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Abstract. The electronic properties of three different oxides (ZnO, SnO2 and SiO2) are investigated within
many-body perturbation theory in the G0W 0 approximation. The frequency dependence of the dielectric
function is either approximated using two different well-established plasmon-pole models (one of which
enforces the fulfillment of the f -sum rule) or treated explicitly by means of the contour-deformation
approach. Comparing these results, it is found that the plasmon-pole model enforcing the f -sum rule gives
less accurate results for all three oxides. The calculated electronic properties are also compared with the
available experimental data and previous ab initio results, focusing on the d state binding energies. The
G0W 0 approach leads to significantly improved band gaps with respect to calculations based on the density
functional theory in the local density approximation.

1 Introduction

While density functional theory (DFT) has proved to
be successful in predicting the ground state properties
of semiconductors and insulators, the corresponding pre-
dicted band gaps are systematically underestimated com-
pared to the experimental values. In fact, DFT is a ground
state theory and formally Kohn-Sham (KS) eigenvalues
cannot be interpreted as quasiparticles (QP) energies.

In contrast, many-body perturbation theory (MBPT)
allows one to determine the excited-state properties (e.g.
single-particle addition and removal energies) and there-
fore the QP band structures with very good accuracy.
The key quantity in MBPT is the self-energy operator
Σ which carries information related to the many-body
interactions between the particles. It is non-local, non-
Hermitian and energy dependent. In fact, the main dif-
ficulty is to find an adequate expression for Σ. Hedin [1]
proposed a perturbative approach in which the self-energy
operator is obtained by solving self-consistently a set of
coupled integro-differential equations. This scheme being
very cumbersome, Hedin also suggested an approximation
for the vertex function Γ which appears in these equa-
tions. As a result, the self-energy operator is simply ob-
tained as the product of the Green’s function (G) and the
dynamically screened Coulomb potential (W ). In princi-
ple, the self-consistency requirement still holds. However,
it is customary to stop after the first iteration, which is
often referred to as one-shot GW or G0W 0. In this frame-
work, the self-energy operator is obtained from the KS
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states. The G0W 0 method usually leads to very reason-
able band gaps and bandstructures for quite a large range
of semiconducting and insulating materials.

In practice, it is most efficient to obtain the QP ener-
gies using perturbation theory with respect to the results
of DFT: the self-energy operator Σ is treated as a correc-
tion to the exchange-correlation potential of the system
in the KS picture. The QP energies are thus computed by
adding QP corrections to the KS eigenvalues. This pro-
cedure will result in values in agreement with experiment
provided that the KS states are similar to the QP states.
Otherwise a self-consistent approach on the eigenvalues,
and possibly on the eigenstates, might be necessary. Re-
cently, it was shown that G0W 0 results may depend not
only on the KS starting point but also on a subsequent ap-
proximation in the treatment of the frequency dependence
of the dielectric function [2]: namely the use of plasmon
pole models (PPMs) [3]. Analyzing the differences between
different PPMs is important in the evaluation of the G0W 0

approximation and its reliability. That is the aim of the
present paper.

We focus on three different oxides (ZnO, SnO2 and
SiO2) and we compare the effects of DFT in the local
density approximation (LDA) and standard GW approx-
imations of the dielectric function on their fundamental
band gap and the semicore d state binding energies. We
then compare our results to available experimental data
and discuss in further detail the electronic structure.

First-principles electronic structure calculations on
these oxides have already been carried out with differ-
ent methods, most of them within the framework of DFT.
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More recently, MBPT was used to better describe excited-
state properties, mainly the band gap [4–22], but there are
still significant discrepancies up to the order of 1 eV in the
reported band gap values.

This work is organized as follows: we first describe the
theoretical methods; we then discuss the results for ZnO,
SnO2 and SiO2 and compare them to available experimen-
tal data and previously reported abinitio results.

2 Theoretical methods

If KS orbitals are a good approximation to the pertu-
batively corrected QP orbitals then only one iteration of
Hedin’s GW approximation [1] needs to be performed i.e.
the so-called G0W 0 approach.

