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a b s t r a c t

First-principles calculations in crystalline structures are often performed with a planewave basis set. To
make the number of basis functions tractable two approximations are usually introduced: core electrons
are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression.
The norm-conserving pseudopotential was the first successful method to apply these approximations
in a fully ab initio way. Later on, more efficient and more exact approaches were developed based
on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more
complex and developing new features in these frameworks is usually more difficult than in the norm-
conserving framework. Most of the existing tables of norm-conserving pseudopotentials, generated long
ago, do not include the latest developments, are not systematically tested or are not designed primarily
for high precision. In this paper, we present our PseudoDojo framework for developing and testing
full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP
approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing
and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed
with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then
used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141
pseudopotentials split into a standard and a stringent accuracy table. In total around 70,000 calculations
were performed to test the pseudopotentials. The process of developing the final table led to new insights
into the effects of both the core-valence partitioning and the non-linear core corrections on the stability,
convergence, and transferability of norm-conserving pseudopotentials. The PseudoDojo hence provides a
set of pseudopotentials and general purpose tools for further testing and development, focusing on highly
accurate calculations and their use in the development of ab initio packages. The pseudopotential files are
available on the PseudoDojo web-interface pseudo-dojo.org under the name NC (ONCVPSP) v0.4 in the
psp8, UPF2, and PSML 1.1 formats. The webinterface also provides the inputs, which are compatible with
the 3.3.1 and higher versions of ONCVPSP. All tests have been performed with ABINIT 8.4.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many physical and chemical properties of solids are determined
by the structure and dynamics of the valence electrons. This is true
not only for the formation of chemical bonds, but also for the mag-
netic behavior and for low-energy excitations. In contrast, the core
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electrons only indirectly affect these properties. Based on these
observations, Density Functional Theory (DFT) electronic struc-
ture calculations often assume that the complicated interaction
between valence electrons and the ions (formed by the atomnuclei
and the core electrons) can be replaced by an effective potential
known as a pseudopotential (PSP). The core states are thus elimi-
nated and the valence electrons are described by smooth pseudo-
wavefunctions. This is particularly useful when a planewave (PW)
basis set is used to describe the electronic wavefunctions. Such
a basis set has the nice advantage that its completeness can be
systematically improved thanks to a single parameter, themaximal
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kinetic energy of the planewaves in the basis set, also called the
energy cut-off (Ec). Describing the oscillations of the all-electron
(AE) wavefunctions near the atomic core would indeed require a
prohibitively large number of planewaves.

One can safely state that any calculation using pseudopotentials
can only be as efficient and accurate as the pseudopotentials that
are used. Obviously, the problem of finding good pseudopotentials
could be avoided altogether by using a basis set that is capable
of describing all electronic states on an equal footing. The all-
electron approaches, however, immediately lose the elegance of
the single convergence parameter in the planewave approach. In
a sense the problem of finding a good pseudopotential is now
moved to finding a good basis set. Recently it was shown that
indeed the variations between the results obtained with different
AE-codes, using standard production settings, can be as large as the
differences between the results of AE-codes and PW-codes [1].

Norm-conserving pseudopotentials (NCPPs) [2,3] are among
the first pseudopotentials that were routinely used in realistic
calculations and paved the way for the ever expanding application
of density functional theory [4,5] to solids. It is because of the
elegance of the norm-conserving approach that NCPPs are sup-
ported by many ab-initio codes. The relatively simple and robust
formalism of the NCPP also means that new developments are
usually implemented for NCPPs first, see e.g. the recent availability
of the temperature dependence of the electronic structure [6].

Unfortunately, many NCPP tables still in use nowadays for
first-principles calculations were generated long ago, before the
advent of optimization techniques such as the one by Rappe, Rabe,
Kaxiras, and Joannopoulos (RRKJ) [7]. Even more importantly, no
systematic validation of these tables is available. Very few of these
pseudopotentials allow one to perform non-collinear calculations
with the inclusion of the spin–orbit (SO) term. Last but not least,
most of these legacy NCPPs employ only one projector per angular
channel, hence it is difficult to find NCPPs including semi-core
states or pseudopotentials with good scattering properties at high
energies.

Presently many NCPP tables are available: The tables by
Hartwigsen, Goedecker, Hutter, and Krack (HGHK) [8,9] provide
spin–orbit coupling but they were not primarily designed for
PW applications and, indeed, on average rather large cutoffs are
needed. The NC tables previously available for use with ABINIT,1
contain semi-core states for selected elements but the input files
and the pseudopotential generator are not available anymore. The
tables from the OPIUM project [10] have RRKJ optimization but
not all the atoms of the periodic table are available and multiple
projectors for a given angular channel are not supported. NCpoten-
tials from the QUANTUM-ESPRESSO community are available [11]
in the UPF format, but do not have more than one projector. The
table by Schlipf and Gygi (SG15) [12] was designed for efficiency
and does not have non-linear core corrections.

As compared to the more recently developed ultrasoft pseu-
dopotentials [13] (USPP) and the projector-augmented-wave
method [14] (PAW), calculations using NCPPs usually require a
larger kinetic energy cutoff making them less efficient. The imple-
mentation of both the PAW and USPP formalisms is howevermuch
more demanding. Moreover little is known about the reliability of
these two approaches when applied beyond standard ground state
calculations [15]. In contrast NCPPs have been used for decades in
different ab-initio fields.

NCPPs continue to represent a valid choice for ab-initio calcu-
lations because of the simplicity and robustness of the formalism.
We also believe that many future developments in first principles
codes will be first implemented within the NCPP formalism and

1 Originally designed by Allan and Klein and later extended by one of us (MJV) for
reference still provided on the ABINITweb-site under ‘previous atomic datasets’.

eventually generalized to the USPP/PAW case (NCPPs can be seen
as a particular case of the USPP/PAW formalism under certain
assumptions). For all the reasons mentioned above the ab-initio
communitywould greatly benefit from the availability of a periodic
table of reliable and accurate NCPPs.

