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We review some recent developments in many-body pertur-

bation theory (MBPT) calculations that have enabled the

study of interfaces and defects. Starting from the theoretical

basis of MBPT, Hedin’s equations are presented, leading to

the GW and GWG approximations. We introduce the

perturbative approach, that is the one most commonly used

for obtaining quasiparticle (QP) energies. The practical

strategy presented for dealing with the frequency dependence

of the self-energy operator is based on either plasmon-pole

models (PPM) or the contour deformation technique, with the

latter being more accurate. We also discuss the extrapolar

method for reducing the number of unoccupied states which

need to be included explicitly in the calculations. The

use of the PAW method in the framework of MBPT is

also described. Finally, results which have been obtained

using MBPT for band offsets at interfaces and for defects

are presented, with emphasis on the main difficulties and

caveats.

Schematic representation of the QP corrections (marked with d)
to the band edges (Ev and Ec) and a defect level (Ed) for a Si/

SiO2 interface (Si and O atoms are represented in blue and red,

respectively, in the ball-and-stick model) with an oxygen

vacancy leading to a Si–Si bond (the Si atoms involved in this

bond are colored light blue).
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1 Introduction Almost all electronic andoptoelectronic
devices (such as MOS transistors, photovoltaic cells, semicon-
ductor lasers, etc.) contain metal–semiconductor, insulator–
semiconductor, insulator–metal, and/or semiconductor–semi-
conductor interfaces. The electronic properties of such

heterojunctions determine the device characteristics [1, 2]. The
band gaps of the participating materials are usually different,
hence, at least one of the band edges is different. The energy of
charge carriers must then change when passing through the
heterojunction. Most often, there will be discontinuities in both
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the conduction and valence bands. These so-called band offsets
(BOs) are the origin of most of the useful properties of
heterojunctions.

Defects also play a critical role for the functionality of
devices [3–5]. They can have both positive as well as
detrimental effects. As dopants they provide charge carriers
in semiconductors, which can contribute to a current, but
these carriers can also recombine at defect sites and are then
lost. Problems like flat-band and threshold voltage shifts,
carrier mobility degradation, charge trapping, gate dielectric
wear-out, and breakdown, aswell as temperature instabilities
are believed to mainly originate from defects forming at (or
close to) the heterojunction interface. A deep understanding
of the defects concerned is thus highly desirable for the
enhancement of device performance.

However, experimental characterization of defect energy
levels at interfaces is often very difficult to achieve, so
theoretical simulation can provide extremely useful infor-
mation for further improvement of devices. In this framework,
density functional theory (DFT) has been, and still is, widely
used to investigate the electronic properties of various
defective interfaces. Unfortunately, the semilocal approxi-
mations to DFT – such as the local density approximation
(LDA) or the generalized-gradient approximation (GGA) –
suffer from awell-known substantial underestimation of band
gaps, which hinders a precise prediction of the energy-level
alignment at interfaces. For this reason, hybrid density
functionals have recently increased in popularity [6–11].
These functionals, which incorporate a fraction of Hartree-
Fock (HF) exchange, lead to higher accuracies [12] and
improved band gaps [13, 14] compared to corresponding
results using semilocal functionals. The fraction of HF
exchange to be included cannot be known in advance for all
materials and its optimal value could even be property
dependent [15, 16]. Therefore the reliability of hybrid density
functionals cannot be assessed a priori [17].

In contrast, many-body perturbation theory (MBPT)
[18–22] offers an approach for obtaining quasiparticle (QP)
energies in solids which is controlled and amenable to
systematic improvement. However, the cost of such
calculations is generally higher than that of their DFT
counterparts. Recently, considerable effort has been devoted
to finding reliable techniques to speed upMBPT calculations
and make them tractable for the larger systems needed to
simulate defects and interfaces.

In this paper, we will review the recent developments in
MBPT calculations and the results obtained for interfaces and
defects. Section 1 is devoted to the theoretical basis ofMBPT.
Hedin’s equations are presented in Section 1.1. The GW
approximation is introduced in Section 1.2, while approxi-
mations going beyond GW are discussed in Section 1.3.
Section 2 focuses on the practical implementation and the
recent developments ofMBPT. InSection 2.1,wedescribe the
perturbative approach, that is usually employed to obtain QP
energies. Themethods used to take into account the frequency
dependence of the self-energy operators are presented in
Section 2.3. In order to allow for a reduction of the number of

unoccupied states that need to be included explicitly in the
calculations, the extrapolar method is introduced in
Section 2.4. We discuss the combination of MBPT with the
projector-augmented wave (PAW) method in Section 2.5.
Sections 3 and 4 are dedicated to MBPT results obtained for
BOs at interfaces and for defects, respectively. Special
emphasis is put on the caveats of the methods.

2 Many-body perturbation theory
2.1 Hedin’s equations A rigorous formulation for

the properties ofQPs is based on aGreen’s function approach
[18]. The QP energies EQP

i and wavefunctions cQP
i are

obtained by solving the QP equation:

" 1
2r

2 þ VextðrÞ þ VHðrÞ
! "

cQP
i ðrÞ

þ
R
Sðr; r0;EQP

i ÞcQP
i ðr0Þdr0 ¼ EQP

i cQP
i ðrÞ;

(1)

where Vext and VH are the external and Hartree potentials,
respectively. In this equation, the exchange and correlation
effects are described by the electron self-energy operator
Sðr; r0;EQP

i Þwhich is non-local, energy dependent, and non-
Hermitian. Hence, the eigenvalues EQP

i are generally
complex: their real part is the energy of the QP, while
their imaginary part gives its lifetime.

The main difficulty is to find an adequate approxi-
mation for the self-energy operator S. Hedin [23] proposed
a perturbation series expansion in the fully screened (as
opposed to bare) Coulomb interaction. The Green’s
function, G0, of a ‘‘zeroth-order’’ system of non-interact-
ing electrons is first constructed from the one-particle
wavefunctions ci and energies Ei of the ‘‘zeroth-order’’
Hamiltonian, as:

G0ðr; r0;EÞ ¼
X

i

ciðrÞc&
i ðr0Þ

E " Ei þ ihsgnðEi " mÞ ; (2)

where m is the chemical potential and h is a positive
infinitesimal. The exact one-body Green’s functionG is thus
written using the Dyson equation:1

Gð12Þ ¼ G0ð12Þ þ
Z

G0ð13ÞSð34ÞGð42Þdð34Þ: (3)

Here, the self-energy S is obtained by self-consistently
solving Hedin’s closed set of coupled integro-differential
equations:

Gð12; 3Þ¼ dð12Þdð13Þ

þ
Z

dSð12Þ
dGð45Þ

Gð46ÞGð75ÞGð67; 3Þdð4567Þ;

(4)
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1 In Section 1, Hedin’s simplified notation 1 ' ðx1; s1; t1Þ is used to denote
space, spin, and time variables and the integral sign stands for summation
or integration of all of these where appropriate. 1þ denotes t1 þ hwhere h
is a positive infinitesimal in the time argument. Atomic units are used in all
equations throughout this paper.
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Pð12Þ ¼ "i

Z
Gð23ÞGð42þÞGð34; 1Þdð34Þ; (5)

Wð12Þ ¼ vð12Þ þ
Z

Wð13ÞPð34Þvð42Þdð34Þ; (6)

Sð12Þ ¼ i

Z
Gð14ÞWð1þ3ÞGð42; 3Þdð34Þ; (7)

where P is the polarizability, W the screened and v the
unscreened Coulomb interaction and G the vertex function,
which describes higher-order corrections to the interaction
between quasiholes and quasielectrons. The self-consistent
iterative process is illustrated in the left panel of Fig. 1.

