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Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and
the validity of scissor shifts
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Starting from fully converged density-functional theory calculations, the quasiparticle corrections are calculated
for different sized Si and Ge nanowires using the GW approximation. The effectiveness of recently developed
techniques in speeding up the convergence of the quasiparticle calculations is demonstrated. The complete
quasiparticle band structures are also obtained using an interpolation technique based on maximallylocalized
Wannier functions. From the quasiparticle results, we assess the correctness of the commonly applied scissor-shift
correction. Dispersion changes are observed, which are also reflected in changes in the effective band masses
calculated taking into account quasiparticle corrections.
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I. INTRODUCTION

Nanowires are one-dimensional structures that have shown
a promising prospective to be used as building blocks for future
applications. Wires consisting of the semiconductor species Si
and Ge are particularly interesting due to their compatibility
with current semiconductor industry. Prototype applications
such as field-effect transistors,1 p-n diodes,2,3 sensors for
chemical and biological substances,4,5 and solar cells6 have
already been realized. These nanowires can be grown using
standard vapor-liquid-solid growth methods.7 The growth of
thin wires has also been reported. For Si, these are mainly
oriented along the [110] direction,8 while for Ge both the
[111] and [110] directions are reported.9,10 In this work we
will focus on the [110] direction.

Motivated by the possibilities of these nanowires, several
theoretical ab initio studies have been already performed
in order to investigate the wire properties, such as the
electronic structure of bare and passivated nanowires,11,12

the properties of doped nanowires,13–16 and the phonon-
related properties.17,18 A thorough overview of the performed
theoretical studies can be found in the review paper by Rurali.19

The knowledge of how the size of the band gap depends on
the specific structure is very important, as this determines in
part the properties of the wires. The standard ab initio density-
functional theory (DFT) calculations using approximate func-
tionals to model the exchange-correlation energy, such as the
local-density approximation (LDA) or the generalized gradient
approximation (GGA), tends to underestimate the size of
this band gap by as much as 50%. This is a well-known
shortcoming of these functionals, which do not properly take
into account the many-body effects due to electron-electron
interactions. In fact, there is no formal justification that the
one-particle DFT eigenenergies can be used as quasiparticle
(QP) energies and their differences cannot be interpreted as
photoemission gaps or optical excitation energies. In contrast,
many-body perturbation theory (MBPT) provides a formal
ground for evaluating the experimentally observed QP band
structures. Here, we use Hedin’s GW approximation20 for
the electron self-energy. We compute the QP corrections
from first-order perturbation theory (G0W0) applied on top

of DFT-LDA results, which is currently a method of choice
for computing QP band structures in solids.21 Due to the
importance of these QP corrections, this method has already
been applied to study Si and Ge nanowires22–25 (NWs) and
Si chains.26 A recent overview of the QP corrections and the
excitonic effects, including some of the technical aspects, is
given by Palummo et al.27 In general, the QP corrections to the
band structure are calculated first in order to be able to study
the optical properties, including excitonic effects.28–31 The
MBPT was also used to include interface-induced correlation
effects in the calculation of transport properties in SiNW
metal-oxide-semiconductor field-effect transistors.32 It is often
assumed that the QP corrections cause a uniform shift of all
the conduction bands, so that a global constant energy change
(the so-called scissor shift) is applied to these bands using the
QP corrections obtained only in one k point. In this paper, we
(i) calculate the QP corrections for Si- and Ge- [110] oriented
nanowires at the � point (as these nanowires have a direct
band gap), (ii) calculate the complete QP band structures,
(iii) assess the correctness of applying a scissor shift, and
(iv) study the effective electron and hole masses, calculated
both within standard DFT and including QP corrections.

The first part of this paper addresses the convergence issues
related to the one-dimensional nature of the nanowires, as
illustrated by the test case of a 0.5 nm Ge nanowire (consisting
of six Ge and eight passivating H atoms). The main parameters
that need to be converged are the number of bands (including
a large amount of empty bands), the number of k points along
the periodic direction, and the size of the unit cell in the
directions perpendicular to the wire, i.e., the amount of vacuum
separating the wire from its periodically repeated images. We
aim at a global accuracy of 0.01 eV on the band energies, with
a maximal tolerance of 0.002 eV for the convergence with
respect to the number of k points, the number of bands, and
the cell size separately. Several techniques recently introduced
to solve the aforementioned convergence problems arising in
GW calculations are discussed and applied to the test system.