With this in mind, we have constructed a new NCPP table,
using the PBE exchange–correlation functional [16], distributed
within the PseudoDojo (PD-PBE), using the new framework
of the optimized norm-conserving Vanderbilt pseudopotential
(ONCVPSP) [17,18]. The main advantage of ONCVPSP is that it
produces NCPPs that are usually softer, i.e. lead to converged re-
sults at lower cutoff energies, and more accurate (semi-core states
can be included via multiple projectors) than traditional NCPPs.
Moreover,ONCVPSP is interfacedwith libxc [19] and can therefore
generate NCPPs for many XC flavors with or without spin–orbit
(SO) terms. Our main goal is to provide a set of well-tested and
accurate NCPPs that can be used for (a) applications in which
the USPP/PAW formalism is not available or not implemented,
(b) high-throughput calculations (HTC) and/or systematic studies
involving NCPPs e.g. validation of a new PAW/USPP implementa-
tion or comparison of the accuracy of the different formalisms in
different domains like NC+GW vs PAW+GW. See for example our
recent systematic study on the convergence properties of GW [20].

The PseudoDojo is an open source project hosted on GitHub
and provides a user web-interface at pseudo-dojo.org. We provide
pseudopotential files that can be used immediately, as well as
the corresponding inputs so that users can tune or change some
parameters (e.g. the XC functional) according to their needs. More-
over, we provide an open source python toolbox, that can be used
for the automatized generation and validation of pseudopotentials.
The pseudopotential files are available on the PseudoDojo web-
interface in the ABINIT psp8 format, in the UPF2 format and in
the PSML 1.1 XML [21] format shared by SIESTA and ABINIT. The
input files, the results of the generation, and the test results are
presented via Jupyter notebooks [22] as static HTML pages. Finally,
each pseudopotential is linked to a DojoReport file with a full
record of the different tests that were performed to validate the
pseudopotential (cutoff convergence, ∆-Gauge, Garrity, Bennett,
Rabe, and Vanderbilt (GBRV) tests [23]). One can hence easily com-
pare PSPs for a given element and then select themost appropriate
one according to a chosen criterion (e.g. efficiency vs accuracy).

The remaining of this article is organized as follows: The
ONCVPSP formalism and the most important differences with re-
spect to standard NCPPs are discussed in Section 2. Subsequently
the PseudoDojo project is presented in Section 3 including the
python framework used for the automatic generation and valida-
tion of the pseudopotentials (PSPs) aswell as theweb interface that
provides access to the PSPs. Section 4 describes the general strat-
egy employed to generate the PD-PBE. Sections 5 and 6 describe
the performance of the PSPs in convergence, ∆-Gauge [24], and
GBRV [23] tests. A detailed discussion per group of elements of the
choices made and the parameters employed for the pseudization
is given in Section 7.

2. Formalism

The accuracy of the ONCVPSP pseudopotentials is based on
the use of two projectors and generalized norm conservation to
reproduce the binding and scattering properties of the all-electron
potentials. The underlying formalism of generalized norm conser-
vation was developed by Vanderbilt and used to generate ultrasoft
pseudopotentials (USPPs) [13]. Supposewe construct several radial
pseudo-wavefunctions ϕi at energies εi and angular momentum
ℓ, which agree with all-electron radial wavefunctions ψi outside
a ‘‘core radius’’ rc , have continuous values and first derivatives at
rc , and satisfy⟨
ϕi | ϕj

⟩
rc

=
⟨
ψi | ψj

⟩
rc

(1)

http://pseudo-dojo.org
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where the notation indicates that norms and overlaps are calcu-
lated inside rc . These ϕi obey generalized norm conservation in the
sense that the integrated charge density inside rc of any linear com-
bination of the ϕi equals that of the corresponding combination of
ψi. Let these actually be r times the radialwavefunctions so that the
kinetic energy operator simplifies to T = [−d2/dr2+ℓ(ℓ+1)/r2]/2
in atomic units. We introduce the projectors

|χi⟩ = (εi − T − Vloc) |ϕi⟩ , (2)

where Vloc is a local potential agreeing with the all-electron poten-
tial outside rc , and form the non-local operator

VNL =

∑
i,j

|χi⟩ (B−1)ij
⟨
χj

⏐⏐ (3)

where

Bij =
⟨
ϕi | χj

⟩
. (4)

Generalized norm conservation is sufficient to prove that Bij is a
symmetric matrix, so VNL is a Hermitian operator. Furthermore, for
solutions of the non-local radial Schrödinger equation

(T + Vloc + VNL) ϕ = εϕ , (5)

d lnϕ/dr and d2 lnϕ/dεdr will agree with those of all-electron
solutions ψ at each εi for r ≥ rc [13]. In fact Eq. (3) is transformed
using the eigenvectors of Bij to form orthonormal projectors |χ̃i⟩

for a computationally convenient diagonal VNL.
It is straightforward to show that these principles apply to

positive-energy scattering as well as bound-state solutions, paral-
leling the result for basic norm conservation [25]. The local poten-
tialVloc is generally chosen to be a smooth polynomial continuation
of the all-electron potential VAE to the origin, continued from the
smallest rc among the included ℓ. This allows considerable flexibil-
ity which can sometimes be exploited to further extend the range
of log-derivative agreement for one or more ℓ. Note that ultrasoft
pseudopotentials are constructed from ϕi which do not satisfy
Eq. (1), but are compensated by the introduction of an overlap
operator on the right side of the radial Schrödinger equation and
an augmentation contribution to the charge density [13].