The most complicated term in these equations is G,
which contains a functional derivative and hence cannot in
general be evaluated numerically. The vertex is the usual
target of simplification for an approximate scheme.

2.2 GW approximation Hedin’s GWmethod [23] is
the most widely used approximation for the self-energy, S.
The approximation is defined by neglecting the variation of
the self-energy with respect to the Green’s function
dSð12Þ=dGð45Þ ¼ 0 in Eq. (4), leading to:

Gð12; 3Þ ¼ dð12Þdð13Þ: (8)

Thus, the polarizability in Eq. (5) is given by:

Pð12Þ ¼ "iGð12þÞGð21Þ; (9)

which corresponds to the random phase approximation
(RPA) for the dielectric matrix. The self-energy in Eq. (7)
becomes simply a product of the Green’s function and the
screened Coulomb interaction:

Sð12Þ ¼ iGð12ÞWð1þ2Þ; (10)

where the Green’s function used is consistent with that
returned by Dyson’s equation.

Since the self-energy depends on G, this procedure
should be carried out iteratively, beginning with G ¼ G0,
until the input Green’s function equals the output one. This

yields the self-consistent GW approximation, in which the
self-consistent cycle is restricted to Eqs. (3), (9), (6), and
(10), as illustrated in the right panel of Fig. 1.

In practice, it is customary to use the first iteration only,
often called one-shot GW or G0W0, to approximate the self-
energy operator. Here, W0 is perhaps the simplest possible
screened interaction, which in terms of Feynman diagrams
involves an infinite geometric series over non-interacting
electron–hole pair excitations as in the usual definition of the
RPA.2 This approximation for W, although tremendously
successful for weakly correlated solids, is not free of self-
screening errors [24, 25].

When using only a single iteration, it is important to
make that one as accurate as possible, so an initial G0

calculated using Kohn–Sham DFT is normally used. The
logic is that the Kohn–Sham orbitals should produce an input
G0 much closer to the self-consistent solution, thus rendering
a single iteration sufficient. This choice of G0 has in the past
produced accurate results for QP energies (i.e., the correct
electron addition and removal energies, in contrast to the
DFT eigenvalues [26]) for a wide range of s–p bonded
systems [27]. However, because this choice of G0 corre-
sponds to a non-zero initial approximation forS0, there is no
longer a theoretical justification for the usual practice of
setting the vertex to a product of delta functions before the
decoupling. Also, different choices for the exchange-
correlation functional may lead to different Green’s func-
tions [28, 29],makingG0W0 results dependent on the starting
point.

2.3 Beyond the GW approximation Since G0 is
often constructed from DFT orbitals, the self-energy and its
derivative are not zero for the first iteration. Using the static
exchange-correlation kernel, Kxc, (which is the functional
derivative of the DFT exchange-correlation potential, Vxc,
with respect to density, n) Del Sole et al.[30] demonstrated
howG0W0 may bemodifiedwith a vertex function tomakeS
consistent with the DFT starting point. They added the
contribution of the vertex – decoupled after the first
evaluation of dSð12Þ=dGð45Þ in Eq. (4) – into both the
self-energy, S (Eq. 7), and the polarization, P (Eq. 5). The
result is a self-energy of the formG0W0G. Instead, theG0

eW0

approximation is obtained when the vertex function is
included in P only. As commented by Hybertsen and Louie
[31] and Del Sole et al., both these results take the form of
GW, but with W representing the Coulomb interaction
screened by the test-charge-electron dielectric function and
the test-charge-test-charge dielectric function, respectively,
and with electronic exchange and correlation included
through a time-dependent DFT (TDDFT) kernel.

Using the LDA for the exchange-correlation potential
and kernel, Del Sole et al. found that G0W0G yields final
results almost equal to those of G0W0 for the band gap of
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Figure 1 Graphical illustration of the self-consistent process
required to solve the complete set of Hedin’s equations (left panel)
andthefourcoupledintegro-differential equationsresultingfromthe
GWapproximation(rightpanel).Theso-calledG0W0 approximation
consists of performing the loop only once starting from G ¼ G0.

2 In contrast to the common use of the RPA, there is no integration over the
interaction strength, since the perturbation expansion itself takes care of
the switching on of interactions.
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crystalline silicon and that the equivalent results from G0
eW0

were shown to close the gap slightly compared to standard
G0W0. However, in this previous study the PPM approxi-
mation was utilized for modeling the frequency-dependence
of W, which may have affected the resulting QP energies.

3 Practical implementation of GW and recent
developments beyond

3.1 Perturbative approach Often, it is more effi-
cient to obtain the QP energies from Eq. (1) rather than
solving the Dyson equation (Eq. 3) and searching for the
poles of theGreen’s function. The approach consists of using
perturbation theory with respect to the results of DFT.
Despite some fundamental differences, the formal similarity
is striking between the QP equation and the Kohn–Sham
equation:

" 1

2
r2 þ VextðrÞ þ VHðrÞ

# $
cDFT

i ðrÞ þ VxcðrÞcDFT
i ðrÞ

¼ EDFT
i cDFT

i ðrÞ; ð11Þ

where Vxc is the DFT exchange-correlation potential.3 In
many cases, the DFT energies EDFT

n already provide a
reasonable estimate of the band structure and are usually in
qualitative agreement with experiment. Furthermore, in the
simple systems for which the true QP amplitudes cQP

n have
been calculated, it was found that the DFT wave functions
cDFT

n are usually very close to the QP results [31, 32]. In
silicon, for instance, the overlap between DFT-LDA and QP
wave functions has been reported to be close to 99.9%, but
for certain surface [33, 34] and cluster states [35, 36] the
overlap is far less (see also Ref. [37] for comments and
criticisms). This indicates that in the basis of Kohn–Sham
wave functions, the self-energy can be considered a
diagonally dominant matrix with negligible off-diagonal
elements.

Hence, EDFT
i and cDFT

i for the ith state are used as a
zeroth-order approximation for their QP counterparts. The
QP energy EQP

i is then calculated by adding to EDFT
i the first-

order perturbation correction which comes from replacing
the DFT exchange-correlation potential Vxc with the self-
energy operator S:

EQP
i ¼ EDFT

i þ hcDFT
i jSðEQP

i Þ " VxcjcDFT
i i: (12)

To solve Eq. (12), the energy dependence of S must be
known analytically, which is usually not the case. Under the
assumption that the difference between QP and DFT
energies is relatively small, the matrix elements of the self-
energy operator can be Taylor expanded to first-order around
EDFT
i in order to be evaluated at EQP

i :

SðEQP
i Þ ( SðEDFT

i ÞþðEQP
i " EDFT

i Þ@SðEÞ
@E

%%%%
E¼EDFT

i :

(13)

In this expression, the QP energy, EQP
i , can be solved for:

EQP
i ¼ EDFT

i þ Zi cDFT
i SðEDFT

i Þ " Vxc

%% %%cDFT
i

& '
; (14)

where Zi is the renormalization factor defined by:

Z"1
i ¼ 1" cDFT

i

& %%@SðEÞ
@E

%%%%
E¼EDFT

i

cDFT
i

%% '
: (15)

The principle is illustrated in Fig. 2.

