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We use many-body perturbation theory, the state-of-the-art method for band-gap calculations, to
compute the band offsets at the Si=SiO2 interface. We examine the adequacy of the usual approximations
in this context. We show that (i) the separate treatment of band structure and potential lineup contribu-
tions, the latter being evaluated within density-functional theory, is justified, (ii) most plasmon-pole
models lead to inaccuracies in the absolute quasiparticle corrections, (iii) vertex corrections can be
neglected, and (iv) eigenenergy self-consistency is adequate. Our theoretical offsets agree with the
experimental ones within 0.3 eV.
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Band offsets (BOs) are among the most important prop-
erties of a heterostructure. Their precise knowledge is
extremely important to engineer electronic [1] and opto-
electronic [2] devices. Various theoretical methods have
been used to estimate the BOs [3–5]. Among these,
density-functional theory (DFT) calculations allow one to
study the variation of interface dipoles with the interface
structure, without resorting to experimental input [4].

In the DFT approach, the valence band offset (VBO) and
the conduction band offset (CBO) are conveniently split
into two terms: �V;C�BO � �EDFT

v;c � �V. The first term
�EDFT

v;c , referred to as the band structure contribution, is
defined as the difference between the valence band maxima
(VBM) or the conduction band minima (CBM) relative to
the average of the electrostatic potential in each material.
These are obtained from two independent standard bulk
calculations on the two materials. The second term �V,
called the lineup of the average of the electrostatic poten-
tial across the interface, accounts for all the intrinsic inter-
face effects. It is determined from a supercell calculation
with a model interface.

However, the DFT-BOs suffer from two important limi-
tations, namely, the well-known DFT band-gap problem,
and the use of an approximate functional to model the
exchange-correlation (XC) energy, such as the local den-
sity approximation (LDA) or the generalized gradient ap-
proximation (GGA). These affect the value of the VBM
and the CBM, and consequently the calculated BOs.
Orbital-dependent approaches [6] and many-body
perturbation-theory (MBPT) within the GW approxima-
tion [7] have been used to try to overcome these short-
comings [8–10]. While the former may be less com-
putationally demanding, their reliability cannot be as-
sessed a priori [6] in contrast with MBPT. In
Refs. [9,10], the lineup of the potential �V was approxi-
mated by its DFT value, arguing that it depends primarily
on the charge distribution at the interface which is a ground

state quantity, hence little affected by many-body effects.
Doing so, only the band structure contribution is modified:

 �EQP
v;c � �EDFT

v;c � ���Ev;c�; (1)

where �Ev (�Ec) is the quasiparticle (QP) correction at the
VBM (CBM): �Ei � EQP

i � E
DFT
i for i � v, c. It is im-

portant to stress that these corrections, which are obtained
from bulk calculations, are the only additional ingredients
that are required when DFT calculations of the VBO and
CBO already exist.

Interestingly, for various semiconductor interfaces, the
QP corrections of the band edges are found to be almost the
same on both sides [10] leading to ���Ev� � 0:2 eV in
Eq. (1). As a result of this cancellation of errors, DFT is
quite successful for the same interfaces [11] with errors
ranging from 0.1 to 0.5 eV, despite its limitations men-
tioned above. This relative success of DFT explains why it
has been widely used to predict the VBO for a wide range
of interfaces. And, when needed, the CBO was also pre-
dicted using a simple scissor operator to correct the
band gap to the experimental value. This assumption was
further motivated by the fact that MBPT calculations going
beyondGW by including an approximate vertex correction
(GW�) showed that the valence-band-edge energy re-
mained at its DFT value for silicon, the whole correction
going to the conduction bands [12,13].

However, when it comes to semiconductor-insulator or
insulator-insulator interfaces, it appears that the DFT errors
on the VBO can be much more important. For instance, for
the Si=SiO2 interface, the VBO are calculated to be 2.3–
3.3 eV [5,14–16] in noticeable disagreement with the
experimental results of 4.3 eV [17]. It seems that, for
such systems, the cancellation of errors is not as good,
emphasizing the need to go beyond DFT by including QP
corrections. The same is probably true for interfaces found
in transistors or organic photovoltaics. Before applying
such a highly demanding method in a predictive way, its
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quality needs to be assessed for an interface for which the
VBO and CBO are well known experimentally, such as the
Si=SiO2 one.

