070 0.0055 0.0054 1
2 b22

1
2 b23 �0.0004

Ref. [79] Si 0.0045 0.0025 0.0072 1
2 b22

1
2 b23 �0.0002

Ref. [80] Si 0.0048 0.0027 0.0063 1
2 b22

1
2 b23 0.0004

Ref. [81] Si 0.0065 0.0054 0.0059 1
2 b22

1
2 b23 �0.0002

Ref. [82] Si 0.0066 0.0051 0.0060 1
2 b22

1
2 b23 �0.0003

Ref. [83] Si 0.0085 0.0072 0.0073 1
2 b22

1
2 b23 �0.0002

Ref. [9] O 0.0155 0.0109 0.0103 0.0090 �0.0033 �0.0042

Ref. [79] O 0.0131 0.0074 0.0133 0.0078 �0.0037 �0.0049

Ref. [80] O 0.0128 0.0105 0.0128 0.0069 �0.0035 �0.0044

Ref. [81] O 0.0163 0.0127 0.0128 0.0097 �0.0027 �0.0043

Ref. [82] O 0.0156 0.0115 0.0119 0.0092 �0.0029 �0.0046

Ref. [83] O 0.0174 0.0132 0.0123 0.0097 �0.0029 �0.0041

Table 3. The thermal parameter bijðjÞ of Si and O atoms in stisho-
vite at room temperature. bij’s are in �A

2
. Ref. [9] is the theoretical

prediction. Other data are experimental.

Atom b11 b22 b33 b12 b13 b23

Ref. [9] Si 0.00228 b11 0.00177 0.00007 0 0

Ref. [84] Si 0.00253 b11 0.00196 0.00014 0 0

Ref. [85] Si 0.00236 b11 0.00178 0.00016 0 0

Ref. [9] O 0.00301 b11 0.00238 �0.00082 0 0

Ref. [84] O 0.00327 b11 0.00248 �0.00095 0 0

Ref. [85] O 0.00308 b11 0.00231 �0.00084 0 0



are the mean-square displacements of the atom j along
the crystal axes a and b. Therefore, one has to convert
the mean-square displacement matrix Babðj; TÞ into the
thermal parameters bijðjÞ for comparison. Due to the sym-
metry of the crystal structure, b22ðSiÞ ¼ 2b12ðSiÞ and
b23ðSiÞ ¼ 2b13ðSiÞ in a-quartz, and b11ðjÞ ¼ b22ðjÞ and
b13ðjÞ ¼ b23ðjÞ ¼ 0 for j ¼ Si or O in stishovite. Experi-
mental values, obtained from analysis of raw data through
model calculations, show large discrepancies between each
others. Calculated values show reasonable agreement with
these results (see Tables 2 and 3). The sole large systema-
tic discrepancy, over 10%, is found for the b33 element in
a-quartz. This discrepancy could be due to the anharmoni-
city of the interatomic potential. Experimental uncertain-
ties likely preclude the observation of this effect for the
other components of the b tensor in a-quartz, while
stishovite is a less anharmonic material than a-quartz. The
typical mean-square displacements of Si and O atoms in
stishovite are rather similar (between 0:00177 and
0:00301 �A2), while the mean-square displacement of the
Si atoms in a-quartz is roughly three times larger than this
value (0:0054 and 0:0070 �A2), and the b11 component of
the O atoms reaches up to 0:0155 �A2. The smaller displa-
cements in stishovite are a consequence of the rigidity of
its lattice. The atomic temperature factors e�Wðj; TÞ are also
calculated for the diffraction with scattering vector
G ¼ ð2p=cÞ ẑz (see Fig. 8). e�Wðj;TÞ is not 1 even at 0 K
due to the zero-point motion. The O atoms in a-quartz,
having large mean-square displacements, show larger
change in the atomic temperature factor as a function of
temperature than the Si atoms in a-quartz and the Si or O
atoms in stishovite.

8. Discussion and perspectives

In the present review, we have focused on different proper-
ties of minerals, linked to lattice dynamics, that can be
obtained from first principles, using the density-functional

perturbation theory. We have presented the theory, as well
as selected examples, for: (i) the computation of phonons
at the Brillouin-zone center, observed in infra-red and Ra-
man experiments; (ii) the computation of phonon band
structures allowing to assert the stability/instability of a
phase; (iii) thermodynamical properties (specific heat, in-
ternal energy, free energy, entropy; (iv) atomic temperature
factors. Although we do not intend to be exhaustive, the
reader will find further information and applications of
this formalism, at the level of lattice-dynamical properties,
in Refs. [45–59].

We have only focused on the specific properties linked
to lattice vibrations. Density-functional perturbation theory
is also able to treat, at the linear-response level, perturba-
tions that modify the unit cell parameters. Taking account
mixed perturbations, such perturbations allow to compute
the elastic tensor and the piezoelectric tensor. However,
applications of this possibility have been scarce until now,
see e.g. Refs. [60–63].

At the non-linear level [4, 8], combining the first-order
wavefunctions from phonon, electric field and strain type
perturbations, the scope of DFPT is rather large, and al-
lows, directly or indirectly, the computation of the thermal
expansion, non-linear elastic constants, non-linear dielec-
tric response, Raman scattering efficiencies, phonon life-
times, Raman linewidths, etc. Some of these properties are
already available in different softwares, while other still
awaits to be coded. Actually, finite differences can be used
on top of DFPT to derive non-linear properties that have
not yet been implemented. As examples of the use of
DFPT for the prediction of non-linear properties, the users
might consult Refs. [33, 64–71].

Although the DFPT is the most powerful approach to
the dynamical properties of minerals, it is possible to ob-
tain interatomic force constants also by finite difference of
total energy and force calculations, in large supercells. If
one uses the same basis set for the representation of the
electronic wavefunctions, with the same relevant para-
meters, the final results from both methods should be
strictly identical (only the numerical efficiency will be dif-
ferent). By this technique, phonon band structures have
been obtained by interpolation for many different miner-
als. As examples of such studies, we have selected Refs.
[72–76].

Acknowledgments. Several authors (X. G. and G.-M. R.) would like
to acknowledge financial support from the National Fund for Scienti-
fic Research (F.N.R.S.-Belgium). We also thank the Communauté
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