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The ideal strength of silicon is predicted along various loading paths using density functional theory.
Stress-strain curves are calculated under uniaxial tension, relaxed shear, and uniaxial deformation conditions.
In order to check the stability of the deformation paths, the phonon spectra and the stiffness tensors are
computed within density-functional perturbation theory. A second-order phase transition is found to occur

before the elastic instability when applying a �111��1̄ 1̄2� relaxed shear. In all the other deformation conditions,
the first predicted instabilities are located at the center of the Brillouin zone. Finally, the crystallographic nature
of the instabilities is investigated by the calculation of the phonon eigendisplacements and by the decomposi-
tion of the stiffness tensors.
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I. INTRODUCTION

The ideal strength of a material is defined as the critical
level of external stress under which a perfect, infinite homo-
geneous lattice becomes structurally unstable. It gives an up-
per limit on the stress that a material can sustain. Often, this
upper limit is far beyond experiment reach due to the pres-
ence of defects in the material. However, stresses approach-
ing the ideal strength have been measured in whiskers1,2 or in
nanoindentation experiments involving almost defect-free
regions.3 In addition, the ideal strength provides insight into
the connections between the nature and symmetry of the
crystal and its mechanical behavior. For instance, based on
calculations of the ideal strength of diamond, an explanation
was proposed for the dominance of the �111� cleavage plane
in diamond.4 More recently, it was found that shear failure is
an inherent property of aluminum by analyzing its structural
instabilities.5 Finally, the theoretical values calculated on
ideal structures can be used as input parameters for multi-
scale models.6

The mechanical stability of homogeneous crystals has
been the subject of a long theoretical debate. Born initiated
the systematic study of crystal stability, establishing a crite-
rion in terms of the elastic constants.7,8 During the last two
decades, studies have been performed in order to generalize
Born’s work to strained states.9–12 In particular, it was
shown12 that a homogeneously strained crystal remains
stable with respect to elastic instabilities as long as the sym-
metric part of the stiffness tensor keeps its positiveness.13

However, in the past few years, stringent limitations of
this criterion have been underlined. Several recent studies
have shown that the ideal strength does not depend only on
elastic instabilities.5,14 Indeed, an instability related to a vi-
brational mode can also appear before the material becomes
elastically unstable. These instabilities, also called inelastic
or phonon instabilities, appear when a phonon mode lowers
the energy of the crystal.15 Indeed, when the energy of a

phonon becomes negative, its amplitude increases, and the
induced distortion drives the system into another stable state.
Stability requires thus that the relative energy of each pho-
non mode be positive over the entire Brillouin zone.8,16 As
the eigendisplacements corresponding to the different pho-
non modes form a complete basis set for all crystal distor-
tions, the analysis of the complete phonon spectrum appears
to be a necessary and sufficient stability criterion.

With the present development of MEMS and NEMS, the
mechanical behavior of materials at the atomic scale is of
great interest. Due to its technological importance, silicon
has been intensively studied. However, the previous works
on its ideal strength have essentially relied on stiffness tensor
calculations.17–19 It is also worth mentioning calculations of
crack propagation in silicon on �111� cleavage planes.20,21 In
this paper, the possible limitation of the ideal strength of
silicon by phonon instabilities is investigated using first-
principles calculations. The stress-strain curves are calcu-
lated for uniaxial tension and uniaxial deformation along the
�100� direction, which is of technological interest due to its
use as preferential direction for epitaxial growth, the �110�
and �111� directions which are the two principal cleavage
planes. The same calculations are performed for relaxed

shear on the �111� plane in the �1̄ 1̄2� and �11̄0� directions
which are two of the principal slip systems of silicon. The
ideal strengths corresponding to these loading paths are esti-
mated from both complete phonon spectra and stiffness ten-
sors calculations. Finally, the nature of the instabilities is
discussed.

II. TECHNICAL DETAILS

The calculations are performed on the silicon primitive
cell containing two atoms. Total energies, stresses, dynami-
cal matrices and elastic constants are calculated using
density-functional theory22,23 and the perturbation theory,24,25
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as implemented in the ABINIT code.26 The exchange-
correlation energy is evaluated within the local-density ap-
proximation using the Teter-Pade parametrization.27 The in-
teraction of the valence electrons with the ionic cores is
represented with a separable, norm-conserving Troullier-
Martins pseudopotential.28 The wave functions are expanded
into plane waves up to a cutoff energy of 10 hartrees. The
Brillouin zone �BZ� integration is performed using a cold
smearing technique29 with a smearing parameter of 0.01 har-
tree. The convergence of the total energies and derivatives
requires a 12�12�12 Monkhorst-Pack k-point grid.30 The
remaining error on the stresses due to the smearing param-
eter, finite basis set, and k-point sampling is estimated to be
lower than �0.05 GPa. With the parameters above, the cal-
culated lattice parameters, elastic constants, and Poisson’s
ratios of Si are found to be in good agreement with the ex-
perimental ones, as reported in Table I.