The strategy employed in ONCVPSP to obtain the accuracy of
two-projector ultrasoft potentials and nearly competitive conver-
gence while retaining the simplicity of norm conservation is to
enlist the convergence metric introduced by Rabe and coworkers
(RRKJ) [7]. They observed that the error in the kinetic energy
made by truncating the radial Fourier expansion of a pseudo-
wavefunction ϕ at some cutoff wave vector qc was an accurate pre-
dictor of the convergence error made by similarly truncating the
planewave expansion in calculations for solids. An optimization
formalismwas developed independently forONCVPSP [17,18]. The
pseudo-wavefunction is first constrained to satisfy M continuity
constraints,

dnϕ
drn

⏐⏐⏐⏐
rc

=
dnψ
drn

⏐⏐⏐⏐
rc

, n = 0,M − 1 . (6)

ϕ is then expanded in a set of N ≥ M + 3 basis functions {ξi},

initially chosen to be an orthogonalized set of spherical Bessel
functions. The actual amount of constraints used in this work is
specified in Table 2. Employing singular-value analysis, a linear
combination ϕ0 is formed which satisfies Eq. (6), as well as a new
set of N −M ‘‘null space’’ basis functions {ξNi },which are mutually
orthonormal, orthogonal toϕ0, and give zero contribution to Eq. (6)
when added to ϕ0. A generalized residual kinetic energy operator
is defined as:

⟨ξi| Êr(qc)
⏐⏐ξj⟩ ≡

∫
∞

qc
ξi(q)ξj(q)q4dq (7)

using the radial Fourier transform

ξi(q) = 4π
∫

∞

0
jℓ(qr)ξi(r)r2dr . (8)

The cutoff energy error to be minimized for optimum convergence
⟨ϕ| Êr |ϕ⟩ can now be expressed as

Er(qc) = ⟨ϕ0| Êr
|ϕ0⟩ + 2

N−M∑
i=1

yi ⟨ϕ0| Êr
⏐⏐ξNi ⟩

+

N−M∑
i,j=1

yiyj
⟨
ξNi

⏐⏐ Êr
⏐⏐ξNj ⟩

(9)

where yi are the coefficients of the ξNi basis functions to be added
to ϕ0. The yi are subject to the norm constraint
N−M∑
i=1

y2i = ⟨ψ | ψ⟩rc − ⟨ϕ0 | ϕ0⟩rc . (10)

Standard methods for minimizing Eq. (9) subject to Eq. (10) can
be quite unstable. Instead, the positive-definite Er

ij matrix, the last
term in Eq. (9), is diagonalized finding its eigenvalues ei and using
its eigenvectors to form the new ‘‘residual’’ basis function set {ξRi }

as linear combinations of the ξNi . When these functions are added
to ϕ0 with coefficients xi to form ϕ, the residual energy takes the
diagonal quadratic form

Er
= Er

00 +

N−M∑
i=1

(
2fixi + eix2i

)
(11)

where fi = ⟨ϕ0| Êr
⏐⏐ξRi ⟩

. The xi satisfy the same norm constraint
as the yi in Eq. (10). The ei span a very large dynamic range ∼

106–108, which may explain the difficulties in applying standard
optimization procedures to Eq. (9). We next solve the constraint
equation for x1, the coefficient corresponding to the smallest ei, as
a function of x2, . . . , xN−M :

x1 = s

[
⟨ψ | ψ⟩rc − ⟨ϕ0 | ϕ0⟩rc −

N−M∑
i=2

x2i

]1/2

. (12)

Its sign s is determined by the requirement that f1x1 be negative
at the minimum. Setting the derivatives of Er with respect to
x2, . . . , xN−M to zero using Eq. (12) for x1 we find

xi = −fi/(ei − e1 − f1/x1) . (13)

The denominator in Eq. (13) is always positive, so the sum in
Eq. (12) is a monotonically increasing function of |x1| starting from
zero for |x1| = 0, and Eq. (12) can be solved by a straightforward
interval-halving search on |x1| [18]. The optimum xi are based on
a prescribed qc . However, Eq. (9) can be evaluated for any cutoff q
using yi calculated from the qc-optimized xi, thereby providing a
kinetic-energy-error per electron convergence profile.

The above procedure is applied to the first (lowest energy)
projector ϕ1 in the two-projector generalized norm-conserving
construction. For the second projector, the convergence-optimized
ϕ1 is used to add the linear ⟨ϕ1 | ϕ2⟩rc overlap constraint to
the continuity constraints of Eq. (6). The procedure continues as
above, retaining the original spherical-Bessel-function basis set
for convenience, and the coefficients are found determining the
convergence-optimized ϕ2. While there are onlyN−M−1 degrees
of freedom for norm conservation and optimization, convergence
profiles are usually quite comparable to those for ϕ1. As the broad
range of Êr eigenvalues suggests, convergence improvements de-
crease rapidly as more degrees of freedom are added, and 3–5
invariably suffice.
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While it is observed that scattering states can be used as well
as bound states to satisfy the generalized norm-conservation re-
quirements and retain its resulting accuracy, they cannot be used
in the optimization because the radial Fourier transform of such a
ϕ is essentially a delta function of q. To deal with this, an artificial
all-electron bound state is created at each positive εi by adding a
smoothly rising barrier to the all-electron potential beginning at rc .
A satisfactory form is

VAEB(r) = VAE(r) + v∞θ (x)x3/(1 + x3) ; x = (r − rc)/rb , (14)

where the height and shape parameters v∞ and rb are chosen
to bind a state with the appropriate number of nodes at εi and
produce a decaying tail roughly comparable to those of the high-
est occupied bound states. The optimized convergence properties
of the corresponding bound pseudo-wavefunctions are typically
comparable to those of the valence functions [17,18].

The symmetry of Bij and other consequences of general norm
conservation are strictly true for pseudopotentials based on non-
relativistic all-electron calculations. Nonetheless, we have pro-
ceeded to apply them to scalar-relativistic [26] and fully relativistic
calculations.

In these cases, a fractional asymmetry2 of ∼10−4 to 10−5 was
found for both light and heavy atoms, so Bij was simply sym-
metrized before proceeding. This manifests itself in disagreements
of comparable magnitude in comparisons of quantities such as
eigenvalues and norms computed with the final pseudopotentials.
In the fully relativistic case, the large component of the Dirac
wavefunction is renormalized and only it is used to compute the
Eq. (1) norms and overlaps and the matching constraints of Eq. (6).
This yields errors comparable to the scalar-relativistic case, and an
order of magnitude smaller than obtained using both components.