3.2 QP self-consistent GW The procedure
described above has proven very efficient [27], but several
questions inevitably arise: How much does the G0W0 result
depend on the starting point? What happens if the starting
DFT band structure is qualitatively wrong4? A self-
consistent GW self-energy calculation should be free of
such concerns.

However, performing self-consistency in GW is every-
thing but straightforward, since S, being non-Hermitian and
energy-dependent, should have non-orthogonal and energy-
dependent left and right eigenvectors. In practice, for large
systems, the solution of this Hamiltonian is not tractable
without approximations. Furthermore, fully self-consistent
GW calculations have been shown to worsen results
compared to the standard one-shot G0W0 method [39–41].
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Figure 2 (online color at: www.pss-b.com) Schematic illustration
(adapted fromRef. [38]) of the perturbative approach to finding the
QP correction. In principle, the self-energy matrix element,
SiiðEÞ ¼ hcDFT

i jSðEÞ " VxcjcDFT
i i, and the true QP correction,

SðEQP
i Þ, is found from the solution of E " EDFT

i ¼ SiiðEÞ, i.e., at
the crossing of the dashed black line andSiiðEÞ in the circular zoom-
in. In practice, the perturbative approach exploits the fact that it is
more computationally feasible to use the Taylor expansion around
SðEDFT

i Þ [Eqs. (14) and 15)], and find an approximate value for the
QP correction at the crossing of the red and black dashed lines.

3 Note that Vxc can be seen as a static, local, and hermitian approximation to
Sð12Þ.

4 For example, ifDFTerroneously predicts a system to bemetallic,when it is
not.
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A different solution to the self-consistency issue is the
so-called QP self-consistent GW approximation (QSGW)
developed by Faleev et al. [42] and co-workers [43, 44]. For a
set of trial QP energies and amplitudes Ei;cif g (for instance,
the eigensolutions of the DFT or Hartree problem), the one-
particle Green’s function, G, and in turn the GW self-energy
can be calculated. These authors proposed to constrain the
dynamical GW self-energy to be static and Hermitian and as
close as possible to the one-shot self-energy (G0W0) of a non-
interacting reference system. Their model QSGW self-
energy ~S reads:

ci
~S

%%%
%%%cj

D E
¼ 1

2
H ci SðEiÞj jcj

& '
þ cj SðEjÞ

%% %%ci

& '( )
; (16)

whereHmeans that only the Hermitian part of the matrix is
considered.

The approximated self-energymatrix, ~S, is diagonalized
yielding a new set of orthogonal QP amplitudes and real-
valued QP energies. From this new set of orbitals, a new
density nðrÞ and the corresponding Hartree potential is
generated, a new ~S is constructed and the procedure is
iterated to self-consistency. Ideally, the final result should
not depend on the initial Hamiltonian, though no firm
mathematical proof for this has been reported so far. The
QSGW approach improves the G0W0 results, giving band
gaps very close to experiments with errors that are small and
highly systematic [43].

Following the same spirit, Bruneval et al. [37] proposed
using an alternative Hermitian and static approximation to
the GW self-energy: the COHSEX approximation, derived
by Hedin in 1965 [23]. COHSEX is a simple approximation
which consists of two terms, the COulomb Hole part and the
Screened EXchange part:

SCOHSEXðr; r0Þ ¼ SCOHðr; r0Þ þ SSEXðr; r0Þ
SCOHðr; r0Þ ¼ dðr; r0Þ Wðr; r0;v ¼ 0Þ " vðr" r0Þ½ *
SSEXðr; r0Þ ¼ "

X

v

cvðrÞc&
vðr

0ÞWðr; r0;v ¼ 0Þ: ð17Þ

These terms do not involve any summation over empty
states (v runs only over occupied states). Performing self-
consistency for the COHSEX approximation is hence more
tractable than for the QSGW self-energy of Faleev and
coworkers, although SCOHSEX may be a cruder approxi-
mation than ~S.

An alternative is to constrain the QP amplitudes in ~S to
their DFT counterparts and only update the QP energies until
convergence. This method is referred to as the eigenvalue-
only QSGW (e-QSGW).

3.3 Plasmon pole models versus direct
calculation of the frequency integral In the frequency
domain, the GW self-energy is given by the convolution

Sðr; r0;vÞ¼ i

2p

Z
eiv

0hGðr; r0;vþv0ÞWðr; r0;v0Þdv0; (18)

where h is a positive infinitesimal. Evaluating this
expression requires, in principle, the knowledge of the full
frequency dependence of Wðr; r0;v0Þ. Moreover a fine
frequency grid would be required, since Gðr; r0;vÞ and
Wðr; r0;vÞ exhibit a fairly complex and rapidly changing
frequency dependence on the real axis. There are, however,
two different and more efficient techniques to evaluate Eq.
(18): (i) integration with a PPM and (ii) integration through
contour deformation (CD). In the former case, the frequency
dependence of e"1ðvÞ is modeled with a simple analytic
form, and the frequency convolution is carried out
analytically.

In the latter approach, the integral is evaluated
numerically by extending the functions into the complex
plane, where the integrand is smoother. Since the fine details
ofWðr; r0;vÞ are integrated over in Eq. (18), it is reasonable
to expect that approximatedmodels, able to capture the main
physical features of Wðr; r0;vÞ, should give sufficiently
accurate results at considerably reduced computational
effort. This is the basic idea behind the PPM, in which the
frequency dependence ofWðr; r0;v0Þ is modeled in terms of
analytic expressions. The coefficients of the model are
derived from first principles, i.e., without any adjustable
external parameters, either by enforcing exact relations or by
anchoring the scheme on quantities that are calculated ab
initio.

It is more convenient to Fourier transform all quantities
to a frequency and wave-vector basis using the following
convention:

Wðr; r0;vÞ ¼
X

qGG0

eiðqþGÞ+rWGG0 ðq;vÞe"iðqþG0Þ+r0 ; (19)

where G is a reciprocal lattice vector and q is a vector in the
first Brillouin zone. The screened interaction is related to the
dielectric matrix by:

WGG0 ðq;vÞ ¼ e"1
GG0 ðq;vÞvðqþ G0Þ; (20)

where the Fourier transform of the bare Coulomb interaction
takes the usual form vðqÞ ¼ 4p=ðV jqj2Þ, V being the crystal
volume. Adopting this formalism, the components with
G 6¼ G0 generate the local fields.

Finally, when the vertex is neglected as in Eq. (8), the
dielectric matrix is related to the polarizability, P, by:

eGG0 ðq;vÞ ¼ dGG0 " vðqþ GÞ PGG0 ðq;vÞ; (21)

which is nothing but the usual RPA when Eq. (9) is used to
compute P.

