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Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by
low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but
less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band
structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures
and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited
success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors.
It exploits the highly directional character of some orbitals to engineer the band structure and produce a
type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic
properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler
compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room
temperature. Our findings are totally generic and rationalize the search of alternative compounds with
similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic,
superconducting, or photovoltaic applications.
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Thermoelectricity, realizing the direct conversion between
thermal and electrical energies, is a very promising avenue for
renewable energy generation. The efficiency of a thermo-
electric (TE) material can be described by its figure of merit
ZT, defined as ZT ¼ ðS2σTÞ=ðκe þ κlÞ, where S is the
thermopower, σ the electrical conductivity, T the absolute
temperature, and κe and κl the electronic and lattice con-
tributions to the thermal conductivity. In practice, ZT should
be greater than 3 for TE devices to become fully competitive
with other energy conversion systems [1,2]. Unfortunately,
more than fifty years after the promising discovery of Bi2Te3-
based alloyswithZT ∼ 1 [3], increasingZT further remains a
real challenge. Huge efforts have been dedicated to the
lowering of κl using specific crystal structures (e.g., phonon
glass-electron crystals [4]) and nanostructuring [5–9], leading
to the generation of materials with ZT ¼ 1–2.4 within
the last decade [10–12]. Record low values of κl ¼
0.22− 0.5 W=mK [8,10] were achieved, and it is unlikely
that these values can still be significantly decreased. At this
stage, as emphasized by Kanatzidis [8], the next step forward
should come from new breakthrough ideas on how to
significantly enhance S2σ, the power factor (PF).
A promising avenue was proposed by Hicks and

Dresselhaus [5,13], who predicted theoretically that quantum
confinement of electrons in multiple wells can substantially
increase the PF. It was confirmed experimentally that the PF
in the confined region of nanostructures [14,15] can indeed
be larger than in related bulks. However, the gain in the

confined region is partly counterbalanced by the contribution
from the barrier material producing the confinement. More
recently, Mahan and Sofo [16] searched for what should be
the ideal shape of the so-called transport distribution function
that optimizes ZT. They reached the conclusion that the best
materials would combine (i) a distribution of carrier energy
as narrow as possible and (ii) high carrier velocities in the
direction of the applied field. Satisfying both of these criteria
seems difficult in practice: narrow energy distributions are
typically associated with flat energy bands, while high carrier
velocities are necessarily associated with highly dispersive
bands. This could be partly achieved in rare-earth compounds
like YbAl3, yielding very large PF at low temperatures [17].
However, those are metals with TE properties rapidly
decreasing with increasing T. Alternatively, attempts to
combine these apparently incompatible requirements in
semiconductors have relied on the “band structure engineer-
ing” of narrow energy features in the density of states from
in-gap and resonant states near the band edges [18–22].
Here, we show theoretically that the seemingly conflict-

ing requirements formulated by Mahan and Sofo [16] can
actually be combined within the same band of certain
semiconductors, exploiting the highly directional character
of some orbitals. This is achieved without any nanostructur-
ing or introduction of resonant states. It yields, in the bulk
phase, a type of low-dimensional transport similar to that
targeted by Hicks and Dresselhaus in nanostructures [5],
while simultaneously retaining isotropic transport properties
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at the macroscopic level, concretizing ideas recently pro-
posed by Parker et al. [23]. The concrete consequences of
this finding on the TE properties is demonstrated in the class
of Fe2YZ full Heusler compounds: by engineering the
appearance of Fe eg states at the bottom of the conduction
bands, power factors 4 to 5 times larger than in classical
thermoelectrics (such as PbTe or Bi2Te3) can be obtained at
room temperature. Beyond revealing the unexpected interest
of a class of compounds often considered as modest
thermoelectrics [24], our results rationalize the search of
alternative compounds with an optimal power factor. The
underlying concepts are totally generic and can be combined
with other known strategies for decreasing the thermal
conductivity in order to increase the TE figure of merit.
The electronic properties were studied within density

functional theory using CRYSTAL [25]. We adopted a B1-
WC hybrid functional scheme [26] which was previously
shown to be accurate for describing the electronic and TE
properties of this class of compounds [21]. The electronic
transport properties were studied within the Boltzmann
transport formalism and constant relaxation time approxi-
mation implemented in BoltzTraP [27]. Within this
approximation, S is independent of the relaxation time τ,
whereas σ and PF depend linearly on τ. The relaxation time
was set to τ ¼ 3.4 × 10−14 s in all of the calculations. This
value was determined by fitting the electrical resistivity ρ to
the experimental value of 0.65 mΩ cm for Fe2VAl1−xMx
(M ¼ Si, Ge) systems at doping x ¼ 0.03 and 300 K
[24,28]. For Fe2VAl, the calculated PF is 3 mW=mK2

(Fig. 1), in close agreement with experimental data. In
order to estimate with more accuracy ZT at high T, we went
beyond constant relaxation time approximation and con-
sidered T and energy E dependences of the relaxation time
τðT; EÞ for the acoustic and polar optical phonon scattering
mechanisms (Ref. [29], text). The thermodynamical sta-
bility was assessed using the generalized gradient approxi-
mation from Perdew, Burke and Ernzheroff within a
plane augmented wave approach and using VASP [53,54].

The computational parameters and pseudopotentials are
similar to the ones used in the Materials Project [55,56]. For
each chemical system (e.g., Fe-Ti-Sn), we computed the
chemistry in the Heusler crystal structure but also other
ternary crystal structures obtained from Heusler-forming
systems. The stability of each Heusler phase was evaluated
versus all phases present in the Materials Project and our
generated ternary phases using the convex hull construction
implemented in the PYMATGEN package [57].
We start our search from Fe2VAl, which, in spite of

relatively modest TE properties (ZT ∼ 0.13 − 0.2 [24,58],
PF ¼ 4–6 mW=mK2 [24,28] at 300–400 K), is considered
for low-cost TE applications [59]. As clarified recently
[21], it is an intrinsic semiconductor, with a low band gap
between the highest valence bands of dominant Fe t2g
character and a highly dispersive lowest conduction band of
dominant V eg character (see the dotted line in Fig. 1).
Interestingly Fe2VAl also exhibits a “flat-and-dispersive”
band of Fe eg character that is very flat along the ΓX
direction of the Brillouin zone and highly dispersive along
others (see the bold line in Fig. 1). This band combines the
above-mentioned features identified by Mahan and Sofo to
produce a large PF. It lies, however, ∼0.6 eV above the
bottom of the conduction band and is not active in transport
at room temperature for optimal doping at electron con-
centrations n ∼ 1019 cm−3. In order to move its position
towards the bottom of the conduction band, we performed
atomic substitutions at the Y and Z sites.
We consider in Fig. 1 a first set (S1) of Fe2YZ full Heusler

