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Band structure of gold from many-body perturbation theory
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The band structure of gold is calculated using ab initio many-body perturbation theory. Different
approximations within the GW approach are considered. Standard single-shot G0W0 corrections modify the
sp-like bands while leaving unchanged the 5d occupied bands. Beyond G0W0, quasiparticle self-consistency on
the wave functions lowers the 5d bands. Globally, many-body effects achieve an opening of the 5d-6sp interband
gap of ∼0.4 to ∼0.8 eV, reducing the discrepancy with the experiment. Finally, the quasiparticle band structure
is compared to the one obtained by the widely used HSE (Heyd, Scuseria, and Ernzerhof) hybrid functional.
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I. INTRODUCTION

The theoretical determination of the band structure of gold
has been an open issue for more than four decades. Early
works from the 70s1–3 focused on relativistic effects which are
responsible for its yellow color. Thereafter, the band structure
calculated by Christensen and Seraphin1 has been used as
a reference to interpret photoemission experiments. More re-
cently, a few discussions on this topic appeared in the literature.
The cohesive energy in noble metals was shown to contain
large terms arising from dispersion forces, such as van der
Waals interactions,4 pointing to the importance of many-body
correlations for closed shell d electrons. Newer experimental5

and theoretical6 works confirmed previous findings.2 The
gold band structure, calculated by density functional theory
(DFT) within the local density approximation (LDA) or
the generalized gradient approximation (GGA), presents an
underestimation of the 5d-6sp interband gap (see Fig. 1)
by ∼1.0 eV with respect to the available experimental data.
Similar discrepancies were encountered for other noble metals.
To solve these disagreements, quasiparticle (QP) corrections to
the DFT eigenvalues have been applied with great success. For
instance, in silver and copper, the non-self-consistent G0W0
approach corrects the DFT interband gap in a remarkably good
agreement with the experiments.7–9

In fact, the standard G0W0 approach (i.e., starting from
DFT) relies on the assumption that the QP wave functions
are close to the DFT ones. In some cases, such as for the
3d electrons in vanadium dioxide,10 this hypothesis does
not hold. Two schemes have thus been proposed in order
to go beyond standard G0W0 by introducing an update of
the wave functions towards self-consistency: on the one
side, a self-consistent static GW approximation (COHSEX)
calculation followed by a standard dynamic G0W0 last step
of the calculation (SC-COHSEX +G0W0 scheme);11 on the
other side, the quasiparticle self-consistent GW (QSGW )
scheme.12,13 Both may improve the DFT wave functions and
eigenvalues.

Hybrid functionals have also been proposed into the
framework of an unrestricted DFT to solve the typical band
gap underestimation of the LDA and GGA approximations.
In these functionals, a fixed amount of Hartree-Fock exact
nonlocal exchange is incorporated into the classical DFT local
Kohn-Sham exchange-correlation potential. Among these, the
one proposed by Heyd, Scuseria, and Ernzerhof14–16 (HSE)
has been widely used lately. Hybrid functionals have proven
to perform well for improving several properties of solids.14,17

A typical HSE calculation is usually more computationally
demanding than LDA or GGA, but more affordable than GW .

In this paper, the band structure of gold is calculated within
ab initio many-body perturbation theory (MBPT) in order
to elucidate the role of correlations and to provide a more
reliable theoretical band structure to interpret the experimental
findings. Standard G0W0 corrections shift the unoccupied
bands up by at most 0.2 eV and the first sp-character occupied
band down, while leaving the 5d occupied bands unmodified.
Self-consistency on the wave functions by the QSGW scheme
lowers the 5d bands by 0.4 eV, reducing the discrepancy with
the experimental measurements. Inclusion of sp semicore
states is confirmed to be crucial for GW calculations in
d-electron systems, as previously found.7,8 In contrast, here the
plasmon-pole model (PPM) is found to be overall valid. The
importance of relativistic effects in gold is also confirmed.6

The remaining disagreement with the experiments might be
explained by the lack of relativistic many-body terms18–20

beyond the single-particle ones taken into account here.
Finally, we calculate the HSE hybrid functional band

structure of gold and compare it to the QSGW results. Around
the Fermi energy, HSE (and PBE) bands present a difference
of ∼0.3 eV from the corresponding QSGW ones. High-energy
unoccupied HSE bands present a large discrepancy, by more
than 6 eV, with respect to the experimental data and the GW
results.

The article is organized as follows. In Sec. II, the theoretical
background is given. The technical details of the calculations
are shown in Sec. III. In Sec. IV, the band structure calculated
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FIG. 1. (Color online) Gold DFT-PBE scalar-relativistic band
structure (black points). The Fermi level is set to 0 (dashed black
line). Red (grey) lines disentangle 5d-character topmost occupied
bands, while blue (black) lines indicate 6sp-like lowest empty bands.
The arrows show the interband gap between the highest occupied 5d

band and the lowest unoccupied 6sp bands.

within the G0W0 approach is analyzed. The role of semicore
orbitals and the validity of the PPM are discussed here. In
Sec. V, the band structure calculated within the QSGW method
is presented. Spin-orbit corrections are discussed in Sec. VI.
In Sec. VII we discuss the weight of all our approximations
with respect to the residual discrepancies with the experiment.
An analysis of the HSE results is presented in Sec. VIII.
Finally, in Sec. IX, the conclusions of this work are drawn. In
addition, convergence issues are discussed in the Supplemental
Material.21

II. THEORETICAL BACKGROUND

In MBPT, the electronic structure is obtained by solving the
quasiparticle (QP) equation:22–27