In thePPMsofGodby andNeeds [45] (GN) andHybertsen
and Louie [31] (HL), the imaginary part of e"1

GG0 ðq;vÞ is
approximated in terms of a delta function centered at the
plasmon frequency ~vGG0 ðqÞ with amplitude AGG0 ðqÞ, i.e.:

= e"1
GG0 ðq;vÞ

( )
¼ AGG0 ðqÞ,
½dðv" ~vGG0 ðqÞÞ " dðvþ ~vGG0 ðqÞÞ*:

(22)
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The real part can then obtained by means of a Kramers–
Kronig relation, and becomes:

< e"1
GG0 ðq;vÞ

( )
¼ dGG0 þ V2

GG0 ðqÞ
v2 " ~v2

GG0 ðqÞ
: (23)

where V2
GG0 ðqÞ ¼ "AGG0 ðqÞ ~v2

GG0 ðqÞ.
The approximation given by Eq. (22) is quite reasonable,

since experiments and first-principles analysis reveals that
= WG;G0 ðq;vÞ

( )
is generally characterized by a sharp peak in

correspondence to a plasmon excitation at the plasmon
frequency, at least for low momentum transfers, q.

At this point, one defines a set of physical constraints to
determine the parameters entering Eqs. (22) and (23). The
GN and HL PPMs differ in the choice of the particular
physical properties or exact relations they aim to reproduce.

In the GN approach, the parameters of the model are
derived so that eGG0 ðq;vÞ is correctly reproduced at two
different frequencies: the static limit (v ¼ 0) and an
additional imaginary point located at the Sommerfeld
plasma frequency ivp, wherevp ¼

ffiffiffiffiffiffiffiffi
4pr

p
with r the number

of electrons per volume [46]. After some algebra, the
following set of equations defining the plasmon-pole
coefficients can be derived:

AGG0 ðqÞ ¼ e"1
GG0 ðq;v ¼ 0Þ " dGG0

~v2
GG0 ¼ v2

p
AGG0 ðqÞ

e"1
GG0 ðq;v ¼ 0Þ " e"1

GG0 ðq; ivpÞ
" 1

+ ,
:

V2
GG0 ðqÞ ¼ "AGG0 ðqÞ~v2

GG0 ðqÞ

8
>>>><

>>>>:

ð24Þ

In the HL model, the PPM parameters are calculated so
as to reproduce the static limit exactly and to fulfill a
generalized f-sum rule relating the imaginary part of the
exact e"1

GG0 ðq;vÞ to the plasma frequency and the charge
density [47, 48]. The final expression for the PPMparameters
are:

V2
GG0 ðqÞ ¼ v2

p

ðqþ GÞ + ðqþ G0Þ
jqþ Gj2

nðG" G0Þ
nð0Þ

~v2
GG0 ðqÞ ¼

V2
GG0 ðqÞ

dGG0 " e"1
GG0 ðq;v ¼ 0Þ

AGG0 ðqÞ ¼ "p

2

VGG0 ðqÞ
~vGG0 ðqÞ

:

8
>>>>>>>><

>>>>>>>>:

(25)

Models based on Eqs. (22) and (23) have a number of
undesirable features, despite their success. For instance, for
some elements with G 6¼ G0, the plasmon poles ~vGG0 ðqÞ can
become very small or even imaginary which is somewhat
unphysical [31].

Two more recent PPM approaches due to Von der
Linden and Horsch [49] (vdLH) and Engel and Farid [50]
(EF) are expected to be more accurate. The vdLH PPM is
derived starting from the spectral decomposition of the

symmetrized inverse dielectric matrix:

~e"1
GG0 ðq;vÞ ¼

jqþ G0j
jqþ Gj e

"1
GG0 ðq;vÞ; (26)

by assuming that the frequency dependence is solely
contained in the eigenvalues (see Ref. [49]). The
disadvantage of the vdLH approach is that it satisfies the
f-sum rule only for the diagonal elements. In the EF PPM,
the eigenvalues and the eigenvectors are frequency
dependent, and derived from an approximation to the
reducible polarizability which is exact both in the static- and
high-frequency limit. For further details on this plasmon-
pole technique, see Ref. [50].

Since the frequency convolution in Eq. (18) can be
carried out analytically once the plasmon-pole parameters
are known, the PPM technique is an ideal tool for initial
convergence studies. It usually proves to be accurate to
within 0.1–0.2 eV for states close to the Fermi level, when
compared to results obtained with a costly numerical
integration of

P
[27]. On the other hand, the accuracy

worsens for states far from the gap, especially for low-lying
states. To analyze physical properties depending on these, it
is necessary to avoid PPM methods, and calculate the
frequency dependence ofW explicitly.

A straightforward numerical evaluation of Eq. (18) is
problematic due to the fact that G and W both have poles
infinitesimally above and below the real axis. Therefore, a
straightforward integration algorithm along the real axis
would need evaluations of the integrand precisely in the
region where it is ill-behaved. An alternative route to
evaluating Eq. (18) traces back to the earliest GW
calculations for the homogeneous electron gas [51]. The
Green’s functionG and the screened Coulomb interactionW
are analytic functions (except along the real axis) and can
consequently be analytically continued to the full complex
plane. The strategy is to use a deformation of the contour of
integration in order to avoid having to deal with quantities
close to the real axis as much as possible. Instead of
evaluating the integral along the real axis, one evaluates the
integral along the imaginary axis, and then adds the residues
arising from the poles enclosed in the contour depicted in red
in Fig. 3.

3.4 The extrapolar method GW calculations are
computationally very demanding. Two major steps in these
can be distinguished: the calculation of the polarizability and
the evaluation of matrix elements of the self-energy. The
quantities involved are not only non-local (two plane-wave
indices), but also involve summations over all states
(occupied and empty). Recently, Bruneval and Gonze [52]
proposed an acceleration scheme to improve the conver-
gence with respect to the number of states. The main idea is
to replace the poles arising from the eigenvalues of empty
high-energy states with a single (average) pole, which
carries all the spectral weight above a certain cutoff for
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states. Note that the extrapolar techniquewas first introduced
in the optimized effective potential framework [17] and in a
preconditioning scheme [53].

Both in the polarizability and in the self-energy, the
expressions to be evaluated contain a sum over wavefunc-
tions in a numerator and energy differences in a denominator.
If we were able to factor a simple common denominator out
of the sum, it would be straightforward to eliminate the
wavefunctions in the numerator, above some cutoff band
index, Nb, by using the closure relation:

X

b>Nb

jbihbj ¼ 1"
X

b-Nb

jbihbj: (27)

Treating the denominator of the remainder (now
dependent on all states b - Nb) is the delicate part, which
requires careful consideration.

