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The electronic properties of zircon and hafnon, two wide-gap high-� materials, are investigated using
many-body perturbation theory �MBPT� combined with the Wannier interpolation technique. For both mate-
rials, the calculated band structures differ from those obtained within density-functional theory and MBPT by
�i� a slight displacement of the highest valence-band maximum from the � point and �ii� an opening of the
indirect band gap to 7.6 and 8.0 eV for zircon and hafnon, respectively. The introduction of vertex corrections
in the many-body self-energy does not modify the results except for a global rigid shift of the many-body
corrections.
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I. INTRODUCTION

Zircon �ZrSiO4� and hafnon �HfSiO4� are materials of
technological relevance. Due to their durability and ability to
host large quantities of long-lived actinides, they are used for
nuclear waste disposal.1 On the other hand, they both possess
high dielectric constants and large energy gaps which made
them emerge as high-� gate dielectric materials in metal-
oxide-semiconductor technology.2–5

Due to the similarity of the physical and chemical prop-
erties of Zr and Hf, the structural and electronic properties of
zircon and hafnon are very much alike. At ambient condi-
tions, they present a body-centered tetragonal crystal struc-
ture �space group I41 /amd, No. 141� with 2 f.u. MSiO4
�M =Hf,Zr� in the primitive cell. In this structure, each M
= �Hf,Zr� atom is bonded to eight O atoms, while each Si
atom is bonded to four O atoms so that each O atom is
bonded to two M = �Hf,Zr� and one Si atoms. At higher pres-
sure, zircon and hafnon stabilize in a scheelite structure
�space group I41/a, No. 88�, with a Bravais lattice which is
also body-centered tetragonal with the same number of at-
oms as in the low-pressure phase.

Various properties of hafnon and zircon have been inves-
tigated within density-functional theory �DFT�: pressure-
induced phase-transition,6,7 properties of point defects,8–10

dynamical, electronic, and dielectric properties.11–13 In these
studies, DFT proved to be successful in reproducing many
experimental results. However, it is well known that DFT
fails to give a reliable estimation of the electronic energy
gap14,15 Such an excited-state property can be accessed di-
rectly through the many-body perturbation theory �MBPT�
formalism.16 Today MBPT is considered a reliable and well-
established method for electronic band-structure calcula-
tions, which makes it an ideal choice for energy gap predic-
tion when little experimental information is available.

Experimentally, a direct measure of the energy gap
of zircon and hafnon in their crystalline phase is still
missing.10,17 In practice, the value of 6.5–7.0 eV, which has

been extrapolated from measurements on �MO2�x�SiO2�y dis-
ordered alloys grown on Si,18–20 is often considered as the
reference.2,10,17 This can be reasonably questioned given the
structural difference between amorphous alloys and single-
crystal phases. On the other hand, values ranging from 5.0 to
7.7 eV have been reported for the Kohn-Sham energy gap, as
calculated within the local-density approximation �LDA�
�Refs. 11 and 12� and weighted density approximation
�WDA�.10,17 However, these values are subject to the above-
mentioned criticisms and cannot be considered as reliable.

The aim of this work is to provide a more accurate pre-
diction of the energy band gap of zircon and hafnon based
on MBPT. The precise knowledge of energy band gap
and the associated many-body corrections with respect
to the standard DFT approach is crucial for band-offset
calculations.10,21 Our results will hopefully reduce the uncer-
tainty present in the literature. The paper is organized as
follows. In Sec. II, we briefly present the GW method and the
interpolation scheme, based on Wannier functions, allowing
for a full MBPT band structure to be obtained. In Sec. III, we
detail the numerical parameters of the calculations. In Sec.
IV, we present and discuss the band structure obtained within
DFT-LDA and GW approximations.