compounds with Y ¼ V, Nb, Ta and Z ¼ Al, Ga, In.
Going from 3d to 5d transition metal elements at the Y site
tends to move the Y eg dispersive band upwards.
Furthermore, going to higher-mass elements at the Y and
Z sites increases the lattice parameter (and the Fe-Fe
distance), resulting in a decrease of Fe-Fe interactions
lowering the Fe eg levels (Ref. [29], text). Consequently,
in many compounds, the Fe eg flat-and-dispersive band
appears close to the bottom of the conduction band. In line
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FIG. 1 (color online). Electronic band
structures and power factors (PF ¼ S2σ) at
300 K for the sets S1 and S2 of compounds.
Fe2YZ full Heusler compounds with Y ¼ V
(green lines), Nb (blue lines), Ta (magenta
lines) and Z ¼ Al, Ga, In in the first row.
Fe2YZ full Heusler compounds with Y ¼ Ti
(green lines), Zr (blue lines), Hf (magenta
lines) and Z ¼ Sn, Ge, Si in the second row.
Dotted lines indicate the highly dispersive
lowest conduction band of dominant Y eg
character. The bold lines show the band of
Fe eg character that is flat along the ΓX
direction and highly dispersive along others.
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with our expectations, this increases the PFs at 300 K from
∼3 mW=mK2 for Fe2VAl to ∼12 mW=mK2 for Fe2NbAl
and Fe2TaAl, and up to 16–20 mW=mK2 for Fe2NbGa,
Fe2TaGa, Fe2NbIn, and Fe2TaIn (Fig. 1 and Ref. [29],
Fig. 4). Band-by-band analysis for Fe2TaIn shows that most
of the PF (90%) comes from the Fe eg flat-and-dispersive
band (Ref. [29], Fig. 6).
In a second set (S2) of Fe2YZ compoundswith Y ¼ Ti, Zr,

Hf andZ ¼ Si, Ge, Sn, the dispersive Y eg band is pushed up
even higher in energy. It appears well above the Fe eg bands,
which are now the only lowest conduction bands (Fig. 1 and
Ref. [29], Fig. 5). These compounds also exhibit extremely
large PFs of ∼14–17 mW=mK2 at 300 K, consistent with
what was reported in Ref. [60]. This time, the large PF is
almost entirely generated by the Fe eg flat-and-dispersive
band [∼93% of the total PF for Fe2TiSn (Ref. [29], Fig. 6)].
In all S1 and S2 compounds exhibiting enhanced TE

properties, the PF remains substantial (i.e., keeps 90% of its
peak value) in a similar and relatively wide range of carrier
concentrations (n ≈ 4 × 1020 to 3 × 1021 cm−3), at which
jSj ∼ 150–200 μV=K. These compounds then exhibit large
S, comparable to those of Fe2VAl and the best classical
thermoelectrics, but at n and σ values that are about one
order of magnitude larger (Ref. [29], Fig. 7).
TakingFe2TiSn as a representative example, the inspection

of the carriers contributing to the transport properties at 300K
provides further insight into the enhancement of the PFs with
respect to Fe2VAl [Figs. 2(c) and 2(d)]. In the latter, the
sizable TE properties at optimal doping arise from electrons
located in small pockets centered at X and associated with

highly dispersive V eg bands [Fig. 2(c)]. In Fe2TiSn, the
enhanced transport properties at optimal doping are produced
instead by electrons from the Fe eg lowest conduction states
located in three orthogonal tubes extending along Γ-X
directions and intersecting at Γ [Fig. 2(d)]. These tubes can
be viewed as the juxtaposition along the entire Γ-X direction
of consecutive electron pockets similar to those of Fe2VAl,
thereby explaining the improved transport properties. This is
an optimal realization of the concept of pocket engineering
brought forward by Snyder et al. [61] where large S and σ
values are obtained without compromising mobility by
introducing degenerate low effective mass pockets in the
Brillouin zone.
In each Cartesian direction, the Heusler Fe2YZ structure

can be seen as made of Fe2 (alternating with YZ) atomic
planes. For clarity, only the family of f001g-Fe2 planes is
illustrated in Fig. 2(a), but similar families can be drawn
along the two other Cartesian directions. The tubular shape
of the Fermi surface of Fe2TiSn and related compounds is
originating from the highly directional character of the
Fe eg orbitals. The conduction states of the three tubes in
Fig. 2(d) are associated with the flat band along ΓX (and the
symmetrically equivalent ΓY and ΓZ directions) in Fig. 1.
For the tube along z, these states are made of Fe dx2−y2
orbitals (see Ref. [29], Fig. 3) which strongly overlap in
f001g-Fe2 planes [strong σ% bonds along x and y, Fig. 2(b)]
but do not interact significantly from plane to plane (weak
δ% bonds along z). The same is true, mutatis mutandis,
for the tubes along x and y. This anisotropy of the orbital
interactions gives rise to electronic bands that are highly

FIG. 2 (color online). Atomic structure, Fermi surfaces, and thermodynamical stability of Fe2YZ compounds. (a) Full Heusler
structure consisting of four interpenetrating fcc lattices with Fe, Y, and Z atoms represented in red, green and blue. It can also be viewed
as alternating Fe2 and YZ planes along the f001g (see Fe2 planes highlighted in grey), f100g, and f010g directions. (b) Sketch of the Fe
dx2−y2 eg orbitals overlapping in f001g-Fe2 planes. (c,d) Fermi surfaces of Fe2VAl and Fe2TiSn at doping concentration yielding the
maximum PFs at 300 K. (e) Map of the thermodynamical stability (as measured by the energy with respect to hull) computed at 0 K as a
function of the Y and Z atomic radii. A negative number (inverse energy above hull, green color) corresponds to a stable phase and a
positive number (energy above hull, red color) to an unstable one. Circles (resp. squares) correspond to compounds (resp. not)
previously synthesized.
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dispersive in two directions (mt ∼ 0.3me for Fe2TiSn
and mt ∼ 0.2me for Fe2TiSi) and flat in the third one
(ml ∼ 26me for Fe2TiSn and ml ∼ 90me for Fe2TiSi),
thereby concretizing the ideas of Mahan and Sofo [16].
The tubular shape of the Fermi surface comes from the
large effective mass ratio (R ¼ ml=mt ∼ 87 for Fe2TiSn
and R ∼ 450 for Fe2TiSi) and highlights that these com-
pounds exhibit a kind of two-dimensional electronic trans-
port in Fe2 planes [62], similar to what was proposed in
nanostructures in order to realize increased TE performance
[5]. Here, however, it is achieved in bulk cubic compounds.
This yields a periodic repetition of two-dimensional con-
ductive channels (i.e., Fe2 planes) at the ultimate unit-cell
scale. Moreover, the isotropic character of the properties is
preserved through the coexistence of symmetry equivalent
families of f001g-, f010g-, and f100g-Fe2 planes. In
practice, however, all of the conductive electrons are not
similarly contributing to transport in a given direction: for
instance, only the states in the tubes along x and y (the
f100g- and f010g-Fe2 planes) contribute significantly to
the transport along z. All of this is a concrete illustration
that low-dimensional electronic structures can occur in
high-symmetry cubic systems, as also proposed recently by
Parker et al. [23] for another class of compounds.
Fromthepractical pointofview, a central issueconcerns the

