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Quasiparticle calculations are performed to investigate the electronic band structures of various polymorphs
of Hf and Zr oxides. The corrections with respect to density-functional-theory results are found to depend only
weakly on the crystal structure. Based on these bulk calculations as well as those for bulk Si, the effect of
quasiparticle corrections is also investigated for the band offsets at the interface between these oxides and Si
assuming that the lineup of the potential at the interface is reproduced correctly within density-functional
theory. On the one hand, the valence-band offsets are practically unchanged with a correction of a few tenths
of electron volts. On the other hand, conduction-band offsets are raised by 1.3–1.5 eV. When applied to
existing calculations for the offsets at the density-functional-theory level, our quasiparticle corrections provide
results in good agreement with the experiment.
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I. INTRODUCTION

In the microelectronic industry, the continuous quest for
devices with improved performance and lower power con-
sumption has recently stimulated an intense research on di-
electric materials. Indeed, for over three decades, SiO2 has
formed the perfect gate dielectric material for metal-oxide-
semiconductor field-effect transistors �MOSFETs�. However,
fundamental limits have recently been reached that impede
further downscaling of MOSFETs based on SiO2.1 Candidate
materials to substitute the latter are transition-metal oxides
and silicates with a high dielectric constant, specifically
higher than SiO2, and are commonly referred to as high-k
dielectrics. In this framework, ZrO2 and HfO2, and more
generally Zr and Hf compounds, have attracted considerable
attention,1 hafnium-based microprocessors being now in de-
velopment or even already in production.2

Ab initio calculations can nicely complement the experi-
mental work to investigate the properties of these novel ma-
terials �see, e.g., Refs. 3–5� and to engineer the interfaces.6,7

The method of choice for investigating ground-state proper-
ties is density-functional theory �DFT� that allows to treat
quite large systems on the one hand, and to obtain reliable
results on the other hand.8 For the Si /ZrO2 and Si /HfO2
interfaces, various models have been explored using
DFT.9–12,14–16 It was found that due to their analogous elec-
tronic structures, the two transition-metal oxides present a
very similar interfacial bonding. Moreover, there is general
agreement that the O-terminated interfaces are more stable
than metal-terminated ones.

One of the most stringent criteria in the design of Si/oxide
interfaces is their band offsets �BOs� that control the trans-
port properties and, hence, the leakage current.1 In particular,
both the valence-band offsets �VBOs� and conduction-band
offsets �CBOs� should be larger than 1 eV to obtain a low
leakage. DFT relying on local or semilocal approximations
for the exchange-correlation potential does not guarantee
quantitatively correct BOs since the DFT eigenenergies do
not correspond to the quasiparticle �QP� energies.17–21 How-

ever, the VBOs are often found with an accuracy of a few
tenths of electron volts, especially for semiconductor
interfaces.22 Therefore, the CBOs can also be predicted using
a simple scissor operator to correct the band gaps to their
experimental values. Several works have addressed the BOs
at the Si /ZrO2 and Si /HfO2 interfaces using this scissor-
corrected DFT scheme.9–13 The calculated VBOs for the
stable insulating O-terminated interfaces of Si /ZrO2 and
Si /HfO2 are around 2.5–3 eV in reasonable agreement with
the experiments �2.7–3.4 eV�.23–31 The scissor-corrected
CBOs are about 1.7–2.2 eV and compare quite well with the
experimental values �1.5–2 eV�.28–31

In contrast with DFT, the many-body perturbation theory
�MBPT� within the GW approximation has proven to be a
practical and sufficiently accurate method for calculating QP
energies.32–34 In this method, the DFT eigenenergies within
the local-density approximation �LDA� or the generalized
gradient approximation �GGA� level are corrected perturba-
tively �QP corrections� to obtain the QP energies. For semi-
conductor interfaces, the QP corrections on the band edges
are often similar on both sides35 and do not substantially
affect the VBOs explaining the success of DFT.22 Neverthe-
less, this approach cannot be generalized to other interfaces.
For example, for the Si /SiO2 interface, the difference be-
tween the DFT and the experimental VBO is larger than 1
eV. Recent accurate calculations have shown that the QP
corrections account for this discrepancy,36 and hence they are
essential to reproduce quantitatively the experimental mea-
surements. For the Si /ZrO2 interface, a correction of about
1.1 eV has been extracted from GW calculations for Si �Ref.
35� and ZrO2 �Ref. 49� and used together with the experi-
mental band gap to correct DFT BOs in several works.14,15