The Green’s function G and the screened Coulomb po-
tential W are needed to compute Σ:

Σ(r, r′; ω) =
i

2π

∫ ∞

−∞
dω′G(r, r′; ω + ω′)W (r, r′; ω′)eiω′η,

(1)
G is represented in terms of the KS orbitals φi and energies
εKS

i as

G(r, r′; ω) =
∑

i

φ∗
i (r′)φi(r)

ω − εKS
i − iη

, (2)

where η = 0+ for occupied states i.e. hole excitations and
η = 0− for unoccupied states i.e. electronic excitations.
The dynamically screened Coulomb potential is given by

W (r, r′; ω) =
∫

dr′′ε−1(r, r′′; ω)v(r′′, r′), (3)

where v(r, r′) is the bare Coulomb potential and ε(r, r′; ω)
is the dielectric function. The self-energy is usually sep-
arated into a frequency independent pure-exchange part
Σx and a correlation part Σc to give Σ(ω) = Σx + Σc(ω),
where:

Σx =
i

2π

∫ ∞

−∞
dω′G(ω′)veiω′η, (4)

and

Σc(ω) =
i

2π

∫ ∞

−∞
dω′G(ω + ω′)[W (ω′) − v]. (5)

We have omitted the spatial part in the previous equations
for Σ, since it is a pure multiplication. The quasiparticle
energies are then obtained perturbatively, assuming εQP

i
close to εKS

i

εQP
i = εKS

i +Zi

〈
φKS

i |Σ(r, r′; εKS
i ) − Vxc(r)δ(r − r′)|φKS

i

〉

(6)
where Zi is the renormalization factor

Z−1
i = 1 −

〈
φKS

i | ∂Σ(ω)
∂ω

∣∣∣∣
εKS

i

|φKS
i

〉
. (7)

PPMs are used to compute Σc by approximating the con-
volution integral (5). In a periodic system, where ε−1 is

the inverse dielectric matrix in the random phase approxi-
mation (RPA) [23,24], the dynamical part of the screened
interaction defined as W c = W − v reads

W c
G,G′′(q, ω) =

∑

G′

[ε−1
G,G′(q, ω) − δG,G′ ]vG′,G′′(q), (8)

with G and q being the reciprocal lattice vectors and wave
vectors within the first Brillouin zone (BZ) respectively.
The frequency dependence of the imaginary part of W c

i.e. ε−1 is assumed to be well described by a delta peak
function, which introduces three parameters: the weight
of the peak, A, the pole frequency ω̃, and the oscillator
strength of the real part, Ω:

I[ε−1
G,G′(q, ω)] = AG,G′(q)

× [δ(ω − ω̃G,G′(q)) − δ(ω + ω̃G,G′(q))] ,

R[ε−1
G,G′(q, ω)] = δG,G′ +

Ω2
G,G′(q)

ω2 − ω̃2
G,G′(q)

. (9)

Kramers-Kronig relations apply to W and therefore only
two parameters are independent.

In this work, we use the PPMs introduced by
Hybertsen and Louie (HL) [25] and Godby and Needs
(GN) [26]. Both PPMs set the plasmon pole parameters
first requiring that the behavior of ε−1 in the static limit
(ω = 0+) is reproduced. In the HL PPM, the parame-
ters are chosen so that the dielectric function fulfills a
frequency sum rule (f -sum rule) [27]:

∫ ∞

0
dω ωI[ε−1

G,G′(q, ω)] = − π

2
ω2

p
(q+G)·(q+G′)

|q+G|2
nG−G′

nG=0
,

(10)
where nG−G′ is the charge density in reciprocal space. In
the GN PPM, the parameters are determined by comput-
ing the value of ε−1 at one point on the imaginary fre-
quency axis iωp near the plasma frequency of the system.

One can avoid using a PPM by doing a full-
frequency treatment of the convolution in equation (5)
(see Ref. [28,29]). Although computationally expensive, it
allows for a more accurate description of Σc. The contour
deformation technique (CD) eases this treatment by de-
forming the integration path. The correlation Σc is then
computed as the difference between an integral along the
imaginary axis and the contribution due to the residues
of the poles of G inside the contour.

