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Motivated by the recently proposed parallel orbital-updating approach in real space 
method [1], we propose a parallel orbital-updating based plane-wave basis method for 
electronic structure calculations, for solving the corresponding eigenvalue problems. In 
addition, we propose two new modified parallel orbital-updating methods. Compared to 
the traditional plane-wave methods, our methods allow for two-level parallelization, which 
is particularly interesting for large scale parallelization. Numerical experiments show that 
these new methods are more reliable and efficient for large scale calculations on modern 
supercomputers.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Kohn–Sham Density Functional Theory (DFT) [2–5] is a computational quantum mechanical modeling method used to 
investigate the electronic structure of many-body systems (atoms, molecules, and solids). In this theory, the ground-state 
energy of a many-electron system is determined by minimizing a functional of the spatially-dependent electron density 
rather than searching for the many-body wavefunction. Although the exact energy functional has not been determined, 
approximate models for the functional have yielded accurate predictions for many classes of materials. DFT has thus become 
one of the most widely used methods in electronic structure calculations [6,7].

The minimization problem of DFT can be recast into the solution of an effective one-electron-type Schrödinger equation, 
the so-called Kohn–Sham equation, by introducing an effective potential. The Kohn–Sham equation is a nonlinear eigenvalue 
problem since the effective potential is a functional of the density. It is usually dealt with using a self-consistent field (SCF) 
approach [6].

In practical implementations, the single-electron wavefunctions need to be expanded in terms of some set of mathemat-
ical basis functions. The coefficients of the functions in this basis set are the primary values used to build a computational 
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representation. For periodic solids, several different basis sets have been developed among which plane waves, the focus 
of the present paper. Though it has a few drawbacks, this approach has many advantages which make it very popular in 
materials science and physics. Various electronic structure calculation packages (such as VASP [8], Quantum ESPRESSO [9], 
ABINIT [10], ...) rely on it.

In general, a very large number of plane waves are needed to approximate the wave functions. So a large scale linear 
eigenvalue problem needs to be solved repeatedly after linearization by the SCF method. Due to the use fast Fourier trans-
form (which has contributed to the success of this approach), large scale parallelization is hard to achieve for the plane-wave 
method. Besides, the solution for the large scale eigenvalue problems usually requires large scale orthogonal operation and 
orthogonality needs global operations, which is also the bottleneck of the large scale parallelization. Various methods have 
been proposed for solving the associated eigenvalue problems. The Davidson iterative diagonalization [11], which reduces 
to a dense matrix diagonalization, is also hard to parallelize efficiently. The Conjugate-Gradient-like band-by-band diagonal-
ization [6], which uses less memory and is more robust, is inherently sequential. It is actually quite challenging to improve 
parallel efficiency of plane-wave DFT codes on today’s supercomputer platforms.

In this paper, following Ref. [1], we propose some parallel orbital-updating based plane-wave basis methods for solving 
the Kohn–Sham equation, which improve the scalability of parallelization. In our approach, the solution of the eigenvalue 
problem is replaced by the solution of a series of independent source problems and some small scale eigenvalue problems. 
Because of the independence of the source problems, these source problems can be solved in parallel essentially. For each 
source problem, the traditional parallel strategies (for example, domain decomposition or parallelization in matrix-vector 
multiplication) can be used to deal with it in parallel. Therefore, our new methods allow for a two-level parallelization: one 
level of parallelization is obtained by partitioning these source problems into different groups of processors, another level of 
parallelization is obtained by assigning each source problem to several processors contained in each group. This two-level 
parallelization makes our new methods more competitive for the large scale calculations.

The rest of this paper is organized as follows. First, we provide some preliminaries for the Kohn–Sham equation, the 
plane-wave discretization, and SCF iteration. Then, we propose our new parallel orbital-updating based plane-wave basis 
methods. Next, we implement our algorithms in the software package Quantum ESPRESSO, and use some numerical exper-
iments to show the efficiency of our new methods. Finally, we give some concluding remarks.