(
−1

2
∇2 + vext(r) + vH(r)

)
ψ

QP
nk (r)

+
∫

d3r′ "
(
r,r′,ω = ε

QP
nk

)
ψ

QP
nk (r′) = ε

QP
nk ψ

QP
nk (r), (1)

where vext(r) is the external potential, vH(r) is the classical
repulsion Hartree term, and "(r,r′,ω) is the self-energy,
a non-Hermitian, nonlocal, and energy-dependent operator.
The exact self-energy can be written as " = GW%, an
expression containing the single-particle Green’s function G,
the dynamically screened Coulomb potential W , and the vertex
function %. Hedin22 provided a scheme based on a closed set of
five Schwinger-Dyson integro-differential equations for G, W ,
%, " and the polarizability P to be solved iteratively up to the
self-consistent solution for G and ". Since the application
of this scheme to real systems is usually computationally
unfeasible, further approximations are required. Setting % = δ,
the self-energy operator becomes

"(r,r′,ω) = i

2π

∫
dω′eiω′ηG(r,r′,ω + ω′)W (r,r′,ω′), (2)

where η is an infinitesimal positive number. Due to its form,
this is called the GW approximation. Starting from an initial
approximation G0 for the Green’s function (for example,
the one constructed from DFT orbitals), one can iterate the

equations up to self-consistency. Alternatively, one can stop at
the first iteration obtaining the so-called G0W0 approximation.

In practice, it is very efficient to get QP energies using per-
turbation theory with respect to the DFT electronic structure,
i.e., treating as perturbation the difference between the self-
energy operator and the DFT exchange-correlation potential,
" − vxc. The DFT eigenvalues εDFT

nk and eigenstates ψDFT
nk are

used as a zeroth-order approximation for their quasiparticle
counterparts. Thus, the QP energy ε

QP
nk is calculated by adding

to εDFT
nk the first-order perturbation correction:

ε
QP
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〈
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with Z the quasiparticle renormalization factor,

Z =
[

1 −
〈
ψDFT
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, (4)

which accounts for the fact that, in Eq. (1), "(ω) should
be calculated at the ε

QP
nk . This procedure has been found to

produce band structures in agreement with the experiment,
provided that the DFT states are not too far from the QP states.
Otherwise, a self-consistent approach on the eigenvalues and
eigenstates may be necessary.

In the so-called QSGW calculations,12,13 the self-energy
is constrained to be Hermitian and static, so that it can be
diagonalized to update not only the energies but also the wave
functions. Several successive iterations are needed to achieve
the desired accuracy. At the end, the self-energy does not
depend anymore on the DFT starting point.

The integration of Eq. (2) requires in principle the eval-
uation of W (ω) over a large number of frequencies. By
modeling %W (ω) with a single pole in the plasmon-pole model
(PPM),24,28 it is possible to integrate Eq. (2) analytically. In
the case of d electrons, the applicability of this technique has
been questioned.7 More accurate integration methods, such as
the contour deformation (CD) approach, are frequently used.
In this technique, the real axis integration path of Eq. (2)
is modified as to run along the imaginary axis, picking up
contributions coming from the poles of the Green’s function
included in the deformed contour.29–31

In principle, to fully take into account single-particle
relativistic effects, one should solve the Dirac equation
and work with Dirac spinors. Alternatively, one can use a
nonrelativistic limit of the Dirac equation projected onto a
Pauli two-component spinor formalism. This adds the fine-
structure terms to the Hamiltonian. In the standard limit
approach, there are three such terms: the p4 relativistic
correction to the velocity, the Darwin term, and the spin-orbit
(SO) coupling. The scalar-relativistic approach includes only
the first two terms and drops the SO coupling term. In some
cases, the resulting equation already accounts for most of
the Dirac physics. If needed, the SO coupling effects can be
introduced on top of the scalar-relativistic approach, using the
procedure detailed in Sec. VI. However, in the most severe
cases, the SO coupling effects should be introduced from
the beginning in a fully spinorial formalism.32,33 So far, this
formalism has only been applied to the band structure of Hg
chemical compounds,20 finding SO coupling corrections to the
eigenvalues of ∼0.1 eV. This calculation was carried on only
up to the first iteration of Hedin’s equations, i.e., at the G0W0
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level. Going further in the direction of self-consistency and
including relativistic corrections has not yet been tried on any
real system.

In the case of gold, most of the relativistic effects in the
band structure come from the scalar-relativistic terms.1,6 The
SO coupling term mainly accounts for band splittings; hence,
it introduces shape modifications mostly on the 5d bands.1,6

III. TECHNICAL DETAILS

All calculations are performed using the primitive unit cell
of gold (FCC lattice). Note that in principle van der Waals
interactions are important to determine the atomic distance in
noble metals.4 To avoid this difficulty the experimental lattice
constant (7.71 bohrs34) is used.35 The GW calculations are
done using the ABINIT code,36 while the HSE ones are carried
out with the VASP code.37 Scalar relativistic effects have been
included everywhere.