Σc(ω) = −
C∑

s

lim
z→zs

G(z)W c(z)(z − zs)

− i

2π

∫ −∞

+∞
d(iω′)G(ω + iω′)W c(iω′), (11)

where zs = εKS
s − ω + iη and the appropriate sign of

the residues has to be taken into account. In Figure 1
we illustrate the contour C in the complex plane used to
compute the integral in equation (5).

3 Computational details

All calculations are performed with the ABINIT code [30]
which relies on a plane wave approach. The electron-ion
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Fig. 1. (Color online) The contour integration path (blue line)
for the frequency integration of equation (5) in the complex
plane. The integration along the real frequency axis is changed
into an integration along the imaginary axis plus summation
of the enclosed poles.

interaction is modeled by standard norm-conserving pseu-
dopotentials [31] including scalar relativistic corrections
for Zn and Sn ions. Zn and Sn semicore d states are treated
as valence electrons as well as the complete shell to which
they belong. Indeed, it has been previously shown [32]
that all the electron states in shell with semicore d states
need to be included in order to get accurate QP energies.
In all calculations, the exchange-correlation energy is de-
scribed using an LDA functional [33]. For all three oxides,
the calculations are performed at experimental structural
parameters and in the frozen lattice approximation, ne-
glecting electron-phonon interactions effects. The cut-off
energies for the wavefunctions and the dielectric matrix,
as well as the number of empty states included in the cal-
culations of W and Σ are set to converge the eigenenergies
within 0.05 eV.

For ZnO, the wurtzite phase (space group P63mc)
is considered. The experimental data from reference [34]
are used for the structural parameters (a = b = 3.25 Å,
c = 5.20 Å, and u = 0.382). The pseudopotentials are
generated using the following electronic valence configu-
rations: 3s2 3p6 3d10 4s2 electrons for Zn and 2s2 2p4 for
O. A 5 × 5 × 4 Monkhorst-Pack (MP) [35] grid is used to
sample the BZ. The grid is shifted by (0, 0, 1

2 ) (reduced
coordinates) for the calculation of W , and Γ centered in
the calculation of Σ.

SnO2 crystallizes in the rutile structure (space-group
symmetry P42/mnm). The tetragonal Bravais lattice con-
tains two formula units per primitive cell with the oxy-
gen atoms forming a distorted octahedron around the
tin atom. The experimental structural parameters (a =
3.18 Å, c = 4.74 Å, and u = 0.307) are those reported in
reference [36]. In the pseudopotentials generation, the Sn
5p2, 5s2, 4d10, 4p6, 4s2 electrons and O 2s2, 2p4 electrons
were treated as valence states. The calculations are per-
formed on a Γ centered 4 × 4 × 6 MP grid except for the
evaluation of W where a (1

2 , 1
2 , 1

2 ) shift is applied.

Fig. 2. (Color online) Upper panel: QP corrections with re-
spect to LDA energies in the gap energy range, computed for a
sampling of points in the BZ. Data were obtained with the con-
tour deformation technique (blue circles), Godby-Needs PPM
(green crosses) and Hybertsen-Louie PPM (red plus), respec-
tively for ZnO (a), SnO2 (b) and SiO2 (c). The shaded re-
gions correspond to occupied states. Lower panel: the error
of Godby-Needs and Hybertsen-Louie PPMs with respect to
the full-frequency contour deformation technique, for ZnO (d),
SnO2 (e) and SiO2 (f).

For SiO2, we consider the α-quartz structure which
has hexagonal symmetry (space-group P3221). Its unit cell
contains three formula units. The structural parameters
are fixed at the experimental value (a = b = 4.91 Å, c =
5.40 Å, u = 0.465, x = 0.415, y = 0.272, and z = 0.120)
as reported in reference [37]. We use a Γ centered 2 ×
2 × 2 MP grid, while W is computed on a grid shifted
by (0, 0, 1

2 ).