2. Preliminaries

2.1. Kohn–Sham equation

According to the basic principles of quantum mechanics, the physical properties of a system of N interacting electrons 
in an external potential V ext can be obtained by solving the time-independent Schrödinger equation:⎡

⎢⎢⎣
N∑

i=1

(
−1

2
� + V ext(ri)

)
+ 1

2

N∑
i, j=1
i �= j

1

|ri − r j|

⎤
⎥⎥⎦�(r1, . . . , rN) = Eel

n �(r1, . . . , rN), (1)

where ri are the coordinates of the electrons (i = 1, . . . , N), Eel
n is the total electronic energy of the eigenstate n and �

is the electronic wave function. Atomic units are used throughout this work (h̄ = me = 4πe2

ε0
= 1). Typically, the external 

potential can be the one due to M nuclei in which case: 

V ext(r) = −
M∑

I=1

Z I

|r − R I | , (2)

where Z I and R I are the charges and the positions of the nuclei (I = 1, . . . , M). DFT provides a way to systematically 
map the many-body (interacting electrons) problem onto a single-body problem (fictitiously non-interacting electrons) in an 
effective potential V eff(r) in order to determine the ground-state energy Eel

0 by expressing it as a functional of the electronic 
density: 

ρ(r) = N

∫

R3

dr2 . . .

∫

R3

drN�∗(r, r2, . . . , rN )�(r, r2, . . . , rN ). (3)

Basically, one needs to solve the so-called Kohn–Sham equation. The Kohn–Sham equation of a system consisting of M
nuclei of charges and N electrons is the following nonlinear eigenvalue problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(−1

2
� + V eff(ρ))ψi(r) = εiψi(r),∫

3

ψi(r)ψ j(r)dr = δi j, i, j = 1,2, . . . , N,
(4)
R
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V eff(ρ) = V ext + V H(ρ) + V xc(ρ), (5)

where N is the number of electrons, ρ(r) =
N∑

i=1
|ψi(r)|2 is the electron density, 

V H(ρ) =
∫

R3

ρ(r′)
|r − r′| dr′

is the Hartree potential, V xc(r) is the exchange-correlation potential and V ext(r), defined by (2), is the external potential 
due to the nuclei.

The ground-state energy of the system of N electrons is given by: 

Eel
0 = T [ρ] +

∫

R3

V ext(r)ρ(r) dr + EH[ρ] + Exc[ρ]. (6)

The kinetic energy T [ρ] is defined by 

T [ρ] =
N∑

i=1

−1

2

∫

R3

ψ∗
i (r)�ψi(r) dr, (7)

which is not the true kinetic energy of the system of interacting electrons. The Hartree energy EH[ρ] is given by: 

EH[ρ] = 1

2

∫

R3

∫

R3

ρ(r)ρ(r′)
|r′ − r| drdr′. (8)

DFT is exact in principle, however, the exchange-correlation functional Exc[ρ] as well as V xc[ρ](r) are not known and must 
be approximated.

We implement the variational method in (4) to get the weak formulation of Kohn–Sham equation: Find (εi, ψi) ∈ R ×
H1

0(R3), i = 1, · · · , N , such that 
⎧⎪⎪⎨
⎪⎪⎩

a(ρ;ψi,ϕ) = (εiψi,ϕ) ∀ϕ ∈ H1(R3),∫

R3

ψi(r)ψ j(r)dr = δi j, i, j = 1,2, . . . , N, (9)

where 

a(ρ;ψ,ϕ) = 1

2
(∇ψ,∇ϕ) + (V eff(ρ)ψ,ϕ) ∀ψ,ϕ ∈ H1(R3).

From the density functional theory, we know that the ground state of the system can be obtained by solving the lowest 
N pairs of eigenvalues and eigenvectors of the Kohn–Sham equation.

2.2. Plane-wave discretization

We now consider the periodic boundary conditions in a large volume � that is allowed to go to infinity. In periodic 
solids, there is an infinite number of non-interacting electrons moving in an infinite external potential (such as the one 
generated by an infinite number of nuclei). However, Bloch’s theorem [7] can be invoked to express the wavefunction as 
the product of a cell-periodic part and wavelike part, whose wavevector is drawn from the first Brillouin zone (BZ) of the 
reciprocal lattice: 

ψi,k(r) = ui,k(r)exp[ik · r], (10)

with ui,k(r) = ui,k(r + R) where R are the lattice vectors.
The infinite number of electrons in the solid is thus accounted for by an infinite number of k points in the BZ, and only 

a finite number of electronic states are occupied at each k point. For instance, the electronic density is given by: 

ρ(r) =
Nv∑
i=1

∫ ∣∣ψi,k(r)
∣∣2

dk, (11)

where Nv is the number of occupied states.
Furthermore, the electronic wavefunctions at k points that are very close will be very similar. Hence, it is possible 

to represent the electronic wavefunctions over a region of the BZ by the wavefunctions at a single k point. This can be 
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exploited for replacing integrals over the BZ by a weighted sum on a discrete mesh of well-chosen k points. For instance, 
the one for the electronic density becomes: 

ρ(r) =
Nv∑
i=1

Nk∑
s=1

ws
∣∣ψi,ks (r)

∣∣2
, (12)

where ws are the weights associated to the special k-points ks with s = 1, . . . , Nk . In the case of an homogeneous mesh, 
all the weights are equal and given by ws = �BZ/Nk . The accuracy of the calculations can always be increased by using 
a denser set of special k-points. In semiconductors, a modest number is sufficient to achieve a well-converged sampling 
density because of the smoothly varying nature of Kohn–Sham states in k-space. In metals, however, much denser grids are 
required due to the abrupt change in the occupancy of each state with the wavevector k.