thermodynamical stability of the S1 and S2 compounds. This
was investigated at the first-principle level (Ref. [29], text).
The results are summarized in Fig. 2(e). Stable and unstable
phases are associated with green and red colors, respectively.
Compounds previously synthesized are stable. Fe2TiGe and
Fe2NbGawith goodTE performance are predicted to be fully
stable. We see that including elements like In, Zr, or Hf with
large ionic radii tends to destabilize the Heusler structure,
although the synthesis of Fe2HfSn might stay experimentally
accessible.Another practical issue concerns the appearanceof
antisite defects in these Heusler compounds, which are
detrimental to theTEperformance [21]. Fromour calculations
in Ref. [29], Table 2, S2 compounds appear to be less prone to
form antisite defects than Fe2VAl.
The existence of several isostructural stable compounds

with very attractive PF is an advantage for TE applications.
Combining such compounds in solid solutions should allow
for the reduction of κl [9] while preserving the shape of their
electronic band structure at the conduction band bottom
(nearly identical since dominated by the sameFe eg states, see
Ref. [29], Fig. 5) and the related large PF. Such a reduction of
κl has been demonstrated in Fe2V1−xWxAl alloys [58],
reaching values of ∼3 W=mK. The presence of heavier
elements than V and Al is likely to lower κl of the new
Heusler candidates compared to Fe2VAl. In this context,
reasonably low values can be expected, for instance, in
Fe2TiSn and its solid solutions (e.g., Fe2TiSn1−xSix). With
κl ¼ 3.5 W=mK, we estimate ZT values larger than 1 for
Fe2TiSn in the temperature range between 600–900 K
(Ref. [29], Fig. 10). Such large ZT values are achieved at
carrier concentrations only slightly lower than those

corresponding to the optimum PF and at which S and n
remain large. These ZT values are significantly larger than
those predicted for Fe2VAl, which properly reproduce the
experiment (ZT ¼ 0.2 at 400 K with κl ¼ 3.3 W=mK, in
agreement with Ref. [58]). This attests that the beneficial
effect on the PF, achieved through the low-dimensional
transport in Fe2TiSn, can be accompanied by a significant
increase ofZT without being systematically counterbalanced
by another detrimental effect.
The excellent TE properties of some of the Fe2YZ com-

pounds demonstrated theoretically in this Letter, combined
with the low-cost and wide availability of their constitutive
elements, make them very attractive for large-scale TE
applications, well beyond what could have been anticipated
from previous studies of Fe2VAl. Going further, our results
also highlight that, contrary to current beliefs, extremely large
PF can be intrinsic to bulk semiconductors. Our work
rationalizes how this can be achieved in practice through
theengineeringofhighlydirectional states at thebottomof the
conduction bands, yielding low-dimensional transport. This
calls for a search for alternative families of compounds
realizing the same ideas. The link that we establish with
some basic requirements on the electronic band structure is
particularly relevant to succeed identifying such compounds
in the current context of emergent high-throughput searches
for alternative thermoelectrics [63,64] that require clear and
simple design rules. Our findings might also attract interest
well beyond the field of thermoelectrics: the singular Fermi
surface in these systems presents close similarities to those of
Fe-based superconductors [65] and the associated low-dimen-
sional transport might be relevant in the context of some
electronic [66] or photovoltaic [67] applications.
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Supplemental Material – Low-dimensional transport and large

thermoelectric power factors in bulk semiconductors by band

engineering of highly-directional electronic states

1 Electronic and thermoelectric properties

1.1 Technical details

The electronic properties were studied using the linear combination of atomic orbitals (LCAO)
method and localized Gaussian basis sets as implemented in CRYSTAL. [1] The basis sets
used are: Fe [2], V [3], 976-31(631d) for Nb [4], 11(31d) for Ta [5], 88-31 with the opti-
mized outermost gaussian exponent sp=0.1 for Al [4], Ga [6], 976-311(631d) for In [4], Ti [7],
976-31(621d) for Zr [5], Hf [8], Si [9], Ge [3], and 976-3111(631d) with the outermost gaus-
sian exponent sp=0.1053 for Sn [4]. The outermost two sp and one d gaussian exponents of
Fe, and V, and the outermost sp exponent of Al were optimized in Fe2VAl. Their respective
values are: 1.155, 0.2817, 0.2439, 0.8335, 0.1151, 0.338, and 0.1. Effective core pseudopo-
tentials were considered for Ta and Hf. The other elements were treated at the all electron
level. We use a hybrid functional approach, B1-WC [10], which mixes the generalized gradi-
ent approximation functional of Wu and Cohen [11] with 16% of exact exchange within the
B1 scheme. [12] B1-WC describes accurately the electronic and TE properties of this class of
compounds [13], and is more appropriate to treat d and f electronic materials, being a good
alternative to LDA(GGA)+U [14, 15].

Other technical details are as follows. The optimized lattice constants were determined
considering a 9x9x9 mesh of k points in the Brillouin zone of the fcc cell, and the self-consistent
calculations were considered to be converged when the energy changes between interactions
were smaller than 10�8 Hartree. An extralarge predefined pruned grid consisting of 75 radial
points and 974 angular points was used for the numerical integration of charge density. The level
of accuracy in evaluating the Coulomb and exchange series is controlled by five parameters. [1]
Their values used in our calculations are 7, 7, 7, 7, and 14.