4 Results and discussion

In Figure 2, we probe the effects of using a PPM ap-
proximation looking at G0W 0 corrections to the LDA
eigenvalues for ZnO, SnO2 and SiO2. The results com-
puted with GN and HL PPMs are compared to those cal-
culated without resorting to any approximation on the
frequency-dependence of the dielectric matrix (i.e. using
the CD technique). The results obtained with the GN
PPM are in excellent agreement with the CD results, not
only for the band gap but also for the absolute values
of the G0W 0 shifts. The latter are critical for band off-
sets studies [38,39]. The size of the QP corrections to the
LDA eigenvalues depends also on the orbital character of
the corresponding state. For ZnO and SnO2, an accurate
description of the semicore states (not shown for SnO2

in Fig. 2) requires the full-frequency approach of the CD
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(a)

(b)

ZnO

SnO2

(c)

SiO2

Fig. 3. (Color online) Bandstructures and DOS for ZnO (a), SnO2 (b) and SiO2 (c) as computed within LDA (solid black line),
the contour deformation technique (solid blue line), Godby-Needs PPM (green circles) and Hybertsen-Louie PPM (dashed red
line). In each panel, the top of the valence band has been set to 0.

technique [39] as both PPMs fail to provide a good de-
scription of states far from the Fermi level.

In ZnO, the HL PPM strongly overestimates the cor-
rections for all states, especially for those close to the top
of the valence band. The effect is an artificial opening of
the ZnO gap, as already emphasized in [2]. This overesti-
mation is also present, though smaller, in SnO2 and SiO2.
For SiO2, the G0W 0 corrections to the KS eigenvalues are
almost linear and the overall effects on the bandstructure

is almost a rigid shift i.e. the use of a scissor operator
would be appropriate. A clearer estimate of the precision
of the GN PPM with respect to the reference CD is given
at the bottom of Figure 2. The GN QP corrections are in
very good agreement with the CD results over the whole
considered energy range.

The LDA and G0W 0 bandstructures and density of
states (DOS) of ZnO, SnO2 and SiO2 are plotted in Fig-
ure 3. The G0W 0 results are obtained using a polynomial
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Table 1. Fundamental band gap (in eV) of ZnO, SnO2 and
SiO2 (indirect for SiO2 from Kv to Γ c) computed within LDA
and G0W 0 using the contour deformation (CD) technique, the
Godby-Needs (GN) and Hybertsen-Louie (HL) PPMs.

Eg LDA CD GN PPM HL PPM exp

ZnO 0.67 2.43 2.34 3.56 3.44a 3.6b

SnO2 0.89 2.61 2.72 3.05 3.6c

SiO2 5.77 8.89 8.88 9.36 ∼9d

a Reference [43]. b Reference [44]. c Reference [45].
d References [46,47].

interpolation of the computed QP energies at different
points of the BZ. All energies are referenced to the top
of the valence band. Experimentally the Zn 3d levels lay
7.5–8.8 eV [40] below the top-most valence bands. How-
ever, it is apparent by inspection of Figure 3a that not
even G0W 0 calculated in the full-frequency approach is
able to assign the correct energies to the ZnO d states.
We have argued in a previous work [2] that the addition
of a Hubbard U term only corrects the QP energies to
a limited extent. In wurtzite ZnO the Zn d orbitals cou-
ple with the O p states at the valence band maximum
(VBM). As a consequence of the poor description of these
states the VBM is pushed upwards and the band gap is
then reduced. The band gap value (Tab. 1) is then un-
derestimated by ∼35%. The theoretical estimation of the
ZnO band gap has been a very active subject of investi-
gation and debate in the ab initio community. Theoretical
band gap values recently published range from 2.1 eV to
3.4 eV [5–14].

