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INTRODUCTION:The reproducibility of results
is one of the underlying principles of science. An
observation canonly be accepted by the scientific
community when it can be confirmed by inde-
pendent studies. However, reproducibility does
not come easily. Recent works have painfully
exposed cases where previous conclusionswere
not upheld. The scrutiny of the scientific com-
munity has also turned to research involving
computer programs, finding that reproducibil-
ity depends more strongly on implementation
than commonly thought. These problems are
especially relevant for property predictions of
crystals and molecules, which hinge on precise
computer implementations of the governing
equation of quantum physics.

RATIONALE:Thiswork focuses ondensity func-
tional theory (DFT), a particularly popular quan-

tum method for both academic and industrial
applications. More than 15,000 DFT papers are
published each year, and DFT is now increas-
ingly used in an automated fashion to build
large databases or applymultiscale techniques
with limited human supervision. Therefore, the
reproducibility of DFT results underlies the
scientific credibility of a substantial fraction of
current work in the natural and engineering
sciences. A plethora of DFT computer codes
are available, many of them differing consid-
erably in their details of implementation, and
each yielding a certain “precision” relative to
other codes. How is one to decide formore than
a few simple cases which code predicts the cor-
rect result, and which does not? We devised a
procedure to assess the precision of DFT meth-
ods and used this to demonstrate reproduci-
bility among many of the most widely used

DFT codes. The essential part of this assessment
is a pairwise comparison of a wide range of
methodswith respect to their predictions of the
equations of state of the elemental crystals. This
effort required the combined expertise of a large
group of code developers and expert users.

RESULTS:We calculated equation-of-state data
for four classes of DFT implementations, total-
ing 40 methods. Most codes agree very well,
with pairwise differences that are comparable
to those between different high-precision exper-

iments. Even in the case of
pseudization approaches,
which largely depend on
theatomic potentials used,
a similar precision can be
obtainedaswhenusing the
full potential. The remain-

ing deviations are due to subtle effects, such as
specific numerical implementations or the treat-
ment of relativistic terms.

CONCLUSION: Our work demonstrates that
the precision of DFT implementations can be
determined, even in the absence of one absolute
reference code. Although this was not the case 5
to 10 years ago,most of the commonlyused codes
and methods are now found to predict essen-
tially identical results. The established precision
of DFT codes not only ensures the reproducibility
of DFT predictions but also puts several past and
future developments on a firmer footing. Any
newly developedmethodology can nowbe tested
against the benchmark to verify whether it
reaches the same level of precision. NewDFT ap-
plications can be shown to have used a suffi-
ciently precise method.Moreover, high-precision
DFT calculations are essential for developing im-
provements to DFTmethodology, such as new
density functionals, whichmay further increase
the predictive power of the simulations.▪
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Recent DFTmethods yield reproducible results.Whereas older DFT implementations predict different values (red darts), codes have now evolved to
mutual agreement (green darts).The scoreboard illustrates the good pairwise agreement of four classes of DFT implementations (horizontal direction)
with all-electron results (vertical direction). Each number reflects the average difference between the equations of state for a given pair of methods,with
the green-to-red color scheme showing the range from the best to the poorest agreement.
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The widespread popularity of density functional theory has given rise to an extensive range
of dedicated codes for predicting molecular and crystalline properties. However, each
code implements the formalism in a different way, raising questions about the reproducibility
of such predictions. We report the results of a community-wide effort that compared
15 solid-state codes, using 40 different potentials or basis set types, to assess the quality
of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude
that predictions from recent codes and pseudopotentials agree very well, with pairwise
differences that are comparable to those between different high-precision experiments.
Older methods, however, have less precise agreement. Our benchmark provides a
framework for users and developers to document the precision of new applications and
methodological improvements.