For the Si /HfO2 interface, the same correction as for
Si /ZrO2 has been adopted16 since there were no GW calcu-
lations available for HfO2. Such an assumption seems quite
reasonable given the analogous electronic structure of ZrO2
and HfO2. However, for both Si /ZrO2 and Si /HfO2 inter-
faces, the VBOs obtained applying this correction are too
large �and as a consequence the CBOs too small� with re-
spect to the available experiments.14–16
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In this work, the origin of this disagreement is discussed.
QP calculations are performed for the thermodynamically
stable phases �cubic, tetragonal, and monoclinic� of HfO2
and ZrO2 as well for a strained tetragonal polymorph. In
particular, we calculate the QP corrections at the top valence
and bottom conduction bands in order to determine the fun-
damental band gaps and by comparison with Si, the QP cor-
rection for the Si/oxide band offsets. In contrast with previ-
ous QP calculations, our results show that the VBO remains
almost unchanged while the CBO is corrected by 1.3–1.5 eV,
thus, explaining the success of the scissor-corrected DFT.
The paper is organized as follows. In Sec. II, the method-
ological background is briefly described. Section III is de-
voted to the presentation and discussion of our results: the
DFT geometries and band structures, the QP corrections to
the band gaps, and finally the QP corrections to the Si/oxide
band offsets.

II. METHODOLOGICAL BACKGROUND

The geometries and electronic structures for all the sys-
tems are computed within the DFT. All the calculations are
carried out with the ABINIT �Ref. 37� code within the LDA
for the exchange-correlation energy functional.38

Troullier-Martins39 norm conserving pseudopotentials are
used which include semicore states in the pseudopotentials
for Zr and Hf �for details see Refs. 3 and 4�. The wave
functions are expanded on a plane-wave basis set up to ki-
netic energy cutoff of 12 Ha for Si and up to 30 Ha for the
HfO2 and ZrO2 polymorphs. For all systems, the Brillouin
zone �BZ� is sampled with a 4�4�4 Monkhorst-Pack40

grid.
The QP energies are evaluated using the MBPT within the

GW approximation. In this approach, the DFT eigenenergy
En

DFT and wave function �n
DFT for the nth state are used as a

zeroth-order approximation for their quasiparticle counter-
parts. Thus, the QP energy En

QP is calculated by adding to
En

DFT the first-order perturbation correction that comes from
replacing the DFT exchange-correlation potential vxc

DFT with
the GW self-energy operator �GW:

En
QP = En

DFT + R�Zn��n
DFT��GW − vxc

DFT��n
DFT�� . �1�

The renormalization factor Zn accounts for the fact that �GW,
which is energy dependent, should be evaluated at En

QP. The
GW self-energy operator �GW writes as a convolution in fre-
quency space between the one-electron Green’s function G
and the screened Coulomb potential W:

�GW�r,r�;�� =
i

2�
� d��ei���G�r,r�;���W�r,r�;� − ��� ,

�2�

where � is a positive infinitesimal. The explicit expression
for the Green’s function G is

G�r,r�;�� = 	
n

�n
DFT�r�
�n

DFT�r����

� − En
DFT + i� sgn�En

DFT − ��
, �3�

where � is the chemical potential. The screened Coulomb
potential is determined as convolution between the inverse of

the dielectric function 	−1 and the bare Coulomb interaction:

W�r,r�;�� =� dr�
	−1�r,r�;��

�r� − r��
. �4�

The dielectric function 	 is calculated within the random-
phase approximation �RPA�. Its dependence on the frequency
is approximated using the plasmon pole model �PPM� pro-
posed by Godby and Needs.41 For the cubic ZrO2, we explic-
itly test the validity of this choice. On the one hand, we
perform the same calculation with the PPM proposed by Hy-
bertsen and Louie.42 On the other hand, we take into account
the full frequency dependence of the dielectric matrix with-
out resorting to any PPM at all43,44 in order to discriminate
between the two PPMs.