The computation of the ideal strength is achieved in two
steps. First, the unrelaxed stress-strain curves are calculated
by straining the crystal with a series of increments and al-
lowing only for the relaxation of the relative atomic positions
�the lattice vectors are kept fixed�. Using a system of Carte-
sian coordinates, the imposed strain components can be ex-
pressed in dyadic form as

�tension = �11�e1 � e1� , �1�

where e1 is a unit vector in the tension direction, and,

�shear = �31�e3 � e1� , �2�

where e1 and e3 are unit vectors respectively perpendicular to
the shear plane and in the direction of shear. In such a non-
fully-relaxed configuration, large transverse stresses gener-
ally appear. The fully relaxed loading path is thus obtained
by performing, at each incremental strain, a relaxation of
both the lattice vectors and the atomic relative positions in
order to cancel the components of the stress tensor orthogo-
nal to the applied strain. In this way, we are able to simulate
uniaxial tension and relaxed shear conditions �see Fig. 1�.

Using the same Cartesian coordinates as before, the stress
tensors may then be expressed as

�tension = �11�e1 � e1� and �shear = �31�e3 � e1� . �3�

In practice, the relaxation is stopped when the undesired
stress components become less than 0.02 GPa.

Second, for each loading path, the crystal stability is ana-
lyzed using stiffness tensors decomposition and complete
phonon spectra calculation. Stiffness tensors are obtained on
the basis of the calculated stresses and elastic constants.13

Using Kelvin notation and spectral theory,35,36 the stiffness
tensor is then decomposed and the crystallographic nature of
the instabilities is analyzed. Phonon energies over the whole

TABLE I. Calculated and experimental lattice parameters, elas-
tic constants, and Poisson’s ratios �in the directions �100�, �110�
�Ref. 31�, and �111�� for Si. The reported Poisson’s ratios are de-
rived from the calculated elastic constants. The experimental values
are taken from Ref. 32 for the lattice constant �at room tempera-
ture�, from Ref. 33 for the elastic constants �at 77 K�, and from Ref.
34 for the Poisson’s ratios. The last column gives the relative de-
viation of the calculated values from the measured ones.

Calculated Experiment % Deviation

a0 �Bohr� 10.201 10.263 −0.6

c11 �GPa� 161.5 166 −2.7

c12 �GPa� 63.8 64 −0.3

c44 �GPa� 76.9 80 −3.8

��100� 0.283 0.279 1.4

��110� 0.369 0.368 0.3

��111� 0.184 0.180 2.2

FIG. 1. Schematic representation of the loading conditions. �a�
Uniaxial tension �fully relaxed tension�; �b� uniaxial deformation
�unrelaxed tension�; �c� relaxed shear.

FIG. 2. �Color online� Stress-strain relations for various loading
paths �as indicated in key�. The open ring indicates the first appear-
ance of an unstable phonon mode along each path.
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Brillouin zone are obtained by interpolating the dynamical
matrix calculated on a 6�6�6 q-point grid. In the direc-
tions of high symmetry which present unstable phonon
modes, the phonon energies are recalculated explicitly in or-
der to avoid interpolation errors. Finally, on the basis of the
eigendisplacement calculation, the crystallographic nature of
the instabilities is analyzed. Moreover, for vanishing wave-
lengths, the eigendisplacements can be described to first or-
der by a homogeneous deformation whose deformation pa-
rameters are given by37

��� = Re�2�iq�u�� , �4�

where q is the wavelength and u is the limit of the eigendis-
placements for vanishing wavelengths.

III. RESULTS

A. The stress-strain curves

The first step in the estimation of the ideal strength is the
calculation of the deformation path. The stress-strain curves
obtained for Si along the eight investigated paths are re-
ported in Fig. 2. The open circles on these curves indicate the
states for which the first instability has been detected using
the phonon-based criterion.