In the second part, the calculated QP corrections are used to
obtain the complete band structures employing an interpolation
technique based on maximally localized Wannier functions
(MLWFs). The resulting band structures are compared with
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the corresponding DFT-LDA results and the reliability of a
scissor-shift operator is discussed. Finally, the electron and
hole masses are calculated and compared both at the DFT-LDA
and MBPT levels. Our results are obtained with the ABINIT

code,33,34 using a plane-wave basis set and norm-conserving
pseudopotentials.35

II. SPEEDING UP THE CONVERGENCE

The first parameter leading to convergence problems is the
number of k points employed for sampling the Brillouin zone.
As can be seen from Fig. 1 (black curve), the value of the
QP corrected band gap for the 0.5 nm Ge nanowire increases
when increasing the number of k points in the irreducible
part of the Brillouin zone. There is no sign of convergence
(even with 100 k points the curve still shows a linear slope).
This lack of convergence is due to the presence of a long-range
Coulomb interaction between the periodically repeated images
of the wire. Indeed, in contrast with DFT-LDA calculations
in which the wire is neutral (and thus, the convergence is
not problematic), GW calculations involve the addition of an
electron (or a hole) to the wire. The resulting charge is not
screened completely by the passivating hydrogen layer, hence,
there remains a long-range Coulombian interaction between
neighboring cells. In fact, the size of the unit cell that would
be required to render the spurious electrostatic interaction
negligible would be extremely large and the analysis could
not be handled with the present computing resources.

A possible approach for overcoming this problem consists
in introducing a truncation in real space of the Coulomb
interaction beyond a certain radius, so that the number of
interacting replicas is considerably reduced. The modified
expression equals the bare Coulomb term in the region of
interest, and is chosen so that the truncation can be efficiently
performed in Fourier space. Several techniques have been
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FIG. 1. (Color online) Convergence of the QP band gap EGW
gap

with respect to the number of k points with (in red) and without
(in black) Ismail-Beigi cutoff for the 0.5 nm Ge nanowire. Inset:
Zoom of the convergence with Ismail-Beigi cutoff. The squares and
circles represent the calculated values, while the lines show the best
fit with Eq. (5).

proposed in the literature in order to accelerate the convergence
(e.g., the one by Ismail-Beigi36 or the one by Rozzi et al.37).
In this work, we use the Ismail-Beigi approach, in which the
Coulomb term v is replaced by a truncated interaction vc.
Explicitly,

WGG′(q) = ε−1
GG′(q)vc(q + G′),

(1)
εGG′(q) = δGG′ − vc(q + G′)χ0

GG′(q),

where the truncated Coulomb interaction for a wire oriented
along the z axis is given by

vc(r) = θ (x,y)

|r| , (2)

in which θ (x,y) is one when x and y are inside the Wigner-
Seitz unit cell, and 0 otherwise (the interested reader is referred
to Ref. 36 for a more complete discussion of this cutoff
technique). The interaction in real space has infinite extent
along the z axis and its Fourier transform is given by

vc(k) =
∫

dx dy θ (x,y)2K0(|kz|ρ) cos(kxx + kyy), (3)

where ρ = (x2 + y2)1/2 and K0(z) is the modified Bessel
function. Since the integral is of finite extent, the only diverging
term in the limit kz → 0 originates from K0 and behaves as

−2 ln(|kz|)
∫

dx dy θ (x,y) cos(kxx + kyy). (4)

When
√

k2
x + k2

y �= 0, the divergence vanishes, as the projec-
tion of k in the xy plane is a reciprocal lattice vector. The
expression is singular only if the � point is approached along
the periodic dimension. This singularity is, however, milder
than the one presented by the bare Coulomb term and can
be accurately and efficiently treated via standard quadrature
techniques. It is worth noting that the cutoff radius depends
only on the geometrical setup of the supercell, hence no
additional convergence parameters are needed.