The electronic transport calculations were performed within the Boltzmann transport for-
malism and the constant relaxation-time approximation using BoltzTraP code. [16] In Boltz-
mann transport formalism, the electrical conductivity, thermopower, and electronic thermal
conductivity tensors are estimated as:
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where e is electronic charge, ⌦ is unit cell volume, fµ is Fermi distribution function, ⌧ is re-
laxation time, Ei~k are electronic energies and ~vi~k are particles velocities of the i-th electronic
band at each ~k vector from the reciprocal space. In the constant relaxation time approxima-
tion ⌧ is considered as a constant, ⌧(T,Ei~k) = ⌧0, and in this approximation the thermopower
tensor

 !
S is independent of ⌧0.  ! 0 is the tensor of electronic thermal conductivity at zero

electric field. For the cubic symmetry only the diagonal components of the tensors are finite
and �xx = �yy = �zz = �, Sxx = Syy = Szz = S, 0

xx = 0
yy = 0

zz = 0.
For the transport calculations, the electronic charge density was first converged consider-

ing denser 14x14x14 k-point meshes in the Brillouin zone and the energy convergence was
increased to 10�10 Hartree. Using this charge density then, the transport coefficients were
very well converged for the electronic energies calculated on very dense 61x61x61 k-point
meshes. The relaxation time ⌧0=3.4x10�14 s was determined by fitting the experimental elec-
trical resistivity ⇢=0.65 m⌦cm of Fe2VAl1�xMx (M = Si, Ge) systems at doping x=0.03 and
300 K. [17, 18] Assuming that each atom M brings one additional electron, this corresponds
to a total electron concentration ntot⇠6x1020 cm�3, which include also the extrinsic contribu-
tion of holes nh⇠5x1020 cm�3. Therefore, we estimated ⌧0 by fitting the theoretical value of ⇢
at 300 K and intrinsic electron concentration n⇠7x1019 cm�3 (value for which the maximum
n-type PF is achieved) with the experimental value of 0.65 m⌦cm. Using this value of ⌧0, the
calculated PF of Fe2VAl at 300 K is ⇠3 mWm�1K�2, which underestimates the experimental
PF=4-6 mWm�1K�2. [17, 18]

1.2 Reasoning for using the same relaxation time in Fe2YZ compounds

By using the same relaxation time in a given class of materials, such as Fe2YZ Heusler com-
pounds, one can identify the optimum electronic band structure, which can qualitatively max-
imize PF’s from the point of view of the electronic and transport properties. More over, the
transport in this class of compounds is achieved through the same d eg electronic states (Y and
Fe d eg bands), having similar light effective masses mt which contribute in a given orthogonal
transport direction.

The very large PF’s of Fe2YZ are achieved through a low-dimensional electronic transport in
the Fe-Fe atomic planes, yielding periodic conductive channels at the atomic scale, which max-
imizes n. The electrons are highly mobile in the Fe-Fe atomic planes with the effective masses
mt⇠0.2-0.3 me, and very heavy with effective masses ml⇠26-90 me from one Fe-Fe plane to
the next. This give rise to three orthogonal tubes in inverse space along the orthogonal cubic
axes with the light mt transverse to the tubes and heavy ml along the tubes. In Fe2VAl the three
electronic pockets located at X points, which participate in transport have the light mt=0.35 me
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and heavy ml=0.7 me effective mass values. In a given transport orthogonal direction only the
two tubes and two pockets with light mt in the transport direction will contribute significantly to
the transport. Comparing the light mt values, we see that the compounds exhibiting very large
PF’s possess more mobile electrons in transport. This is consistent with having large electron
mobilities µ in the low-dimensional transport systems.

Further evidence for the electron mobility µ and ⌧0 can be extracted from the optical con-
ductivities of Fe2VAl [19] and Fe2TiSn [20] probed by infrared and optical spectroscopy. In
Fe2VAl, the mean free path of electrons l (l=vF ⌧0, vF is Fermi velocity) has a very small value
of 24 Å at 300K. [19] Because of large atomic disorder and small l, the estimated relaxation
time ⌧0 values are ⇠1x10�14 s at 300K and do not depend significantly on the sample carrier
densities of Fe2VAl. [19] The alloying at Al site decrease the residual resistivity and disorder
of Fe2VAl. [17, 18, 19] The residual resistivity value of ⇠2.5 m⌦cm of Fe2VAl is decreased
to ⇠0.5 m⌦cm in the Fe2VAl1�xGex system at doping x=0.03, explaining the larger ⌧0 value
of 3.4x10�14 s estimated from electrical resistivity measurements. [17] On the other hand in
Fe2TiSn, the mean free path of electrons l has a much larger value of 80 Å at 300K. [20] Using
the carrier density n=5x1020 cm�3 (n=kF

3/(3⇡2), kF is Fermi k vector) and l=80 Å values, we
estimate ⌧0 to be 2.8x10�14 s at 300K, which is comparable with the 3.4x10�14 s value used
in our transport calculations. These results are consistent with our findings which show the
compounds from S2 set to be less prone to have disorder than those from S1 set.

The above relaxation times were estimated considering free electronic metallic behavior.
If we consider the doped semiconducting behavior then the electrons reside inside three ide-
alized Fermi spheres for Fe2VAl and three idealized cylinders for Fe2TiSn (low-dimensional
transport). Then we have:

n =
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~
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e
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where 2 and 3 in the nominator stands for electronic spin and pocket degeneracy, and a is the
lattice constant of Fe2TiSn cubic cell. Using the above expressions for n and ⌧0, the estimated
relaxation time for Fe2VAl is ⌧0⇠1.2-1.6x10�14 s. These values are larger than the values
⌧0⇠1x10�14 s estimated in Ref. [19]. For Fe2TiSn at n=5x1020 cm�3, the relaxation time is
⌧0⇠8.75x10�14 s, which is ⇠2.6 times larger then the used value. This is an indication that
the relaxation time ⌧0 and electron mobilities µ in low-dimensional transport systems can be
much larger than in 3-dimensional transport systems. These results are supported also by the
very large electron mobilities achieved in low-demensional transport systems such as: two-
dimensional electron gas (2DEG), carbon nonotubes and BN graphene at room temperature. In
2DEG the electron mobilities can be even higher than those of the bulk constituents.
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From all these arguments, we believe that the 4-5 fold increase in the PF’s of Fe2YZ Heusler
compounds which exhibit low-dimensional transport with respect to classical thermoelectrics
has physical grounds and is not an artifact of a very large relaxation time used in the transport
calculations. If the electron mobilities are comparable or larger than those of classical thermo-
electrics, then an increase of 10 fold or greater can be expected in PF’s of these materials.

1.3 Role of spin-orbit interactions

Fe2TiSi 

Fe2TaIn 

Fe2TiSn 

B1-WC  Crystal B1-WC and SOI Wien2k 

Figure 1: Electronic band structures: within B1-WC full hybrid using CRYSTAL code in
the left column and within B1-WC partial hybrid including spin-orbit interactions (SOI) us-
ing WIEN2K code in the right column. The splitting of the degenerate bands is due to SOI
interactions.