In the GW calculations, the starting point wave functions
and energies are obtained from a DFT calculation in which
the XC energy is approximated by the GGA PBE functional.38

Scalar-relativistic norm-conserving pseudopotentials39,40 are
used to account for core-valence interactions.41 In order to
elucidate the role of semicore states, two pseudopotentials are
considered. The first one contains 11 valence electrons (5d10,
6s1), while the second contains 19 electrons (5s2, 5p6, 5d10,
6s1). The wave functions are expanded on plane-wave basis
sets, up to a cutoff energy of 30 Ha when the semicore states
are not included, and 50 Ha when they are. The Brillouin zone
(BZ) is sampled using a shifted grid of 10 × 10 × 10 k points
following the Monkhorst-Pack (MP) scheme.42 A total of 110
(100 empty) bands are used to compute the dielectric matrix43

and the self-energy. The dielectric matrix is computed for 145 k
points in the irreducible BZ, truncating to an energy cutoff
of 4.0 Ha (corresponding to 59 plane waves). The Godby-
Needs PPM28 is used here because it has demonstrated the
best agreement with the methods which take fully into account
the frequency dependence of the dielectric matrix.44,45 In the
CD method, a total of 6 and 20 frequencies are used along the
imaginary and real axis, respectively. All QSGW calculations
are performed within the CD method. A total of 40 bands are
considered when diagonalizing the self-energy.

In the calculations with the hybrid XC functional, only
11 valence electrons are treated explicitly by the projector
augmented wave (PAW) method. The plane-wave cutoff
energy for the wave functions is chosen to be 13 Ha. HF-type
calculations are performed with the HSE06 functional,14

starting from previously converged DFT wave functions and
energies. These calculations are considerably more costly than
standard DFT ones. Hence, we could only afford to sample the
BZ using a 20 × 20 × 20 unshifted % grid of k points.

In all cases, the band structures are interpolated using
maximally localized Wannier functions (MLWFs) with the
Wannier90 code46 as explained in Refs. 47 and 48. The Fermi
level is obtained by integrating the density of states (DOS),
calculated with an interpolated grid of 30 × 30 × 30 k points
using MLWFs and a low Gaussian smearing of 0.005 Ha. It was
verified that the Fermi levels obtained with a grid of 30 × 30 ×
30 and 60 × 60 × 60 interpolated k points were equal within
0.01 eV. A full study of the convergence with respect to all

parameters of the calculation is provided in the Supplemental
Material.21

IV. THE G0W0 BAND STRUCTURE OF GOLD

In this section, we investigate the QP band structure of
gold within the G0W0 approach, trying to clarify the influence
of two commonly used approximations. First, the effect of
freezing semicore orbitals in the pseudopotential is discussed.
Second, the validity of the PPM is analyzed more thoroughly.

In Fig. 2, the band structure of gold calculated within G0W0
is reported using two different pseudopotentials. In the first
one [solid orange (light grey) lines, labeled “w/o SC”], the
5s and 5p semicore orbitals are considered to be frozen in
the core (leading to a total of 11 valence electrons). In the
second one [dotted brown (medium grey) lines, labeled “with
SC”], 19 electrons are treated as valence states. While within
DFT the resulting band structures are on top of each other (the
curves are not shown here for sake of clarity), the difference
becomes important at the GW level. Indeed, when the semicore
electrons are excluded (“w/o SC”), the 5d bands are shifted up
while the 6sp bands are shifted down in a nonhomogeneous
way. This leads to a reduction of the 5d-6sp interband gap.
This effect is alarming in the neighborhood of the X point,
where the lowest empty band is shifted by −1.7 eV while
the topmost 5d band is shifted by + 1.1 eV, thus leading to
an inversion in the band ordering. This unphysical shifting
of bands is solved by including the exchange contributions
from the 5d to the 5s and 5p semicore orbitals (“with SC”).
Although 5s and 5p states are separated in energy by more
than 50 eV from the 5d ones, their spatial overlap with the 5d
is important. Hence, they play an important role at the GW
level and cannot be neglected.7,49 In the remainder of the paper
all the GW calculations are performed treating explicitly these
electrons as valence states.
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FIG. 2. (Color online) Effect of the semicore orbitals on the band
structure of gold calculated within G0W0 using a plasmon-pole model.
The results obtained when the semicore states are not considered as
valence electrons (w/o SC) are represented by solid orange (light
grey) lines, while those calculated with the semicore states treated
as valence electrons (with SC) are shown as dotted brown (medium
grey) lines. The zero of energy has been set at the Fermi level. The
corresponding Brillouin zone is shown on top. All the calculations in
this paper are performed at least at the scalar-relativistic level.
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FIG. 3. (Color online) Band structure of gold calculated within
DFT-PBE [solid blue (black) lines] and G0W0 using the contour
deformation technique [solid green (light grey) lines] or the Godby-
Needs plasmon-pole model [dotted brown (medium grey) lines]. The
zero of energy has been set at the Fermi level.

PPMs are believed not to work satisfactorily in the presence
of d electrons just below the Fermi level. Indeed, this may
induce strong transitions in ε−1

GG′ (q,ω). As a result, this function
cannot always be approximated by a single-pole function at
small values of G and G′.7 Figure 3 shows the band structure
of gold calculated within G0W0 using either a PPM [dotted
brown (medium grey) lines] or the more accurate CD method
[solid green (light grey) lines]. For bands located in the energy
window going from the Fermi level to 5 eV below, both
methods give similar results (within a maximum difference
of 0.1 eV). Below this window, the use of the PPM tends to
shift the bands down compared to CD, with a discrepancy
which can be up to 0.2 eV. This PPM inaccuracy on the
lowest band is also present in other systems, such as in silicon
and diamond,23 whose energy-loss function (ELF) presents a
well-defined single plasmon resonance.50 Although in noble
metals the ELF has a more complex structure, the single PPM
cannot be considered less valid in gold than in silicon and
diamond. In what follows we will anyway use the CD method
for all GW calculations.