3.4.1 Polarizability with a limited number of
empty states Using time-reversal symmetry, the trun-
cated expression for the independent-particle polarizability
in reciprocal and frequency space reads

P0GG0 ðq;vÞ ¼
2

NkV

X

k

X

Nv<b-Nb
v-Nv

Mbv
k ðqþ GÞ Mbv

k ðqþ G0Þ
( )&

, 1

v" ðevk " ebk"qÞ " ih

+

" 1

v" ðebk"q " evkÞ þ ih

,
;

(28)

where V is the volume of the unit cell, h is a positive
infinitesimal, Nv is the number of valence states, Nk is the
number of k-points in the Brillouin zone, and the index k

runs over the k-points of the Brillouin zone. The matrix
elements:

Mbb0

k ðqþ GÞ ¼ hcbk"qje"iðqþGÞ+rjcb0ki; (29)

are the so-called oscillator strengths.
The extrapolar method proposes that the empty states

above the truncation index, Nb, all have the same energy. In
this case, the dependence with respect to index b is removed
in the denominator and one can apply the closure relation to
the numerator in order to get rid of any dependence on this
index. This procedure adds a term to the usual truncated
expression for P0. The correction consists of two terms:

DGG0 ðq;vÞ ¼
2

NkV

X

k

X

v-Nv

hcvkjeiðG
0"GÞ+rjcvki

, 1

v" ðevk " eP0Þ " ih
" 1

v" ðeP0 " evkÞ þ ih

+ ,

" 2

NkV

X

k

X

v-Nv

b-Nb

Mbv
k ðqþ GÞ Mbv

k ðqþ G0Þ
( )&

, 1

v" ðevk " eP0Þ " ih
" 1

v" ðeP0 " evkÞ þ ih

+ ,
;

(30)

which are now free of any dependence on states above Nb.
Instead they contain an ‘‘average’’ energy eP0 which
represents the omitted part of the eigenvalue spectrum by a
mean value. The best value for eP0 can be easily determined
by a trial-and-error procedure or in a more elegant manner
by considering the fulfillment of the f-sum rule for P0ðvÞ.

3.4.2 Self-energy with a limited number of
empty states An analogous procedure can be applied to
the correlation part of the self-energy:

hcbkjScðebkÞjcbki ¼
i

2pNkV

,
Z X

b0-Nb

X

qGG0

WGG0 ðq;v0Þ " dGG0vðqþ GÞ½ *

,
Mbb0

k ðqþ GÞ Mbb0
k ðqþ G0Þ

( )&

v0 " eb0k"q þ ebk . ih
dv0;

(31)

where h is a positive infinitesimal. The sign in front of h is
plus when the state b0 is empty, and minus otherwise.

Unlike for the polarizability, a PPM becomes necessary
for the self-energy to make the extrapolar correction
tractable. In this context, the PPM is a very good
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Figure 3 (online color at: www.pss-b.com) Schematic representa-
tion of the contour of integration in the complex v0 plane used to
evaluateSðvÞ. The poles of the integrand are shown as circles. Only
the poles due toGreen’s function that lie inside the path contribute to
the final result.
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approximation. The final correction reads:

Dbk ¼
1

NkV

,
X

qGG0

V2
GG0 ðqÞvðqþ GÞ

2~vGG0 ðqÞ ~vGG0 ðqÞ þ eS " ebk " ih½ *

,
n
hcbkjeiðG

0"GÞ+rjcbki

"
X

b0-Nb

Mbb0

k ðqþ GÞ Mbb0

k ðqþ G0Þ
h i&o

:

(32)

Again, it consists of two terms that do not depend on any
state above Nb. The introduced average energy eS in the
denominators can safely be taken to be equal to the
previously introduced eP0 .

3.5 MBPT in the PAW framework Thanks to the
excellent agreement obtained with respect to experiments,
pseudopotential (PP)-based methods have for several
decades represented a de facto standard for MBPT
calculations. In recent years, however, results obtained with
all-electron (AE) approaches [44, 54] have revealed that a
fully consistent treatment of the electronic degrees of
freedom produces GW band gaps that are systematically
smaller than PP results, thus worsening the agreement
between G0W0 and experiments. These findings have led to
quite an intense debate in the scientific literature concerning
the reliability of the PP approach for MBPT calculations
(see, for instance, Refs. [55–58]).

Systems with shallow cores or localized d- or f-electrons
present severe challenges to PPGW calculations [28, 56, 58–
60]. Core-valence exchange is large in these systems, due to
the large overlap of the localized d or f-states (or semicore
states) with lower-lying core states in the same atomic shell.
To treat core-valence exchange consistently it is therefore
either important to let the exchange part of the GW self-
energy act on all electrons of one shell [56, 58, 59] – which
can be very expensive computationally – or to build the
exchange interaction into the PP [28, 29].

The PAW formalism introduced by Blöchl in 1994 [61]
presents a flexible and efficient alternative to PPs in GW
calculations. It combines the PP framework with an AE
description and allows for results on a par with AE
accuracy at considerably reduced computational cost. The
method takes advantage of several ideas and techniques
developed in the past decades both in the PP and in the AE
community. From the PP approach [62] it inherits the idea
of substituting the true Kohn–Sham wave function cðrÞ
with a pseudized image ~cðrÞ which can be efficiently
expanded in an extended basis set (e.g., plane-waves).
Similar to many AE approaches, PAW employs atomic
orbitals to describe the AE wave function cðrÞ inside non-
overlapping atom-centered spheres, thus retaining infor-
mation about the correct nodal structure of electronic
orbitals.

The mapping between the true wave function, jci, with
its complete and complex nodal structure around the nuclei,
and the fictitious smooth pseudo wave functions, j~ci, is
defined by the linear transformation: jci ¼ T̂ j~ci. T̂ is given
by the identity operator plus a sum of localized terms, T̂ a,
only acting within the atomic spheresVa centered on atomic
sites a:

T̂ ¼ 1̂þ
X

a

T̂ a: (33)

A schematic representation of the division of the unit cell
employed in the PAW method is shown in Fig. 4.

The linear transformation within each augmentation
region Va is defined by specifying a set of functions, ffa

i g,
which form a complete basis set within Va. This set of
functions serves as a basis set for the expansion of the true
electronic wave function in each augmentation region with
coefficients cai :

jci ¼
X

i

cai jf
a
i i in Va: (34)

A possible and natural choice for the basis set ffa
i g

are the solutions of the radial Schrödinger equation
for the isolated atom. In this case the index i is a
contracted notation for the atomic positionRa, the angular
momentum quantum numbers ðl;mÞ, and an additional
index n used to label solutions with different energy.
The final expression for the linear transformation is given
by [61, 63]

T̂ ¼ 1̂þ
X

a

X

i

ðjfa
i i " j~fa

i iÞh~p
a
i j: (35)

where the auxiliary pseudo partial waves j~fa
i i equal the AE

counterparts jfa
i i beyond the radius rac of the PAW sphere,

and are used to expand the pseudized function j~ci inside the
augmentation sphere. The atom-centered projector func-
tions j~pai i are strictly localized inside the spheres and obey
the orthogonality property:

h~pai j~f
a
j i ¼ dij: (36)

The matrix elements of a local or semilocal operator
Â between two AE wave functions can be efficiently
and accurately evaluated by employing the linear
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Figure 4 (online color at: www.pss-b.com) Schematic representa-
tion of the division of the unit cell employed in the PAW method.
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transformation T̂ given in Eq. (35). After some algebra
one obtains:

hcjÂjci ¼ h~cjÂj~ci
þ
X

ij

h~cj~pii½hfijÂjfji " h~fijÂj~fji*h~pjj~ci: (37)

The first term in Eq. (37) has the same mathematical
structure as the expression present in the PP formalism. As it
involves only the ‘‘smooth’’ part of the wave function, it can
be evaluated either in real or reciprocal space, depending on
the nature of Â, by changing representation through fast
Fourier transform techniques. The second term involves the
onsite matrix elements of the Â operator between AE and
pseudo partial waves. It can be evaluated either by employ-
ing radial and angular meshes in real space or by expanding
the operator Â in terms of angular momenta.