In the SnO2 LDA band structure in Figure 3b, the
bands lying in the region located from 19 to 21 eV be-
low the VBM correspond to the Sn 4d electrons which
are treated as valence electrons. In the XPS experimental
density of states spectrum, these bands appear at 21.5–
22.5 eV [41,42] below the main peak which is due to O p
states close to VBM. In all G0W 0 bandstructures, these
bands are shifted down in energy and are thus in better
agreement with experiment. As observed in other oxides
e.g. ZnO, the well known underestimation of O p-Sn d re-
pulsion occurs also for SnO2, although it is smaller due
to the deeper position in the VBM of the Sn 4d band,
with respect to the 3d bands of ZnO. The top of the VBM
mainly consists of contributions from the O p states, while
the bottom of the conduction band minimum (CBM) has
an anti-bonding character arising from the Sn 4s and O
p states. Our SnO2 quasiparticle LDA+G0W0 results give
a direct band gap value range of 2.6–3.1 eV depending
on the PPMs, in agreement with recently published the-
oretical value of 2.88–2.9 eV [17] but underestimating the
experimental band gap (3.6 eV) by ∼25–15% (see Tab. 1).

SiO2 upper valence bands are constituted mainly by
O p states, while Si 3s and 3p as well as O 2s and 2p
states hybridize to form the conduction bands. The den-
sity of states spectrum (Fig. 3c) compares well with XPS
measurements reported in reference [48]. In SiO2 the com-

Fig. 4. (Color online) Real component [at G = G′ = 0 and
q = 0] of the RPA microscopic dielectric function ε−1 as com-
puted with the full frequency contour deformation technique
(solid blue), the Godby-Needs PPM (dot-dashed green), and
the Hybertsen-Louie PPM (dotted red) plotted along the imag-
inary axis for (a) ZnO, (b) SnO2, and (c) SiO2.

puted band gap is in very good agreement with recently
published values [21,22] and the error is smaller than 1%.

Clearly the KS energies and wavefunctions of ZnO
and SnO2 are not a sufficiently accurate starting point
for GW . More sophisticated and computationally ex-
pensive methods might achieve a better accuracy e.g.
GW self-consistent approximations such as self-consistent
COHSEX [3] as a starting point for G0W 0 [49], quasi-
particle self-consistent GW à la Kotani-Faleev [8] or
including excitonic effects via vertex corrections to the
GW self-energy.

For all the oxides considered in this work we observe
a similar convergence behavior of the band gap value, as
the one illustrated in detail in reference [2] for the ZnO
case only. The band gap computed within the HL PPM
approximation converges slower than with GN PPM and
CD, with respect to both the number of unoccupied bands
included in the calculation and the planewave cut-off. This
feature is less pronounced in SiO2 and it should be as-
cribed to the absence of localized semicore states in the
electronic density nG−G′ (see Eq. (10)).

We analyze the properties of the dielectric matrices
obtained with the CD technique and with the PPMs to
further investigate the reasons leading to the discrepan-
cies we listed above. In Figure 4 the real part of the di-
electric matrix R[ε−1(iω)] along the imaginary frequency
axis for q = 0 at G = G′ = 0 computed with the PPMs is
compared to the more accurate values obtained with the
CD technique. It is clear that the GN PPM better repro-
duces the CD results. Indeed, the GN PPM parameters
are determined from the value of ε−1 for the static limit
(ω = 0+) and evaluated at one frequency iωp along the
imaginary axis, the value of which corresponds to the in-
tersection of the CD and GN curves in Figure 4. In view
of this, it is not surprising that the GN PPM reproduces
the behavior of the dielectric matrix along the imaginary
axis fairly well. In contrast, the HL PPM does not give
the correct R[ε−1(iω)] behavior. In all three cases illus-
trated in Figures 4a–4c the HL PPM is strongly under-
estimating the behavior of the CD results over the whole
frequency range.
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Fig. 5. (Color online) Real (upper panel) and imaginary (lower panel) components (at G = G′ = 0 and q = 0) of the RPA
microscopic dielectric function ε−1 as computed with the contour deformation technique (solid blue), the Godby-Needs PPM
(dot-dashed green), and the Hybertsen-Louie PPM (dotted red) plotted along the real axis for (a) ZnO, (b) SnO2, and (c) SiO2.

The real part of ε−1(ω) along the real frequency axis
is shown in the upper panel of Figure 5 for q = 0 at
G = G′ = 0. By construction, both PPMs match at the
static limit ω = 0+. For all three cases, though the two
PPMs are both crude approximations, the GN PPM is
closer to the exact behavior of R[ε−1(ω)], in particular for
frequencies larger than the position of the main pole. For
SnO2 and SiO2, the GN PPM is also a much better ap-
proximation for very small frequencies (ω <10 eV) while
this is not apparent in the ZnO case. These small frequen-
cies correspond to the range needed for the evaluation of
the QP corrections to the states close to the band gap.