S
cientific results are expected to be repro-
ducible. When the same study is repeated
independently, it should reach the same
conclusions. Nevertheless, some recent ar-
ticles have shown that reproducibility is

not self-evident. A widely resounding Science
article (1), for example, demonstrated a lack of
reproducibility among published psychology ex-
periments. Although the hard sciences are believed
to perform better in this respect, concerns about
reproducibility have emerged in these fields as
well (2–4). The issue is of particular interest when
computer programs are involved. Undocumented
approximations or undetected bugs can lead to
wrong conclusions (5). In areas where academic
codes compete with commercial software, the un-
availability of source code can hinder assessment
of the relevance of conclusions (6, 7).
Density functional theory (DFT) calculations

(8, 9) are a prominent example of an area that
depends on the development and appropriate
use of complex software. With rigorous founda-
tions in the quantum theory of matter, DFT

describes the structure and properties of mole-
cules and solids at the atomic scale. Over the years,
many academic groups have developed imple-
mentations of DFT in computer codes, and several
of these have been adopted by large user commu-
nities. Commercial alternatives are entering this
area as well. At present, more than 15,000 papers
are published each year that make use of DFT
codes (10), with applications varying frommetal-
lurgy to drug design. Moreover, DFT calculations
are used nowadays to build large databases (11, 12)
and in multiscale calculations in which they serve
as one part of the tool chain (13, 14). The precision
of DFT codes thus underlies the scientific credi-
bility and reproducibility of a substantial fraction
of current work in the natural and engineering sci-
ences, and therefore it has implications that reach
far beyond the traditional electronic-structure
research community.
The main idea of DFT is to solve the intrac-

table many-particle Schrödinger equation by re-
placing the complete electron wave function with
themuch simpler ground-state electrondensity as

the fundamental variable. Although this refor-
mulation is in principle exact, it is not fully known
how the interaction between individual electrons
shouldbe transformed.As a result, the specific form
of the unknown part of the interaction energy, the
exchange-correlation functional, has been the focus
of many investigations, leading to a plethora of
available functionals in both solid-state physics
(15–19) and quantum chemistry (15, 20–23).
Once a particular exchange-correlation function-

al has been chosen, the mathematical problem is
completely specified as a set of Kohn-Sham equa-
tions, whose solution yields orbitals and energies
from which the total electronic energy can be
evaluated. A variety of such numerical solution
schemes have been implemented in different com-
puter codes. Comparisons of their performance
are much less frequent or extensive than those
of exchange-correlation functionals, however
(21, 24–29). One might reasonably expect that
because they solve the same equations, they all
produce similar answers for a given crystal
structure, but a glance at the literature shows
that this assumption is by nomeans always true.
Figure 1 demonstrates that even for a well-studied
material such as silicon, deviations between pre-
dictions from different codes (the “precision”) are
of the same order of magnitude as the deviation
from the 0 K experimental value (the “accuracy”)
(26, 30). Because all of the codes shown in Fig.
1 treat silicon at the same level of theory, using
the same exchange-correlation functional, they
yield the same accuracy by definition. However,
the particular predictions vary from one code to
another because of approximations that are un-
related to the exchange-correlation functional.
These approximations decrease the computational
load but limit the precision.
What level of precision can we now achieve?

Discussion of precision-related issues is uncom-
mon in reports of solid-state DFT studies. The
reproducibility of predictions is sometimes checked
by cross-validation with other codes (21, 24–28),
butwe are not aware of any systematic assessments
of precision (also called “verification”), even though
such studies would reinforce confidence in prac-
tical DFT calculations.
As a group of 69 code developers and expert

users, we determined the error bar associated
with energy-versus-volume [E(V)] predictions of
elemental solids by running the same benchmark
protocol with various DFT codes. Parameters of
these equations of state (EOS), such as the lattice
parameter or the bulk modulus, are commonly
used for accuracy assessments (15–19). By consid-
ering elemental solids, we have established a
broad and comprehensive test for precision. Ele-
mental solids have a wide range of chemical
environments and constitute a reasonable first
approximation to sampling the broad compo-
sitional space of multicomponent systems. Our
effort has resulted in 18,602 DFT calculations,
which we aimed to execute with a rigorously de-
termined precision. This exercise might seem
simple, but each code tackles the Kohn-Sham
equations and subsequent energy evaluation in
its own way, requiring different approaches to
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deal with difficulties in different parts of the
computational procedure.