The effect of the Ismail-Beigi cutoff technique on the
convergence can be clearly seen in Fig. 1 (red curve). A
detailed view of the convergence graph in the case of the
Ismail-Beigi approach is shown in the inset of Fig. 1. Here,
we also fitted the values of the band gap as a function of the
number of k points used, with the form

EGW
gap (Nkpt) = EGW

gap (∞) + A

Nkpt
, (5)

where Nkpt is the number of irreducible k points, Egap(∞) is
the value of the band gap when an infinite number of k points
is taken into account, and A is a fitting parameter. We have not
tried other fitting functional forms.

For what concerns the convergence with respect to the
number of bands, the extrapolar method38 allows one to
decrease (by around ten times) the number of unoccupied
bands that have to be used to converge the GW calculations.

Reducing the number of empty states is of fundamental
importance since it leads to an important decrease both in
CPU time and memory requirements. Strictly speaking, a
well-converged GW calculation should take into account a
number of states similar to the Hilbert space dimensionality
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FIG. 2. (Color online) Convergence of (a) the band gap EGW
gap , (b) the highest valence band EGW

hvb , and (c) the lowest conduction band EGW
lcb

with respect to the number of bands in the calculation for the 0.5 nm Ge nanowire. The convergence is shown for different values of the
parameter �E (see text).

that equals the total number of basis functions. In a plane-wave-
based approach, the number of basis functions is very large,
thus rendering GW calculations extremely CPU demanding.
To improve the convergence, the eigenenergies of states
not explicitly treated are replaced by a common energy,
determined from the highest computed state and the single
parameter �E (which is the energy added to the energy of
the highest treated band). The contribution of the states that
are not explicitly considered in the calculation are taken into
account by means of the closure relation

∑
i>Nb

|i〉〈i| = 1 −
∑
i�Nb

|i〉〈i|, (6)

where Nb is the number of treated bands. The value of
the parameter �E might be adjusted to provide the fastest
convergence. It is worth stressing, however, that for the
calculation of the polarizability, it is possible to obtain an
optimal value for � by monitoring the fulfillment of a
particular sum rule (see Ref. 38 for details).

The convergence of the GW results with respect to the
number of states at fixed �E is shown in Fig. 2(a). In this
figure, the same number of bands and the same value of �E

is used both for the screening and the subsequent self-energy
calculation. When the extrapolar technique is used, we find that
the band gap is converged with only 180 bands. Such a level
of convergence is not obtained when the extrapolar technique
is not used. For a small number of bands, it seems that the
calculation using the extrapolar technique is converging toward
another value for the band gap, compared to the calculations
without using the technique. However, when the number
of bands is increased further, both approaches converge
toward the same value. The reduction from 2000 bands to
180 bands influences both memory requirements and CPU
time substantially.

In the present case, the best value to take for �E is 1 Ha,
leading to the fastest convergence, with the smallest slope in
the convergence graphs. From Fig. 2, it is also clear that the
convergence of the band gap is faster than the convergence
of the individual parts (band energies of the highest valence
EGW

hvb and lowest conduction band EGW
lcb ), which is an effect

of the cancellation of errors and which confirms that energy
differences converge faster than the individual components.

This technique is not limited to one-dimensional (or more
generally, low dimensional) systems, but it can also be used in
bulk systems.

Finally, the convergence with respect to the interwire
distance and thus of the lateral size of the unit cell, is
performed. Here, we use the previously discussed extrapolar
technique with �E = 1 Ha. This convergence for the value
of the band gap, with (red dots) and without (black squares)
the Ismail-Beigi cutoff, is shown in Fig. 3. Without cutoff, a
huge unit cell would be required to converge the band gap
because of the Coulomb interaction. In contrast, convergence
is already achieved for a lateral unit cell size of 26 bohrs with
the Ismail-Beigi cutoff. Please note that, in the inset, the scale
of the y axis is such that the differences between two successive
labels is 0.001 eV, which is smaller than the desired accuracy.