As expected, the curves corresponding to shear show
stresses lower than those related to tension. Indeed, shear
moduli are always lower than tension moduli. Moreover, it

appears that shear is easier in the �11̄0� direction. As far as
tension is concerned, the maximum stresses vary signifi-
cantly with the loading direction. Indeed, the maximum
along �100� is far above those obtained along �110� and
�111�. This is not very surprising in view of experimental
works that have identified the �110� and �111� planes as the
two principal cleavage planes of silicon.38,39 Finally, it ap-
pears that, along the �111� direction, the stresses are not af-
fected by transverse relaxation. This is clearly not the case
along the �100� and �110� directions for which the stress-
strain responses expand to larger strain and stress, respec-

tively, for unrelaxed tension. The Poisson’s ratios of silicon,
reported in Table I, for the three loading directions studied
underline the poor effect of the transverse relaxation in the
case of the �111� tension. Moreover, the value of the �111�
Poisson’s ratio is found to be similar in other zinc-blende
materials like Ge,34 GaAs, 40 and BN.41 This specific behav-
ior along the �111� tension direction seems thus to be related
to the close-packed nature of the �111� planes.

B. The ideal strength

We now focus on the states corresponding to the onset of
the instability. In all the investigated loading path except for

the �111��1̄ 1̄2� relaxed shear, the calculations of the com-
plete phonon spectra show that the first unstable modes have
a zone center wave vector, implying that they correspond to
elastic instabilities. As expected, the criterion based on the
stiffness tensor gives the same results. In practice, the agree-
ment between the two criteria is better than 1% of strain,
which is very good.

TABLE II. Calculated ideal tensile strength of Si and associated engineering strain.

Computed values Previous works

Stress
�GPa�

Engineering strain
�%�

Stress
�GPa�

Engineering strain
�%�

�100� uniaxal tension 26.4 23 10.7a 9.4a

�110� uniaxal tension 17.0 20

�111� uniaxal tension 21.0 19 22.0b 17b

�100� uniaxal deformation 27.8 31

�110� uniaxal deformation 22.6 25

�111� uniaxal deformation 20.7 19

�111��1̄ 1̄2� shear 11.4 22.0 6.8b 30.0b

�111��11̄0� shear 8.0 27.0 9.6c 27c

aFrom Ref. 18.
bFrom Ref. 17.
cFrom Ref. 19.

TABLE III. Crystallographic nature of the first appearing insta-
bility for each loading path.

Nature of the instability

�100� uniaxal tension �011��011̄� shear

�111��1̄1̄2� shear

�110� uniaxal tension �1̄1̄1��112� shear

�111� uniaxal tension �111� tension

�100� uniaxal deform. �100� tension

�110� uniaxal deform. �110� tension

�111�uniaxal deform. �111� tension

�111��11̄0� shear �111��11̄0� shear

�111��1̄ 1̄2� shear �111��1̄ 1̄2� shear

IDEAL STRENGTH OF SILICON: AN AB INITIO STUDY PHYSICAL REVIEW B 74, 235203 �2006�

235203-3



The case of the �111��1̄ 1̄2� relaxed shear is quite differ-
ent. Indeed, for a deformation of 22% a phonon instability
occurs before the crystal becomes elastically unstable. This
phonon mode induces a second-order phase transition which

limits the �111��1̄ 1̄2� shear strength of silicon. This transi-
tion cannot be detected based on the stiffness criterion.

The computed values for the ideal strength of silicon are
collected in Table II together with values from previous
works. We note that the computed ideal strength along the

relaxed �111� is in good agreement with the results of
Roundy and Cohen.17 Conversely, significant discrepancies
are observed when comparing our results with the values
obtained by Yashiro et al.18 Their stress-strain curves along
the relaxed �001� loading path might not be fully converged
due to insufficient k-point sampling of the BZ. For silicon in
shear, we note a good agreement between the computed

�111��11̄0� shear strength and the results obtained by Ogata
et al.,19 but we cannot explain the divergence with the result

FIG. 3. Phonon energies along the direction of the first reported instability for various strains, for each of the investigated deformation
conditions. The directions are indicated by their wave vector q given in reciprocal coordinates by multiples of the x coordinate of the plot.
The level of strain is indicated as a percentage on the curve. The stiffness tensor eigenvalue �given in units of 100 GPa� corresponding to the
phonon mode as a function of strain �in %� are reported in insets. Lines come from spline interpolation of the calculated results.
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of Roundy and Cohen17 concerning the �111��1̄ 1̄2� direc-

tion. However, experimentally the �11̄0� direction is found to
be the easiest propagation direction for cleavage in silicon,
which tends to support our results.38

C. The crystallographic nature of the instabilities

For a given loading path, the crystallographic nature of
the instability can be investigated either by the spectral de-
composition of the corresponding stiffness tensor or by in-
troducing the atomic eigendisplacements in Eq. �4�. In prin-
ciple, when the ideal strength is limited by the appearance of
an elastic instability �which is the case for most of the load-
ing paths studied�, these two methods should give the same
results. In practice, the eigenvectors of the stiffness tensor
expressed in the Kelvin notation are found to match almost
perfectly the strain tensors obtained with Eq. �4�. The crys-
tallographic nature of the instabilities is summarized in Table
III.