Kohn-Sham solution techniques

The Kohn-Sham equations describe a many-
electron system in terms of a density built from
single-particle wave functions. By expressing these
wave functions as a linear combination of pre-
defined basis functions, the Kohn-Sham equations
reduce to a matrix equation, which can in prin-
ciple be solved exactly. Their solutions should
yield identical results, irrespective of the form
of the basis functions, provided that the basis
set is complete. However, achieving technical
convergence of the complete Kohn-Sham prob-
lem is not feasible in practice. Consider silicon,
whose electronic structure is schematically illus-
trated in Fig. 2. The Aufbau principle requires
first populating the lowest energy level, which
is the 1s band. This is much lower in energy than
the valence and conduction bands, and the locali-
zation of the orbitals close to the nuclei demands
high spatial resolution. These core electrons do
not contribute directly to chemical bonding, so
they can be separated out and represented using
a different basis that is better suited to describe
localized atomic-like states. Core orbitals may be
either computed in an isolated atom environ-
ment, with their effect on valence transferred
unaltered to the crystal, or relaxed self-consistently
in the full crystal field. They can moreover be
treated using a relativistic Hamiltonian, which is
essential for core electrons in heavy atoms. Dif-
ferent relativistic schemesmay lead to differences
in the predicted E(V) curves.
To stitch together a complete solution, thewave

functions of the semi-core and valence electrons
(2s 2p and 3s 3p, respectively, in the case of sili-
con) must be constructed to include the effect of
orthogonality to the core electrons. This central
problem can be solved in a number of different

ways, depending on the choice of numericalmeth-
od. For methods that are based on plane-wave
expansions or uniform real-space grids, the os-
cillatory behavior near the nucleus cannot be
accurately represented because of the limited
spatial resolution. The need for unmanageably
large basis sets can bemitigated by adding a care-
fully designed repulsive part to the Kohn-Sham
potential, a so-called pseudopotential. This pseudo-
potential affects only a small region around the
nuclei (gray zones in Fig. 2) and may conserve
the core-region charge [norm-conserving pseu-
dopotentials (31, 32)], giving rise to an analyti-
cally straightforward formalism, or it may break
norm conservation by including a compensating
augmentation charge [ultrasoft pseudopotentials
(33)], allowing for smoother wave functions and
hence smaller basis sets. Alternatively, the projector-
augmented wave (PAW) approach defines an
explicit transformation between the all-electron
and pseudopotential wave functions bymeans of
additional partial-wave basis functions (34, 35).
This allows PAW codes to obtain good precision
for small numbers of plane waves or large grid
spacings, but choosing suitable partial-wave projec-
tors is not trivial. Here we refer to both pseudo-
potential and PAW methods as pseudization
approaches. In contrast to these approaches, all-
electron methods explicitly construct basis func-
tions that are restricted to a specific energy range
[linearized augmentedplanewave (LAPW) (36–39)
and linearmuffin-tin orbital (LMTO) (40)methods]
or treat core and valence states on equal footing
(e.g., by using numerical atomic-like orbitals)
(41, 42). Avoiding pseudization enables better
precision but inevitably increases the computation
time. In these codes, the ambiguity in solving the
Kohn-Sham problem shifts from the choice of the
pseudization scheme to the choice of the basis
functions. This choice leads to a variety ofmethods
aswell, which, despite solving the sameKohn-Sham

equations, differ in many other details. Because
each all-electron or pseudization method has its
own fundamental advantages, it is highly desir-
able to achieve high precision for all of them.