Relativistic non-local pseudopotentials are generated as sums
over total angular momenta j = ℓ± 1/2, j > 0, of terms V Rel

j (r, r′)
like Eq. (3). While these may be used directly in some applications,
most require potentials in the (schematic) form

V (r, r′) = Vloc +

∑
ℓ

[
V SR
ℓ (r, r′) + L · SV SO

ℓ (r, r′)
]
, (15)

where

V SR
ℓ =

(ℓ+ 1)V Rel
ℓ+1/2 + ℓV Rel

ℓ−1/2

2ℓ+ 1
, V SO

ℓ =

2
(
V Rel
ℓ+1/2 − V Rel

ℓ−1/2

)
2ℓ+ 1

(16)

Direct use of these ‘‘scalar-relativistic’’ and ‘‘spin–orbit’’ poten-
tials as sums and differences is both cumbersome and requires
subtractions of many nearly equal quantities in applications, with
the resulting inaccuracies. For these applications, ONCVPSP forms
new projectors

⏐⏐χ̃ SR
ℓ

⟩
and

⏐⏐χ̃ SO
ℓ

⟩
from their eigenfunctions to create

diagonal non-local operators, some of whose eigenvalue coeffi-
cients are negligibly small. Either form can be selected.

3. The PseudoDojo

3.1. The PseudoDojo python framework

The PseudoDojo is a python framework for the automatic gen-
eration and validation of pseudopotentials. It consists of three
different parts: (1) a database of reference results produced with
AE and PSP codes, (2) a set of tools and graphical interfaces that
facilitate the generation and the initial validation of the PSPs and
(3) a set of scripts to automate the execution of the different tests in
a crystalline environment (automatic generation of input files, job

2 A fractional asymmetry is defined as 2 |a−b|
|a+b| .

submission on massively parallel architectures, post-processing
and analysis of the final results).3

The database currently contains the reference all-electron re-
sults for the ∆-Gauge and the GBRV benchmarks as well as the
structural parameters used in these tests. The PseudoDojo is
presently interfaced with ONCVPSP. It provides a GUI to set up the
input parameters and visualize the results of the comparison of
the PSP to the atomic reference calculation, e.g. their logarithmic
derivatives. In particular, series of PSPs can be generated for ranges
of input parameters. Finally, after the initial ‘internal’ validation
against the atomic reference calculation the implemented ‘ex-
ternal’ tests can be executed via AbiPy and ABINIT [27,28]. The
currently implemented external tests include the ∆-Gauge, the
GBRV tests, automatic convergence testing the evaluation of the
acoustic modes at Γ within DFPT, and ghost state testing of the
electronic structure up to high energies (∼200 eV above the Fermi
level). All of these can be executed fully automatically on various
parallel architectures. New tests based on reference data for any
observable that can be calculated with ABINIT can be added in a
straightforwardway. Interface to other DFT codes, additional tests,
and other pseudopotential generators can be easily added as well.
The table presented here is compatible with ONCVPSP 3.3.1 and
higher and the external tests are all performed with ABINIT 8.4.

3.2. The Dojo-report

An important aspect of the PseudoDojo is keeping track of the
results of various validation tests. To this end, the PeudoDojo cre-
ates a report for each pseudopotential. This DojoReport is a human-
readable text document in JSON format,4 containing entries for
each test. It is automatically produced by the python code at the
end of the test. In addition to the raw data it contains the final
results as function of Ec.

The data in the report is in principle not intended for the
ab-initio code.5 The main goal of the DojoReport is to keep a
record of the different tests, so that it can be used by high-level
languages (e.g. python) to read the data and produce plots or
rank pseudopotentials associated to the same element according
to some criterion. In addition, the information in the DojoReport
can be used to set up high-throughput calculations. Finally, new
validation tests can be easily added to the JSON document.

3.3. The PseudoDojo web interface

In addition to the PseudoDojo python framework itself, the
PseudoDojo provides a web-interface [29] for the on-line visu-
alization of both the internal and external validations. The web-
interface allows for a fast visualization of the test results for a
particular pseudopotential, via theHTMLversion of theDojoReport
generate automatically from a Jupyter Notebook [22], without
having to install the pythonpackage. Both the pseudopotential files
and the corresponding input files can be downloaded. The PSP table
discussed in this work corresponds to the NC (ONCVPSP) PBE v0.4
table on the web interface.

3 Currently, Slurm, PBS, PBSpro, Torque, MOAB, and Loadleveler (BlueGene)
resource managers are supported via the AbiPy framework.
4 JSON (Java-Script object notation) is a language-independent data format that

uses text to represent objects in the form of lists and attribute–value pairs. We
decided to use JSON to store our data because code for parsing and generating JSON
data is readily available in many programming languages (python provides native
support for JSON in the python standard library). Besides it can be used to transmit
data between a server and web application, as an alternative to XML.
5 An exceptionmay eventually be the direct use of the hints on the cutoff energy.

Currently, however, there is no specification for this field neither in the ABINIT
format nor in the UPF one.
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4. The PD-PBE tables

4.1. General design principles

Despite several significant improvements proposed in the liter-
ature [30,7,25,17,18], elements with localized d- or f-electrons are
still difficult to pseudize within the NC formalism. For this reason,
unlike other similar projects, e.g. the GBRV table in which all the
ultrasoft pseudopotentials require an Ec less than 20 Ha [23] or the
SG15 table [12], which is mainly focusing on efficiency, we do not
make any attempt to generate an entire periodic table of NCPPs
that converge below the same Ec. Instead, we mainly focus on
accuracy and transferability and attempt to tune the pseudization
parameters so that elementswith similar electronic configurations
require similar Ec to achieve convergence.

In this first version of the PseudoDojo we present and discuss
the pseudopotentials for the GGA-PBE exchange–correlation (XC)
functional [16]. For this functional well-tested sets of reference
data are available. Pseudopotentials for the LDA-PW [31] and
PBEsol [32] functionals are also available via the PseudoDojo web
interface, reference values for these functionals are currently under
development. PSPs for other semi-local XC functionals can be gen-
erated directly for most elements, especially since as of version 3.0
the ONCVPSP package is interfaced with the libxc library enabling
well over 250 XC functionals [33]. For each flavor of exchange–
correlation functional we define a standard and a stringent accu-
racy version.

