
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 84, 241201(R) (2011)

G0W 0 band gap of ZnO: Effects of plasmon-pole models
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Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
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Carefully converged calculations are performed for the band gap of ZnO within many-body perturbation
theory (G0W 0 approximation). The results obtained using four different well-established plasmon-pole models
are compared with those of explicit calculations without such models (the contour-deformation approach). This
comparison shows that, surprisingly, plasmon-pole models depending on the f -sum rule gives less precise
results. In particular, it confirms that the band gap of ZnO is underestimated in the G0W 0 approach as compared
to experiment, contrary to the recent claim of Shih et al. [Phys. Rev. Lett. 105, 146401 (2010)].

DOI: 10.1103/PhysRevB.84.241201 PACS number(s): 71.20.Nr, 31.15.vj, 71.15.Mb

Transparent conducting oxides (TCOs) are a class of
technologically important materials for optoelectronic and
spintronic applications.1 Doped zinc oxide (ZnO) is among
possible cheap alternatives to indium-based oxides which
have generated considerable interest in the past decade.2

From the theoretical standpoint, first-principles many-body
calculations, which are now routinely used in order to
make comparison with experiments, have proven surprisingly
difficult even for pure bulk ZnO. The reported theoretical
band gaps for the naturally occurring polymorph (the wurtzite
structure) range from ∼2.1 eV 4.2 eV,3–13 to be compared
with a measured value of 3.6 eV.14 Recently, Shih et al.11

claimed that a reasonable theoretical gap could be obtained
by using conventional perturbative G0W 0 and including a
Hubbard U parameter to account for the strongly correlated
Coulomb repulsion between the Zn semicore d states and the
valence shell p states. The implication of Ref. 11 is that all
prior calculations have been underconverged due to a deceptive
interrelationship between convergence parameters. In their
work, Shih et al. used a plasmon-pole model (PPM) to account
for the frequency dependence of the inverse dielectric function
of the material. However, results can vary greatly depending
on the exact PPM used.15,16 In this Rapid Communication we
study in great detail, and to a high numerical accuracy, exactly
what effect different plasmon-pole models have on the value
of the band gap. In order to compare our results closely with
those of Ref. 11, we use the same numerical parameters,17 and
we also perform full-frequency calculations. We first introduce
the theory of the PPM and full-frequency approaches. Then we
present results for ZnO, and finally a discussion with a deeper
analysis is provided. We show that the converged band gap
strongly depends on the choice of plasmon-pole model, and
that, without such a model, the G0W 0 approach fails to agree
with experiment.

Theory. The application of perturbative quasiparticle (QP)
corrections from a density functional theory (DFT) starting
point is a long-standing success story in condensed-matter
theory.23 The central assumption is that Kohn-Sham (KS)
orbitals are a good approximation to the QP orbitals, and

thus only a single iteration of Hedin’s GW approximation24

needs to be performed (G0W 0 approximation). A first-order
correction to the KS eigenenergies is obtained through the
Taylor expansion of the self-energy �(ω) to first order around
the KS energy eigenvalues. The self-energy is typically split
as �(ω) = �x + �c(ω) into a frequency-independent pure-
exchange part �x and a correlation part evaluated as

�c(ω) = −i

∫ ∞

−∞
dω′G(ω + ω′)W dyn(ω′), (1)

where we have suppressed the fact that the complex-valued
�c, Green’s function G, and dynamic part of the screened
interaction W dyn are functions of two spatial coordinates. �c

and W dyn obey Kramers-Kronig causality relations. In periodic
crystalline systems, these quantities are expanded in a plane-
wave basis, with G,G′ labeling reciprocal-lattice vectors, and
q labeling a wave vector, giving

W
dyn
G,G′ (q,ω) = [

ε−1
G,G′(q,ω) − δG,G′

]
vG,G′(q), (2)

where ε−1 is the inverse dielectric matrix calculated in the
random-phase approximation with a sum over unoccupied
states25,26 and v the Coulomb potential (in matrix form).
In principle, these matrices are infinite, but in practice they
are zeroed beyond a maximum wave vector |q + G|, or
energy 1

2 |q + G|2. All plasmon-pole approximations enable
an analytic solution of the convolution in Eq. (1) by positing a
functional approximation to the frequency dependence in ε−1.
The simplest possible approximation is the assumption that
all the spectral weight in Im(ε−1), for positive frequencies,
is concentrated in a single Dirac delta peak for each matrix
element:

Im
[
ε−1

G,G′(q,ω)
] = AG,G′(q)

× [δ(ω − ω̃G,G′ (q)) − δ(ω + ω̃G,G′(q))],

Re
[
ε−1

G,G′(q,ω)
] = δG,G′ + �2

G,G′(q)

ω2 − ω̃2
G,G′(q)

, (3)

where the G,G′ and q-dependent weight of the delta peak A,
oscillator strength �, and pole position ω̃ are to be determined.
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Two of these parameters are independent, and the third can
be found through the Kramers-Kronig relation. PPMs were
originally introduced by Hedin27 for the homogenous electron
gas and then generalized for arbitrary crystalline systems by
Hybertsen and Louie (HL),28 and also by Godby and Needs
(GN).29 The HL PPM fixes the dependence of the pole position
and the oscillator strength by requiring that the plasmon-pole
parameters reproduce the value of ε−1 in the static limit (ω =
0+), as well as fulfilling Johnson’s frequency sum (f -sum)
rule30∫ ∞

0
dω ω Im

[
ε−1

G,G′(q,ω)
] = 2π2 (q+G)·(q+G′)

|q+G|2 nG−G′ , (4)

where nG−G′ is the electron density in reciprocal space. In
this way the low and high real frequency limits are exact, and
the PPM only requires the dielectric function to be explicitly
evaluated at ω = 0+. In contrast, the GN PPM takes advantage
of analytic continuation into the complex plane ε−1(ω) →
ε−1(iω) and determines the parameters through the explicit
evaluation of the dielectric function for a second point along
the imaginary frequency axis, typically taken to be near the
real plasma frequency of the system if known, or near the
plasma frequency as evaluated from the average density per
volume iωp = i

√
4πn0.

For comparison, the models of von der Linden and Horsch31

(vdLH) and Engel and Farid32 (EF) have also been tested in this
work. They are both based on the spectral decomposition of
the symmetrized dielectric matrix, and use the zero-frequency
limit and the f -sum rule to fix the parameters.

If a PPM is to be avoided, the frequency convolution in
Eq. (1) needs to be performed numerically. However, the poles
of the Kohn-Sham Green’s function are right on the axis, and
so the spectral function has a long—in principle, infinite—set
of very sharp peaks there. It is then more convenient to recast
the integral in Eq. (1) with the use of an appropriate contour
in the complex plane as

�c(ω) = −
C∑
s

lim
z→zs

G(zs)W
dyn(zs)(z − zs)

− i

2π

∫ ∞

0
d(iω′)G(ω + iω′)W dyn(iω′) (5)

= −
BZ∑
q

∑
s

Ms
G,G′ (k,q)

{
W

dyn
G,G′ (q,|ω − εs | − i0+)

× [θ (ω − εs)θ (εs − μ) − θ (εs − ω)θ (μ − εs)]

+ 2i

∫ ∞

0
d(iω′)

(ω − εs)

(ω − εs)2 + ω′2 W
dyn
G,G′(q,iω′)

}
,

(6)

where Eq. (5) is the general expression, while Eq. (6) is the
special case of periodic systems �c(ω) → �cG,G′(k,ω) when
the Green’s function is constructed from Kohn-Sham (KS)
orbitals with eigenvalues εs . M is a frequency-independent
function related to the oscillator matrix elements. The contour
C in the complex plane is described in detail in Ref. 33. The
first term is the sum over poles enclosed in the contour, and,
together with �x , it forms the screened exchange part, while
the second component with the integrated term is the so-called
Coulomb-hole contribution. In practice, there is always a limit

0 250 750 1250 1750 2250 2750
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3

E
ga

p
(e

V
)

0500150025003500

FIG. 1. (Color online) (a) Convergence of the LDA + G0W 0 band
gap vs the number of bands included in the sum over unoccupied
bands in the self-energy, and (b) convergence of the band gap vs
the energy cutoff of the dielectric matrix. Contour deformation (CD)
is the actual result, i.e., using a full-frequency treatment without
a plasmon-pole model (PPM). The Hybertsen-Louie (HL), Godby-
Needs (GN), von der Linden–Horsch (vdLH), and Engel-Farid (EF)
PPMs (Ref. 17) seek to emulate the CD result. The CD curve in
(a) is taken at 40 Ry, whereas the result at 80 Ry is expected to be
where the extrapolated (Ref. 12) CD curve (squares) in (b) levels out.

to the total number of unoccupied states or bands Nb that can
be included in the evaluation of the self-energy and in the
screened interaction.