II. THEORETICAL BACKGROUND

Within MBPT, the quasiparticle eigenfunctions and
eigenenergies are calculated by solving the Dyson
equation:22–24

�−
1

2
�2 + Vext + VH��nk +� ��r,r�,� = �nk��nkd3r

= �nk�nk, �1�

where Vext stands for the crystal external potential, VH is the
Hartree potential, and � is the nonlocal energy-dependent
self-energy operator. � can be evaluated by solving Hedin
equations22 starting from the Hartree approximation, i.e., ne-
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glecting exchange and correlation effects. This leads to the
so-called GW approximation:

��r,r�,�� =
i

2�
� d��ei��	G�r,r�,� + ���W�r,r�,��� ,

�2�

where G and W are the single-particle Green’s function and
the screened Coulomb interaction, respectively. Alterna-
tively, the Hedin equations can be solved taking into account
further exchange and correlation effects known as vertex cor-
rections, leading to the so-called GW� approximation.25

In principle, Eq. �1� should be solved self-consistently to
obtain the quasiparticle eigenenergies and eigenfunctions.
However, the standard approach is to use the Kohn-Sham
wave functions ��nk

DFT� and eigenenergies ��nk
DFT� as a zero-

order approximation for their quasiparticle counterparts and
proceed within first-order perturbation theory:

�nk = �nk
DFT + �̄nk, �3�

where �̄n,k is the quasiparticle correction given by

�̄nk = Re� 1

Z
��nk

DFT���� = �nk
DFT� − Vxc��nk

DFT	
 , �4�

and Z is a normalization factor,

Z = ��1 −
��

���
�=�nk

DFT

−1

. �5�

The knowledge of W over a wide range of frequencies is
required to evaluate the frequency convolution in Eq. �2�.
However, the integral can be handled by modeling the dy-
namic dependence of W using the single plasmon pole model
�PPM� approximation. The advantage is not only a signifi-
cant reduction in the computational cost but also the ability
to evaluate the self-energy analytically. In this work, the
PPM proposed by Godby and Needs26 is used. This model is
formally identical to the one previously proposed by Hybert-
sen and Louie.23 However, the PPM parameters are obtained
from the computation of the screening matrix at an imagi-
nary frequency �typically the plasmon frequency�, where the
inverse dielectric matrix is well behaved. The choice of this
model with respect to other models proposed in the literature
is motivated by the recent finding that it gives the best agree-
ment with explicit numerical integration results.21

The exact evaluation of the GW correction, for a full band
structure along different symmetry lines in the Brillouin zone
�BZ� via Eq. �3�, can be an extremely demanding task. In the
literature, it is quite standard to compute the GW corrections
for several special k points, and then to deduce a scissor
correction, i.e., a constant shift to be applied to conduction-
band DFT eigenvalues, to be used for the less-symmetric k
points. A more refined procedure involves linear interpola-
tion of the eigenenergies between the available k points.

Another more convenient approach is to interpolate the
many-body corrections using a scheme based on maximally
localized Wannier functions �MLWFs�.27 This approach has
already been used in band-structure interpolation.28,29 Its

advantage over other existing schemes comes from the fact
that it preserves valuable information about band connectiv-
ity. Hence, band crossings, avoided crossings, and degenera-
cies are treated correctly.

The MLWFs can be constructed from a set of Bloch
eigenstates �nk:

�WmR	 =
V

�2��3�
BZ

�
n=1

N

Unm
�k���nk	e−ik·Rdk . �6�

Here WmR is the mth Wannier wave function at the unit cell
vector R; Unm

�k� are unitary matrices with dimension N that
generates an N-dimensional manifold of Bloch states �nk.
The choice of manifold dimensions is natural in systems
where the energy bands appear as isolated groups separated
from each other by energy gaps. However, in cases where the
bands of interest are not isolated, an additional disentangling
procedure is needed.30 Unm

�k� is chosen, within the maximally
localized Wannier function scheme, in such a way that the
quadratic extent of wave functions is minimized.27

Following the description of Refs. 28 and 29, given a set
of quasiparticle eigenvalues, �nk �be it the DFT-LDA or the
GW ones�, calculated on a homogeneous k-point grid, the
unitary transformation matrices Unm

�k� can be used to calculate
the matrix elements in the Wannier gauge representation:

Hnmk
W = ��U�k��†HU�k��nm, �7�

where Hnmk=�nk
nm.
We then calculate the matrix elements in real space using

Fourier transform:

HnmR
W =

1

Nk
�
k

exp−ik·RHnmk
W . �8�

Then assuming that �HnmR
W � to decay fast with �R�, we can

recover the matrix elements at any arbitrary k� point over BZ
�even if such k point is not part of the original special k
points list� using direct sum over all lattice vectors R in the
supercell conjugate to the k mesh:

Hnmk�
W = �

R
eik�·RHnmR

W . �9�

The final step is to transform back from the Wannier
gauge to get �nk� by finding the suitable unitary transforma-
tion U�k��. This can be achieved by simple diagonalization of
Hnmk�

W . Note that a similar procedure can also be applied to

interpolate the quasiparticle corrections �̄nk. The above pro-
cedure is a convenient method which allows the calculation
of a full band structure within GW approximation using a
limited k-point grid without encountering the drawbacks that
would arise using the linear interpolation method �e.g., diffi-
culties to treat correctly the band crossings�.