In order to check the effect of spin-orbit interactions (SOI) and the robustness of these
extremely large PF’s, we used also the augmented plane wave and local orbital (APW + lo)
method as implemented in WIEN2K code. [21] These calculations were performed within the
partial implementation of B1-WC hybrid functional. In the WIEN2K and APW + lo method the
hybrid functionals are implemented only inside of augmented-plane-wave spheres around the
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atoms. These radii were taken to be 2.2 Bohr for all atoms. The scalar relativistic effects were
also included. The self-consistent iterations were performed for a 14x14x14 k-point meshes
inside of the Brillouin zone (BZ) to within 0.0001 Ry. The number of plane waves is defined
by RKmax whereas the largest vector in the charge-density Fourier expansion is defined by
Gmax, which were taken to be 9 and 16, respectively. The transport properties were estimated
also for very dense 49x49x49 k-point meshes. A larger value of relaxation time ⌧0=3.4x10�14

s was estimated in the same way fitting the experimental ⇢=0.65 m⌦cm at intrinsic electron
concentration n⇠7x1019 cm�3 and 300 K. [13] The estimated PF of Fe2VAl at 300 K is ⇠3
mWm�1K�2 using ⌧0=3.4x10�14 s.

The SOI effect on the electronic band structure of these Fe based full Heusler compounds
is not very significant. The SOI splits the degenerate top valence and bottom conduction bands,
but it does not shift in energy the position of the very flat band along �X direction of the
Brillowin zone (BZ) (see Figures 1). The difference in the position of the dispersive band at X
point are due to the partial hybrid implementation of B1-WC within WIEN2K code, in which
the electronic properties outside augmented-plane-wave spheres are described within the GGA
of Wu and Cohen. [11]

1.4 Electronic band structure

As clarified recently [13], Fe2VAl is an intrinsic semiconductor, with a low band-gap between
highest conduction bands of dominant Fe t2g character and a highly dispersive lowest conduc-
tion band of dominant V eg character. The electronic band structure of Fe2VAl was previously
interpreted by Singh and Mazin [22]. On the one hand, the splitting of V d levels into occupied
V t2g states lying ⇠-2 eV below the Fermi energy and empty V eg states forming the lowest con-
duction band is mainly due to the octahedral crystal field produced by the bcc-like coordination
of the V site. On the other hand, the Fe d levels are split such that all of these states, except Fe
eg anti-bonding, are lying in the valence band. The highest valence bands have a dominant Fe
t2g character while the Fe eg anti-bonding states are located about 0.6 eV above the conduction
band bottom. In this case, the splitting is no more driven by the crystal field but by the strength
of the Fe-Fe hybridizations. This description is fully supported by the orbital character analysis
reported in Fig. 2 (calculations performed using WIEN2K code within B1-WC partial hybrid
and including SOI).

The engineering of the positions of Fe eg and Y eg conduction states from atomic substitu-
tions at the Y and Z sites can be globally interpreted from the following dominant arguments.
On the one hand, going from 3d to 5d elements at the Y site tends to move up the Y eg higly-
dispersive band. On the other hand, considering bigger elements at Y and Z sites increases the
lattice parameter and therefore the Fe-Fe interatomic distance; this results in a decrease of Fe-Fe
interactions lowering the splitting between occupied Fe t2g and unoccupied Fe eg states and so
moving down the flat-and-dispersive Fe eg levels. Consequently, in many compounds, the Fe eg
flat-and-dispersive band appears at or close to the bottom of the conduction band (see Figures 4,
and 5). At � , the two Fe eg levels (dx2�y2 and dz2) are degenerated by symmetry; when moving
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Fe  eg 

Fe2VAl 

Fe2TiSn 

Fe  t2g V  eg V  t2g Al  p 

Fe  eg Fe  t2g Ti  eg Ti  t2g Sn  p 

Figure 2: Orbital character of the band structure of Fe2VAl and Fe2TiSn within B1-WC partial
hybrid including spin-orbit interactions (SOI) using WIEN2K code. The size of the circles
(thick plotting) is proportional with the orbital character of the bands.

along one of the equivalent �X, �Y or �Z direction, the degeneracy is lifted. As illustrated
in Fig. 3, along �Z, the flat eg band corresponds to dx2�y2 levels and the dispersive one to dz2
levels. This is related to the fact that dx2�y2 orbitals strongly overlap in the {001}-Fe2 plane (�⇤

bonds along x and y directions) and do not interact much between consecutive planes along z
(eventual weak �⇤ bonds). The same is true, mutatis mutandis, along �X and �Y directions.

1.5 Thermoelectric properties

The very large n-type PF’s are generated by the narrow energy distribution of the flat Fe eg
band along �X direction (see Figures 1, 4, and 5). The analysis of band contribution to PF’s of
Fe2TaIn, Fe2TiSi and Fe2TiSn, indeed shows that the flat-and-dispersive Fe eg band contributes
90 %, 94 %, and 93 % to total PF, respectively (see Figure 6).

Although there are some differences in the electronic band structure of the compounds due
to the partial hybrid implementation of B1-WC, we estimate in both methods (LCAO and APW
+ lo) the very large n-type PF’s (see Figures 1, and 6). This supports the robustness of the
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Fe2TiSn 
Fe  dx2-y2  Fe  dz2  

Figure 3: Fe dx2�y2 and dz2 orbital character of Fe2TiSn band structure within B1-WC partial
hybrid including spin-orbit interactions (SOI) using WIEN2K code. The size of the circles
(thick plotting) is proportional with the orbital character of the bands.

results, and moreover the large n-type PF’s are not affected by the SOI interactions.
It is interesting to identify the individual contributions of thermopower S and electrical

conductivity � to the very large n-type PF (see Figure 7). The presence in the bottom of the
conduction band of the flat-and-dispersive Fe eg band which is very flat along �X direction and
dispersive in the transverse directions of BZ allows S values which are comparable with those
of classical thermoelectrics (such as PbTe or Bi2Te3), but at much larger n and � values.

We further notice that the PF we get at room temperature in Heusler compounds are com-
parable to those achieved in rare-earth compounds like YbAl3 that exhibit amongst the highest
ever reported PF (in the latter, S is twice smaller and � four times larger) [23]. YbAl3 and
related compounds are however metals : they exhibit relatively low ZT (0.2 at 300 K in YbAl3)
and their interesting TE properties are rapidly destroyed when increasing temperature (PF ⇠7
mW/mK2 in YbAl3 at 600K). In contrast, the Heusler compounds are semiconductors; their
PF increases with increasing temperature (PF⇠26 mW/mK2 in Fe2TiSn at 600K) and, as it is
discussed below, they are expected to yield ZT values attractive for applications at appropriate
operating temperatures.