In our QP calculations, both G 
Eq. �3�� and W 
Eq. �4��
are first evaluated from the DFT eigensolutions �which is
often referred to as G0W0�. Successively, the DFT energies
are self-consistently replaced in Eq. �3� by the corrected val-
ues obtained from Eq. �1� �GW0�. The QP corrections are
evaluated only for a few valence and conduction bands
around the gap; the other energies En

QP are extrapolated using
a scissor operator. We find that two to three iterations are
enough to converge the orbital energies up to 0.01–0.02 eV.
A systematic study45 on several bulk systems has recently
pointed out GW0 as a practical and accurate method for
evaluating QP energies. Indeed, while G0W0 provides under-
estimated energies for almost all systems, GW0 shows a good
agreement with both experimental data and full self-
consistent GW including a Bethe-Salpeter-like vertex
correction.46

The GW calculations are performed with the YAMBO �Ref.
47� code, except for the calculation of cubic ZrO2 with the
PPM of Hybertsen and Louie,42 which is performed with the
ABINIT code. We carefully study the convergence of the QP
corrections with the numerical cutoffs: for Si and the cubic
polymorphs of HfO2 and ZrO2, we include 200 bands in the
calculations of the Green’s function 
Eq. �3��, and 200 bands
and 331 reciprocal lattice vectors in the calculation of the
dielectric matrix48 in Eq. �4�. For the tetragonal polymorphs
�strained and at equilibrium�, we include 500 bands in the
calculations of the Green’s function, and 300 bands and 735
reciprocal lattice vectors in the calculation of the dielectric
matrix. Finally, the monoclinic polymorphs require 600
bands for the Green’s function, and 400 bands and 1177 re-
ciprocal lattice vectors for the dielectric matrix. With these
parameters, we estimate an error on the QP energies of about
0.05–0.1 eV depending on the system.

III. RESULTS

A. DFT geometries and band structures

For both ZrO2 and HfO2, the three thermodynamically
stable phases 
cubic �c�, tetragonal �t�, and monoclinic �m��
are investigated. In addition, a strained �s� form of the tetrag-
onal polymorph is also considered in which two sides are
fixed to a=aSi /�2 �aSi=5.40 Å is the LDA theoretical lattice
constant of Si� while all other degrees of freedom are re-
laxed. This last structure aims at simulating the effect of the
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epitaxial strain on the oxide in the MOSFET device.
The calculated equilibrium parameters describing these

four geometries are reported in Table I. Our results agree
within 1%–2% with previous LDA �Refs. 11, 12, 49, and 50�
and GGA �Refs. 15, 16, and 51–55� results, as well as with
experimental data.56 For the strained polymorphs �s-ZrO2
and s-HfO2�, a contraction is observed along the tetragonal
direction c of about 2% compared to their fully relaxed te-
tragonal analogs �t-ZrO2 and t-HfO2�. This is a direct conse-
quence of fixing the lattice constant a in the basal plane �in
fact, a is expanded by 7% and 5% in s-ZrO2 and s-HfO2,
respectively�. As an indirect consequence, the internal pa-
rameter dz becomes larger in the strained forms. For the latter
structure, no direct meaningful comparison is possible with
previous works in which epitaxial strained tetragonal poly-
morphs are also considered15,16 since these rely on the GGA
value for Si lattice constant.

The band structures calculated within the LDA are re-
ported in brown �gray in the printed version� in Fig. 1 for the
cubic, tetragonal, strained, and monoclinic forms of ZrO2
and HfO2. For ZrO2, the LDA band structures are in good
agreement with those presented in Ref. 50. The band struc-
tures of HfO2 are overall very similar to those of ZrO2, with
the important exception of the cubic phase 
Fig. 1�a��. In-
deed, while c-ZrO2 shows an indirect minimum band gap
from X �top of the valence band� to 
 �bottom of the con-
duction band� of 3.4 eV, c-HfO2 has a direct band gap at X of
3.5 eV. The indirect X-
 gap—that is the minimum gap in
c-ZrO2—is slightly larger �3.7 eV�.