The phonon energies along the directions of the BZ where
the first unstable phonon mode has been localized are re-
ported in Fig. 3 for various strains around the critical value.
The stiffness tensor eigenvalues corresponding to these un-
stable phonon modes are also reported in Fig. 3 as insets. As
indicated previously, the two criteria appear to be in good
agreement.

For uniaxial tension along �100� �Fig. 3�a�	, the first in-
stability arises for a strain equal to �23%. The calculation of

the eigendisplacements indicates a �011��011̄� shear instabil-

ity. A second instability associated to �111��1̄ 1̄2� shear arises
at �25% strain. This instability is not shown on the graph
for reasons of clarity. For uniaxial deformation along �100�
�Fig. 3�b�	, the crystal becomes unstable with respect to the
applied �100� tensile strain for a deformation equal to
�31%. For uniaxial tension along �110� �Fig. 3�c�	, the elas-
tic instability appearing at �20% of deformation can be as-

sociated to a �1̄ 1̄1��112� shear strain. For uniaxial deforma-
tion �Fig. 3�d�	, the crystal becomes unstable with respect to

the applied �110� tensile strain. Hence, the presence of trans-
verse stresses tends to favor this tensile instability rather than

the �1̄ 1̄1��112� shear instability probably by decreasing of
the maximum shear stress. For uniaxial tension and deforma-
tion along �111� �Figs. 3�e� and 3�f�	, the instabilities are
found to correspond to the applied �111� tensile strain. This
is not surprising due to limited effect of the lattice relaxation

along the �111� loading path. For �111��11̄0� relaxed shear
�Fig. 3�g�	, the elastic instability is associated to a �111�
��11̄0� shear strain. For �111��1̄ 1̄2� relaxed shear �Fig.
3�h�	, the first appearing instability results from an unstable
phonon at the border of the BZ. In this case, the crystallo-
graphic nature of the instability is no longer a homogeneous
deformation. Indeed, by doubling the unit cell in the �001�
direction and relaxing the atomic positions, it appears clearly
that the instability corresponds to a second order phase tran-
sition. The atomic displacements associated with this phase

transition are described in Fig. 4. The neighboring �1̄ 1̄1�
atomic planes �indicated by a black and white coloring of the

atoms� glide along the �1̄10� in opposite directions, suggest-
ing that the phase transition involves mainly a shear compo-
nent.

Moreover, a new loading path has to be considered be-
yond the transition. As illustrated in Fig. 5�a�, when using

FIG. 4. Representation of the atomic displacements inducing the

phase transition when a �111��1̄ 1̄2� relaxed shear is applied to the
silicon structure.

FIG. 5. �a� Comparison of the �111��1̄ 1̄2� relaxed shear loading
path calculated with a single and a double unit cell. When working
with the single cell �dashed curve�, a phonon instability is detected
�point I�; while, with the double cell �solid curve�, the first instabil-
ity to occur �point II� is elastic. �b� Phonon energies calculated at
point II along the direction of instability, as a function of strain
�lines come from spline interpolation of the calculated results�.
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single cell, an unstable phonon appears at point I. Con-
versely, with the double cell, the crystal evolves toward a
new state, labeled by point II, where stresses are lowered.
Consequently, the phase transition reduces the ideal strength
along this peculiar direction. Finally, the crystal stability has
been investigated along this new loading path and an elastic
instability has been located for a deformation of �22% �Fig.
5�b�	. The latter instability can be associated with a �111�
��1̄ 1̄2� shear.

IV. CONCLUSIONS

The ideal tensile strength of silicon has been calculated
for various loading paths. The crystallographic nature of the
corresponding first instabilities has also been analyzed. Our
calculations reveal that for most loading paths, the instability
responsible for crystal failure is elastic.

As expected in such situations, the ideal strength deduced
from the analysis of the elastic stability of the crystal corre-
sponds exactly to the one obtained by complete phonon spec-
tra inspection. Moreover, the crystallographic nature of the

instabilities deduced from the phonon eigendisplacements
and from the stiffness tensors are found to be the same.

This work suggests that at least two shear systems,

�111��12̄1� and �110��11̄0�, are responsible for the limitation
of the ideal strength of silicon. However, along the �111�
��1̄ 1̄2� relaxed shear, an unstable phonon mode has been
located away from the center of the BZ. This phonon is
associated with a second-order phase transition.
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