With this combination of numerical techniques, we were
able to compute efficiently the QP band gap of 0.5 and 1.2 nm
Si and Ge nanowires, and of the 1.6 nm Si nanowire. The
obtained DFT-LDA values, the QP results, and the size of
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FIG. 3. (Color online) Convergence of the band gap EGW
gap with

respect to the size of the unit cell in the directions perpendicular
to the wire with (in red) and without (in black) Ismail-Beigi cutoff
for the 0.5 nm Ge nanowire. Inset: Zoom of the convergence with
Ismail-Beigi cutoff.
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TABLE I. The band gap (in eV) for different wires as calculated
within DFT-LDA (ELDA

gap ) and MBPT (ELDA
gap ). The QP corrections

(�EGW
gap = EGW

gap − ELDA
gap ) are also given. The last column shows

previously reported values for the QP band gap.

Wire diameter
(nm) ELDA

gap �EGW
gap EGW

gap Literature

Ge 0.5 2.76 2.11 4.87 4.5a

1.2 1.57 1.41 2.98 3.01b

Si 0.5 3.20 2.35 5.55 5c

1.2 1.70 1.62 3.32 3.12;d 3.2;c 3.4e

1.6 1.14 1.18 2.31 2.2;c 2.32;d 2.33e

aReference 22.
bReference 29.
cReference 23.
dReference 24.
eReference 25.

the QP corrections are shown in Table I. These corrections
are larger for the 0.5 nm nanowire than for the 1.2 and
1.6 nm nanowires. These values are comparable to the values
previously reported in literature, which are also reported in
Table I. Experimental results for these wire sizes are not
available, as the experimental wires have larger diameters.

III. BAND STRUCTURES AND EFFECTIVE MASSES

The ability to compute the electronic energies for arbitrary
wave vectors in the Brillouin zone is a natural prerequisite for
obtaining the full band structure. Within the DFT formalism,
the eigenenergies at an arbitrary k point are easily obtained by
solving a non-self-consistent problem in which only the self-
consistent density is needed. A similar approach, on the other
hand, cannot be used within the GW formalism, Evaluating the
QP corrections at an arbitrary wave vector k, indeed requires
the knowledge of the Kohn-Sham eigenenergies and wave
functions on a homogeneous grid of points containing the
wave vector of interest. This leads to very time-consuming
self-energy calculations, which cannot be afforded, especially
when a fine sampling along high symmetry lines is wanted.
A solution to this practical problem is to use an efficient and
accurate interpolation based on maximally localized Wannier
functions (MLWFs).39,40 In this scheme the corrections to any
arbitrary k point are obtained from a reduced k-point set at
which the QP eigenenergies were calculated explicitly.

In this work, the MLWFs are determined using the
WANNIER90 code,41 which only requires the overlap matrices
and an initial guess of the projection of the Bloch states onto
trial localized orbitals. Through a minimization procedure,
a transformation matrix is computed which can be used
to express the Hamiltonian of the system in the basis of
the MLWFs. This representation is the starting point for
a Slater-Koster interpolation42 scheme that is employed to
compute the Hamiltonian, and therefore its eigenvalues and
eigenstates, on a finer k-point mesh.

Here, we first search the smallest initial k-point mesh
needed to obtain good band structures at the DFT-LDA level.
For this mesh, the QP corrections are subsequently calculated.
These are then used to interpolate the band structures based on
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FIG. 4. (Color online) Interpolated DFT-LDA band structure
(solid black lines) of the 0.5 nm Ge nanowire. The interpolations
obtained using unshifted 1×1×5 and 1×1×10 grids are represented
in panels (a) and (b), respectively. The red dots are the eigenener-
gies obtained directly using non-self-consistent calculations for the
k points belonging to the grids. In panel (c), the interpolation
obtained with the unshifted 1 × 1 × 10 is compared with additional
non-self-consistent calculations (blue dots).

the MLWFs. The latter are the same as in DFT-LDA, since the
G0W0 approximation uses the DFT-LDA wave functions and
only corrects the eigenenergies.

Figure 4 shows the DFT-LDA band structure of the
0.5 nm Ge nanowire interpolated using MLWFs. The latter are
obtained using a disentanglement procedure40 setting an inner
window from the bottom of the lowest valence band to a value
of 5 eV and an outer window to 6 eV. In Fig. 4(a) the MLWFs
were obtained using an initial (unshifted) 1 × 1 × 5 k-point
grid in the full Brillouin zone, corresponding to three symmetry
inequivalent k points. The k-point grid is unshifted so that
it contains the � point needed to calculate the band gap in
the GW calculations. The eigenenergies at these three points
are indicated by red dots. It is clear that the interpolation is
wrong in this case. In Fig. 4(b), a finer k-point grid was used,
containing six inequivalent k points corresponding to an un-
shifted 1 × 1 × 10 grid. The agreement with the eigenenergies
obtained directly from non-self-consistent calculations (blue
dots) is excellent, as can be observed from Fig. 4(c).