In the tetragonal phase 
Fig. 1�b��, the top valence band is
almost flat along the 
Z and X
M directions. It actually
presents several maxima �close to X at 0.20 in the X

direction and close to 
 at 0.20 in the 
M direction, in A
and Z�. The conduction-band minimum �CBM� is located at

. The resulting indirect band gap is 4 eV for both t-ZrO2
and t-HfO2, respectively. The effect of the strain is to reduce
the band gap to 2.5 eV for ZrO2 and to 3.1 eV for HfO2 
Fig.

1�c��. The effect is larger for s-ZrO2 since it has the larger
mismatch with the Si lattice constant. A similar reduction of
the band gap resulting from the Si-epitaxial strain was also
observed in previous works.15,16 For both s-ZrO2 and
s-HfO2, the valence band is almost flat along the X
M di-
rection. The maxima are located close to 
, while the CBM
is at 
.

For the monoclinic phase 
Fig. 1�d��, the top of the va-
lence band is located at 
 while the bottom of the conduction
band is located at B. The indirect minimum band gap is 3.7
eV and 3.8 eV for m-ZrO2 and m-HfO2, respectively.

B. QP corrections on the band gaps

For all systems, the QP corrections are reported in Table II
and the resulting band structures appear in black in Fig. 1.
The effect of the QP corrections is to lower the valence
bands and to raise the conduction bands. For both ZrO2 and
HfO2, the QP corrections on the band edges depend only
weakly on the structure �c, t, s, or m�. The correction �Ev at
the valence-band maximum �VBM� varies from −0.3 to
−0.5 eV in ZrO2 and from −0.4 to −0.5 eV in HfO2, while
the correction �Ec at the CBM ranges from 1.4 to 1.5 eV in
ZrO2 and from 1.5 to 1.7 eV in HfO2. Moreover, the QP
corrections are not affecting the location of the minima and
maxima found in the LDA band structures. The net effect of
the QP corrections is thus to open the LDA band gaps by
�Eg=�Ec−�Ev varying from 1.8 to 2 eV for ZrO2 and from
1.9 to 2.1 eV for HfO2. The difference between the ZrO2 and
HfO2 band gaps found in LDA is increased by 0.2 eV
when including the QP corrections �from 0.1 to 0.3 eV in the
cubic and monoclinic phase; from 0.6 to 0.8 eV in the
strained phase�, except for the tetragonal phase in which the
band gaps differ by less than 0.1 eV both at the LDA and QP
level.

For ZrO2, the QP correction to the band gap, which is 1.9
eV in the three thermodynamically stable phases, is 0.4 eV
lower than the value previously obtained in Ref. 49 for the
cubic phase. This variation can be attributed to the different
PPMs �by Hybertsen and Louie42� used by the authors in the
frequency integration of Eq. �4�. Indeed, by repeating our
calculation for the cubic phase with the same PPM, the QP
correction to the band gap increases up to 2.4 eV in good
agreement with Ref. 49. In order to discriminate between the
two PPMs, the calculation is also repeated without resorting
to any PPM. The QP correction is found to be 2.1 eV, which
is 0.2 eV higher than the value obtained with the Godby and
Needs PPM, and 0.3 eV lower than the one obtained with the
Hybertsen and Louie PPM. It can be argued that our QP
corrections to the band gap and hence the resulting QP band
gaps are probably also underestimated for the other polymor-
phs of ZrO2 and for HfO2 due to the use of the PPM. Thus,
when comparing the results with the experiments or other
theoretical work, this extra uncertainty of about 0.2 eV
should also be taken into account.