In Fig. 3, the DFT-PBE band structure of gold [solid blue
(black) lines] is also reported. It is found to be in agreement
with previous calculations.6 The G0W0 band structure [solid
green (light grey) lines] is almost on top of the DFT-PBE one,
but the first unoccupied band is shifted up nonhomogeneously
by up to ∼0.2 eV and the first occupied band is shifted down by
∼0.4 eV at %. These bands present a predominant sp character.
The G0W0 corrections are, anyway, not modifying the 5d
manifold of bands: Their shape, position, and bandwidths are
the same as in the DFT-PBE case. As a consequence, the
G0W0 5d-6sp interband gap does not change compared to
the DFT-PBE value, which is smaller than the experimental
evidence.

V. SELF-CONSISTENCY EFFECTS WITHIN THE
QSGW APPROXIMATION

Figure 4 shows the band structure for different approaches:
DFT-PBE [solid blue (black) lines], G0W0 [solid green (light
grey) lines], and QSGW [dotted pink (grey) lines]. The
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FIG. 4. (Color online) Band structure of gold calculated within
DFT-PBE [solid blue (black) lines], G0W0 [solid green (light grey)
lines], and QSGW [dotted pink (grey) lines]. All GW calculations
are done within the CD method. The zero of energy has been set at
the Fermi level.

transition energies at high-symmetry k points can also be read
in Table I.

When recalculating the QP wave functions within the
QSGW approach, the 5d bands are shifted with respect to
DFT-PBE by −0.4 eV. This is the major difference with
respect to one-shot G0W0. In addition, the first unoccupied
bands are further shifted, achieving +0.3 eV from DFT-PBE.
As a consequence, the interband gap between the 5d and the
unoccupied bands is opened by 0.4 to 0.8 eV with respect to
the DFT-PBE energies. For instance, the transition energies
X5 → X4′ and L3′ → L1 are opened by 0.45 and 0.75 eV,
respectively. This points out the significance of correcting the
DFT-PBE wave functions in order to obtain a more accurate
band structure.

To understand the effect of quasiparticle self-consistency,
the QP and DFT-PBE wave functions are compared in Fig. 5.
It is found that QSGW introduces a mixing of DFT-PBE states
which corresponds to rotations and small relocalizations of the
wave functions. These changes depend on the k point k and
the band index n.

In Fig. 5(a), we plot the square of overlap between the
QP and DFT-PBE wave functions at k points L and A, the
latter being a random low-symmetry k point with reduced
coordinates (0.5, 0.3, 0.1). This is a direct indication of the
band mixing resulting from the QSGW procedure. The square
modulus of the QP and DFT-PBE wave functions, |ψQP

nk |2 and

TABLE I. Transition energies of gold (in eV) calculated within
scalar-relativistic DFT-PBE, G0W0, and QSGW .

PBE G0W0 QSGW

%1 → %25′ 5.2 5.6 5.0
%25′ → %12 1.5 1.5 1.5
X3 → X2 4.8 4.8 4.7
X5 → X4′ 2.6 2.3 3.1

X4′ → X1 4.8 5.4 5.2
L3 → L3′ 2.8 2.9 2.8
L3′ → L2′ 1.0 0.4 1.2
L2 → L1 4.0 4.8 4.6
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FIG. 5. (Color online) Illustration of the DFT band mixing at the
QSGW level. Panel (a) represents the square of the overlap between
the QP and DFT-PBE wave functions at the L (left) and A (right) k

points. The A point is a random low-symmetry k point with reduced
coordinates (0.5, 0.3, 0.1). The square modulus of the QP and DFT-
PBE wave functions, |ψQP

nk |2 and |ψDFT
nk |2, for band index n = 4 at k

point L are shown in panels (b) and (c), respectively. Panel (d) shows
the difference |ψQP

nk |2 − |ψDFT
nk |2 for band index n = 6 at k point A.

Gold atoms in the FCC lattice are represented by yellow (light grey)
spheres. In panels (b)–(d), the isosurfaces correspond to +1ρ in red
(grey) and −1ρ in blue (black), with ρ = 6 × 10−4 e−/Å3 for panels
(b) and (c), while for panel (d), ρ = 3 × 10−5 e−/Å3.

|ψDFT
nk |2, for band index n = 4 at the L point are shown in

Figs. 5(b) and 5(c), respectively. Finally, in Fig. 5(d), we report
the difference |ψQP

nk |2 − |ψDFT
nk |2 for band index n = 6 at the A

point. Regardless of the k point, the strongest mixing is always
found between degenerate bands (see top panel). It gives rise
to rotations of the wave functions associated with individual
bands. For example, the QP wave function associated with
band index n = 4 at the L point [Fig. 5(c)] corresponds
simply to a spatial rotation of the corresponding DFT-PBE
wave function [Fig. 5(b)] around the center of a gold atom.
In fact, bands n = 4 and 5 are degenerate in energy and the
corresponding wave functions have the same symmetry with a
different orientation. Therefore, the mixing of these bands just
induces a change in the orientation of the wave functions. The
wave functions associated with other degenerate bands may
also undergo similar rotations, without any noticeable effect
on the band structure.51

More importantly, numerous small hybridizations occur
between the occupied bands and the higher empty bands
[Fig. 5(a)]. This is more evident at low-symmetry k points,
such as the A point. These small hybridizations may have an
important effect on the shape and localization of the wave
functions. To illustrate this, we calculate the difference
between the square modulus of the QP and DFT-PBE wave
functions. This is done for the first unoccupied band at A.
For this particular band and k point, a relocalization of the
wave function is observed: The 5d character is reduced [blue
(black) lobes] while the 6s character close to the atom is
slightly augmented [red (grey) lobes]. The nature of these
changes depends on the k point and the band index n. The

effect of these changes of the wave functions is that the
diagonal elements of the self-energy 〈ψnk|"|ψnk〉 and Hartree
〈ψnk|vH|ψnk〉 operators are modified, inducing an almost rigid
shift of about 0.4 eV downward of the 5d bands.