The imaginary part of ε−1 is shown in the lower panel
of Figure 5. The position of the Dirac delta peaks for the
PPMs where all the spectral weight of I[ε−1(ω)] is concen-
trated is represented by the arrows. For the three systems,
the GN pole peak seems to better account for the overall
peak structure of I[ε−1(ω)]. For higher G,G′ vectors, the
position of the peaks for the GN and HL PPMs is affected
in a very different manner. The sum rule imposed by the
HL model pushes the Dirac delta peak ever further on the
real axis as can be seen in the upper panel of Figure 6.
This seems to result in an overestimation of the pole con-
tribution along the imaginary axis, in particular for the
low frequency region.

We then considered how the different techniques we
used to compute the screening comply with the sum rule.
The HL PPM complies with the sum rule by construc-
tion, while in the GN PPM, the parameters fix the inte-
gral of the imaginary part of the inverse dielectric func-
tion. When I[ε−1(ω)] is calculated explicitly, the integral
depends on the number of empty states included in the
sum. In the lower panels of Figure 6, we show how the
fulfillment of the sum rule varies for the diagonal matrix
elements of I[ε−1(ω)]. The compliance with the sum rule
is slowly achieved by the full-frequency CD while for the
GN PPM it is rather poor. Although the HL PPM fulfills

the sum rule by definition, it leads to some inaccuracies
for ε−1 at low frequencies which we can trace back to its
underlying assumptions. We can see from the lower panel
of Figure 5 that for ZnO and SnO2, the absorption spectra
indicate that there are many plasmon features probably
related to the highly inhomogeneous nature of the charge
density in those systems. The HL PPM averages these
contribution by enforcing the fulfillment of the f -sum rule
to set the position of a single pole. The GN PPM, on the
other hand, concentrates the fitting at a specific range
by evaluating another dielectric matrix at a non zero fre-
quency. The resulting pole is placed closer to the main
feature of the spectrum for the long-wavelength compo-
nents of the dielectric matrix. This might however not
be the case for the short-wavelength components, as was
shown in reference [2]. It is therefore expected that the
HL PPM might be less suitable for highly inhomogeneous
charge densities, or more specifically for systems with lo-
calized states, and this is what is observed in the examples
presented in this study.

5 Conclusions

In this study, three different oxides have been used as
benchmarks to test the accuracy of two PPMs with re-
spect to the more computationally demanding full fre-
quency CD approach. Our results show that the GN PPM
approximation systematically gives a reliable estimate –
compared to CD calculations – of the band gap values
and of the absolute values of the QP energies over a quite
wide energy range. In light of our analysis of the PPMs
description of ε−1, the fulfillment of the sum rule in all
the systems under consideration seems not to be a signifi-
cant and sufficient condition to ensure reliable results. The
overall agreement with experimental results is strongly in-
fluenced by the presence of the d levels in both ZnO and
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[Lower panels only]

Fig. 6. (Color online) Position of pole (upper panel) and fulfillment of the f -sum rule (lower panel) for the diagonal elements
(G = G′) of ε−1 within the Godby-Needs (dot-dashed green) and Hybertsen-Louie (dotted red) PPMs as a function of the
corresponding kinetic energy ( 1

2 |G|2). The blue/dark gray curves are the results obtained with the full frequency contour
deformation technique when varying the number of unoccupied bands included in the calculation of ε−1. The results for (a) ZnO,
(b) SnO2, and (c) SiO2 are compared. The band gap computed with the contour deformation technique is converged with ∼1250,
∼1000 and ∼400 unoccupied states for ZnO, SnO2 and SiO2 respectively.

SnO2. We can then conclude that the LDA + G0W 0 ap-
proach is not accurate enough to reproduce the electronic
features of ZnO and to some extent SnO2 and thus more
sophisticated approaches, such as full self-consistent GW ,
are needed for these materials.
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