Our calculated QP band gaps for c-, t-, and m-ZrO2 also
show an overall agreement with those of Ref. 57 relying on
the screened-exchange LDA method. This confirms the va-
lidity of this approximation for the calculation of band struc-

TABLE I. Structural parameters of the thermodynamically
stable phases 
cubic �c�, tetragonal �t�, and monoclinic �m�� and of
the strained �s� tetragonal structure �see text� of ZrO2 and HfO2.
The lattice constants �a, b, and c� are in expressed in Å, while the
angle � �between a and b� is given in degrees. For the tetragonal
and strained forms, the internal parameter dz is the displacement of
the oxygen atoms with respect to their ideal cubic position in units
of the lattice vector c. For the monoclinic polymorph, the internal
coordinates for the metal �M =Zr or Hf� and the two oxygen �O1

and O2� atoms are given in terms of lattice vectors.

ZrO2 HfO2

c a 5.011 5.273

t a c dz 3.547 5.086 0.040 3.616 5.169 0.031

s a c dz 3.817 4.980 0.058 3.817 5.053 0.041

m a b c 5.050 5.185 5.190 5.171 5.276 5.292

� 99.09° 99.27°

M �0.2780 0.0416 0.2097� �0.2778 0.0404 0.2059�
O1 �0.0789 0.3527 0.3279� �0.0799 0.3527 0.3277�
O2 �0.4460 0.7594 0.4838� �0.4462 0.7600 0.4857�
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tures. For HfO2, our result for the cubic phase agrees well
with the GW band gap reported in Ref. 58, while for the
tetragonal and monoclinic phases our values are larger by 0.2
eV.

Experimentally, the optical band gaps determined from
energy loss and transmission spectroscopies range from 5.2
to 5.7 eV for ZrO2 �Refs. 31, 50, and 59–63� and from 5.3 to
5.8 eV for HfO2.31,64–67 Hence, the agreement between our
calculations of the fundamental gap and experimental results
is quite reasonable considering the temperature, excitonic,
and impurities effects and the possible substrate strain in
case of deposited films that should be taken into account. For
the thermodynamically stable phases of ZrO2, reflectance
vacuum ultraviolet spectroscopy indicates 6.1–7.1 eV, 5.8–
6.6 eV, and 5.8–7.1 eV for the cubic, tetragonal, and mono-
clinic phases, respectively. For the last two, our calculated

TABLE II. For bulk Si, and bulk ZrO2 and HfO2 in the cubic
�c�, tetragonal �t�, and monoclinic �m� phases and strained �s� poly-
morph: the minimum DFT band gap Eg

DFT, the minimum QP band
gap Eg

QP at GW0 level, and the QP corrections �Ev and �Ec to the
VBM and CBM, respectively.

Si

ZrO2 HfO2

c t s m c t s m

Eg
DFT 0.4 3.4 4.0 2.5 3.7 3.5 4.1 3.1 3.8

�Ev −0.6 −0.5 −0.4 −0.3 −0.4 −0.5 −0.4 −0.4 −0.4

�Ec 0.1 1.4 1.5 1.5 1.5 1.5 1.5 1.6 1.7

Eg
QP 1.1 5.3 5.9 4.3 5.6 5.5 6.0 5.1 5.9
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FIG. 1. �Color online� Theoretical band structure within the LDA 
�brown circles� gray in the printed version� and GW0 �black circles�
along high symmetry axis of the BZ for the �a� cubic, �b� tetragonal, �c� strained, and �d� monoclinic phases of ZrO2 and HfO2. The GW0

band structures have been extrapolated from the calculated QP corrections using a linear fit.
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values fall into the range of the experimental estimates. In
contrast, for the cubic phase, our band gap is much lower
even when considering the minimum direct band gap �5.5 eV
at X� and when taking into account the underestimation by
0.2 eV coming from the PPM. This discrepancy may be re-
lated to the yttrium used to stabilize the cubic phase at room
temperature and/or the tendency of reflectance measurements
to overestimate the gap �see Ref. 50 for a thorough discus-
sion�. For HfO2, a “theoretical” band gap of 6.7 eV �Ref. 68�
was proposed for a film deposited on a SiOxNy / p-Si sub-
strate �monoclinic phase� by comparing direct/inverse photo-
emission spectroscopy with DFT density-of-states calcula-
tions, arguing that the reduction of 0.9 eV with respect to the
experimental band gap �5.9 eV� should be attributed to de-
fect tail states. Our value compares better with the band gap
determined directly from the experiment.