VI. SPIN-ORBIT COUPLING EFFECTS

In order to fully take into account relativistic effects at least
at the single-particle level, in principle one should solve the
Dirac equation and work with Dirac spinors. Alternatively,
one can continue to work with Pauli spinors by choosing an
appropriate nonrelativistic limit of the Dirac equation which
adds some relativistic corrections to the Schrödinger equation
Hamiltonian. In the scalar-relativistic (SR) approximation,
one solves a Schrödinger equation including the relativistic
correction to the velocity by the mass and the Darwin terms.
These terms may cause important band shifts and they should
already capture most of the relativistic effect.52–54 In addition,
one can include the spin-orbit (SO) coupling term which may
cause important band splitting and changes to the band shape.
Hereafter, this procedure is referred to as SR + SO.

In Fig. 6 we show the comparison between the band plot
of a DFT-PBE calculation which only includes the SR terms
in the Kohn-Sham Hamiltonian with that of a fully relativistic
(SR + SO) DFT-PBE calculation, which also includes the SO
coupling. In the case of gold, most of the relativistic effects in
the band structure come from the scalar-relativistic terms.1,6

The SO coupling term mainly accounts for band splittings, as
shown in Fig. 6. To illustrate the effect of the SO coupling on
the wave functions, the overlap between the SR and SR + SO
DFT-PBE wave functions is calculated at the % point, as shown
in Fig. 7. The overlap is close to 1 for the occupied bands 1,
5, and 6, meaning that these bands are almost unaffected by
the SO coupling term. However, the d bands 2, 3, and 4 are
strongly changed by the SO coupling term. The %25′ state found
in the scalar-relativistic calculation is split into the %7+ and %8+

states, once the SO coupling term is taken into account. Similar
effects are observed in other k points as explained in Ref. 6.

Within MBPT, relativistic fine-structure effects should
in principle be calculated within a fully spinorial GW
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FIG. 6. (Color online) DFT-PBE band structure of gold calculated
within the scalar-relativistic (SR) approximation [solid blue (black)
lines] and including also the spin-orbit coupling (SR + SO) [dotted
red (grey) lines]. The zero of energy is set at the Fermi level.
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functions.

formalism.32,33 So far, this formalism has been applied only
to Hg compounds20 at the G0W0 level. However, at the
self-consistent level, this method has not yet been applied to
real systems.

In this work, we add SO effects perturbatively on top of the
QSGW and HSE band structures by the following procedure:

(1) We evaluate the SO corrections to DFT-PBE eigenvalues
by a fully spinorial Kohn-Sham calculation.

(2) We compute "SO
nk = εSR+SO

nk − εSR
nk , the difference be-

tween the SR and SR + SO DFT-PBE eigenvalues at a given k
point and band index n.

(3) We add "SO
nk to the corresponding QP (HSE) eigenvalue.

Figure 8 shows the PBE + SO [dotted red (grey) lines],
QSGW + SO [solid black lines], and HSE + SO [dashed green
(light grey) lines] band structures including SO coupling
effects. The experimental band structure along the L → %
k path taken from Ref. 5 is also shown. The experimental and
theoretical eigenvalues are listed in Table II.

The QP occupied bands are in good agreement with
the available experimental measurements with an average
difference of 0.06 eV. In fact, the 5d bands are shifted by
−0.4 eV, improving the agreement with the experimental data.
Indeed, this shift has been suggested before in Refs. 2 and 5.
Nevertheless, the occupied L−

6 band is lowered by 0.26 eV
with respect to the DFT-PBE value, in the wrong direction
with respect to the experiment [this is also the case in the
band structures obtained within one-shot GW (see Fig. 3)].
A disagreement of up to 0.6 eV in the first unoccupied band
still remains. To illustrate, for band 7 the discrepancy is of 0.4
and 0.6 eV at L+

6 and %−
7 (see Table II). Moreover, for higher

energy bands, such as %−
6 at 18 eV above the Fermi level, the

deviations from the experimental data can be as large as 0.8 eV.

VII. RESIDUAL DISCREPANCIES

The inclusion into the QP band structure of spin-orbit
effects by the present perturbative treatment might be consid-
ered as the source of the residual nonnegligible discrepancies.
However, a more correct treatment within GW of such effects,
as in Ref. 20, was found to affect the result by not more than
0.1 eV.
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FIG. 8. (Color online) Band structure of gold calculated within
PBE + SO [dotted red (grey) lines], QSGW + SO [solid black lines]
and HSE + SO [dashed green (light grey) lines]. The zero of energy
has been set at the Fermi level. These theoretical results are compared
to various experimental measurements. The blue (black) circles are
taken from Ref. 5. At the L point, the blue (black) squares correspond
to the measurements listed in Table II. The dashed blue (black) line
gives the experimental final band consistent with all data points from
angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) in
Refs. 5, 59, and 60 and from low-electron reflectance in Ref. 61.

The error due to the use of QSGW instead of a full GW self-
consistency is currently unknown. However, the use of a dif-
ferent self-consistent scheme, namely SC-COHSEX + G0W0,
seems to provide results in agreement with QSGW .11 Of
course, one cannot exclude that both schemes at the same
time provide deviations from full self-consistent GW larger
than 0.1 eV.