The cell-periodic part of the wavefunctions can conveniently be represented as an expansion in terms of some set of 
mathematical basis functions. The coefficients of the functions in this basis set are then the primary values used to build 
a computational representation. Many different basis sets have been developed for use in periodic solid-state calculations 
(see Ref. [7] for a detailed description). The most natural (due to the periodicity) and popular (due to its ease of use) is 
the plane-wave basis set. Each function ui,k(r) is expressed as a Fourier series whose basis states are plane waves whose 
wavevector is a reciprocal lattice vector G (which are defined by eiG·R = 1): 

ui,k(r) =
∑

G

ci,k+G × 1√
�

exp[iG · r]. (13)

So a wave function can be written as 

ψi,k(r) =
∑

G

ci,k+G × 1√
�

exp[i(k + G) · r], (14)

where ci,k+G are the expansion coefficients of the wave function.
Due to the fact that the coefficients ci,k+G for the plane waves with small kinetic energy 1

2 |k + G|2 are typically more 
important than those with large kinetic energy [12], the plane-wave basis set can be truncated to include only plane waves 
that have kinetic energies less than some particular cutoff energy Ecut , i.e. 

1

2
|k + G|2 ≤ Ecut. (15)

The plane waves form an orthonormal basis set and do not depend on the location of the nuclei which simplifies the 
form of the equations and their implementation. Furthermore, the size of the basis set (and therefore the accuracy of 
the calculations) can be systematically increased and easily controlled by a single parameter, the cutoff energy Ecut [13], 
retaining only those G-vectors such that 1

2 |k + G|2 ≤ Ecut. There are however two important disadvantages over other basis 
sets. First, the number of basis functions required is quite large, which increases computational cost. Second, it is quite 
difficult to represent sharp peaks in the Kohn–Sham states, such as those occurring in the core regions near nuclei due to 
the singularity of the electron-nuclear Coulomb attraction.

The states in the core region have however a negligible contribution to the electronic properties of a material. Therefore, 
it is not necessary to represent them or the Coulomb potential exactly. First, the states localized entirely within a core re-
gion, called core states, may be precomputed (the frozen core approximation), avoiding the need to include them explicitly 
in the calculation. Second, the Coulomb potential in the core regions can be replaced with a pseudopotential which is con-
structed to reproduce the atomic scattering properties and Coulombic form outside the core region, but which is weaker and 
smoother inside. The remaining states, called valence states, are described by pseudo-wavefunctions which are significantly 
smoother, hence improving the convergence with respect to Ecut, without loss of accuracy [14,15]. The pseudopotential con-
sists of two parts: one local part V loc , and a nonlocal part V nl. In the pseudopotential setting, the Kohn–Sham equation is 
still formulated as (4), but V ext(r) is now being V loc(r) + V nl(r), N now being the number of valence electrons, and {ψ}N

i=1
being the set of the pseudo-wavefunctions of the valence electrons. The pseudo-wavefunctions can be approximated by far 
fewer basis functions [12]. In this paper, we consider the pseudopotential case.

Therefore, we get a finite plane-wave discretization of (9) as follows: ⎧⎪⎪⎨
⎪⎪⎩

a(ρ;ψn,i,ϕn′) = (εn,iψn,i,ϕn′) ∀ϕn′ ∈ V NG ,∫

R3

ψn,i(r)ψn, j(r)dr = δi j, i, j = 1,2, . . . , N, (16)

where V NG is a finite NG dimensional space spanned by the plane-wave basis, NG is the number of G satisfying (15), i.e 

V NG = span{ 1√ exp[i(k + G) · r]∣∣G ∈ Z,
1 |k + G|2 ≤ Ecut},
� 2
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and 

a(ρ;ψn,i,ϕn′) = 1

2
(∇ψn,i,∇ϕn′) + (V eff(ρ)ψn,i,ϕn′) ∀ψn,i,ϕn′ ∈ V NG .