The D matrix

The case study for silicon (Fig. 1) demonstrates that
different approaches to the potential or basis
functions may lead to noticeably different predic-
tions, even for straightforward properties such as
the lattice parameter. There is no absolute refer-
ence against which to compare these methods;
each approach has its own intricacies and approx-
imations. To determine whether the same re-
sults can be obtained irrespectively of the code or
(pseudo)potential, we instead present a large-scale
pairwise code comparison using the D gauge. This
criterionwas formulated by Lejaeghere et al. (26)
to quantify differences between DFT-predicted
E(V) profiles in an unequivocal way. That study
proposed a benchmark set of 71 elemental crystals
and defined, for every element i, the quantityDi as
the root-mean-square difference between the EOS
of methods a and b over a ±6% interval around
the equilibrium volume V0,i. The calculated EOS
are lined up with respect to their minimum en-
ergy and compared in an interval that is sym-
metrical around the average equilibrium volume
(Fig. 3).

Diða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∫
1:06V0;i

0:94V0;i

"
Eb;iðV Þ − Ea;iðV Þ

#2
dV

0:12V0;i

vuuut

ð1Þ

A comparison of Di values allows the expres-
sion of EOS differences as a single number, and
a small Di automatically implies small devia-
tions between equilibrium volumes, bulk moduli,
or any other EOS-derived observables. The over-
all difference D between methods a and b is
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obtained by averaging Di over all 71 crystals in
the benchmark set. Alternative definitions of D
essentially render the same information (27, 28).
In this work, we applied the original D protocol
to 40 DFT implementations of the Perdew-Burke-
Ernzerhof (PBE) functional (43). Appropriate
numerical settings were determined separately
for each method, ensuring converged results. In
all calculations, valence and semi-core electrons
were treated on a scalar-relativistic level, be-
cause not all codes support spin-orbit coupling.
This is not a limitation, because the aim is to
compare codes with each other rather than to
experiment. We do not elaborate here on speed
andmemory requirements, for which we refer to
the documentation of the respective codes.
Figure 4 presents an overview of the most im-

portant D values, categorized by method: all-
electron, PAW, ultrasoft pseudopotentials, and
norm-conserving pseudopotentials. Approaches
with a similar intrinsic precision are clustered
together in this way. Both the full results and
the most important numerical settings are in-
cluded in tables S3 to S42. A complete specifica-
tion would have to include code defaults and
hard-coded values, so a reasonable compromise
was chosen. A full specification could be re-
alized by recent endeavors in full-output data-
bases (44, 45) or workflow scripting (46, 47),
but this capacity is not yet available for several
of the codes used in this study. We have, how-
ever, tried to provide generation scripts for as
many methods as possible (48), and we empha-
size the need for such tools as an important fu-
ture direction.

Comparing all-electron methods

Although the definition of D does not favor a
particular reference, it is instructive to first ex-
amine the D values with respect to all-electron
methods (Fig. 4). They generally come at a com-
putationally higher cost, but all-electron ap-
proaches are often considered to be a standard
for DFT calculations, because they implement
the potential without pseudization. By com-
paring pseudopotential or PAW methods with
all-electron codes, we can therefore get an idea
of the error bar associated with each pseudiza-
tion scheme. The D values between different
all-electron methods reflect the remaining dis-
crepancies, such as a different treatment of the
scalar-relativistic terms or small differences in
numerical methods.
To gain some insight into typical values of D,

we should first establish which values for D can
be qualified as “small,” so that we know which
results can be considered equivalent. A first in-
dication comes from converting differences
between high-precision measurements of EOS
parameters into a D format. Comparing the high-
quality experimental data of Holzapfel et al. for
Cu, Ag, and Au (49) with those of Kittel (50) and
Knittle (51), for example, shows a small difference
Dexp of 1.0 meV per atom. Because the average all-
electron D for thesematerials is only 0.8meV per
atom, this implies that the precision of many DFT
codes outperforms experimental precision.

Secondly, we also considered the differences
between codes in terms of commonly reported
EOS parameters. The 1.0meV-per-atommaximum
D among all-electron codes (Fig. 4, top) corresponds
to an average volume deviation of 0.14 Å3 per atom
(0.38%) or a median deviation of 0.05 Å3 per atom
(0.24%) over the entire 71-element test set. For
the bulkmodulus, the average deviation is 1.6 GPa
(4.0%), and the median deviation 0.8 GPa (1.6%).