Within the PAW formalism, the oscillator strengths, –
i.e., the basic ingredients required to evaluate P0ðvÞ, and the
matrix elements of SðvÞ – can be obtained by means of the
following equation [64]:

cbk"qje"iðqþGÞ+rjcb0k

& '
¼ ~cbk"qje"iðqþGÞ+rj~cb0k

& '

þ
P
ij

~cbk"qj~pi
& '

~pjj~cb0k

& '
e"iðqþGÞ+Ri

,
h
fije"iðqþGÞ+ðr"RiÞjfj

& '

" ~fije"iðqþGÞ+ðr"RiÞj~fj

D Ei

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4p

P
lm

ð"iÞlYl
mð dqþ GÞGlm

limiljmj

,
R
jlðjqþ GjrÞðfnilifnjlj " ~fnili

~fnjljÞdr

;

(38)

where the plane wave has been expressed in terms of Bessel
functions jlðxÞ and real spherical harmonics Yl

mðĜÞ via the
Rayleigh expansion. The symbol Glm

limiljmj
is used to denote

the Gaunt coefficient [65], defined by:

Glm
limiljmj

¼
Z

Yli
mi
Yl

mY
lj
mj
dV: (39)

4 QP corrections to the BOs at interfaces In the
DFT approach, the valence and conduction band offsets
(VBO andCBO, respectively) are conveniently split into two
terms:

VBO ¼ DEDFT
v þ DV ; (40)

CBO ¼ DEDFT
c þ DV : (41)

The first termDEDFT
v (resp.DEDFT

c ) on the right-hand side
of Eq. (40) [resp. Eq. (41)] is referred to as the band-structure
contribution. It is defined as the difference between the

valence band maximum (VBM) (and the conduction band
minimum (CBM), respectively) relative to the average of the
electrostatic potential in each material. These are obtained
from two independent standard bulk calculations on the two
interface materials. Alternatively, these can be obtained
from an analysis of the local density of states [66]. The
second term DV , called the lineup of the average of the
electrostatic potential across the interface, accounts for all
the intrinsic interface effects. It is determined from a
supercell calculation with a model interface.

Despite the limitations of DFT in finding accurate
eigenenergies, the VBOs are often obtained with a very good
precision, in particular for semiconductors [67]. This has
opened an indirect route to computing the CBOs through the
experimental band gaps using:

CBO ¼ DEexp
g þ VBO: (42)

Note that this equation is equivalent to applying a scissor
correction to the conduction bands on both sides of the
interface, as can be seen by inserting Eqs. (40) and (42):

CBO ¼ DEDFT
c þ DV þ ðDEexp

g " DEDFT
g Þ; (43)

and then comparing with Eq. (41).
The first QP calculation of the band-offsets (BOs) goes

back to the work of Zhang et al. [68] who were investigating
the VBO at the AlAs"GaAs(001) interface. They assumed
that the lineup of the potential DV is already well described
withinDFT, arguing thatQP correctionswould not affectDV
since it only depends on the long range electrostatic
potentials. The latter are well-known functions of the
electronic densities, which are given quite accurately by
DFT.

Recently, the many-body effects on DV have been
explicitly investigated [69]. This was done by comparing
the electronic density and the resulting DV calculated within
DFT and QSGW for a small model of the Si/SiO2 interface
illustrated in Fig. 5(a). It was found that the QSGW
results differ only slightly from DFT. The change in planar
average of the electronic density, r, was at most 1 me/a.u.
in the interface region, as illustrated in Fig. 5(b). This lead
to a variation in the macroscopic average of the local
potential V [Fig. 5(c)] smaller than 45meV in that region.
However, the net difference between the bulk materials,
which is relevant for the lineup of the potential DV , was less
than 12meV. It was thus concluded that the interfacial
charge density and, consequently, the associated dipole
moments are well described within DFT, justifying the
assumption that the lineup of the potential can be taken to
be the same as in DFT. For metal-insulator or metal-
semiconductor interfaces, this assumption still needs to be
carefully checked.

Assuming that DV can be taken from DFT, only the
band-structure contribution is modified by QP corrections:

VBO ¼ DEQP
v þ DV ¼ DEDFT

v þ DðdEvÞ þ DV ; (44)
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CBO ¼ DEQP
c þ DV ¼ DEDFT

c þ DðdEcÞ þ DV ; (45)

where dEv ¼ EQP
v " EDFT

v (resp. dEc ¼ EQP
c " EDFT

c ) is the
QP correction at the VBM (resp. CBM) and DðdEvÞ [resp.
DðdEcÞ] is the corresponding difference between the two
materials. It is important to stress that these corrections,
which are obtained from bulk calculations, are the only
additional ingredients that are required when DFT
calculations of the VBO and CBO already exist.

Interestingly, for various semiconductor interfaces, the
QP corrections of the band edges are found to be almost the
same on both sides [68, 70] leading toDðdEvÞ - 0.2 eV in Eq.
(44). As a result of this cancellation of errors, DFT is quite
successful for these interfaces [67] with errors ranging from
0.1 to 0.5 eV, despite the limitations mentioned above. This
relative success of DFT explains why it has beenwidely used
to predict the VBO for a wide range of interfaces. And, when
needed, the CBO was also predicted using a simple scissor
operator to correct the band gap to the experimental value.
This assumption was further motivated by the fact that
MBPT calculations going beyond GW by including an
approximate vertex correction (GWG) showed that the VBM
remained at its DFT value for silicon, with the whole
correction going to the conduction bands [30, 71].

However, when it comes to semiconductor–insulator or
insulator–insulator interfaces, it appears that the errors to the

VBO can be much more important in DFT. For instance, for
the Si/SiO2 interface, the VBOs are calculated to be 2.3–
3.3 eV [66, 72–74] in noticeable disagreement with the
experimental results of 4.3 eV [75, 76]. In contrast, for the Si/
ZrO2 and Si/HfO2 interfaces, the calculated VBOs for the
stable insulating O-terminated interfaces are around 2.5–
3 eV [77–81], in reasonable agreement with experiment
(2.7–3.4 eV) [82–90]. For these interfaces, scissor-corrected
DFT has also been used to predict CBOs of about 1.7–2.2 eV,
which compare quite well with the experimental values (1.5–
2 eV) [87–90]. It seems that the cancellation of errors may
vary strongly from one system to another, emphasizing the
need to go beyond DFT by including QP corrections.
Interestingly, hybrid functionals have been shown to give
very goodVBOs andCBOs compared to experiment for both
the Si/SiO2 and Si/HfO2 interfaces by tuning the fraction of
HF exchange for each bulk component to reproduce the
experimental value of the band gap [9, 10].

For the Si/ZrO2 interface, a QP correction of about
1.1 eV to the VBOs has been extracted fromGW calculations
for Si [70] and ZrO2 [91] and used together with the
experimental band gap to correct DFT BOs in several works
[92, 93]. For the Si/HfO2 interface, the same correction as for
Si/ZrO2 has been adopted [94] since there were no GW
calculations available for HfO2. Such an assumption seems
quite reasonable given the analogous electronic structure of
ZrO2 and HfO2. However, for both Si/ZrO2 and Si/HfO2

interfaces, theVBOs obtained by applying this correction are
too large (and as a consequence the CBOs too small) with
respect to the available experiments [92–94].