III. TECHNICAL DETAILS

All the ground-state and GW calculations are performed
using the ABINIT code.31 The ion-electron interaction is ap-
proximated by highly transferable extended norm-conserving
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pseudopotentials.32 The pseudopotentials are constructed
considering the following states as valence ones:
Hf�5s ,5p ,5d ,6s�, Zr�4s ,4p ,4d ,5s�, Si�3s ,3p�, and
O�2s ,2p�. The wave functions are expanded onto a plane-
wave basis setup to a kinetic energy cutoff of 30 hartree. The
Brillouin-zone integration is performed using a special
4�4�4 wave vector grid sampled within the Monkhorst-
Pack scheme.33 The dielectric matrix is calculated using the
Adler-Wiser expression34 summing over 300 bands. We find
that using a matrix size of 345�345 plane waves to repre-
sent the dielectric matrix is enough to account for inclusion
of local field effects and to achieve convergence of quasipar-
ticle energies. The self-energy � is obtained by summing
over 24 special q vectors in the irreducible BZ, and over 400
bands. For GW� calculations, approximate vertex correc-
tions have been included following the method proposed in
Ref. 25. For both GW and GW� approaches, the calculations
are repeated iteratively by correcting the unoccupied eigen-
values with a scissor operator matching the quasiparticle gap
from one iteration to construct the Green’s functions for the
next iteration until convergence of the quasiparticle gap is
reached.35 Such procedures are referred to as GW0 and
GW0�.

All the calculations are performed with the low-pressure
body-centered tetragonal structure. In this structure, both M
= �Hf,Zr� and Si atoms are located at high-symmetry posi-
tions �0, 3

8 , 1
4 � and �0, 1

4 , 3
8 � on the 4a and 4b Wyckoff sites,

respectively. The O atoms occupy the 16h Wyckoff sites at
�0,u ,v�, where u and v are internal parameters. The theoret-
ical parameters used throughout all the calculations are iden-
tical to those reported in Ref. 12.

IV. RESULTS

Starting from the set of DFT-LDA eigenvalues and eigen-
functions calculated on the k-points grid, the quasiparticle
corrections are computed for the same set of k-points follow-
ing Eqs. �3�–�5�. Then, the quasiparticle corrections are in-
terpolated for the high-symmetry segments of the BZ using
MLWFs as described in Sec. II. In order for Eq. �9� to be
really advantageous, the real-space representation �HnmR

W � of
the DFT-LDA and GW Hamiltonians need to have a suffi-
ciently fast decay with �R�. In principle, this decay should be
monitored for each pair of n and m indices individually. Al-
ternatively, a global view on the decay can be obtained by
summing the square of the matrix elements for the group of
bands under consideration:

VR
H = �

n,m
�HnmR

W �2 = �
n,m

��WnR�H�Wm0	�2, �10�

and taking the square root of this sum. Interestingly, it can be
shown that VR

H is nothing but Tr�HPRHP0�, where PR is the
projection operator onto the corresponding group of Wannier
functions attached to the vector R:

PR = �
n

�WnR	�WnR� . �11�

As illustrated in Fig. 1, �VR
H decays exponentially showing

that the k-points grid used in the Wannier interpolation is
indeed sufficient.

The GW0 band structure along the high-symmetry lines of
the BZ �using the notation of Ref. 36� is reported in Fig. 2
for hafnon and zircon. The band structure is similar for both
materials, with valence bands consisting of four well-
separated manifolds �labeled with the Roman numbers I–IV
starting from the lowest in energy�. The typical correspond-
ing Wannier functions are reported in Fig. 3, allowing us to
identify the chemical character of the orbitals. The first two
manifolds �I and II, consisting of two and six bands, respec-
tively� are associated to one 4s and three 4p orbitals centered
on the two Zr �one 5s and three 5p for Hf� atoms, respec-
tively. These bands do not show any significant dispersion
and, accordingly, the atomic s and p orbitals on the metal
atoms are not hybridized. For these two manifolds, the only
significant difference between zircon and hafnon is a shift of
the Hf s and p bands by about 10 eV down with respect to
their Zr analogs.
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FIG. 1. �Color online� Global decay of the real-space represen-
tation of the DFT-LDA �blue circles� and GW �red squares� Hamil-
tonians as a function of the lattice vector size �R� are measured by
�VR