For those elements in which the separation between core and
valence is not obvious, we provide a version with and without
semi-core electrons. As a rule of thumb, NCPPs with semi-core
states are more accurate and transferable since the error intro-
duced by the frozen-core approximation is reduced. Moreover,
semi-core states may be needed for accurate GW calculations, in
particular in those systems in which there is an important overlap
between valence and semi-core electrons and therefore a signifi-
cant contribution to the exchange part of the self-energy [34,35].
We adapt the notation, e.g. Fe-sp, to indicate additional semi-core
states included in the valence.

For elements that show a particularly slow convergence in re-
ciprocal space (e.g. transitionmetals)we also provide two different
versions: normal and high. The default version, normal accuracy, is
designed to give a good description of the scattering properties of
the atom in different chemical environments with a reasonable Ec.
The high-accuracy version, with small core radii, requires a larger
Ec to converge but is more transferable and can be used for accu-
rate first-principles calculations or for the study of systems under
high pressure. The high accuracy version is also recommended for
calculations in magnetic systems.

In special cases, discussed in Section 7, we also provide low
accuracy pseudopotentials. We do this when the standard version
converges only at cutoff energies higher than 40 Ha.

Except for some noticeable exceptions listed in Table 1, all the
PSPs of our tables contain two projectors per angular channel.
This ensures a logarithmic derivative in close agreement with the
AE counterpart up to at least 3–5 Ha. In many cases, we achieve
agreement even up to 10 Ha. Further element specific details will
be discussed in Section 7.

In general, we enforce the continuity of the derivatives of the
pseudized potentials at rc up to the fourth order (M in Eq. (6),
input parameter ncon=4). This is done in order to avoid possi-
ble problems in the computation of elastic properties introduced
by the RRKJ optimization technique (see also the discussion in
Refs. [17,18]). Those pseudopotentials that deviate from this rule
are listed in Table 2 and discussed in more detail in Section 7. A
drawback of this additional requirement is that it usually leads to
pseudopotentials that are slightly harder than the ones obtained by

Table 1
Number of non-local projectors in the s, p, d, and f channels. All other pseudopo-
tentials are constructed using two projectors per angular channel. The highest non-
local l projector is p of H–Mg (except for F and O where it is d), d for Al–Xe and Tl–
Rn, and f for Cs–Hg except for Ba where it is d.

Pseudo s p d f

H 2 1 0 0
He 2 1 0 0
O-high 2 2 1 0
O 2 2 1 0
F 2 2 1 0
Lanthanides 2 2 2 1
Au-sp 2 2 2 1
Hg-sp 2 2 2 1

Table 2
Order of the derivative of the pseudized potential that is still continuous. Only
those pseudopotentials are listed that deviate from having continuity up to exactly
the fourth-order derivative at the core radius for each angular channel (see Eq. (6)).

Pseudo s p d

In-spd 5 5 4
In-d 5 5 4
Ga-low 3 3 3
Fe-sp 3 3 3
Fe-sp-high 3 3 3

enforcing continuity up to the third order as it is commonly done.
In general, we found that one can decrease the required Ec by∼5Ha
if ncon=3 (continuous derivatives up to third order) is used.

It is well known that nonlinear core corrections (NLCC) improve
the transferability of pseudopotentials [36]. PSPs that do not in-
clude semi-core states usually improve the most. However, even
when semi-core states are present, adding NLCCs has benefits.
They remove the nonphysical oscillations of the local part close to
the origin, oscillations which often appear in the case of gradient-
corrected functionals when the total local potential is unscreened.
These oscillations not only create problems if the potentials are
represented in a non-planewave basis set but also tend to spoil
convergence in Fourier and real space.

In PD-PBE, a NLCC is included in all the PSPs with elec-
trons frozen in the core except for the third row semi-core PSPs
(Na-sp–Cl-sp) and Ne. We use a recently implemented NLCC fol-
lowing Teter, which contains two parameters [37]. These model
core charges are by construction smooth in both real and reciprocal
space, which significantly improves convergence. Teter suggested
to use these two parameters to minimize the difference between
the chemical hardness of the pseudo and the AEwavefunction [37].
In constructing PD-PBE, however, we did not observe a clear cor-
relation between the PSP quality (in reproducing AE results for
crystalline test systems) and the level at which the pseudized
wavefunction reproduces the AE chemical hardness.

From a purely technical perspective, on the other hand, Teter’s
model function allowedus to avoid numerical instabilities and con-
vergence issues especially in the case of elementswith localized AE
core charges. Standard models, indeed, produce charges that are
either too peaked and thus difficult to integrate on a homogeneous
mesh in real-space or model charges with strong oscillations in
the high-order derivatives required for DFPT calculations. This can
spoil the convergence of the physical propertieswith the cutoff en-
ergy andhave disastrous effects for density functional perturbation
theory calculations, in particular for the fulfillment of the acoustic
sum rule. This is the reason why we add a test in the PseudoDojo
for the acoustic modes at Γ . Large deviations from zero (when the
ASR is not enforced by the code) usually indicate that the model
core charge and its derivatives cannot be correctly described with
a sufficiently small cutoff energy and these inaccuracies will likely
affect the phonon modes at other q-points as well.
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5. Convergence and energy cutoff hints

For most elements, the options described in the previous sec-
tion lead to several different PSPs. To assist users in selecting
pseudopotentials, we define two tables: standard and stringent
accuracy, both of which contain only one PSP per element. For
about half the elements, the stringent table contains a different,
more accurate, PSP than the standard table. In this and the next
section, we evaluate the results of the convergence studies and the
validation tests for these two tables.