Other possible sources of these discrepancies might be
vertex corrections beyond GW . Here we checked the local
vertex correction55 and a nonlocal vertex correction to W
only.56 These account for small corrections of no more than
0.1 eV, as explained in Ref. 57.

Intraband q → 0 Drude peak contributions to the polariz-
ability, which were neglected in our calculations, may lead to
a spurious gap at the Fermi level in simple (alkali) metals.58

However, no spurious gaps were observed here. In fact, the
neglect of the Drude peak in slightly more complex metals,
such as aluminium, does not lead to significant errors.58

The relativistic corrections taken into account here, as well
as in Ref. 20, are only at the single-particle level. At present,
the effect of many-body relativistic terms,18,19 such as the Breit
interaction or the spin-of-one-electron orbit-of-the-second,18

etc., is unknown. In systems like gold, where relativistic
effects are important, these terms might explain the remaining
discrepancies.

VIII. THE HSE BAND STRUCTURE OF GOLD

Within HSE, the partially occupied bands close to the Fermi
level are in good agreement with the QP and experimental
energies. For instance, the position of L−

6 is within 0.1 eV of
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TABLE II. Experimental and theoretical values (in eV) for the energy bands of gold at the high-symmetry points % and L. The theoretical
results include SO coupling corrections (see the text). Experimental errors are shown in parentheses (eV).

Symmetry
label PBE QSGW HSE

(band index) + SO + SO + SO Expt.

%+
6 (1) − 10.19 − 10.39 − 10.30

%+
8 (2,3) − 5.67 − 6.02 − 6.31 − 5.90,a − 6.0,b − 6.01 (0.02)c

%+
7 (4) − 4.46 − 4.85 − 4.82 − 4.45,a − 4.6,b − 4.68 (0.05)c

%+
8 (5,6) − 3.27 − 3.67 − 4.00 − 3.55,a − 3.65,b − 3.71 (0.02)c

%−
7 (7) 15.76 15.36 23.27 16.0 (0.1),c 15.9d

%−
6 (8) 18.08 17.97 24.38 18.8 (0.5)c

L+
6 (1) − 7.74 − 8.01 − 8.15 − 7.80 (0.15)b

L+
4,5 (2) − 5.79 − 6.16 − 6.40 − 6.23 (0.15),b − 6.20 (0.05)c

L+
6 (3) − 4.61 − 4.97 − 5.36 − 4.88 (0.1),b − 5.0 (0.05)c

L+
6 (4) − 2.61 − 2.95 − 3.25 − 3.2 (0.1)c

L+
4,5 (5) − 1.90 − 2.24 − 2.60 − 2.3 (0.1),c − 2.5e

L−
6 (6) − 1.37 − 1.63 − 1.12 − 1.0,e − 1.0 (0.1),f

− 1.01 (0.04),g − 1.1 (0.1)h

L+
6 (7) 2.93 3.19 3.29 3.6,e 3.65 (0.05),f

3.56 (0.02),g 3.4 (0.1)h

aAngle-resolved ultraviolet photoelectron spectroscopy (Ref. 59).
bAngle-resolved ultraviolet photoelectron spectroscopy (Ref. 60).
cAngle-resolved ultraviolet photoelectron spectroscopy (Ref. 5).
dLow-energy-electron reflectance (Ref. 61).
ePiezoreflectance (Ref. 62).
fElectrotunneling (Ref. 63).
gPiezo-optical response (Ref. 64).
hBremsstrahlung isochromat spectroscopy (Ref. 65).

the experimental data (see Table II). For this particular point,
HSE presents a better agreement with the experimental data
than QSGW does. The QP and HSE bands along the W to X
and % to L paths agree almost perfectly from −1 to 3 eV [the
Fermi level is at zero] (see Fig. 8). However, in this energy
range, a disagreement of ∼0.4 eV is found in the vicinity of
the X point. Moreover, the HSE 5d bands are ∼0.3 eV below
the QSGW results and the experimental data. This shows that
HSE opens the interband gap between the unoccupied and the
5d bands too much. For higher energy bands, the agreement
is quite poor. For instance, the HSE eigenvalues at the %−

7 and
%−

6 points are ∼6 to 7 eV above the GW and experimental
data.

Our findings, and in contemporary those of other authors,66

show that the HSE functional does not systematically predict
reliable band widths and gaps. In fact, the amount of exact
exchange in the HSE functional is chosen so to provide
good structural, thermochemical, and bonding properties of
solids.67,68 For metals, our results, in agreement with Refs. 67
and 68, show that HSE overestimate transition energies.
Moreover, the modification in the d wave functions as provided
by self-consistent GW are not catched by HSE, and the
corresponding physics is not reproduced.

IX. CONCLUSIONS

In summary, we have studied the band structure of gold
using MBPT with several flavors of the GW approximation
and using the HSE hybrid functional. While the inclusion of

semicore 5s and 5p states in the valence shell has negligible
effects in DFT, it becomes crucial in GW , leading to a wrong
inverse ordering of bands at the Fermi level when they are
neglected. Within G0W0, the plasmon-pole model is found
to be a good approximation for gold. The PPM provides the
same results, within 0.1 eV, as the full contour-deformation
integration method, except for the lowest bands where devi-
ations can be up to 0.2 eV. With respect to DFT-PBE, the
single-shot G0W0 shifts the empty bands up by ∼0.2 eV and
the lowest sp occupied band down by 0.4 eV, while leaving the
5d occupied bands unchanged. Updating the DFT-PBE wave
functions, as in the QSGW approach, is important to shift
down by 0.4 eV the occupied 5d bands, thus improving the
agreement with the experiment. A residual discrepancy of up
to 0.6 eV in the 5d-6sp interband gap is still present, probably
due to relativistic effects beyond those included here, as well as
the lack of a unified relativistic many-body approach. Finally,
the position of the 5d bands calculated within HSE ends up
∼0.3 eV below the experimental data. HSE becomes more and
more off for higher states, with an error of ∼6 eV at 16 eV
from the Fermi level.
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In this supplemental material, we report a series of
convergence tests that have been performed with respect
to various parameters involved in GW calculations. We
consider: the cut-off energy of the dielectric matrix, the
number of unoccupied bands in the sums-over-states, the
number of k-points, the number of frequencies along the
contour deformation path, the number of self-consistency
loops, and the number of bands updated within QSGW .
The results of these tests make it clear that:

(i) our GW calculations are converged within 0.1 eV,

(ii) self-consistency in the wavefunctions is needed to
lower the 5d many-fold of bands.

The convergence is checked for a series of interband
transition energies, focusing mostly on two transitions at
the Γ point: Γ12 → Γ2′ (from the degenerate bands 5 and
6 to band 71) and Γ25′ → Γ15 (from band 4 to band 8).

All calculations report here rely on the scalar-
relativistic approach (i.e. spin-orbit effects are ne-
glected). The Au pseudopotential includes the semicore
states and hence contains contains 19 electrons (5s2, 5p6,
5d10, 6s1). All the other parameters (a part from the one
for which the convergence is being checked) are indenti-
cal to those indicated in Section II (Technical details) of
the paper.

I. CUT-OFF ENERGY OF THE DIELECTRIC
MATRIX

The convergence tests with respect to the cut-off en-
ergy of the dielectric matrix (Eε

cut) are performed at the
G0W0 level using the Godby-Needs (GN) plasmon pole
model (PPM). This parameter determines the size of di-
electric matrix that is used in the calculations. The in-
terband transition energies Γ12 → Γ2′ and Γ25′ → Γ15 are
reported in Fig. 1 and Table I as a function of Eε

cut. It
is clear that a cut-off energy of 4 Ha ( 108 eV) is enough
to ensure an excellent convergence.
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FIG. 1. (Color online) Relative convergence of the interband
transition energies ∆E = Γ12 → Γ2′ [red (grey) line with
squares] and Γ25′ → Γ15 [black line with circles] with respect
to the cut-off energy for the dielectric matrix (Eε

cut). The
converged value (∆E

conv) is taken as the reference.

E
ε
cut (Ha) Γ12 → Γ2′ Γ25′ → Γ15

1.3 18.112 23.617
2.6 18.018 23.530
4.0 17.995 23.485
5.3 17.995 23.485
6.6 17.995 23.485

TABLE I. Convergence of the interband transition energies
Γ12 → Γ2′ and Γ25′ → Γ15 (in eV) with respect to the cut-off
energy for the dielectric matrix (Eε

cut).

II. NUMBER OF UNOCCUPIED BANDS

The convergence tests with respect to the number of
unoccupied bands in the sums-over-states (Nc) are per-
formed at the G0W0 level using the GN-PPM. The inter-
band transition energies Γ12 → Γ2′ and Γ25′ → Γ15 are
reported in Fig. 2 and Table II as a function of Nc. The
results obtained using the extrapolar method2 are also
shown. This technique accelerates the convergence with
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respect to the number of bands entering the sums-over-
states. The average extrapolar energy is chosen to be 2
Ha above the highest calculated eigenvalue.
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FIG. 2. (Color online) Relative convergence of the interband
transition energies ∆E = Γ12 → Γ2′ [red (grey) line with
squares] and Γ25′ → Γ15 [black line with circles] with respect
to the number of bands (Nc) entering the sums-over-states.
The results are computed with (solid lines with open symbols)
and without (dashed lines with filled symbols) the extrapolar
method. The converged value (∆E

conv) obtained with the
extrapolar method is taken as the reference.

with extrapolar without extrapolar
Nc Γ12 → Γ2′ Γ25′ → Γ15 Γ12 → Γ2′ Γ25′ → Γ15

20 18.005 23.667 17.973 23.712
50 17.902 23.561 17.794 23.495

100 17.877 23.540 17.795 23.485
200 17.865 23.534 17.834 23.507
500 17.869 23.530 17.864 23.530

TABLE II. Convergence of the interband transition energies
Γ12 → Γ2′ and Γ25′ → Γ15 (in eV) with respect to the number
of bands (Nc) entering the sums-over-states.

With 500 unoccupied bands, the results are extremely
well converged (even without the extrapolar method).
However, we observe that 100 unoccupied bands are
enough to guarantee a deviation smaller than 0.01 eV
with respect to the fully converged value.

III. NUMBER OF FREQUENCIES ALONG THE
INTEGRATION PATH

In the contour deformation (CD) technique, the cor-
relation part of the self-energy requires to perform an
integration along the imaginary axis while the exchange
part involves an integration along the real axis. These in-
tegrations are performed using frequency meshes whose

size needs to be converged. The convergence with re-
spect to the number of frequencies along the real (N!

f )

and imaginary (N"
f ) axes is illustrated in Fig. 3 and Ta-

ble III. With 5 (resp. 6) frequencies along the real (resp.
imaginary) axis, the results are clearly converged within
0.05 eV. In the paper, we took 20 frequencies along the
real axis, which is clearly overconverged.
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FIG. 3. (Color online) Relative convergence of the interband
transition energies ∆E = Γ12 → Γ2′ [red (grey) line with
squares] and Γ25′ → Γ15 [black line with circles] with respect
to the number of frequencies along the real (N!

f ) and imag-

inary (N"
f ) axes. The converged value (∆E

conv) is taken as
the reference.