Results for ZnO. The QP corrections are calculated using
the local density approximation34 (LDA) of DFT as the starting
point. To ease the comparison, we use the same computational
parameters17 as in Ref. 11. When the HL PPM is adopted, we
reproduce the convergence behavior reported by Shih et al.
[see Fig. 1(a)] for the G0W 0 band gap. However, when the
other PPMs are used, the gap obtained is significantly lower.
The convergence behaviors of the vdLH PPM and the EF
PPM are similar to that of the HL PPM, i.e., there is a
very slow convergence with respect to the number of bands
and the plane-wave cutoff. For the GN PPM this behavior
is milder, and ∼800 unoccupied bands (and a plane-wave
cutoff of ∼40 Ry) is sufficient to converge the value of the
gap to within 0.02 eV. The model-free contour deformation
(CD) result has a slightly slower convergence rate than the
GN PPM, with ∼1700 unoccupied bands being sufficient to
converge. Clearly, the PPM which best reproduces the CD
result is the GN PPM. To investigate the reasons for this, we
have compared the behavior of Re[ε−1] for the GN and HL
PPM with the actual one along both the imaginary and real axis.
Some representative results for diagonal elements of Re[ε−1]
(for q = 0) are shown in Figs. 2(a)–2(l).

It is clear that both PPMs are crude approximations, even
though they match at the zero-frequency limit. However, the
HL PPM has its weight fixed by the sum rule, and this forces
the pole position ever further out on the real axis. In turn, this
seems to create an overestimation of the contribution from the
pole along the imaginary axis, especially in the low-frequency
region. Here, the GN PPM is a much better match due to its
construction as a minimal pole fit along the imaginary axis.

Since all PPMs which use the f -sum rule to fix the pole
parameters lead to a systematic overestimation of the gap, it
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FIG. 2. (Color online) Examples of the actual Re[ε−1] along the real [(a)–(f)] and imaginary [(g)–(l)] axis for some diagonal matrix elements
( 1

2 |G|2 is given in parentheses in each plot) compared to that of the PPMs. The full (blue/dark gray) line is the actual function, the (red/gray)
line with long dashes is the HL PPM, and the (green/light gray) short dashed line is the GN PPM. The pole position on the real axis is indicated
by the vertical lines. The x and y axis labels of (a) apply to (b)–(f) and those of (g) to (h)–(l).

is interesting to estimate the importance of the fulfillment of
this rule in the screening. As can be seen in Fig. 3(b), the
sum rule is actually very poorly fulfilled by the GN PPM;
it is by construction exactly fulfilled by the HL PPM, while
for the model-free ε−1, its fulfillment is slowly achieved as
more unoccupied states are added. The CD gap, however,
is already converged with ∼1000 bands in the screening,

(a)

(b)

FIG. 3. (Color online) (a) The position of the GN and HL PPM
pole for the diagonal elements of ε−1 [where the vertical lines are
in Figs. 2(a)–2(f)]. (b) The fulfillment of the f -sum per diagonal
matrix element for the GN and HL PPMs. The blue/dark gray curves
are the parameter-free results for various cutoffs of the number of
unoccupied states included in the screening.

hence fulfillment of the sum rule does not seem to be a
critical criterion, at least for most of the matrix elements
of the dielectric function. Indeed, it seems that for a simple
plasmon-pole model of the type defined in Eq. (3), it is
very difficult to satisfy both a good overall match for the
low-frequency region and a fulfillment of the sum rule. We
have also checked the convergence with the k-point grid, as
displayed in Table I. These results were done with a plane-wave
cutoff of 80 Ry and the equivalent of �3000 bands21 included
in both the screening and the self-energy. For the HL PPM,
the value at 5 × 5 × 4 in the table is 0.2 eV higher than the
most converged value in Fig. 1, indicating that the latter is
still not entirely converged, as pointed out in Ref. 11. For
the GN PPM, our best value is 2.35 eV. Based on Fig. 1 we
expect that the corresponding CD value would be ∼2.4 eV.
This is ∼0.4 eV lower than the value of 2.83 eV from the
all-electron calculation of Friedrich et al.12 The discrepancy
should be entirely due to pseudoization and core-relaxation
effects.35 It is apparent that the LDA was never a good starting
point, since the ground-state band gap of ZnO (0.67 eV in
this work) is underestimated by as much as 80% and the RPA
dielectric constant (ε∞ = 5.45 in this work) is overestimated
by ∼44% compared to experiment. The inclusion of a Hubbard
U parameter (as used by Shih et al.) is not expected to remedy
this, since it only leads to an opening of the ground-state and
G0W 0 gaps of ∼0.2 eV.