The design of the PD-PBE allows for different required energy
cutoffs (Ec) for each pseudopotential. Moreover, different physical
properties usually show a different convergence behavior with
respect to Ec. Typical examples are phonons and the bulk modulus,
which are much more sensitive to the truncation of the PW basis-
set than, e.g., the total energy. It is however useful to have an
initial estimate for the starting Ec for the convergence study, both
for ‘normal’ users and for high-throughput calculations (HTC). We
therefore provide calculated high, normal, and low precision hints
for Ec: Eh,n,l

c based on different tests.6
The ONCVPSP code already provides initial hints for Ec based

on the convergence of the electronic eigenvalues in the atomic
environments (ϵ).We used these values to define an initial mesh of
Ec values (a dense sub-mesh with a step of 2 Ha around the initial
value provided by the PSP generator continued by a coarse mesh
with a step of 10Ha to ensure absolute convergence). On thismesh,
we use the PseudoDojo framework to compute the ∆-Gauge, the
GBRV parameters, and the phonons at Γ as a function of Ec. The
final results as well as the total energies used for fitting the EOS
curve are all saved in the DojoReport.

The hints are calculated according to the parameters specified
in Table 3. Using the hint for one of the accuracies ensures that
the absolute value of the indicated quantity is smaller than the
indicated bound. Oc indicates the converged value of observable
O, which is obtained from the largest Ec grid point. This point is
initially 22 Ha higher than the high precision estimate given by
ONCVPSP. All curves are however inspected manually to ensure
convergence. In an automatic fashion, additional grid-points are
added until a curve is approved with a converged tail.7 The hints
are reported in the DojoReport of each PSP file and listed in the
supplementary material. Fig. 1 summarizes the hints for the high
and standard tables,8 Tables 4 and 5 report the statistics on the
two tables.

6. Discussion of the validation per table

6.1. ∆-Gauge

The ∆-Gauge is defined as the integral over the difference
between the equation of state curve calculated using two different

6 We decided to introduce three different levels of precision because one can use
this information to implement automatic HTCworkflows that are both efficient and
reliable. For example, one can perform an initial HTC screening on many systems
with the low precision Ec in order to select themost promising candidates and then
refine the searchwith calculations donewith the normal or the high-precision Ec . In
the same spirit, one can implementmachine-friendly convergence studies in which
the convergence of the physical property of interest is validatedwithout any human
intervention by just analyzing the difference between a calculation carried out with
the ‘‘normal’’ setup and the one performed with the high-precision version.
7 Again, the additional points are stored in the DojoReport. A fully automatic

evaluation of the degree of convergence turned out to be too optimistic. Especially
quantities like the∆-Gauge turned out to occasionally have an oscillating behavior
necessitating human inspection.
8 We use violin plots generated with theMatplotlib and Seaborn python pack-

ages to compare the different distributions of the test results. We use the Scott
method to compute the kernel bandwidth and cut the plots off at the extremal
values. Full details on the generation are included in the supplementary material.

Fig. 1. Violin plot of the hints for the standard and stringent tables.

Table 3
Criteria for the low, normal and high hints of PD-PBE. ϵ indicates the maximal
deviation among electronic energy (not used for the low hint criterion), ∆1 the
revised∆-Gauge as introduced in Ref. [38]. TE indicates the total electronic energy
per atom obtained at the equilibrium volume defined in the reference equilibrium
structure as given the ∆-Gauge benchmark.

Observable Unit Low Normal High

ϵ − ϵAE (mHa/electron) – <1 <1
∆1 −∆c

1 (meV) <2 <1 <0.5
TE–TEc (meV/atom) <10 <5 <2

Table 4
Statistics on the low, normal and high hints for the standard table. The cutoff en-
ergies are in Hartree.

Zval lmax E l
c En

c Eh
c

Count 72.00 72.00 72.00 72.00 72.00
Mean 12.00 2.03 32.74 37.25 43.36
Std 5.24 0.56 7.69 7.77 8.13
Min 1.00 1.00 14.00 18.00 24.00
25% 8.00 2.00 28.75 33.00 38.75
50% 13.00 2.00 33.50 38.00 44.00
75% 16.00 2.00 38.00 42.00 48.25
Max 25.00 3.00 50.00 55.00 65.00

Table 5
Statistics on the low, normal and high hints for the stringent table. The cutoff en-
ergies are in Hartree.

Zval lmax E l
c En

c Eh
c

Count 72.00 72.00 72.00 72.00 72.00
Mean 14.00 2.03 37.57 42.17 48.22
Std 6.85 0.56 10.90 10.85 10.92
Min 1.00 1.00 14.00 18.00 24.00
25% 8.75 2.00 31.75 36.00 42.00
50% 14.50 2.00 37.50 42.00 48.00
75% 19.25 2.00 45.25 50.00 56.00
Max 27.00 3.00 62.00 66.00 72.00

computational approaches within a predefined volume range ex-
pressed in meV per atom [24]. The physical quantities that are re-
lated to the ∆-Gauge are the parameters of the Birch–Murnaghan
equation of state: the equilibrium volume V0, the bulk modulus B,
and the first derivative of the bulk modulus B1. It was introduced
by Cottenier and coworkers in 2014 and presently already 24 data
sets have been calculated. This large number of data sets, involving
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Fig. 2. Violin plot of the distribution of∆ values calculated at the low, normal, and
high hints. The outliers, occurring at about 10.4, 7.7, and 5.9 for each Ec hint in the
standard table, are Cr, Mn, and Fe respectively.

13 different codes (including 5 AE codes), makes the∆-Gauge very
useful in the validation of PSPs [1]. To test a PSP, one compares
the results calculated using a PSP with those calculated using a
reference AE code. The ∆-Gauge averaged over the periodic table
between the most reliable AE data sets is around 0.1–0.3 meV.
In this work, we use Wien2k results as a reference from the 3.1
version of the Delta calculation package [1]. The average∆-Gauge,
with respect to the Wien2k results, of the NCPP tables included in
Ref. [1] is 1.4.9 The drawbacks of the ∆-Gauge are however that
the prescribed computational settings for the calculation are rather
stringent making it unsuitable for fast pre-testing. Moreover, only
single element compounds are included and only ground state
properties are tested.

Fig. 2 summarizes the results of the ∆-Gauge tests for the
standard and stringent tables. A full table of the results per PSP is
available in the supplementary information. For the∆-Gauge test,
the most significant difference between the two tables is confined
to three elements: Cr,Mn, and Fe. For these elements the structures
used in the ∆-Gauge test are magnetic. To resolve the magnetic
structure a harder PSP is needed. When we exclude these three
elements themean∆-Gauge are 0.70 and 0.64 for the standard and
high tables.