2.3. Self consistent field iteration

The Kohn–Sham equation is a nonlinear eigenvalue problem. It is usually dealt with using a SCF approach [6]. Typically 
one starts with an initial guess for ρ(r), then calculates the corresponding V ext(ρ) and solves the Kohn–Sham equation for 
the ψi(r). From these one calculates a new density and starts again. This procedure is then repeated until convergence is 
reached. The following is the general algorithm of the self-consistent field iteration:

1. Give initial input charge density ρin.
2. Compute the effective potential V eff(ρin).
3. Find (εi, ψi) ∈ R × H1

0(R3) satisfying 
⎧⎪⎪⎨
⎪⎪⎩

a(ρin;ψi,ϕ) = (εiψi,ϕ) ∀ϕ ∈ H1(R3),∫

R3

ψi(r)ψ j(r)dr = δi j, i, j = 1,2, . . . , N.

4. Compute the new output charge density ρout.
5. Convergence check: if not converged, use some density mixing method to get the new input charge density ρin , goto 

step 2; else, stop.

The variation of the charge density is often used as the criterion for the convergence of the self consistent field in 
the quantum chemistry calculation. For the density mixing method in step 5, if we simply take ρout as the initial density 
of the next iteration, it converges too slowly or even does not converge. Therefore, it is very important to choose the 
proper density mixing method. Many such density mixing methods have been proposed so far. The most widely used are 
the following ones: simple mixing [16], Pulay’s mixing [17,18], Broyden’s mixing method [19,20] and modified Broyden’s 
mixing method [16,6]. In this paper we use the modified Broyden’s mixing method.

After plane-wave discretization and SCF iteration, we obtain the following large scale linear eigenvalue problem 

H� = εS�, (17)

where H = (hmn)NG ×NG with 

hmn = a(ρin;exp[i(k + Gm)r],exp[i(k + Gn)r])
= 1

2
|k + Gm|2δm,n + 1

�

∫
�

V eff(ρin)exp[−i(Gm + Gn) · r] dr

is the stiff matrix, S is the overlap matrix. If we use the norm-conserving pseudopotentials, S = I . In tradition, people usually 
focus on solving the large scale linear eigenvalue problem repeatedly. However, the solution of the large scale eigenvalue 
problem usually requires large scale orthogonal operation, which limits large scale parallelization in supercomputer.

3. Parallel orbital-updating approach

Motivated by the good performance of the parallel orbital-updating approach in the real space method [1], we apply 
the similar idea to the reciprocal space setting so as to cure the poor parallel scalability of the traditional methods in 
the reciprocal space. In fact, this is one of the series works on the parallel orbital-updating approach [1]. The following 
Algorithm 1 is the basic parallel orbital-updating algorithm for solving the Kohn–Sham equation based on plane-wave bases.

Using Algorithm 1, the solution of the large scale linear eigenvalue problem is replaced by the solution of a series of 
independent source problems and some small scale eigenvalue problems. In detail, while the plane-wave discretization re-
quires to solve algebraic eigenvalue problems of dimension NG , our Algorithm 1 only necessitates to solve some independent 
NG dimensional linear systems and N dimensional algebraic eigenvalue problems.

Since the source problems are all independent, they can be solved in parallel intrinsically. For each source problem, we 
can use the traditional parallelization strategies, such as domain decomposition or parallelization in matrix vector multipli-
cation. Therefore, our algorithm has two level of parallelization which is advantageous for large scale parallelization. Besides, 
since the solution of the source problems is much cheaper than that of eigenvalue problems, especially for large scale prob-
lems, our basic parallel orbital-updating algorithm will reduce the computational cost. More features of this algorithm are 
given in Ref. [1]. It is worth noting that Algorithm 1 can be used starting from a small cutoff energy and then increasing it 
until the accuracy is reached.
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Algorithm 1 Basic parallel orbital-updating method.

1. Choose initial E(0)
cut and then obtain V N0

G
, give the initial data (ε0

i , ψ0
i ), i = 1, · · · , N , and let n = 0.

2. Increase E(n)
cut to E(n+1)

cut and then obtain V Nn+1
G

.

3. For i = 1, 2, . . . , N , find ψn+1/2
i ∈ V Nn+1

G
satisfying 

a(ρn
in;ψn+1/2

i ,ϕ) = (εn
i ψn

i ,ϕ) ∀ϕ ∈ V Nn+1
G

in parallel, where ρn
in is the input charge density obtained by the orbits obtained in the n-th iteration or the previous iterations.