In this Letter, the effect of QP corrections on the VBO
and CBO at the Si=SiO2 interface is investigated. By
performing a quasiparticle self-consistent GW (QSGW)
calculation on a small interface model, we demonstrate
that the lineup potential is well described in DFT. For two
more realistic models, the BOs calculated within DFT are
corrected by computing the QP corrections for bulk Si and
SiO2. The latter are found to be crucial to reach a good
agreement with experimental results. Their effect can not
be accounted for by a simple scissor operator on top of
DFT results. The inclusion of the vertex correction is
shown not to affect the GW results significantly, whereas
QSGW does not improve the results.

Three different interface models are adopted in which
ideal � cristobalite is matched to the Si(100) surface,
taking the theoretical value of bulk Si (aSi � 5:48 �A) as
the lattice constant. Models I and II were generated in a
previous work by two of us [16] in order to calculate the
BOs within DFT. They consist of 11 Si monolayers and up
to 10 SiO2 molecular layers which guarantees well con-
verged BOs. Model III is limited to 8 Si monolayers and 8
SiO2 molecular layers in order to perform a QSGW calcu-
lation which is quite demanding computationally. For bulk
Si, the theoretical value aSi is adopted for the lattice
constant. For SiO2, we consider on the one hand the cubic
structure (space group Fd�3m) whose relaxed lattice con-
stant is aSiO2

� 7:43 �A, and, on the other hand, a tetragonal
structure (space group I41=amd) in which two sides are
strained to match the Si lattice constant aSiO2

�
���

2
p
aSi as in

the interface models of Ref. [16], while the third is left free
to relax reaching a value of cSiO2

� 6:59 �A. In both struc-
tures, the Si-O-Si bond angle is 180�. Hereafter, the cubic
and strained structures will be referred to as c-SiO2 and
s-SiO2, respectively.

All our calculations are performed using the ABINIT

package [18]. Only valence electrons are explicitly con-
sidered using norm-conserving pseudopotentials [19] to
account for core-valence interactions. By coherence with
the DFT calculations of the BOs [16], the XC energy is also
described within the GGA [20].

At the DFT level, the band gaps EDFT
g for the bulk

systems are found to be 0.7 eV for Si, 5.4 eV for c-SiO2,
and 5.1 eV for s-SiO2 [21]. For the interface models I and
II, the VBOs (CBOs) are calculated to be 2.6 and 2.5 eV
(1.6 and 1.8 eV), respectively [22].

Three approaches are used to compute the QP correc-
tions. In the first approach (GW), the self-energy is calcu-
lated self-consistently by updating the eigenenergies in
both the dielectric matrices and the Green’s functions
while keeping the DFT wave functions. In the second
approach (QSGW), both the eigenenergies and the wave
functions are updated [24]. In both approaches, the dielec-

tric matrices are computed in the random-phase approxi-
mation (RPA) using the sum over states formulation [25].
In the third approach, a vertex correction � is included in
both the screening and the self-energy by going beyond the
RPA and including XC effects [12], and only the eigene-
nergies are updated. Details about the DFT-GGA kernel are
provided in Ref. [26].

Within GW, the frequency dependence of the dynami-
cally screened Coulomb potential W is most often approxi-
mated using various plasmon-pole models (PPMs) [27–
30]. The advantage is not only to reduce the computational
load, but also to obtain an analytic expression for the self-
energy. In fact, PPMs have proven to be very effective in
producing band gaps in good agreement with experiments.