H �see Eq. �10�� for all the valence bands.
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FIG. 2. �Color online� Calcu-
lated GW band structure of �a�
zircon and �b� hafnon. The corre-
sponding Brillouin zone is illus-
trated in part �c�, adopting the no-
tation of Ref. 36. The various
manifolds are labeled with Roman
numbers starting from the lowest
in energy.
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The Wannier functions associated to manifold III �consist-
ing of eight bands� show mainly s character with their center
located close to one of the eight oxygen atoms. In fact, the
s-like orbital is elongated in the direction of the nearest sili-
con atoms and its center is shifted accordingly, as illustrated
in Fig. 3�b�. This indicates a mixing of the O 2s orbitals with
the Si 3p ones. The manifold IV �consisting of 24 bands�
covers the last set of valence bands which show the largest
dispersion. The corresponding Wannier functions are O 2p
orbitals with some mixing with Si 3p and Zr 4p �Hf 5p� or-

bitals, indicating that these electrons are involved in the
bonds formation. For each of the eight O atoms, one of the
three 2p-like orbitals �Fig. 3�a�� is oriented perpendicular to
the plane formed by the O atom and its three nearest neigh-
bors, two Zr atoms and one Si atom. This orbital does not
show mixing with other atomic orbitals, it corresponds to a
lone pair on the O atom. The other two 2p-like orbitals �Figs.
3�c� and 3�d�� lie in the plane formed by the O atom and its
neighbors and show significant mixing with Si 3p and Zr 4p
�Hf 5p� orbitals. The associated electrons are responsible for
the bonding. Finally, the Wannier functions associated to
manifold V �consisting of the 14 lowest conduction bands�
essentially correspond to Zr 4d �Hf 5d� orbitals with an im-
portant mixing with orbitals originating from all the other
atoms, as shown in Fig. 3�a�.

In Table I, the quasiparticle corrections with respect to the
DFT-LDA values are reported for the highest valence band
�HVB� and the lowest conduction band �LCB� for both zir-
con and hafnon. The results computed both within GW0 and
GW0� are presented for five high-symmetry k points in the
BZ. It is worth mentioning that only the P and � points
correspond to the wavevector grid points for which direct
GW calculations are performed. For these two points, the
calculated quasiparticle corrections and those resulting from
the Wannier interpolation differ by less than 0.01 eV. For
zircon, the complete band structures, which are obtained us-
ing the Wannier interpolation, are presented in Fig. 4.

For both materials, the effect of many-body corrections
�see Table I� is to lower the highest valence band and to raise
the lowest conduction band. For zircon, the lowering of the
HVB ranges from 0.6 to 0.7 eV depending on the k point,
while the raising of LCB extends between 2.0 and 2.3 eV.
For hafnon, the trend is about the same as for zircon. The
HVB is lowered by 0.7–0.8 eV, whereas the LCB is shifted
up by 1.9–2.4 eV. Moreover, the dispersion of the top va-
lence bands is increased by about 0.6 eV with respect to
DFT-LDA �see Fig. 4�a��. Finally, the valence-band maxi-
mum �VBM� location is also affected. In DFT-LDA, the
VBM is located at about one tenth of the �-H symmetry line,
away from the � point. It is very close in energy with respect
to the value at the � point. The effect of many-body correc-
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III

(a)

(b)

III

(c) (d)

IV IV

FIG. 3. �Color online� Isosurfaces of the maximally localized
Wannier functions for zircon: Red and blue colors indicate opposite
isovalues. The O atoms are colored in dark green, Zr atoms in gray,
and Si atoms in yellow. The different manifolds are labeled with
Roman numbers according to Fig. 2. Different views of the crystal
are represented: �a� top view �perpendicular to the tetragonal axis,
i.e., the �001� direction� and ��b�–�d�� side view �perpendicular to
the �100� or �010� directions, which are equivalent�. For the latter,
the focus is on an O atom and its three nearest neighbors, two Zr
atoms and one Si atom, all lying in the same plane.