4. Find (εn+1
i , ψn+1

i ) ∈R × Ṽ N satisfying 
⎧⎪⎪⎨
⎪⎪⎩

a(ρ
n+1/2
in ;ψn+1

i ,ϕ) = (εn+1
i ψn+1

i ,ϕ) ∀ϕ ∈ Ṽ N ,∫

R3

ψn+1
i ψn+1

j = δi j, i, j = 1,2, . . . , N,

where Ṽ N = span{ψn+1/2
1 , . . . , ψn+1/2

N }, ρn+1/2
in is the input charge density obtained from ψn+1/2

i and ψk
i for k ≤ n, i = 1, · · · , N .

5. Convergence check: if not converged, set n = n + 1, go to step 2; else, stop.

4. Modified parallel orbital-updating approach

As stated in Ref. [1], there are several options for each steps in Algorithm 1. For example, one can calculate more orbitals 
if the initial guess is not good enough, or one can also choose different source problems.

To improve the convergence, we may consider to increase the dimension of the subspace Ṽ N in step 4 of Algorithm 1. 
In this section, we will present two new modifications not mentioned in Ref. [1].

We note that step 3 of Algorithm 1 can also be written as follows: For i = 1, 2, . . . , N , find en+1/2
i ∈ V Nn+1

G
satisfying 

a(ρn
in; en+1/2

i ,ϕ) = −[(a(ρn
in;ψn

i ,ϕ) − εn
i (ψn

i ,ϕ))]
in parallel, and set ψn+1/2

i = ψn
i + en+1/2

i . Therefore, instead of setting Ṽ N = span{ψn+1/2
1 , . . . , ψn+1/2

N }, we set

Ṽ N = span{ψn
1 , . . . ,ψn

N , en+1/2
1 , . . . , en+1/2

N },
we then obtain the following algorithm, which is denoted as Algorithm 2.

Algorithm 2 Modified parallel orbital-updating method I.
1. Choose initial E(0)

cut and then get V N0
G

, give the initial data (ε0
i , ψ0

i ), i = 1, · · · , N . Let n = 0.

2. Increase E(n)
cut to E(n+1)

cut , and obtain V Nn+1
G

.

3. For i = 1, 2, . . . , N , find en+1/2
i ∈ V Nn+1

G
satisfying 

a(ρn
in; en+1/2

i ,ϕ) = −[(a(ρn
in;ψn

i ,ϕ) − εn
i (ψn

i ,ϕ))]
in parallel, where ρn

in is the input charge density obtained by the orbits obtained in the n-th iteration or the former iterations.

4. Find {εn+1
i , ψn+1

i } ∈R × Ṽ N satisfying 
⎧⎪⎪⎨
⎪⎪⎩

a(ρ̃;ψn+1
i ,ϕ) = (εn+1

i ψn+1
i ,ϕ) ∀ϕ ∈ Ṽ N ,∫

R3

ψn+1
i ψn+1

j = δi j, i, j = 1,2, . . . , N,

where Ṽ N = span{ψn
1 , . . . , ψn

N , en+1/2
1 , . . . , en+1/2

N }, ρ̃(x) is the input charge density obtained from the previous orbits.
5. Convergence check: if not converged, go to step 2; else, stop.

Different from Algorithm 2, we then consider to look for a correction en+1/2
i which is orthogonal to ψn

i , that is, 
(en+1/2

i , ψn
i ) = 0. Then, we obtain the following Algorithm 3.

To ease the description of the algorithm, we first define a projection operator. For any ψ ∈ V NG , we define the projection 
operator Pψ : H1

0(R3) → span{ψ} as:

Pψϕ = (ψ,ϕ)ψ ∀ϕ ∈ H1
0(R3), (18)

then we can also define the following modified parallel orbital-updating algorithm.



488 Y. Pan et al. / Journal of Computational Physics 348 (2017) 482–492
Algorithm 3 Modified parallel orbital-updating method II.
1. Choose initial E(0)

cut and then get V N0
G

, give the initial data (ε0
i , ψ0

i ), i = 1, · · · , N . Let n = 0.

2. Increase E(n)
cut to E(n+1)

cut , and obtain V Nn+1
G

.

3. For i = 1, 2, . . . , N , find en+1/2
i ∈ V Nn+1

G
satisfying 

(I − Pψn
i
)(H − λn

i I)(I − Pψn
i
)en+1/2

i = (εn
i I − H)ψn

i

in parallel, where ρn
in is the input charge density obtained by the orbits obtained in the n-th iteration or the former iterations.