C. QP corrections on the Si/oxide band offsets

In the DFT approach, the VBO and CBO are conveniently
split into two terms:

VBO = �Ev
DFT + �V , �5�

CBO = �Ec
DFT + �V . �6�

The first term �Ev
DFT �resp. �Ec

DFT� on the right-hand side of
Eq. �5� 
resp. Eq. �6�� is referred to as the band-structure
contribution. It is defined as the difference between the VBM
�resp. the CBM� relative to the average of the electrostatic
potential in each material. These are obtained from two in-
dependent standard bulk calculations on the two interface
materials. The second term �V, called the lineup of the av-
erage of the electrostatic potential across the interface, ac-
counts for all the intrinsic interface effects. It is determined
from a supercell calculation with a model interface.

Despite the DFT limitations in finding accurate eigenen-
ergies, the VBOs are often obtained with a very good preci-
sion, in particular for semiconductors.22 This has opened an
indirect route to compute the CBOs through the experimental
band gaps using

CBO = �Eg
exp + VBO, �7�

where �Eg
exp is the difference between the experimental val-

ues of the band gap of each material. Note that this equation
is equivalent to applying a scissor correction to the conduc-
tion bands on both sides of the interface as can be seen by
inserting Eq. �5� in Eq. �7�,

CBO = �Ec
DFT + �V + ��Eg

exp − �Eg
DFT� , �8�

and comparing with Eq. �6�.
As discussed in Sec. I, this scissor-corrected DFT scheme

has been used in several studies of the Si /ZrO2 and
Si /HfO2.9–12 For the stable insulating O-terminated inter-
faces of Si /ZrO2 and Si /HfO2, the VBOs calculated are
found to range from 2.5 to 3 eV in good agreement with the
experimental findings �2.7–3.4 eV�.23–31 Adopting �Eg

exp

=4.7 eV �Eg
exp=1.1 eV for Si and 5.8 eV for ZrO2 and

HfO2� in Eq. �8�, the scissor-corrected CBOs lie thus be-

tween 1.7 and 2.2 eV. This is also in good agreement with
experiments �1.5–2.0 eV�.28–31

In the QP framework, it was often assumed35 and it has
recently been proven36 that the lineup of the potential �V is
already well described within DFT. So that, only the band-
structure contribution is modified:

VBO = �Ev
QP + �V = �Ev

DFT + ���Ev� + �V , �9�

CBO = �Ec
QP + �V = �Ec

DFT + ���Ec� + �V , �10�

where �Ev=Ev
QP−Ev

DFT �resp. �Ec=Ec
QP−Ec

DFT� is the quasi-
particle correction at the VBM �resp. CBM� and ���Ev�

resp. ���Ec�� is the corresponding difference between the
two materials.

For the Si /ZrO2 and Si /HfO2 interfaces, no specific GW
study exists as such. However, Fiorentini et al.14 evaluated
the QP effects on the VBO of Si /ZrO2 combining the value
for tetragonal ZrO2 ��Ev=−1.23 eV� from Ref. 49 with the
value for Si from Ref. 35 ��Ev=−0.15 eV�. This results in a
total correction of ���Ev�=1.08 eV on the VBO in Eq. �9�.
This value has been used in several other works15,16 even for
Si /HfO2 interfaces. For both Si /ZrO2 and Si /HfO2 inter-
faces, the VBOs obtained in this way were found to be too
large �and as a consequence the CBOs too small� with re-
spect to the experimental values.14–16