Comparedwith the scatter on experimental values,
which can amount to up to 35% for the bulk
moduli of the rare earth metals [for instance,
see (52)], these values are very small. The differ-
ence between EOS obtained by independent all-
electron codes is hence smaller than the spread
between independent experimental EOS. We con-
clude that, unless some elements deviate sub-
stantially from the overall trend, codes with a
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Fig. 2. Electronic
states in solid silicon.
The valence states are
delocalized over the
solid (green line),
because the wave
functions overlap from
one atom to the next.
The lowest-energy 1s
state (red) is at an
energy two orders of
magnitude lower than
the valence states and is
strongly localized near
the nucleus, with no
overlap between the
atoms.The gray regions
around the atoms indi-
cate approximately
where the wave
function, density, and
potential are smoothed
in pseudized methods.

Fig. 1. Historical evolution of the predicted equilibrium lattice parameter for silicon. All data points
represent calculations within the DFT-PBE framework. Values from literature (data points before
2016) (15, 16, 18, 56–62, 63–65) are compared with (i) predictions from the different codes used in
this study (2016 data points, magnified in the inset; open circles indicate data produced by older
methods or calculations with lower numerical settings) and (ii) the experimental value, extrapolated
to 0 K and corrected for zero-point effects (red line) (26). The concepts of precision and accuracy
are illustrated graphically.
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mutual D of 1 or even 2 meV per atom can be
deemed to yield indistinguishable EOS for all
practical purposes.

The above-mentioned differences correspond
to the best attainable precision for each all-electron
code, using highly converged or “ultimate” compu-

tational settings. However, particular choices for
these settings may still slightly change the D
values. It is not always necessary to set such
stringent requirements, because efficient codes
are able to perform well with less-than-perfect
settings. Nevertheless, the difference between
default- and ultimate-precision EOS may some-
times reach a few millielectron volts per atom
(table S2). To eliminate the effect of numerical
convergence altogether, we used the osmiumcrys-
tal to test whether it is possible to obtain exactly
the same result with different codes. Rather than
aiming for the best representation of the ideal
PBE results, as in the rest of this work, the goal in
this case was to choose input settings as consist-
ently as possible (using the same basis functions,
grids, and other parameters). Comparing four
APW+lo (augmented plane waves plus local or-
bitals) calculations in this way yielded the results
in Table 1. Whereas numerical noise in various
subroutines gives rise to fluctuations of only
0.02 to 0.04 meV per atom, the larger deviation of
~0.2 meV per atom in comparisons involving the
code known as “exciting” can partly be attributed
to a different scalar-relativistic treatment of the va-
lence electrons in this code. There is no single uni-
versalmethod to account for the relativistic change
of the electron mass in the kinetic energy. The
“exciting” code uses the infinite-order regular ap-
proximation (53), whereas the other three APW+lo
codes use the Koelling-Harmon scheme (54). A
third possibility is to use the atomic zero-order
regular approximation, as was done in the FHI-
aims code package (tables S5 to S7) (42, 55).

Comparing (pseudo)potential libraries

In comparisonwith all-electron codes, pseudization
approaches are generally faster, because fewer
states are considered, and explicit construction
and diagonalization of the Hamiltonian matrix
is avoided. Among these, PAW and ultrasoft pseu-
dopotentials require fewer basis functions than
the norm-conserving variety, but advanced fea-
tures such as linear response theory or hybrid
functionals sometimes may not be available
because of the increased complexity of the im-
plementation. However, pseudization approaches
all perform very well in terms of precision when
compared with all-electron results (Fig. 4). For
EOS, the precision of current potentials is able to
compete with that of all-electron methods, yield-
ing D values of about 1 meV per atom, with a low
approaching 0.3 meV per atom. This has not al-
ways been the case. As suggested by the example
of silicon (Fig. 1), the available potentials have
improved considerably over time. In Table 2, it
can be seen that for several codes, the D value is
smaller for newer potential sets. Moreover, older
potentials such as the Troullier-Martins FHI98pp
norm-conserving set in ABINIT or the Vanderbilt-
type ultrasoft sets in Dacapo and CASTEP all have
a substantially larger D (Fig. 4). This evolution is
evidence of internal quality-control mechanisms
used by developers of potentials in the past, as
well as of additional, more recent efforts based
on the D gauge [e.g., the Jollet-Torrent-Holzwarth
(JTH) and Standard Solid-State Pseudopotentials
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Fig. 3. Graphical
representation of the
D gauge.The black
curve depicts the qua-
dratic energy difference
between two EOS
[(E1 – E2)