If the QP corrected eigenenergies are available for the same
k-point mesh, the corresponding band structure can also be
obtained by interpolation, as shown in Fig. 5(a) (black lines).
The obtained QP band structures can be used to study the
validity of the commonly applied scissor shift. The latter aims
to correct the DFT-LDA band structures by rigidly shifting all
conduction bands in such a way that the band gap reaches the
calculated GW value (or the experimental one if available).
Such an approach clearly neglects all curvature differences
between the DFT-LDA and QP band structures. As we now
have the full QP band structure, we can test the validity of
this approach. This is done in Fig. 5(a), where the red lines
are the interpolated scissor-shifted DFT-LDA band structures.
As can be seen from the zoom around the region close to
the band gap shown in Fig. 5(b), this approach is only valid
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FIG. 5. (Color online) Interpolated QP (black) and scissor-shifted
DFT-LDA (red) band structures of the 0.5 nm [(a) and (b)] and 1.2 Si
nanowires. Panels (b) and (c) show a zoom of the region around the
band gap.

for k points close to the � point and for bands close to
the highest valence and lowest conduction band. One also
observes that the gap between the highest valence and lowest
conduction band in other k points is underestimated in spite
of the applied scissor shift: the highest valence band is too
high in energy, while the lowest conductance band is too
low in energy. The QP corrections are clearly not uniform,
in contrast with what is implicitly assumed in the scissor-shift
approach. To check if the curvatures near the � point, i.e.,
the hole and electron effective masses, are different in the
QP corrected case as compared to the DFT-LDA case, these
were calculated by fitting a quadratic curve for small k points.
From these calculations, shown in Table II, one can observe
that the curvature is not always the same, e.g., the curvature
of the highest valence band (thus corresponding to the hole
effective mass) for the Ge nanowires or for the 1.6 nm
Si nanowire differs significantly. This is visible in Fig. 5(c),
where a detailed zoom of the band structure near the band gap is
shown for the 1.2 nm Si nanowire. The curvature of the highest
valence band (thus corresponding to the hole effective mass)
is different for the interpolated QP (black) and scissor-shifted
DFT-LDA (red) band structures. The values for the electron
effective masses in the DFT-LDA and QP corrected cases are
very similar, indicating that for these thin nanowires the lowest
conduction band is shifted rigidly close to the � point. The fact
that the corrections to the band masses are larger for the holes
than for the electrons has also been observed in bulk systems.43

TABLE II. The calculated effective hole and electron masses
(expressed in units of the electron mass) for Si and Ge nanowires,
calculated within DFT-LDA and using QP corrections.

Diameter (nm) mLDA
e mLDA

h mQP
e m

QP
h

Ge 0.5 0.10 −0.12 0.11 −0.29
1.2 0.12 −0.33 0.09 −0.18

Si 0.5 0.27 −0.16 0.22 −0.16
1.2 0.13 −0.54 0.13 −0.19

IV. SUMMARY

In this paper, we have presented a systematic convergence
study of the GW calculations for one-dimensional nanowires.
It was shown that it is necessary to use a cutoff of the Coulomb
interactions to achieve convergence. The application of the
extrapolar technique leads to an important reduction in the
number of empty states by a factor of 10. The rule of thumb to
take an amount of empty bands equal to ten times the number
of occupied bands is also valid in the case of nanowires. By
using an interpolation scheme based on maximally localized
Wannier functions, we found that accurate band structures can
be obtained. From these, it was demonstrated that applying a
scissor shift to the DFT-LDA band structure leads to substantial
differences with respect to the full one-shot GW results, when
one compares the band structures at k points away from the �

point or for bands with lower (higher) energies than the highest
valence (lowest conduction) band. This can lead to noticeable
differences in the optical spectra. Significant differences can
also be observed close to �, depending on the diameter and
composition of the wire, as is evident from the calculated
effective masses.
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