4. Find {εn+1
i , ψn+1

i } ∈R × Ṽ N satisfying 
⎧⎪⎪⎨
⎪⎪⎩

a(ρ̃;ψn+1
i ,ϕ) = (εn+1

i ψn+1
i ,ϕ) ∀ϕ ∈ Ṽ N ,∫

R3

ψn+1
i ψn+1

j = δi j, i, j = 1,2, . . . , N,

where Ṽ N = span{ψn
1 , . . . , ψn

N , en+1/2
1 , . . . , en+1/2

N }, ρ̃(x) is the input charge density obtained from the previous orbits.
5. Convergence check: if not converged, go to step 2; else, stop.

We can see that Algorithms 2 and 3 have all the features of Algorithm 1. The main difference is that the dimensions 
of the small scale eigenvalue problems are the double of that in Algorithm 1, which leads to a better convergence in some 
cases.

5. Numerical experiments

In this section, we apply our parallel orbital-updating algorithms to simulate several crystalline systems: Si (silicon), 
MgO (magnesium oxide) and Al (aluminium) with different sizes to show the efficiency of our algorithms. Our algorithms 
are implemented in the software package Quantum ESPRESSO [9], which is a mature and open-source computer codes for 
electronic-structure calculations and materials modeling at the nanoscale. It is based on density functional theory, and uses 
a plane-wave basis sets and pseudopotentials.

Currently Quantum ESPRESSO supports PAW (Projector-Augmented Wave) sets [21], Ultrasoft pseudopotentials [22,
23] and Norm-Conserving pseudopotentials [24,25]. We use the Norm-Conserving pseudopotentials in our tests. Quan-
tum ESPRESSO also provides various density mixing methods. In our experiments, we choose the modified Broyden’s 
mixing method. There are some diagonalization methods in the Quantum ESPRESSO. One is the Conjugate-Gradient-like 
band-by-band diagonalization, the other is the Davidson iterative diagonalization. Conjugate-Gradient-like band-by-band di-
agonalization (CG) uses less memory and is more robust compared to the Davidson iterative diagonalization with overlap 
matrix [9]. Therefore, we compare our new algorithms with the Conjugate-Gradient-like band-by-band diagonalization used 
in Quantum ESPRESSO. In our tests, we set the convergence threshold for the density to 1 × 10−7. In the tests of our new 
algorithms, we did not use the possibility to gradually increase the cutoff energy, that is, the cutoff energy is fixed. For 
this special case, V N0

G
is not updated, and the step 3 and step 4 in all our algorithms are carried out in V N0

G
repeatedly. 

All calculations are carried out on LSSC-III in the State Key Laboratory of Scientific and Engineering Computing, Chinese 
Academy of Sciences, and in part on the Ulysses computer cluster in SISSA.

We carefully checked that the total energies and the eigenvalues obtained by all our new methods converge to those 
obtained by the CG method if the latter converges. Indeed we should point out that we have also found some cases for 
which the CG method did not converge while our methods did, as shown later. Since the results of the modified parallel 
orbital-updating obtained by the Algorithm 3 are similar to those obtained by the Algorithm 2, we only list the results of 
the modified parallel orbital-updating methods obtained by the Algorithm 2 in the following numerical experiments.

We first introduce some notations which will be used in the following tables and figures.
• CG = Conjugate-Gradient-like band-by-band diagonalization method as implemented in Quantum ESPRESSO1

• ParO = Basic parallel orbital-updating method (Algorithm 1)
• MParO = Modified parallel orbital-updating method I (Algorithm 2)
• Nprocs = Number of processors
• Natom = Number of atoms
• Nscf = Number of SCF iterations
• Ngroup = Number of the groups of bands
As referred to in the end of Sections 3 and 4, our new algorithms are interesting for large scale parallelization and 

for reducing the computational cost, especially for large scale system. This will be illustrated in the following numerical 
experiments.

1 The Conjugate-Gradient method here is different from the Conjugate-Gradient method for the optimization problem and is mainly for solving the 
eigenvalue problem.
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Table 1
Results for MgO crystals of different sizes obtained using CG, ParO and MParO with one processor. Both ParO and MParO are faster than CG, the advantage 
is more obvious for large system.

Natom N NG CG ParO MParO

Nscf Time (s) Nscf Time (s) Nscf Time (s)

64 128 6807 10 190 28 392 21 285
216 432 23149 12 5571 20 5456 14 5397
288 576 30063 13 13902 21 12537 14 12514
512 1024 54804 12 72109 21 67407 14 62825

Fig. 1. (Color online.) CPU time vs the system size (number of atoms) for the MgO crystals for the different methods: CG, ParO, and MParO are reported in 
blue, red, and black, respectively. The larger the system, the more our algorithms are advantageous in reducing the computational cost.