The design of the ∆-Gauge is such that elements for which the
bulk modulus is very soft are hard to test. The noble gas solids
for instance always have a low ∆-Gauge. To remedy this, Jollet
et al. have introduced a renormalized version of the∆-Gauge: the
∆′-Gauge [38]. For the latter, a value less than 2 in general indicates
an accurate potential for ground state structural properties. Fig. 3
summarizes the results of the∆′-Gauge tests for the standard and
stringent tables. In addition to what we have learned from the
∆-Gauge, the∆′-Gauge shows that Hg, Sr, and Ba are problematic
elements. Their ∆′-Gauge values, 7.2 (6.4), 6.1 (6.2), and 5.0 (4.8)
respectively (stringent in brackets), are relatively high. We did not
manage to create high accuracy versions that have a significantly
better∆′-Gauge.

For both the standard and stringent tables, Figs. 2 and 3 indi-
cate that the low and normal hints already result in a converged
∆-Gauge and ∆′-Gauge. This is made clear in Fig. 4, which shows
the errors at lowandnormal Ec hintwith respect to their converged

9 1.4 is the average excluding the old FHI table, which has an average ∆-Gauge
of 13.4. This value is however strongly dominated by a few elements, and hence not
representative.

Fig. 3. Violin plot of the distributions∆′-Gauge values calculated at the low, normal,
and high hints. Again Cr, Mn, and Fe are outliers in the standard table. In addition
Hg (6.4), Sr (6.1), and Ba (5.0) appear as outliers also in the stringent table.

Fig. 4. Violin plot of the distribution of the error in V0 and a0 and ∆-Gauge at the
low and normal hint as compared to their values at the high hint. The outlier in V0
is Ne, the negative outlier in ∆-Gauge is Al, and the positive outlier in ∆-Gauge is
Se-spd.

values at the high hint. A similar convergence is observed for the
equilibrium volume V0. The outlier in V0 is Ne. Since the bulk
modulus of the solid state structure of Ne is however very small,
the equation of state curve is very flat (the total energy changes less
than 1meV over the volume changes in the∆-Gauge calculations).
This is a generic feature for all the crystal cases where the energy
landscape is flat. This is thus not a problemof PSP but of the system.
As a result, an error in V0 does not affect the∆-Gauge significantly.

Fig. 5 shows that the convergence of B and B1 is a factor of 10 to
100 slower than that of V0 and the∆-Gauge itself.

6.2. The GBRV dataset

Complementary to the∆-Gauge test we also perform the GBRV
test on the two tables [23]. The GBRV tests consist of two parts. In
the first test, the optimal lattice parameter of FCC and BCC single
element structures are compared to AE reference values. In the
second test, the lattice parameters of rocksalt, half-Heusler and
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Fig. 5. Violin plot of the error in B and B1 at the low and normal hint as compared to
their values at the high hint. The large negative outlier is Ne and the positive outlier
is Mg.

Fig. 6. Violin plot of the relative error on the lattice parameter of the GBRV test set.

perovskite structures are compared. Reference values for noble gas
FCC and BCC structures are however not present. We confirm the
observation of Garrity et al. that the FCC and BCC results show a
strong correlation, see Section 6.5. We hence only discuss here the
FCC results. The noble gases are not present in the GBRV tests since
the FCC and BCC structures do not bind in GGA-PBE.

In contrast with the∆-Gauge test, the GBRV test has only been
performed once using an AE-code. We hence do not have a well
established error bar on the reference values as we have for the
∆-Gauge test. Optimally, the test will be runwith another AE-code
at some point in the future.

Fig. 6 summarizes the distribution of the relative errors of the
lattice parameter of the FCC GBRV test. Also for the GBRV test, we
observe that both the low and normal hints already provide rather
converged results, see also Fig. 4. In contrast to the∆-Gauge tests,
however, the stringent table does not significantly improve the
GBRV test results. This difference mostly relates to the fact that
the GBRV tests do not contain any magnetic systems whereas the
∆-Gauge tests do. In the ∆-Gauge tests we observe the strongest
difference between the standard and stringent tables for magnetic
systems. Finally, we observe that in the GBRV tests the NCPPs
tend to underestimate the lattice parameter with respect to the AE

Table 6
GBRV average errors (relative error in % in the lattice parameter) per compound
group as compared to the GBRV-PAW, GBRV-USPP, pslib, and VASP results [23].

GBRV GBRV pslib VASP This
PAW USPP

ABO3 0.089 0.078 0.200 0.127 0.185
hH 0.126 0.111 0.144 0.140 0.116
Rocksalt 0.129 0.121 0.216 0.150 0.184

Table 7
The outliers (relative error larger than 0.25%) in the GBRV compound tests. The
columns list the lattice parameter of the conventional cell in Angstrom.

Formula AE GBRV GBRV pslib VASP This
PAW USPP

CdPLi 5.969 5.957 5.955 5.945 5.952 5.946
SrHfO3 4.155 4.141 4.148 4.133 4.146 4.140
LiAuS 6.015 5.995 5.994 6.008 5.993 5.993
HfO 4.611 4.586 4.596 4.574 4.584 4.594
LiF 4.076 4.076 4.074 4.081 4.067 4.062
KNiF3 4.039 4.035 4.036 4.037 4.036 4.026
VO 4.192 4.189 4.190 4.192 4.191 4.180
NaCl 5.714 5.702 5.701 5.696 5.701 5.698
LiI 6.038 6.023 6.020 6.030 6.021 6.021
SrLiF3 3.884 3.883 3.881 3.884 3.884 3.873
KZnF3 4.132 4.134 4.133 4.130 4.139 4.121
SrTaO3 4.066 4.070 4.067 4.050 4.067 4.055
SrOsO3 3.982 3.979 3.983 3.986 3.992 3.972
CaO 4.839 4.834 4.834 4.828 4.842 4.826

reference. The same trend is observed for the PAW data sets that
have performed the GBRV tests [23,38].