For the oxides, our QP corrections to the DFT valence
band �Ev vary from −0.3 to −0.5 eV; while for the conduc-
tions bands, �Ec ranges from 1.4 to 1.7 eV. For Si, our QP
corrections, which are reported in Table II, lead to a band gap
that agrees well with previous theoretical works �e.g., see
Ref. 45�, and with the experimental value.69 The total QP
correction to the gap �Eg of about 0.7 eV comes mostly from
the downshift of the valence-band state ��Ev=−0.6 eV�.
This �Ev value is almost the same as that found for the
polymorphs of both ZrO2 and HfO2. Therefore, the QP cor-
rection on the VBOs is only 0.1–0.2 eV and the correction on
the CBOs is about 1.3–1.5 eV. This explains why previous
studies based on scissor-corrected DFT were in such good
agreement with experimental results.

Turning to previous works14–16 that accounted for QP cor-
rections to the BOs of Si /ZrO2 and Si /HfO2 interfaces using
values from prior GW calculations,35,49 their disagreement
with experiments can be explained as follows. On the one
hand, the QP corrections in the oxide and Si are not consis-
tent since a different approximation has been used in Eq. �4�
for the dielectric function 	. The calculations for Si use a
model dielectric function,35 while the calculations for ZrO2
use the RPA. In particular, the value obtained for Si �Ev=
−0.2 eV is lower in absolute value with respect to the value
found from the RPA ��Ev=−0.6 eV�, and hence this incon-
sistency artificially increases the QP correction on the VBO.
On the other hand, our QP results �in particular, those for c-
and t-ZrO2� differ from those obtained in Ref. 49 where it
was found that the total QP correction �Eg=2.3 eV resulted
from lowering the valence bands by about 1.3 eV and raising
the conduction band by about 1.1 eV. The difference with our
results is due again to the different PPM used. Indeed, re-
peating the calculations with the Hybertsen and Louie PPM
for the cubic phase, we found a correction �Ev of −1.1 eV
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for the valence and �Ec of +1.3 eV for the conduction in
agreement with Ref. 49. When performing the same calcula-
tion without resorting to any PPM, we obtain �Ev=
−0.7 eV and �Ec=1.4 eV, meaning that �Ev is 0.2 eV too
low for the Godby and Needs PPM, and 0.5 eV too high for
the Hybertsen and Louie PPM. For the conduction bands,
�Ec differs by less than 0.1 eV with the former, while it is 0.3
eV too low with the latter.

As final remark, we stress that rigorously the QP correc-
tions on the band offsets should be calculated using the same
pseudopotential and the same exchange-correlation approxi-
mation as for the interface calculations. Indeed, while the
GW band gap has been demonstrated to be quite insensitive
to the starting point, this is not true for the QP corrections
that reflect—as a consequence—the differences in the choice
of the pseudopotential and the exchange-correlation approxi-
mation. Therefore, we would recommend to calculate—when
possible—QP corrections on DFT band offsets using the
same pseudopotentials, and exchange-correlation approxima-
tion as for the interface calculation and using the same PPM
for both materials.

IV. SUMMARY

The electronic properties of ZrO2 and HfO2 polymorphs
and their interface with Si have been investigated using GW
calculations. The QP corrections are found to be very similar
for the two oxides consistently with their analogous band
structure and depend only slightly on the crystalline struc-
ture. While, at the DFT level, the epitaxial strain was found
to dramatically shrink the band gap �especially for ZrO2 for

which the lattice parameter mismatch with Si is larger�, the
QP corrections depend only slightly on the strain. When con-
sidering the interface Si/oxide, the QP corrections to the
VBOs were calculated to be very small �a few tenths of
electron volts� by cancellation of the corrections on the
valence-band maximum of the Si and those of oxides. On the
other hand, the correction was found to be of the order of 1.5
eV for the CBOs. These results disagree with the correction
on the VBOs of more than 1 eV used in the literature,14–16

which was extracted from existing GW calculations.35,49 We
have traced back the differences with our results to the dif-
ference in the PPM used for the ZrO2 and to the inconsis-
tency in the level of approximation for the screened interac-
tion W. Our results combined with the DFT band offsets
available from the literature for different interfacial bonding
models provide values in good agreement with the experi-
ment.
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