TABLE I. Many-body corrections at five high-symmetry k points, see Fig. 1�c�, for the HVB and the
LCB. The many-body corrections are computed within GW0 and GW0� for both zircon and hafnon.

k point

ZrSiO4 HfSiO4

LDA GW0 GW0� LDA GW0 GW0�

� HVB 0.0 −0.7 −0.5 0.0 −0.7 −0.5

LCB 5.1 +2.1 +2.4 5.5 +1.9 +2.2

P HVB −0.5 −0.7 −0.4 −0.5 −0.8 −0.5

LCB 4.9 +2.0 +2.3 5.2 +2.1 +2.4

N HVB −0.7 −0.7 −0.4 −0.6 −0.8 −0.4

LCB 4.9 +2.0 +2.3 5.2 +2.1 +2.4

T HVB −0.8 −0.6 −0.3 −0.9 −0.7 −0.5

LCB 5.7 +2.2 +2.4 5.9 +2.3 +2.6

H HVB −0.7 −0.6 −0.3 −0.8 −0.7 −0.5

LCB 5.6 +2.3 +2.4 5.9 +2.4 +2.6
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tions �see Fig. 4�a�� is �i� to push the VBM further away
from the � point at about one-fourth of the �-H segment and
�ii� to increase the difference in energy between the VBM
and the � point. Such an effect could not have been identi-
fied without resorting to the Wannier interpolation. Note that
the many-body corrections do not alter the location of the
conduction band minimum.

The calculated quasiparticle gaps are 7.6 and 8.0 eV
within GW0 �7.7 and 8.1 eV within GW0�� for zircon and
hafnon, respectively. These values are much larger than those
obtained in DFT-LDA �4.87 for zircon and 5.12 eV for
hafnon�. They are also significantly larger than the experi-
mental estimations of 6.5–7.0 eV, which are based on mea-
surements on amorphous �MO2�x�SiO2�y grown on Si.18–20

Given the differences in the bonding and the coordination
numbers between such disordered alloys and the single crys-
tals, such a variation in the gap can be considered as reason-
able. Finally, it is worth noting that the calculated quasipar-
ticle gaps are also slightly higher than the values of 7.0 and
7.7 eV obtained for zircon and hafnon, respectively, within
DFT-WDA.10,17 Though WDA is supposed to work better
than LDA and GGA approximations, it still suffers from the
limitations of DFT calculations.

For both materials, the quasiparticle corrections to the
HVB are smaller within GW0 than within GW0�. But, at the
same time, the corrections to the LCB are larger. The effect
of the vertex corrections is thus basically to shift the bands
rigidly by 0.3 eV. Thus, once the VBM is set to zero, the
GW0 and GW0� band structures can hardly be distinguished,
as illustrated in Fig. 4�b� for zircon. This trend has been
noticed before for other materials.21,25

V. CONCLUSION

The electronic band structure of two high-� materials,
namely, zircon and hafnon, have been investigated within
GW and GW� approximations. The quasiparticle band struc-
ture has been calculated using Wannier interpolation scheme.
The band structure of both materials is very similar within
MBPT and DFT-LDA except for the band gap opening, the
increase in the dispersion of the bands, and a slight displace-
ment of the valence-band maximum away from the � point
within MBPT. On the other hand, both MBPT approxima-
tions, GW and GW�, yield almost the same value for the
energy gap.

ACKNOWLEDGMENTS

The authors �R.S., M.G., X.G., T.R., and G.-M.R.� ac-
knowledge financial support from the Interuniversity Attrac-
tion Poles Program �P6/42�—Belgian State—Belgian Sci-
ence Policy, the Walloon Region �WALL-ETSF subvention�,
the Communauté Française de Belgique �Action de Recher-
che Concertée 07/12-003�, the European Union �NMP4-CT-
2004–500198� �“NANOQUANTA” Network of Excellence
“Nanoscale Quantum Simulations for Nanostructures and
Advanced Materials” and “ETSF” Integrated Infrastructure
Initiative�, and FAME-EMMI Network of Excellence “Func-
tionalized Advanced Materials Engineering.”