5.1. Good scalability of system size

In this subsection, two examples are used to show the advantages of our new algorithms in terms of their scaling as the 
system size increases.

5.1.1. MgO crystals
The first test set consists of four MgO crystals made of 2 × 2 × 2, 3 × 3 × 3, 3 × 3 × 4, and 4 × 4 × 4 supercells, hence 

containing 32, 108, 144, and 256 magnesium and oxygen atoms, respectively. All the crystals are sampled using the  point 
only. The cutoff energy is set to 30R y. All results for these systems are obtained by performing the computation on one 
processor.

Table 1 shows the detailed information for MgO crystals obtained by the different methods. Fig. 1 shows the CPU time 
as a function of the system size for the different methods. From Table 1 it can be seen that for small systems, the CPU 
time cost for our new methods is longer than that for CG. However, the CPU time cost for ParO and MParO increase slower 
than that for CG as a function of system size. From Fig. 1 we can see this more clearly, since the curves obtained by our 
methods are all below that obtained by CG as the system size increases. The log/log plot in the inset of Fig. 1 shows that 
the scaling of system size is similar for all the three methods. However, the original plot in Fig. 1 shows that the pre-factors 
for ParO and MParO are smaller than that for CG. This shows that our methods reduce the computational cost compared to 
CG, especially for large systems.

5.1.2. Aluminium crystals
The second test set consists of two Al crystals of 3 × 3 × 3 and 4 × 4 × 4 supercells, hence containing 108 and 256

aluminum atoms, respectively. For these two systems, the numbers of orbitals we need to compute are 194 and 551, 
respectively. Generally, when dealing with a metal, a dense grid of k points should be used. However, here, we are mainly 
interested in comparing the behavior of the different methods for the same problem. Therefore, for simplicity, we use only 
-point sampling for both systems, and the kinetic-energy cutoff is set to 30R y. All results are obtained using one processor.
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Table 2
Results for Al crystals of different sizes obtained using CG, ParO and MParO with one processor for the default setting where mixing_beta is set to 0.7. For 
large system, our methods ParO and MParO can get convergent results while CG can not.

Natom NG Method Nscf Time (s) Error of energy

108 13805
CG 16 647 8 × 10−8

ParO 60 1534 5 × 10−8

MParO 17 570 1 × 10−8

256 37387
CG * * *
ParO 46 15917 5 × 10−8

MParO 29 10239 1 × 10−8

* For this case, we can not get the convergent results.

Fig. 2. (Color online.) The error of total energy vs the number of iterations for Al crystal made of 4 × 4 × 4 supercell for the different methods for the 
default setting with different choice of mixing_beta. CG, ParO, and MParO are reported in blue, red, and black, respectively. When mixing_beta is set to 0.7, 
ParO and MParO converge while CG does not, but when mixing_beta is set to 0.6, all the three methods CG, ParO, and MParO converge.

Table 3
Results for an Al crystal made of 4 × 4 × 4 supercell obtained using CG, ParO and MParO with one processor for the case of mixing_beta being set to 0.6. 
All the methods CG, ParO, and MParO converge.

Natom NG Method Nscf Time (s) Error of energy

256 37387
CG 29 14222 1 × 10−8

ParO 33 14580 3 × 10−8

MParO 25 10958 1 × 10−8

Table 2 shows the detailed information for Al crystals obtained by the different methods for the default setting where 
mixing_beta parameter in the Broyden mixing is set to 0.7. From Table 2 it can be seen that for the smaller system the 
total energies by both our methods and CG converge. However, for the system which contains 256 atoms, ParO and MParO 
converge while CG does not. This can be seen more clearly from Fig. 2a, where the SCF error for Al crystal containing 256
atoms as a function of SCF iteration by the different methods is shown.

There are many strategies that can be adopted to improve SCF convergence, for instance, reducing mixing_beta to 0.6
is enough to make the CG method converge. However, our aim here is to compare the different methods in the same 
conditions. The results for all methods, CG, ParO, and MParO with the modified setting are reported in Table 3 and Fig. 2b 
where it can be seen that convergence, in terms of number of iterations needed to be achieved, is improved for all methods, 
and ParO and MParO are competitive with or outperform CG in terms of timing. Of course many more tests would be needed 
to draw general conclusions about the relative merits of the different methods.