TABLE I. ZnO LDA + G0W 0 gap (eV) convergence with respect
to k-point grid, with the equivalent of �3000 bands [through
Bruneval-Gonze extrapolation (Ref. 21)] in the sums for W dyn and
�c at a plane-wave cutoff of 80 Ry.

MP grid 2 × 2 × 2 4 × 4 × 3 5 × 5 × 4 7 × 7 × 4 8 × 8 × 5

HL PPM 3.448 3.571 3.559 3.574 3.566
GN PPM 2.215 2.351 2.344 2.363 2.352
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Discussion. A priori, it makes perfect sense theoretically to
fix the parameters of a single pole by using the f -sum rule,
thus fixing the asymptotic high-frequency limit of the analytic
pole approximation. However, our results show that this is
inadvisable in the case of ZnO, and probably in many other
cases where there is a strong influence of semicore states.15,16

It is clear that a simple pole on the real axis is a very crude
approximation to the true behavior of the screening, in fact, it
seems surprising that it has worked so well thus far. The first
problem is that a realistic crystalline solid actually has a whole
plasmonic band-structure spectrum, and while a simple pole
is a good approximation for the homogenous electron gas, in
reality there are numerous plasma resonances depending on the
crystal potential and the various electronic shells of the atomic
cores. When it is necessary to take into account semicore
states,13 the valence density will be sharply peaked around
the atomic cores, which leads to large and highly oscillatory
values for very large G,G′ components of the valence density
in reciprocal space nG−G′ . This should account for the very
slow convergence with respect to the plane-wave cutoff for all
PPMs that employ the f -sum rule, a behavior which is absent
when using the CD method or the GN PPM.

It is also surprising that the GN PPM works so well, given
that it is based on exactly the same analytic form as the HL
PPM. The reason for this is clear from an inspection of Eq. (6),
where the sum over the poles of the Green’s function, i.e., the
dynamic screened exchange contribution, has restrictions on it
imposed by the Heaviside functions. Only a very small range
along the real-frequency axis is needed for the evaluation of
the QP corrections for the states forming the gap (for ZnO,
this range is ∼0–1.1 eV). As can be seen in Figs. 2(a)–2(f)
(left section), for small frequencies both the GN and HL
PPMs are decent approximations, for a large range of the
plane-wave index. However, the Coulomb-hole contribution
is given by the integration of the smooth functional behavior

of ε−1 along the imaginary axis, multiplied by a Lorentzian
centered at the origin. When �c is evaluated at energies close
to a KS eigenvalue, the Lorentzian will effectively become
a delta function for a single term, and will be picking out
the zero-frequency limit, which is also exactly fulfilled by
all PPMs. Thus we know that the nonresonant terms in the
Coulomb-hole contribution must become important, precisely
for those materials where the GN and HL PPMs give a very
different result. These terms probe the low-frequency region of
W on the imaginary axis, and it is exactly here that the GN PPM
is a much better approximation, while the contribution from the
HL PPM is far too large due to the enforced f -sum rule. This
difference is apparent in Figs. 2(g)–2(j) (right section). The
GN approach is computationally more demanding, requiring
two explicit evaluations of ε−1 rather than one, but the
added effort is not prohibitive on modern computers and
well worth it for the added accuracy. In conclusion, ZnO is
still an example of a system where one has to be careful
about the choice of PPM, and the LDA + G0W 0 approach
fails.
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and V. Muñoz-Sanjosé, J. Korean Phys. Soc. 53, 2811 (2008).

7T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B 76,
165106 (2007).

8M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
9F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse,
Phys. Rev. B 76, 115109 (2007).

10Paola Gori, M. Rakel, C. Cobet, W. Richter, N. Esser, A. Hoffmann,
R. Del Sole, A. Cricenti, and O. Pulci, Phys. Rev. B 81, 125207
(2010).

11B.-C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, Phys.
Rev. Lett. 105, 146401 (2010).

12C. Friedrich, M. C. Müller, and S. Blügel, Phys. Rev. B 83,
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