This discrepancy can be traced back to the fact that,
while the QP corrections to the gap dEg are not very sensitive
to the choice of the PPM [64], the absolute values of dEv and
dEc may vary from one PPM to another, as reported in Refs.
[69, 95]. The results of Ref. [69] for Si and c-SiO2 and those
of Ref. [95] for c-ZrO2 are summarized in Table 1. Since a
precise knowledge of the QP corrections at the band edges is
required for BO calculations, it is necessary to go beyond
PPMs, by taking the frequency dependence of W into
account explicitly. This can be done by using the CDmethod
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Figure 5 (online color at: www.pss-b.com) Small model of the Si/
SiO2 interface (upper panel) used in Ref. [69] to compute the
difference between DFT and QSGW for the planar average of the
electronic density r (middle panel) and the macroscopic average of
the local potentialV (lower panel). The density and the potential are
expressed in me/a.u. and in meV, respectively.

Table 1 QP corrections (in eV) at the VBM (dEv), at the CBM
(dEc), and for the band gap (dEg) for Si, c-SiO2 (from Ref. [69]),
and c-ZrO2 (from Ref. [95]). The corrections are calculated within
e-QSGW using the PPMs proposed by HL [31], vdLH [49], GN
[45], EF [50], and without PPM using the CD method.

HL GN vdLH EF CD

Si dEv "0.6 "0.4 "0.6 "0.6 "0.4
dEc þ0.1 þ0.2 þ0.1 þ0.1 þ0.2
dEg þ0.7 þ0.6 þ0.7 þ0.7 þ0.6

c-SiO2 dEv "2.6 "2.0 "2.5 "2.3 "1.9
dEc þ1.3 þ1.5 þ1.1 þ1.2 þ1.5
dEg þ3.9 þ3.5 þ3.6 þ3.5 þ3.4

c-ZrO2 dEv "1.1 "0.5 – – "0.7
dEc þ1.3 þ1.4 – – þ1.4
dEg þ2.4 þ1.9 – – þ2.1
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(see Section 2.3). The comparison between the CD and PPM
results for a given system allows one to validate a PPM for
further study of similar systems. Interestingly, the PPM
proposed by GN [45] seems to lead to QP corrections in
excellent agreement with those of the CD method (see
Table 1), at variance with the other PPMs. Further
investigation is still required to generalize this finding.

It is important to note that, rigorously, theQP corrections
on the BOs should be calculated using the same PPs and the
same exchange-correlation approximation as for the inter-
face calculations. Indeed, the QP corrections are much more
sensitive to these approximations than the band gap.
Therefore, extreme caution should be applied when the QP
corrections to DFT BOs are not calculated using the same
approximations (e.g., in the PP, the exchange-correlation
approximation, and the PPM).

Once this is carefully taken into account, the QP
corrections can be calculated. It is also interesting to analyze
the effect of including vertex corrections. The results
reported in Ref. [69] for Si and c-SiO2, and in Ref. [96] for
c-HfO2, are summarized in Table 2. While e-QSGW leads to
a lowering of the VBM of Si compared to the DFT result
(dEv - 0), the inclusion of vertex corrections brings it back
to roughly its original value with a small shift upwards of
0.1 eV, with all of the QP correction being on the conduction
band. A similar result was also found previously [30, 71]. For
HfO2, the vertex correction acts in the same way though in
this case the shift to the VBM is slightly larger (0.2 eV
downwards). The results for Si and c-HfO2 give some
motivation to the use of a scissor operator to compute the
CBO within DFT. However, for c-SiO2, the results are very
different. First, the VBM is also raised when including the
vertex, but it definitely does not regress to the DFT level.
This indicates that in Si and c-HfO2, the recovery of the DFT
VBMwith the vertex is a coincidence. It also definitely rules
out the use of a simple scissor operator for the computation of
the BOs, unless further checks or refinements are made.

Finally, using Eqs. (44) and (45), the BOs can be
computed within MBPT at the GW and GWG levels. The
results reported in Refs. [69, 95] compare very well with the
experimental ones. Within e-QSGW the agreement is
excellent for both the VBO and CBO (less than 0.3 eV
difference). The effect of the vertex correction is less than
0.1 eV on the BOs. This results from a cancellation of the
effects on each side of the interface. Indeed, in Eqs. (44) and

(45), it is the difference between the QP corrections in both
materials [DðdEvÞ andDðdEcÞ] thatmatters. As can be seen in
Table 2, this difference is typically less than 0.1 eV for the
couples Si/SiO2 and Si/HfO2.

The effect of the vertex correction is very small
compared to standardGW calculations. For the homogenous
electron gas and atomic systems, it has been shown [97] that
the local vertex correction of Del Sole et al. generally causes
a large unphysical upward shift in the absolute values of band
energies (and total energies). However, the relative changes
in the QP energies obtained using G0W0G are very small
compared toG0W0 results. The large shift can be attributed to
an unphysical feature of the spectral function of the self-
energy, which can come to have the wrong sign after a given
energy. In the absence of non-trivial external electromag-
netic fields, the spectral function of S should be strictly
positive (negative) definite for frequencies below (above) the
Fermi energy. A demonstration of this failure for the
homogenous electron gas is given in Fig. 6.

In contrast, as can also be seen from Fig. 6, there is no
such failure for the implementation of the vertex only in the
screened interaction, i.e., G0

eW0. Ironically, this is actually
more time-consuming to implement in any existing code, as
it requires an extra matrix multiplication before the
calculation of the dielectric matrix. However, the bandwidth
of metals compares better to experiments with this
implementation, and it has also recently been used in
Bethe-Salpeter calculations on molecules and metal clusters
to good effect [98, 99]. These results indicate that the G0

vertex might yield better BOs, and the utility of this type of
simple vertex correction certainly merits further study.

5 QP corrections for defects Despite the methodo-
logical advancements discussed in previous sections it is still
computationally challenging to compute total energies in
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Table 2 QP corrections (in eV) at the VBM (dEv), at the CBM
(dEv), and for the band gap (dEg) for Si, c-SiO2 (from Ref. [69]),
and c-HfO2 (from Ref. [96]). The corrections are calculated using
e-QSGW and e-QSGWG (the e-QS are omitted below).

Si c-SiO2 c-HfO2

GW GWG GW GWG GW GWG

dEv "0.4 þ0.1 "1.9 "1.3 "0.6 "0.2
dEc þ0.2 þ0.7 þ1.5 þ1.8 þ1.1 þ1.6
dEg þ0.6 þ0.6 þ3.4 þ3.1 þ1.7 þ1.8

Figure 6 (online color at: www.pss-b.com) The imaginary part of
the self-energy in jellium for rs ¼ 2:0 and k ¼ 0:5kF . This is the
spectral function of S. Plotted in this way, it should be positive
definiteeverywhere.ThecurveforG0W0G fails tobepositivedefinite
from the inset arrow onwards, after which it goes to a negative
minimumand then slowlydecays back to zero.The spectral function
fromG0

eW0, incontrast,hasnosuchbehaviorandhas theproper limit.
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GW and MBPT and no calculation for a defect has been
reported so far.