5.2. Good scalability of parallelization

In this subsection, we will use a Si crystal consisting of a 5 ×5 ×5 supercell with 1000 silicon atoms as example to show 
the good parallel scalability of our new algorithms. For this system, the number of computed orbitals is 2000. The cutoff 
energies are set to 45R y and the corresponding Brillouin zones are sampled by only the -point. Therefore, the number of 
plane-waves NG is 338063.

Table 4 show the detailed information for Si crystal by the different methods using 80, 160, 320, 640 processors, respec-
tively. Fig. 3 shows CPU time for Si crystal as a function of the number of processors for different methods. For the system 
considered here, it is known that when the number of processors is smaller than 80, the parallel efficiency of the plane-
wave parallelization is relatively high. Therefore, for testing our algorithms with 160, 320, 640 processors, the bands are 
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Table 4
Results for a Si crystal with 1000 atoms in the supercell obtained using CG, ParO and MParO with increasing number of processors. The behavior of ParO 
and MParO is better and better with the increasing of processors, especially for MParO.

Nprocs CG ParO MParO

Nscf Time (s) Ngroup Nscf Time (s) Ngroup Nscf Time (s)

80 15 30562 1 46 43220 1 15 27760
160 15 16897 2 46 22647 2 15 14114
320 15 9790 4 46 12299 4 15 8086
640 15 6933 8 46 7620 8 15 4476

Fig. 3. (Color online.) CPU time vs the number of processors for a Si crystal with 1000 atoms in the supercell for the different methods: CG, ParO, and 
MParO are reported in blue, red, and black, respectively. The inset shows the speed-up obtained as S(p) = T80

T p
with p the number of processors used, 

where T p is the wall time cost by p processors, the purple line is the ideal speed-up p
80 . The parallel scalability of ParO and MParO is better than that of 

CG.

divided into 2, 4, 8 groups, respectively. For each group, 80 processors are used for the plane-wave parallelization. For the 
CG method, since there is no band parallelization, all processors are partitioned using only the plane-wave parallelization.

From Table 4, it can be seen that the CPU time cost for MParO is shorter than that for CG, while the CPU time cost for 
ParO is longer than that for CG. However, from Fig. 3 we can see that when the number of processors is larger than 320, 
the curves obtained by ParO and MParO are steeper than that obtained by CG. From this it can be seen that the parallel 
scalability of our new methods is better than CG, especially for MParO. To see it more clearly, one can also see the figure 
with speed-up in the inset of Fig. 3. Since using 1 processor can not obtain the converged results for Si crystal with 1000
atoms supercell due to the limitation of memory, the speed-up here is obtained by comparing the wall time for cases using 
different number of processors with that for case of using 80 processors. From the curves shown in Fig. 3, the advantage of 
our methods in parallel scalability is obvious.

We should point out that, in our current tests, the cutoff energy is set to a fixed value. If we can start from a small cutoff 
energy and increase it until the convergence is reached, we can reduce the computational cost further. From this point of 
view, we believe our new methods will be more competitive than CG.

6. Discussion and conclusion

Motivated by the parallel orbital-updating approach proposed in Ref. [1,26], we propose some modified parallel orbital-
updating methods for the plane-wave discretization of the Kohn–Sham equation in this paper. We show that, by using the 
two-level parallelization of the orbital-updating approach, the poor parallel scalability of the plane-wave discretization can 
be largely improved. Indeed our numerical experiments show that the parallel orbital-updating approach based plane-wave 
method has considerable potential for carrying out large system computation on modern supercomputers.

We should point out that our two-level parallelization only focuses on the solution of the associated eigenvalue prob-
lems resulting from the electronic structure calculations. In fact, in the electronic structure calculations, there are some 
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other possibility for parallelization. For example, when using hybrid functionals for approximating the exchange-correlation 
energy, the exchange potential can be obtained by solving many different Poisson equations, which can be done in par-
allel intrinsically. Any such kind of parallelization can be combined with our algorithms and hence further increase the 
parallelization.

As we have pointed out at the beginning and at the end of Section 5, the cutoff energy was set to a fixed value in all our 
tests. To achieve the gradual increase of the cutoff energy, one needs to design some efficient a posteriori error estimator to 
tell how to evaluate and improve the approximate accuracy based on increasing the cutoff energy. It is indeed our on-going 
work to design such kind of a posteriori error estimator and then increase the cutoff energy gradually until the accuracy has 
been reached, which will be addressed elsewhere. We believe that in that case, the parallel efficiency of our new algorithms 
will become even better.
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