2, where
the subscripts corre-
spond to the two
codes shown], and Di
corresponds to the root-
mean-square average.
This is demonstrated by
the shaded area, which
is equally large above

and below the D2
i line.

Table 1. Agreement between osmium crystal predictions at nearly identical settings.The top group
includes Di values for the osmium crystal (in millielectron volts per atom) produced by four APW+lo
calculations that tried to mimic the same settings as well as possible. These settings are therefore
different from the ones used for Fig. 4 and reported in tables S3, S4, S8, and S15. The bottom group
includes the corresponding equilibrium volumes V0, bulk moduli B0, and bulk modulus derivatives B1.

Elk FLEUR WIEN2K exciting

D(Elk)
D(FLEUR)
D(WIEN2K)
D(exciting)

–

0.03
0.02
0.20

0.03
–

0.04
0.22

0.02
0.04
–

0.18

0.20
0.22
0.18
–

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

V0 (Å3 per atom)
B0 (GPa)
B1 (unitless)

14.276
397.5
4.86

14.276
397.9
4.89

14.276
397.6
4.83

14.274
397.4
4.82

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Table 2. Precision evolution of PAWand pseudopotential sets over time.The D values are expressed
as an average over the all-electron methods (in millielectron volts per atom) and are listed
chronologically per code. The corresponding code settings and the DFT-predicted EOS parameters are
listed in tables S17, S19 to S26, S30, S31, and S33. The most recent potentials are the ones used to
generate the data shown in Fig. 4.

Year hDiversus AE

JTH01/ABINIT
JTH02/ABINIT

2013
2014

1.1
0.6

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Vdb/CASTEP
OTFG7/CASTEP
OTFG9/CASTEP

1998
2013
2015

6.5
2.6
0.7

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

GPAW06/GPAW
GPAW09/GPAW

2010
2012

3.6
1.6

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

PSlib031/QE
PSlib100/QE

2013
2013

1.7
1.0

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

VASP2007/VASP
VASP2012/VASP
VASPGW2015/VASP

2007
2012
2015

2.0
0.8
0.6

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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(SSSP) libraries]. The considerable difference
in the older potentials, even for the predefined
structures in this relatively simple test set, pro-
vides a compelling argument to use only themost
recent potential files of a given code.
In addition to the comparison with all-electron

codes, it is also interesting to assess how the
same PAW or pseudopotential recipes are im-
plemented in differentways.Whenboth theGPAW
and ABINIT codes use the GPAW 0.9 PAW set,

for example, they agree towithin aD of 0.6meVper
atom. A similar correspondence is found for the
Schlipf-Gygi 2015-01-24 optimized norm-conserving
Vanderbilt pseudopotentials (ONCVPSP) (0.3meV
per atom between Quantum ESPRESSO and
CASTEP), the Garrity-Bennett-Rabe-Vanderbilt
(GBRV) 1.4 ultrasoft pseudopotentials (0.3meVper
atombetweenQuantumESPRESSO andCASTEP)
and the GBRV 1.2 set (0.7 meV per atom between
PAW potentials in ABINIT and ultrasoft poten-

tials in Quantum ESPRESSO). In this case, too,
the small D values indicate a good agreement
between codes. This agreementmoreover encom-
passes varying degrees of numerical convergence,
differences in the numerical implementation of
the particular potentials, and computational dif-
ferences beyond the pseudization scheme, most
of which are expected to be of the same order of
magnitude or smaller than the differences among
all-electron codes (1 meV per atom at most).