The conventional way of obtaining defect formation
energies, namely by calculating the total energy difference
between the defective and a reference system [100], is therefore
unavailable. Defect formation energies become accessible in
GW again by realizing that QP energies correspond to electron
addition and removal energies. Since the ionization potential
and the electron affinity can be expressed in terms of total
energy differences the formation energy of a defect can be
formally rewritten as the successive charging of a lower (or if
more convenient, higher) charge state [101, 102].

The formation of a neutral and a positive from a 2þ
charge state is depicted schematically in Fig. 7. For the
example of the positive charge state this process reads
mathematically

Ef
Dðþ; eFÞ ¼ Dðþ;RD

þ;R
D
2þÞ þ Að2þ;RD

2þÞ
þEf

Dð2þ; eF ¼ 0Þ þ eF;
(46)

where Ef
Dðþ; eFÞ and Ef

Dð2þ; eF ¼ 0Þ are the formation
energies of the þ and 2þ and eF the Fermi energy. RD

q
denotes the atomic coordinates of defectD in charge state q.
Að2þ;RD

2þÞ defines the vertical electron affinity of the 2þ
state Eðþ;RD

2þÞ " Eð2þ;RD
2þÞ (step 1 in Fig. 7), referenced

to the top of the valence band, whereas Dðþ;RD
þ;R

D
2þÞ gives

the subsequent relaxation energy in the positive charge state
Eðþ;RD

þÞ " Eðþ;RD
2þÞ (step 2). The formation energy of

higher charge states follows analogously.
Having split the formation energy into an electron

addition and a lattice part, the most suitable computational
technique can be employed for each part. For electron
affinities (change in charge state at fixed geometry) we apply
the GW approach. For relaxation energies (change of
geometry in the same charge state) we retain DFT. Since
the scheme has to be anchored on the formation energy of at
least one charge state that cannot be corrected byGW (the 2þ
in our example) theGW-correction approach depends on the
quality of this formation energy and its associated valence
bandmaximum (the reference for the Fermi energy). This is a

weakness of the scheme and implies that relative formation
energies (i.e., charge transition levels for which this
dependence cancels exactly) are more accurate than absolute
formation energies.

Applied to the self-interstitial in silicon the GW scheme
corrects the DFT-LDA formation energy of different neutral
configurations (see Fig. 8) by /1.1 eV [102] in good
agreement with diffusion Monte Carlo calculations [103,
104]. For the þ! 0 charge transition level of a phosphor
vacancy at the InP(110) surface the GW-corrected value of
0.82 eV is in much better agreement with the experimental
value of 0.75. 0.1 eV than the DFT-LDA charge transition
level of 0.47 eV [101]. A long-standing problem was solved
for silicon dioxide, where DFT-LDA favors the diffusion of
charged oxygen interstitials, in clear disagreement with
available experimental results. Agreement with experiment
is recovered by applying the G0W0-correction approach,
which substantially increases the formation energies of the
negatively charged interstitials, leaving as dominant self-
diffusion mechanism the neutral one [105].

The decomposition presented in the previous paragraphs
supposes that the electronic states calculated in GW
correspond to total energy differences. At present this
assumption is not verifiable numerically, because GW total
energies cannot be calculated for the defect systems at hand.
The lowest excitation energies can, however, be expressed in
two different ways. The electron affinities that enter in our
discussion above can alternatively be seen as the ionization
potential of a system with one extra electron:

I0 ¼ EDðþÞ " EDð0Þ ¼ Aþ: (47)

While excitation energies calculated with the exact self-
energy would satisfy Eq. (47) those from approximate self-
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Figure 7 (online color at: www.pss-b.com) Formation of the neu-
tral Sii from the2þ charge state.Aþ andA2þ are short for the electron
affinities Aðþ;R0Þ and Að2þ;R2þÞ (see text), respectively, and Rq

denotes the atomic positions in charge state q.

Figure 8 (online color at: www.pss-b.com) (a) Split <110>,
(b) hexagonal, (c) C3v, and (d) tetrahedral configuration of the Sii.
Defect atoms are shown in red and nearest neighbors in gray.

! 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com



energies – likeGW – do not. This is shown in Fig. 9 for the C
split interstitial in silicon carbide (3C-SiC) in the neutral
geometry. The first red dashed line is the electron affinity of
the interstitial in the 2þ charge state (A2þ), while the second
red dashed line corresponds to the ionization potential of the
þ charge state (Iþ). If Eq. (47) was satisfied in these GW
defect calculations the two lines would be equal. Instead
they differ by 0.19 eV [106]. The excitations Aþ and I0
(represented by the orange dashed lines) differ by 0.25 eV.
This is not much, but noticeable.

How can we reconcile this discrepancy? Slater [107]
already identified this issue in the 1970s in DFT and HF
calculations. He proposed to consider the total energy as a
continuous function of electron number and to expand up to
second order between integral numbers of electrons. The
total energy difference in Eq. (47) can then be written as
the energyof the highest occupied (or lowest unoccupied) state
at half occupation. Equivalently, one could write this as the
mean value between the energyof the highest occupied state of
the neutral system and the energy of the lowest unoccupied
state of a positively charged system. SinceGW calculations at
half occupation are not straightforward, the latter is more
applicable. For the point defect from Fig. 9 this then gives the
following transition energies EGWð2þ =þÞ ¼ Ev þ 0:53 eV
and EGWðþ=0Þ ¼ Ec " 0:80 eV¼Ev þ 1:39 eV. We see that
the last equality only holds when performing the mean value
technique, which reconciles the slight discrepancy between
total energies and QP levels that exists in the GW formalism.

6 Conclusions and prospects The improvements
discussed in this review are now available in several popular
simulation packages, and have increased the speed ofMBPT
calculations. This has enabled the study of larger systems and
more complex problems, such as interfaces and defects. We
have illustrated this by presenting some recent MBPT

results, while trying to highlight the main difficulties and
caveats. It is to be expected that many more calculations on
interfaces and defects relying on MBPT will follow.

As a final remark, it should be mentioned that DFT (or
popular flavors of DFT) may fail to predict the correct
geometry of certain interfaces or defects. In such cases, the
energy levels (be it the VBM, the CBM, or defect levels)
computed fromMBPT could also bewrong. In order to avoid
such problems, it is highly desirable to be able to compute the
energy and the forces self-consistently from many-body
theories for supercells ranging from 100 to 200 atoms. This is
an important aim of future developments in MBPT
implementations.
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and J. G. Ángyán, J. Chem. Phys. 124, 154709 (2006);
J. Chem. Phys. 125, 249901 (2006).

[15] M. Ernzerhof, J. P. Perdew, and K. Burke, Int. J. Quantum
Chem. 64, 285 (1997).

[16] M. Ernzerhof and G. Scuseria, J. Chem. Phys. 110, 5029 (1999).
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R. W. Godby, Phys. Rev. Lett. 93, 249701 (2004).
[58] M. L. Tiago, S. Ismail-Beigi, and S. G. Louie, Phys. Rev. B

69, 125212 (2004).
[59] M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. Lett.

75, 3489 (1995).
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