It is important to estimate what ZT values can yield the large PF’s obtained in Heusler
compounds, specially because these PF’s are achieved at large n and � values (compared to
classical thermoelectrics). In order to estimate the figure of merit ZT :

ZT =

�S2

l + e

T (5)

we need to access the electronic e and lattice l thermal conductivities. e can be estimated
through Wiedemann-Franz law e = L0�T, where L0 = 2.45x10�8 W⌦/K2 is the Lorenz number,
but also from our first-principles calculations as [16]:

e = 0 � �S2T (6)
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Figure 4: Electronic band structures and power factors (PF=S2�) for the set S1 of compounds.
Fe2YZ full Heusler compounds with Y=V (green), Nb (blue), Ta (magenta) and Z=Al, Ga, In
(1st, 2nd, and 3rd row, respectively). Dotted lines indicate the highly-dispersive lowest conduc-
tion band of dominant Y eg character. The bold lines shows the band of Fe eg character that is
flat along the �X direction and highly-dispersive along others.

where 0 is the electronic thermal conductivity at zero electric field, accessible in BoltzTraP
code (in our calculations, we assume the same relaxation time for � and e). This means that,
from our calculations, we can estimate the Lorentz function L (independent of ⌧0 within the
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Figure 5: Electronic band structures and power factors (PF=S2�) for the set S2 of compounds.
Fe2YZ full Heusler compounds with Y=Ti (green), Zr (blue), Hf (magenta), and Z=Si, Ge, Sn
(1st, 2nd, and 3rd row, respectively). Same conventions as in Figure 1.

constant relaxation time approximation) as:

L =

0

�T
� S2 (7)

At the optimized values of the ZT (see below), L is smaller than L0 by ⇠20% in Fe2VAl (see
Figure 8, and Table 1). The L0 limit is achieved at large electronic concentrations in the
metallic regime. For Fe2TiSn, L is strongly decreased by ⇠29% (⇠51%) at 300K (900K) even
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Figure 6: Power factors PF=�S2 dependence on chemical potential µ at 300 K within B1-
WC full hybrid using CRYSTAL code and within B1-WC partial hybrid including spin-orbit
interactions (SOI) using WIEN2K code. The flat-and-dispersive band contribution to the PF’s
estimated within B1-WC full hybrid is shown in background blue color. The positions of the
extremely large PF’s differ because of the differences in the band gaps for the two types of
calculations.

though the electronic concentrations are about one order of magnitude larger than in Fe2VAl.
This means that e will be significantly smaller than expected from the Wiedemann-Franz law.

In first approximation, ZT can be estimated within the constant relaxation time approxima-
tion, using some reasonable expected values of l. Recently, a low value of l⇠3.3 W/mK was
obtained in Fe2V0.9W0.1Al alloys [24], yielding a ZT⇠0.2 at 400K. The l of Fe2TiSn is ⇠7
W/mK at 300K [25]. Therefore, in this family of compounds, reasonably low values of l⇠3
W/mK are expected to be achieved through alloying, and even lower values through nanostruc-
turing. The estimated ZTs using different l values at three different temperatures are shown in
Fig. 9, and the TE properties obtained at the optimized ZT’s are given in Table 1. ZT values up
to 2 are estimated for these compounds using realistic l values of ⇠3.5 W/mK in 300-600K
intermediate temperature range.

However, the constant relaxation time approximation will inevitably provide unrealistically
large ZT values at high temperature, where phonon scattering becomes important. In order
to provide more accurate estimate of ZT, we went so beyond the constant relaxation time ap-
proximation and considered the temperature T and energy Ek dependences of the relaxation
time ⌧(T,Ek) for the acoustic and polar optical phonon scattering mechanisms. ⌧(T,Ek) is
determined from electron-phonon interactions as:

1

⌧(T,Ek)
=

X

~k0 6=~k

P~k0~k (8)

where P~k0~k is the scattering probability of an electron with vector ~k to be scattered in another
state ~k0 and the sum is over all final states ~k0. During the scattering processes the wave vector
~k0

=

~k ± ~q and energy Ek0 = Ek ± ~!q are conserved, where ~q and !q are the phonon wave
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Figure 7: Electrical conductivity � and thermopower S dependence on chemical potential µ
of Fe2VAl and Fe2TiSn at 300 K. The solid red arrows indicate �⇠155x103 S/m and S⇠ -133
µV/K at n = 9x1019 cm�3, whereas dotted red lines indicate �⇠587x103 S/m and S⇠ -152
µV/K at n = 1x1021 cm�3.

vector and mode frequency, respectively. In the limit of small ~q ! 0, the scattering by acoustic
phonons is nearly elastic !q ! 0, whereas optical phonon scattering is inelastic and the dis-
persion of long-wavelength optical phonons near the zone center (~q ! 0) is very flat and one
can assume that !q = !LO, where !LO is the longitudinal optical mode frequency. P~k0~k can be
estimated by Fermi’s golden rule:

P~k0~k =
2⇡

~ |h~k0|Hscatt|~ki|2⇢k0 (9)

where Hscatt is the Hamiltonian for the scattered precesses which conserve both energy and
wave vector and ⇢k0 is the density of final states. For the two scattering mechanisms P~k0~k can be
expressed as:

P ac
~k0~k

=

2⇡

~ |V ac
~k0~k
|2�(Ek0 � Ek) (10)

P op
~k0~k

=

2⇡

~ |V op
~k0~k
|2�(Ek0 � Ek ± ~!q) (11)
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Figure 8: Lorenz function dependence on chemical potential µ of Fe2VAl and Fe2TiSn within
B1-WC full hybrid using CRYSTAL. The dotted red line shows the Lorenz number L0.
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Figure 9: ZT dependence on chemical potential µ and lattice thermal conductivity l for
Fe2VAl and Fe2TiSn within B1-WC full hybrid and constant relaxation time approximation
using CRYSTAL.

where V ac
~k0~k

and V op
~k0~k

are the matrix elements of the acoustic and polar optical interactions, re-
spectively. Considering parabolic Ek = ~2k2/(2m0) energy band dispersion and the property
of � function (�(ax) = [1/a]�(x)), P op

~k0~k
from Eq. 11 can be written as:

P op
~k0~k

=

2⇡

~ |V op
~k0~k
|2 m0

~2kq �(
q

2k
⌥ cos(✓)± m0!LO

~kq ) (12)

where ✓ is the angle between ~k and ~q vectors. At sufficiently high temperature at which the
equipartition approximation of the phonon number Nq is valid Nq ⇡ Nq +1 ⇡ (BT )/~!q, the
matrix elements of the interactions are expressed as:

|V ac
~k0~k
|2 = ~E2

ac!q(Nq + 1/2± 1/2)

⌦Cl

⇡ E2
acBT

⌦Cl

(13)
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Table 1: The optimized thermoelectric properties of Fe2TiSn and Fe2VAl obtained at different
values of lattice thermal conductivity and temperature within constant relaxation time approxi-
mation. Fe2VAl values are shown in brackets.
l n S � PF el L ZT