N
!
f Γ12 → Γ2′ Γ25′ → Γ15 N

"
f Γ12 → Γ2′ Γ25′ → Γ15

6 18.001 23.549 4 17.969 23.513
12 18.001 23.529 8 18.006 23.511
18 17.997 23.510 12 18.017 23.511
24 17.999 23.549 16 18.023 23.512
30 18.003 23.529 20 18.025 23.411

TABLE III. Convergence of the interband transition energies
Γ12 → Γ2′ and Γ25′ → Γ15 with respect to the number of
frequencies along the real (N!

f ) and imaginary (N"
f ) axes.
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IV. SIZE OF THE k-POINT MESH

The convergence tests with respect to the size of the
k-point mesh are performed at the G0W0 level using the
CD method. In Table IV, various energy transitions at
high-symmetry k-points are reported for different k-point
meshes. We consider homogeneous Γ-centered grids of
10×10×10 and 20×20×20 k-points. The corresponding
bandstructures are shown in Fig. 4. The bandwidths
obtained with both meshes have an average difference of
0.02 eV. The largest difference (0.04 eV) is found for the
L2′ → L1 energy transition.
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FIG. 4. Quasiparticle bandstructure of gold computed within
G0W0 using the CD method. The results obtained for
10×10×10 (black solid lines) and 20×20×20 (red dotted lines)
k-points are compared. The Fermi level is at 0 eV.

mesh Γ1 → Γ25′ Γ25 → Γ12 X3 → X2 X5 → X4′

10×10×10 5.57 1.52 4.79 2.25
20×20×20 5.56 1.52 4.82 2.22

mesh X
′
4 → X1 L3 → L3′ L3′ → L2′ L2′ → L1

10×10×10 5.37 2.87 0.43 4.83
20×20×20 5.39 2.88 0.45 4.79

TABLE IV. Convergence of various energy transitions (in eV)
at high-symmetry k-points as a function of the size of the k-
point mesh. Homogeneous Γ-centered grids of 10×10×10 and
20×20×20 k-points are considered.

V. NUMBER OF SELF-CONSISTENCY LOOPS

Within QSGW , the convergence on the number of
self-consistency iterations is important to obtain physical
and smooth bandstructures. To achieve convergence, a
mixing factor is needed when updating the quasiparticle
(QP) density. During the first few iterations, it is chosen
very small (typically 0.01) so that the density changes
smoothly. Then, it is then slowly increased up to 1.0.

The self-consistency loops are stopped when reaching
a tolerance on the QP eigenvalues of 0.001 eV. Such a
high convergence criteria is needed for the interpolation
based on maximally-localized Wannier functions, since
this schemes takes into account the derivatives of the
eigen-energies with respect to k.

VI. NUMBER OF BANDS UPDATED WITHIN
QSGW

Finally, we investigated the convergence with respect
to the number of bands updated within QSGW . In Ta-
ble V, various energy transitions at high-symmetry k-
points are reported as a function of the number of bands
updated (Nb). In Fig. 5, the QP bandstructures calcu-
lated mixing 10 (red dashed lines), 20 (blue dashed lines)
and 40 (black solid lines) bands are shown. The DFT-
PBE bandstructure is also shown (dotted green lines) for
the sake of comparison. For clarity, the results obtained
for 30 and 50 bands are not reported in the figure.
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FIG. 5. Quasiparticle bandstructure of gold computed within
QSGW mixing 10 [dashed red (grey) lines], 20 [dashed blue
(dark grey) lines] and 40 [solid black lines] bands. The DFT-
PBE results are shown in dotted green (light-grey) lines. The
Fermi level is set to 0 eV.

In fact, the bandstructure obtained updating only 10
bands is practically on top of the DFT-PBE bandstruc-
ture. Note that such a calculation is very similar to
performing the self-consistency on the eigenvalues only.
Therefore, self-consistency on the eigenvalues only is not
enough to lower the 5d bands. As more and more bands
are updated, the 5d bands are lowered down, as can be
clearly seen in Fig. 5 (compare the red, blue and black
lines).

A convergence of 0.05 eV in the QP eigenvalues is
reached when 30 bands are updated. In the manuscript,
we use the results obtained with 40 bands, which are
converged within 0.01 eV (see Table V).
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Nb Γ1 → Γ25′ Γ25 → Γ12 X3 → X2 X5 → X4′

10 5.40 1.49 4.77 2.56
20 5.17 1.49 4.72 2.85
30 5.07 1.47 4.68 3.01
40 5.04 1.47 4.67 3.06
50 5.03 1.47 4.66 3.07
Nb X4′ → X1 L3 → L3′ L3′ → L2′ L2′ → L1

10 5.36 2.87 0.71 4.76
20 5.27 2.85 0.99 4.64
30 5.23 2.83 1.14 4.58
40 5.21 2.82 1.19 4.57
50 5.21 2.82 1.19 4.56

TABLE V. Convergence of various energy transitions (in eV)
at high-symmetry k-points as a function of the number of
bands updated (Nb) within QSGW .

∗ Email: tonatiuh.rangel@cea.fr
Present address: CEA, DAM, DIF, F-91297 Arpajon,
France

1 The bands are indexed by ascending energy. The number-

ing neglects the semicore states which are included in the
pseudopotential.

2 F. Bruneval and X. Gonze, Phys. Rev. B 78, 085125 (2008).