However, while the QP correction to the gap �Eg was
found not to be very sensitive to the choice of the PPM
[31], we observe that �Ev and �Ec may vary from one
PPM to another, as reported in Table I for Si and c-SiO2. In
particular, the variation of �Eg with the PPM is more
pronounced in c-SiO2 (up to 0.4 eV difference between
the extreme cases) than in Si. Since a precise knowledge of
the QP corrections at the band edges is required for the
band offsets calculations, it is necessary to go beyond
PPMs taking explicitly into account the frequency depen-
dence of W.

In this Letter, the explicit frequency dependence is
obtained using the deformed contour integration technique
[32]. The calculated QP corrections are reported in Table II
for Si, c-SiO2, and s-SiO2.

TABLE I. Quasiparticle corrections (in eV) at the VBM (�Ev),
at the CBM (�Ec), and for the band gap (�Eg) for Si and c-SiO2.
The corrections are calculated within GW using the PPMs
proposed by Hybertsen and Louie (HL) [27], von der Linden
and Horsch (vdLH) [28], Godby and Needs (GN) [29], Engel and
Farid (EF) [30], and without PPM.

HL vdLH GN EF no PPM

Si �Ev �0:6 �0:6 �0:4 �0:6 �0:4
�Ec �0:1 �0:1 �0:2 �0:1 �0:2
�Eg �0:7 �0:7 �0:6 �0:7 �0:6

c-SiO2 �Ev �2:6 �2:5 �2:0 �2:3 �1:9
�Ec �1:3 �1:1 �1:5 �1:2 �1:5
�Eg �3:9 �3:6 �3:5 �3:5 �3:4

TABLE II. Quasiparticle corrections (in eV) at the VBM
(�Ev), at the CBM (�Ev), and for the band gap (�Eg) for Si,
c-SiO2, and s-SiO2. The corrections are calculated within GW,
GW�, and QSGW.

Si c-SiO2 s-SiO2

GW GW� QSGW GW GW� QSGW GW GW� QSGW

�Ev �0:4 �0:1 �0:6 �1:9 �1:3 �2:8 �1:9 �1:3 �2:8
�Ec �0:2 �0:7 �0:2 �1:5 �1:8 �1:3 �1:4 �1:8 �1:1
�Eg �0:6 �0:6 �0:8 �3:4 �3:1 �4:1 �3:3 �3:1 �3:9
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The QP gaps can easily be obtained from these results
EQP
g � EDFT

g � �Eg. Within GW, EQP
g � 1:3 eV for Si and

8.8 eV for c-SiO2. These results are in good agreement
with the experimental values of 1.2 and 8.9 eV [33],
respectively. While GW� results (1.3 and 8.5 eV) are
very close, the QSGW results (1.5 and 9.5 eV) are over-
estimated like systematically observed in Ref. [34].

Turning to �Ev and �Ec, the comparison of our results
with previous calculations is not always straightforward. In
most of the cases, the focus is on the band gap and the QP
corrections are not given explicitly (the VBM is set to zero
after correction). Besides, �Ev and �Ec are very sensitive
to the degree of convergence reached (the QP gap con-
verges much faster than the QP corrections), not to mention
the effect of the PPM (see Table I). For Si, our GW and
GW� results compare quite well with those of Fleszar and
Hanke [13] which also do not rely on any PPM [35]. No
such comparison can be made for c-SiO2. Note, however,
that the QP corrections for c-SiO2 and s-SiO2 differ by up
to 0.2 eV, indicating a dependence of �Ev and �Ec on the
strain. This is at variance with the findings of Ref. [36] in
the case of Si under isotropic strain. A possible explanation
for this difference may be that the strain is not isotropic in
s-SiO2 [21]. Finally, note that the PPM proposed by Godby
and Needs [29] leads to QP corrections (see Table I) in
excellent agreement with those of the contour deformation
method, at variance with the other PPMs. This finding
might be generalized after proper investigation.