Conclusions and outlook

Solid-state DFT codes have evolved considerably.
The change from small and personalized codes to
widespread general-purpose packages has pushed
developers to aim for the best possible precision.
Whereas past DFT-PBE literature on the lattice
parameter of silicon indicated a spread of 0.05 Å,
the most recent versions of the implementations
discussed here agree on this value within 0.01 Å
(Fig. 1 and tables S3 to S42). By comparing codes
on a more detailed level using the D gauge, we
have found the most recent methods to yield
nearly indistinguishable EOS, with the associ-
ated error bar comparable to that between dif-
ferent high-precision experiments. This underpins
the validity of recentDFTEOS results and confirms
that correctly converged calculations yield reliable
predictions. The implications are moreover rele-
vant throughout the multidisciplinary set of fields
that build upon DFT results, ranging from the
physical to the biological sciences.
In spite of the absence of one absolute refer-

ence code, we were able to improve and demon-
strate the reproducibility of DFT results by means
of a pairwise comparison of a wide range of codes
and methods. It is now possible to verify whether
any newly developed methodology can reach the
same precision described here, and new DFT
applications can be shown to have used a meth-
od and/or potentials that were screened in this
way. The data generated in this study serve as a
crucial enabler for such a reproducibility-driven
paradigm shift, and future updates of available
D values will be presented at http://molmod.
ugent.be/deltacodesdft. The reproducibility of
reported results also provides a sound basis for
further improvement to the accuracy of DFT,
particularly in the investigation of new DFT func-
tionals, or for the development of new computa-
tional approaches. This work might therefore
substantially accelerate methodological advances
in solid-state DFT.
Future work can examine the reproducibility

of different codes even further. Such work might
involve larger benchmark sets (describing differ-
ent atomic environments per element), other func-
tionals, an exhaustive comparison of different
relativistic treatments, and/or a more detailed ac-
count of computational differences (using data-
bases or scripts, for example). The precision of
band gaps, magnetic anisotropies, and other non-
EOS properties would also be of interest. How-
ever, the current investigation of EOS parameters
provides the most important pass-fail test of the
quality of different implementations of Kohn-
Sham theory. A method that is not able to reach

SCIENCE sciencemag.org 25 MARCH 2016 • VOL 351 ISSUE 6280 aad3000-5

Fig. 4. D values for comparisons between the most important DFT methods considered (in
millielectron volts per atom). Shown are comparisons of all-electron (AE), PAW, ultrasoft (USPP), and
norm-conserving pseudopotential (NCPP) results with all-electron results (methods are listed in alpha-
betical order in each category). The labels for each method stand for code, code/specification (AE), or
potential set/code (PAW, USPP, and NCPP) and are explained in full in tables S3 to S42.The color coding
illustrates the range from small (green) to large (red) D values.Themixed potential set SSSPwas added to
the ultrasoft category, in agreement with its prevalent potential type. Both the code settings and the DFT-
predicted EOS parameters behind these numbers are included in tables S3 to S42, and fig. S1 provides a
full D matrix for all methods mentioned in this article.
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an acceptable precision with respect to the EOS
of the elemental crystals will probably not fulfill
even more stringent demands.

Methods summary

This study relied on the collective efforts of a
large group of developers and expert users to
make pairwise comparisons of widely used DFT
codes. We compared 40 DFT methods in terms
of D, which expresses the root-mean-square dif-
ference between the EOS of two codes, averaged
over a benchmark set of 71 elemental crystals
(Eq. 1). Our approach, including details about
the codes used, is described further in the sup-
plementary materials. The reported settings
yield highly converged results but may not be
necessary for typical DFT applications. In par-
ticular, the use of sometimes very small electronic
smearing widths requires much higher num-
bers of k-points than routine DFT calculations
warrant.
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