1 R. C. Ewing, W. Lutze, and W. J. Weber, J. Mater. Res. 10, 243
�1995�.

2 J. Robertson, J. Vac. Sci. Technol. B 18, 1785 �2000�.
3 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys.

89, 5243 �2001�.
4 J. Robertson, Rep. Prog. Phys. 69, 327 �2006�.
5 R. Puthenkovilakam, E. A. Carter, and J. P. Chang, Phys. Rev. B

69, 155329 �2004�.
6 J.-P. Crocombette and D. Ghaleb, J. Nucl. Mater. 257, 282

�1998�.
7 M. Marques, M. Florez, J. M. Recio, L. Gerward, and J. S.

Olsen, Phys. Rev. B 74, 014104 �2006�.

8 J. M. Pruneda, T. D. Archer, and E. Artacho, Phys. Rev. B 70,
104111 �2004�.

9 J. M. Pruneda and E. Artacho, Phys. Rev. B 71, 094113 �2005�.
10 K. Xiong, Y. Du, K. Tse, and J. Robertson, J. Appl. Phys. 101,

024101 �2007�.
11 G.-M. Rignanese, X. Gonze, and A. Pasquarello, Phys. Rev. B

63, 104305 �2001�.
12 G.-M. Rignanese, X. Gonze, G. Jun, K. Cho, and A. Pasquarello,

Phys. Rev. B 69, 184301 �2004�.
13 S. L. Chaplot, L. Pintschovius, N. Choudhury, and R. Mittal,

Phys. Rev. B 73, 094308 �2006�.
14 J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 �1983�.

-8

-4

0

4

8
En
er
gy
(e
V
)

(a)

-8

-4

0

4

8

En
er
gy
(e
V
)

(b)
Γ TH Γ N TP N

Γ TH Γ N TP N

FIG. 4. �Color online� Band structure of zircon: comparison
between �a� GW0 �black� and DFT-LDA �red� �b� GW0 �black� and
GW0� �red�.

ELECTRONIC PROPERTIES OF ZIRCON AND HAFNON… PHYSICAL REVIEW B 79, 195101 �2009�

195101-5



15 L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 �1983�.
16 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

�2002�.
17 J. Robertson, K. Xiong, and S. J. Clark, Phys. Status Solidi B

243, 2054 �2006�.
18 C. Krug and G. Lucovsky, J. Vac. Sci. Technol. A 22, 1301

�2004�.
19 G. B. Rayner, Jr., D. Kang, Y. Zhang, and G. Lucovsky, J. Vac.

Sci. Technol. B 20, 1748 �2002�.
20 H. Kato, T. Nango, T. Miyagawa, T. Katagiri, K. S. Seol, and Y.

Ohki, J. Appl. Phys. 92, 1106 �2002�.
21 R. Shaltaf, G.-M. Rignanese, X. Gonze, F. Giustino, and A. Pas-

quarello Phys, Phys. Rev. Lett. 100, 186401 �2008�.
22 L. Hedin, Phys. Rev. 139, A796 �1965�; L. Hedin and S. Lund-

qvist, Solid State Phys. 23, 1 �1969�.
23 M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 �1986�.
24 R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev. Lett. 56,

2415 �1986�; Phys. Rev. B 37, 10159 �1988�.
25 R. Del Sole, L. Reining, and R. W. Godby, Phys. Rev. B 49,

8024 �1994�.
26 R. W. Godby and R. J. Needs, Phys. Rev. Lett. 62, 1169 �1989�.
27 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 �1997�.
28 J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B

75, 195121 �2007�.
29 D. R. Hamann and D. Vanderbilt, Phys. Rev. B 79, 045109

�2009�.
30 I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,

035109 �2001�.
31 X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs,

G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet,
M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.
C. Allan, Comput. Mater. Sci. 25, 478 �2002�; X. Gonze, G.-M.
Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Cara-
cas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M.
Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R.
Godby, G. Onida, D. R. Hamann, and D. C. Allan, Z. Kristal-
logr. 220, 558 �2005�.

32 M. Teter, Phys. Rev. B 48, 5031 �1993�.
33 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�.
34 S. L. Adler, Phys. Rev. 126, 413 �1962�; N. Wiser, ibid. 129, 62

�1963�.
35 M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99,

246403 �2007�.
36 S. Ellialtioglu, E. Mete, R. Shaltaf, K. Allakhverdiev, F. Gash-

imzade, M. Nizametdinova, and G. Orudzhev, Phys. Rev. B 70,
195118 �2004�.

SHALTAF et al. PHYSICAL REVIEW B 79, 195101 �2009�

195101-6