W/mK 1020 cm�3 µV/K 103 S/m 10�3 W/mK2 W/mK 10�8 W⌦/K2

300K
1.5 2.4 -256 159 10.4 0.83 1.74 1.34

(0.4) (-195) (66) (2.5) (0.38) (1.94) (0.4)
3.5 3.8 -221 245 11.9 1.28 1.75 0.8

(0.5) (-172) (89) (2.6) (0.53) (1.97) (0.2)
7 5.1 -198 325 12.8 1.71 1.75 0.44

(0.6) (-159) (107) (2.7) (0.64) (2) (0.11)
600K
1.5 3.1 -317 155 15.6 1.27 1.37 3.4

(0.5) (-267) (77) (5.5) (0.9) (1.96) (1.36)
3.5 4.9 -278 245 18.9 2.02 1.37 2.05

(0.8) (-229) (123) (6.4) (1.47) (1.99) (0.77)
7 7.3 -246 354 21.4 2.94 1.39 1.29

(1.1) (-202) (173) (7.1) (2.1) (2.03) (0.47)
900K
1.5 3.5 -350 140 17.06 1.5 1.19 5.13

(0.6) (-321) (77) (8) (1.41) (2.03) (2.46)
3.5 5.9 -305 233 21.7 2.51 1.2 3.25

(1) (-278) (131) (10.1) (2.41) (2.04) (1.54)
7 8.6 -272 339 25.1 3.68 1.21 2.12

(1.6) (-245) (197) (11.8) (3.65) (2.06) (1)

|V op
~k0~k
|2 = ~e2(Nq + 1/2± 1/2)

2⌦�!LO

1

q2
�(~k0 � ~k ⌥ ~q) ⇡ e2BT

2⌦�!2
LO

1

q2
�(~k0 � ~k ⌥ ~q) (14)

where Eac is acoustic deformation potential constant, B is Boltzmann constant, Cl is longitu-
dinal elastic constant, 1/� = !2

LO(1/✏1 � 1/✏0), ✏1 and ✏0 are the high frequency and static
dielectric permittivities, respectively.

Changing the sums over final ~k0 vectors into integrals and using the expressions of matrix
elements from Eqs. 13 and 14 , the energy Ek and T dependences of the relaxation times
become:

1

⌧ac(T,Ek)
=

2⇡

~
E2

acBT

⌦Cl

⌦

(2⇡)3
4⇡

Z 1

0

dk0k02�(Ek0 � Ek) (15)

1

⌧ac(T,Ek)
=

E2
acBT

⇡~Cl

2

1/2m
3/2
0

~3

Z 1

0

dEk0E
1/2
k0 �(Ek0 � Ek) =

2

1/2m
3/2
0 E2

acB

⇡~4Cl

TE
1/2
k (16)
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1

⌧op(T,Ek)
=

2⇡m0

~3k
e2BT

2⌦�!2
LO

⌦

(2⇡)3
2⇡

 Z qab
max

qab
min

dq

q
+

Z qem
max

qem
min

dq

q

!
(17)

1

⌧op(T,Ek)
=

(2m0)
1/2e2B

8⇡~2�!2
LO

 
ln

�����

p
1 + ~!LO/Ek + 1p
1 + ~!LO/Ek � 1

�����+ ln

�����

p
1� ~!LO/Ek + 1p
1� ~!LO/Ek � 1

�����

!
TE

�1/2
k

(18)
where the limits of q in the integration are determined by setting the argument of � function from
Eq. 12 to zero and solving this equation. For absorption of phonons qabmin = k(

p
1 + ~!LO/Ek�

1), and qabmax = k(
p

1 + ~!LO/Ek + 1), which are obtained for ✓ = 0 and ✓ = ⇡ respectively.
For emission of phonons qemmin = k(1�

p
1� ~!LO/Ek), and qemmax = k(1 +

p
1� ~!LO/Ek),

which are obtained for ✓ = 0.
The first order dependence on T and Ek of the acoustic and polar optical relaxation times

can be easily identified from the Eqs. 16 and 18 , and this dependence was previously used in
literature [26, 27]:

⌧ac(T,Ek) =
cac
T

Es
k (19)

⌧op(T,Ek) =
cop
T

Es
k (20)

where cac and cop are constants depending on the scattering mechanism (see Eqs. 16 and 18 ),
Ek is the energy with respect to the bottom of conduction band, and the power exponent s of
energies is s=-1/2, and 1/2 for acoustic and polar optical phonon relaxation time, respectively.
By fitting the relaxation time for a specific scattering mechanism at a reference temperature Tref

(300 K), we express its T dependence for T > 300 K, without the use of constants cac and cop.
First, we express Ek dependence of relaxation times in reduced energy Ek/(BT ):

⌧ac(T,Ek) =
cac
T

(BT )
s

✓
Ek

BT

◆s

= ⌧ac(T )

✓
Ek

BT

◆s

(21)

⌧op(T,Ek) =
cop
T

(BT )
s

✓
Ek

BT

◆s

= ⌧op(T )

✓
Ek

BT

◆s

(22)

in order to have proper units of second for the temperature dependent ⌧ac(T ) and ⌧op(T ) relax-
ation times. We have then used ⌧(T,Ek) from Eqs. 21 and 22 in the expression of electrical
conductivity, which was fitted to experiment at Tref=300K. From this fitting the T dependent
terms can be estimated at Tref :

⌧ac(Tref ) = ⌧ refac =

cac
Tref

(BTref )
s (23)

⌧op(Tref ) = ⌧ refop =

cop
Tref

(BTref )
s (24)
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from which the constant cac and cop can be introduced in Eqs. 21 and 22 and the final expressions
of ⌧(T,Ek), which we use for T � 300 K are:

⌧ac(T,Ek) = ⌧ refac

Tref

T

✓
Ek

BTref

◆� 1
2

(25)

⌧op(T,Ek) = ⌧ refop

Tref

T

✓
Ek

BTref

◆ 1
2

(26)

where the reference relaxation time at 300K is ⌧ refac =4.3 x 10�14 s and ⌧ refop =2.5 x 10�14 s
for acoustic and polar optical phonon scattering mechanisms, respectively. The energy Ek

dependence is considered relative to the conduction band minimum (carrier pocket minimum
energy) and for positive Ek. For Ek < 0, only T dependence of ⌧(T ) is considered (⌧ac(T ) =
⌧ refac (Tref/T ), and ⌧op(T ) = ⌧ refop (Tref/T )).

In Fig. 10 we show the estimated ZT’s of Fe2VAl and Fe2TiSn considering the acoustic and
polar optical phonon relaxation times for a kl value of 3.5 W/mK. The ZT’s are much strongly
affected by acoustic phonon scattering, but still large values between 0.6-1.7 can be achieved for
the two scattering mechanisms in Fe2TiSn within the 300-600K intermediate temperature range.
These ZT values are significantly larger than those predicted for Fe2VAl in agreement with
experimental data (ZT value of 0.2 estimated at 400K, l=3.3 W/mK, and acoustic scattering in
agreement with experiment in Fe2V0.9W0.1Al alloys (ZT⇠0.2) [24]).
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Figure 10: ZT dependence on chemical potential µ and relaxation time ⌧ of Fe2VAl and Fe2TiSn
estimated for a kl value of 3.5 W/mK within B1-WC full hybrid using CRYSTAL. The different
approximations of ⌧ are: constant relaxation time ⌧0, acoustic phonon relaxation time ⌧ac, and
polar optical phonon relaxation time ⌧op.