WhileGW and QSGW lead to a lowering of the VBM of
Si (slightly larger for QSGW) compared to the DFT result,
the inclusion of the vertex correction brings it back to
roughly its original value with a small shift of 0.1 eV, all
the QP correction being on the conduction band. A similar
result was also found previously [12,13] giving some mo-
tivation to the use of a scissor operator to compute the CBO
within DFT. For SiO2, our results are very different. First,
the VBM is also raised when going from GW to GW�, but
it definitely does not reach the DFT level back. This
indicates the recovery of the DFT VBM with GW� is a
coincidence in Si. And, it definitely rules out the use of a
simple scissor operator for the computation of the BOs.
Second, the lowering of the VBM in QSGW in much larger
than in GW (by about 0.9 eV). In fact, it seems that the
systematical overestimation of the band gap in QSGW
originates essentially from a too strong lowering of the
VBM. Note that the increase of the CBM is slightly lower
in QSGW than in GW.

In order to compute the QP corrections to the BOs, the
many-body effects on �V also need to be investigated.
This is done by comparing the electronic density and the
resulting �V calculated within DFT and QSGW for
model III. In Fig. 1(a), the difference between the planar
average of the DFT electronic density ��DFT�z� and the
QSGW one ��GW�z� is reported. The QSGW result differs
only slightly from DFT, with a maximum change of about

1 me=a:u: in the interface region. The difference between
the QSGW and DFT macroscopic average of the local
potential �VGW- �VDFT, which is reported in Fig. 1(b), is
about �45 meV in the interface region, and less than
12 meV in the bulk regions. This gives rise to a net
difference of �20 meV in the lineup of the potential �V.
Such a small difference in �V suggests that the interfacial
charge density and, consequently, the associated dipole
moments are well described within DFT. This justifies
the assumption that the lineup potential can be taken to
be the same as in DFT.

Finally, using Eq. (1), the band offsets can be computed
within MBPT at the GW, GW�, and QSGW levels. Our
results are reported in Table III and compared with the
experimental ones. Within GW the agreement is excellent
for both the VBO and CBO (less than 0.3 eV difference).
The effect of the vertex correction is less than 0.1 eVon the
BOs. This results from a cancellation of the effects on each
side of the interface. At this stage, we cannot say whether
this result can be generalized to any interface. In contrast,
the effect of quasiparticle self-consistency is more pro-
nounced. Because of the large lowering of the VBM of
SiO2, the VBO is increased by 0.7 eV compared with GW,
leading to an overestimation by up to 0.5 eV. At the same
time, the CBO is slightly smaller than in GW leading to an
underestimation by up to 0.6 eV. So that QSGW is the
worst of the three approaches.

FIG. 1. Difference between DFT and QSGW calculations for
model III of (a) the planar average of the electronic density and
(b) the macroscopic average of the local potential. The density is
expressed in me=a:u:, and the potential in meV.

TABLE III. Quasiparticle band offsets (eV) for cubic and
strained SiO2 using GW, GW�, and QSGW.

Cubic Strained

Model DFT GW GW� QSGW GW GW� QSGW Expt.

VBO I 2.6 4.1 4.0 4.8 4.1 4.0 4.8 4.3
II 2.5 4.0 3.9 4.7 4.0 3.9 4.7

CBO I 1.6 2.9 2.7 2.7 2.8 2.7 2.5 3.1
II 1.8 3.1 2.9 2.9 3.0 2.9 2.7
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In summary, we have investigated the band offsets at the
Si=SiO2 interface using many-body perturbation theory.
Starting from the BOs obtained within DFT for two model
interfaces, the QP corrections have been computed within
eigenenergy self-consistent GW and GW�, and quasipar-
ticle self-consistent GW taking the frequency dependence
of the screened potential explicitly into account (which is
more reliable than plasmon-pole models). The GW correc-
tions, which differ significantly from what can be obtained
using a scissor operator, produce BOs in excellent agree-
ment with experiment. While the BOs obtained with and
without vertex correction do not differ significantly, those
resulting from QSGW present a larger deviation from
experiments. These findings allow us to recommend the
use of eigenenergy self-consistent GW, which is less de-
manding. Now that the quality of the procedure has been
assessed, it can be used in a predictive way for heterojunc-
tions of high technological interest such as those in tran-
sistors or organic photovoltaics.
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