1.6 Tendency to the formation of anti-site defects

One important point to mention is that the disorder in X2YZ full Heusler compounds is relatively
high, since their structure is made of four interpenetrating fcc latices. For these compounds
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and particularly for X2YZ semiconductors used in TE applications, site disorder and anti-site
defects can significantly affect the electronic properties and should not be neglected. Regarding
the TE performance, we showed for Fe2VAl that site disorder and anti-site defects introduce
ingap and resonant d states near the bottom of conduction and top of valence bands which
have a detrimental effect on TE properties. [13] We also showed that site disorder can explain
the semi-metal character of Fe2VAl. For this reason we studied the energy stability of X2YZ
regular Heusler vs (XY)XZ inverse Heusler structures. We estimated the total energy difference
�E = EX2Y Z � E(XY )XZ between these structures (see Table 2). Large negative �E values
implies that X2YZ regular structure is more stable and (XY) disorder is small, while small
negative �E values implies the presence of a very large degree of (XY) disorder in X2YZ
regular structure. Our results show that the second set (S2) of Fe2YZ compounds with Y=Ti,
Zr, Hf, and Y=Si, Ge, Sn have less disorder than S1 set with Y=V, Nb, Ta and Y=Al, Ga, In.

Table 2: Total energy difference �E between X2YZ regular and (XY)XZ inverse Heusler struc-
tures.

Fe2VAl Fe2NbAl Fe2TaAl Fe2TiSi Fe2ZrSi Fe2HfSi
�E(eV) -1.185 -1.125 -1.208 -1.762 -1.967 -1.662

Fe2VGa Fe2NbGa Fe2TaGa Fe2TiGe Fe2ZrGe Fe2HfGe
�E(eV) -0.807 -0.733 -0.882 -1.362 -2.043 -1.598

Fe2VIn Fe2NbIn Fe2TaIn Fe2TiSn Fe2ZrSn Fe2HfSn
�E(eV) -0.082 -0.664 -1.036 -1.235 -2.219 -1.583

2 Thermodynamical stability

2.1 Technical details

The stability at 0K was assessed using computations in the generalized gradient approximation
(GGA) from Perdew Burke and Ernzheroff (PBE) within a plane augmented wave (PAW) ap-
proach and using VASP.[28, 29] The computations parameters and pseudopotentials are the ones
used in the Materials Project.[31, 32] For each chemical system (e.g., Fe-Ti-Sn), we computed
the chemistry in the Heusler crystal structure but also other ternary crystal structures obtained
from Heusler-forming systems. The different non-Heusler ternary crystal structure prototypes
used in this study are given in Table 2.1.

2.2 Results

The stability of each Heusler phase was evaluated versus all phases present in the Materials
Project and our generated ternary phases using the convex hull construction as implemented in
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Table 3: Non-Heusler crystal structures prototypes computed as potential competing phases.
The identification number of the phase in the Materials Project and the original identification
number from the Inorganic Crystal Structure Database (ICSD) are indicated

Formula Material Project id icsd id
Fe2VAl mp-5778 57832
FeTiSn mp-22589 106680

Fe2ZrSi2 mp-569247 633666
FeHfGe mp-22191 23577

Fe3Zr2Ge mp-21040 53483
HfFe6Ge6 mp-19725 53466
ZrFe2Si mp-19792 87172
FeTiSi mp-8648 41157

HfFe2Si2 mp-504741 20933
HfFeSi2 mp-28378 62614
ZrFeSi2 mp-17435 402238
TiFeSi2 mp-21662 31992

the pymatgen package.[30] The convex hull construction effectively compares the energy of a
phase versus all linear combinations of other phases.

The energy above the hull and the inverse energy above the hull are measures of stability.
The energy above the hull indicates how far from the convex hull formed by all the stable phases
is the compound. The larger the energy above the hull the more unstable the compound is. The
inverse energy above the hull is only defined for stable phases and is the energy of formation
of the compound of interest from the phases that would be stable if the compound did not
exist. The larger the inverse energy above the hull the more stable the compound is. More
information on those measures of stability can be found in Refs. [34] and [33]. Table 4 gives
numerical values for the stability measure and the decomposition products (if unstable) for all
computed Heusler compounds. References to experimental literature referring to the synthesis
of those Heusler phases are also indicated. The stability energy is the inverse energy above
the hull when stable (negative number) and the energy above the hull when unstable (positive
number).

As an example of the method, the phase diagrams for Fe2VAl and Fe2TiSn are shown in
Figures 11 and 12. All computed compounds in the Fe-V-Al and Fe-Ti-Sn systems are shown
in the phase diagrams. The stability energy of each compound is given by the color mapping
on the right. It is clear that the Fe2VAl and Fe2TiSn are predicted stable with respect to their
competing phases. Figure 13 gathers the stability energies for all studied Heusler compounds.
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Table 4: Phase stability at 0K for all Heusler phases. The energy indicates the energy above
the hull when positive (unstable) and the inverse energy above the hull when negative (stable).
The decomposition products indicates to which compounds the unstable Heusler phase will
decompose.

Formula Energy Decomposition Experimental
(meV/atom) products evidences

Fe2TaAl -203.3 [42]
Fe2VAl -199.2 [35, 36, 37, 38]
Fe2VGa -148.6 [37, 39]
Fe2NbAl -135.6 [38]
Fe2TiSi -135.5 [40]
Fe2TiGe -72.7 None
Fe2TaGa -64.3 None
Fe2TiSn -52.1 [41, 25]
Fe2NbGa -28.6 None
Fe2HfSn 19.5 HfFe2 + Sn None
Fe2HfSi 51.8 Hf2Fe3Si + HfFe2Si2 + Fe3Si None
Fe2ZrSn 59.7 Fe + Sn + Zr5Sn4 None
Fe2HfGe 61.8 HfFeGe + Fe None
Fe2ZrSi 112.4 Zr2Fe3Si + ZrFe4Si2 + ZrFeSi None
Fe2ZrGe 118.7 ZrFeGe + Fe None
Fe2NbIn 130.7 NbFe2 + In None
Fe2TaIn 131.7 TaFe2 + In None
Fe2VIn 164.0 Fe + VFe + In None
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Figure 11: Phase diagram of Fe2VAl

Figure 12: Phase diagram of Fe2TiSn
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Figure 13: Phase stability at 0K for all Heusler phases. The energy indicates the energy above
the hull when positive (unstable) and the inverse energy above the hull when negative (stable).
The subfigure a relates to IV-IV Heuslers and subfigure b to III-V Heuslers
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