Besides the FCC and BCC elemental structures the GBRV ref-
erence data also contains 63 rocksalt structures, 54 half-Heusler
structures (hH), and 138 perovskites (ABO3). The presence of these
multiple-element systems allows for a real test of transferability. A
full account of the GBRV compound test is given in the supplemen-
tary material. The stringent-table results do not differ significantly
from the results obtained for the standard table. We therefore
discuss here only the latter at normal Ec hint. Table 6 compares the
performance of our standard table to that of various existing PAW
data sets and USPP tables. Clearly, all tables are of similar accuracy.
Within the distribution, PD-PBE does not perform best but it also
does not perform worst in any of the structure types.

To investigate if the PSP for one specific element is performing
badly in the GBRV compound test we summarize the results per
element in Fig. 7. We observe that our PSPs tend to slightly un-
derestimate the AE lattice parameters although the distribution of
our relative error is quite symmetric and peaked around the mean
value. The other tables also tend to underestimate the AE reference
but some with broader distribution. The elements that stand out
most in the FCC and BCC tests F, S, and K also stand out in the
compound test. Cs and Rb on the other hand perform better in the
compounds than in the single element tests.

Finally, in Table 7 we list those systems in the GBRV compound
tests that have an error of more than 0.25% with respect to the AE
reference.

A general observation over all GBRV tests is that the elements
that show larger deviations in our NCPP table like F also stand out
in the PAW tables [23,38]. This seems to suggest that the error orig-
inates from the freezing of the core rather than frompseudizing the
valence electrons. However for the most problematic elements, F,
S, Cs, Rb, and K adding additional states to the valence partition
turned out to be very difficult.

6.3. Ghost state detection

The separable non-local operator that enters the pseudo Hamil-
tonian can lead to eigenstates for a given quantum number l
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Fig. 7. GBRV compound tests error per element.

Table 8
Pseudopotentials that have a ghost state present in the first 200 eV of unoccupied
space. ϵ gives the energy (eV) at which the ghost appears. Alt PSP provides the
high-accuracy alternative that does not show any sign of ghost states.

PSP ϵ Alt PSP

Mg 84 Mg-sp
Cd 74 Cd-sp
Sn-d 60 Sn-spd-high
Sb-d 10 Sb-spd-high
Te-d 77 Te-spd-high
Hg 66 Hg-sp
Tl-d 65 Tl-spd-high
Pb-d 77 Pb-spd-high
Bi-d 66 Bi-spd-high
Po-d 59 Po-spd-high

which are not ordered in energy by the number of nodes. As a
result, eigenstates with nodes can appear with energies below the
nodeless eigenstate, or the nodeless state can be followed directly
by states with more than one node [39,40]. The second projector
in the ONCVPSP scheme is usually very efficient in removing these
so-called ghost states in the occupied and low energy unoccupied
energy range. The eventual appearance of ghost states at higher
energies is, however, unavoidable. Sincewe aim at generating PSPs
that can be used also to calculate properties requiring an accurate
description of the unoccupied region, i.e. optical properties or GW
calculations, we explicitly test our PSPs for the presence of ghost
states. This is done in the elemental solids by scanning the band
structure and the density of states for dispersionless states, up to
energies around 200 eV above the Fermi level. Ghost states could
be removed in many cases by tuning the position of the second
projector. Also, the addition of more semi-core states was found to
improve the quality of the logarithmic derivative at high energies.
Table 8 lists those PSPs that even after careful optimization of the
input parameters still contain ghost states in the first 200 eV of
unoccupied space and lists the ‘ghost-free’ alternatives.

Note that the ghost states listed here are all so high in energy
that for ground state calculations they do not cause any problem.
Only for applications that require an accurate description of the
unoccupied space as well (like GW and optical properties), do
the nonphysical resonances introduced by the ghost states lead to
incorrect results.

6.4. Phonon modes at Γ

Calculating the phononmodes at Γ allows for the evaluation of
two useful quantities even when no reference values are available.
First, it allows for an evaluation of the rate of convergence of the

Fig. 8. Violin plot of the distribution of the relative errors in the highest optical
phonon (HOP) and lowest optical phonon (LOP) at Γ at the low and normal hint as
compared to their values at the high hint, after enforcing the acoustic sum rule.

optical modes. Second, evaluating how strongly the acoustic sum
rule is broken for the acoustic modes provides another test for the
PSPs.

The convergence of the optical phonon modes is illustrated in
Fig. 8. In contrast with properties like the equilibrium volume and
the∆-Gauge the phononmodes are by far not converged at the low
Ec hint.

The breaking of the acoustic sum rule (ASR) is shown in Fig. 9,
except for a few outliers the error remains within 2 cm−1. We
note that, although only slightly, the error is larger in the stringent
table than in the standard table. This is caused by the harder
pseudopotentials. All of the values obtained are easily corrected by
standard techniques for imposing the ASR.

6.5. Correlations between the tests

Performing different tests makes sense provided the results do
not correlate strongly. To investigate the correlation between the
different tests, the correlation matrix between the GBRV FCC and
BCC, ∆-Gauge, ∆′-Gauge, and the absolute error in the acoustic
sum rule for the phonon mode is shown in Fig. 10.

As indicated above, the FCC and BCC GBRV tests show a very
strong correlationwhichmeans that performing both does not add
additional information. ∆-Gauge and ∆′-Gauge also show some
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Fig. 9. Violin plot of the distribution of the absolute errors in the highest acoustic
phonon (HAP) and lowest acoustic phonon (LAP) at Γ not enforcing the acoustic
sum rule. The outliers are Ne (∼14), Mg (∼11), Na (∼6), Ge (∼4), an Cu (∼4) all in
cm−1 .

correlation, as expected, but considering both still adds informa-
tion. The GBRV tests and the two ∆-Gauge test on the other hand
hardly show any correlation. The error on the acoustic phonon
modes finally seems to be completely decoupled from all other
tests.

7. Discussion of individual pseudopotentials

In the figures presented in this section the < and > symbols
indicate that a specific PSP is part of the standard or stringent table
respectively.

7.1. H, He

The 1s wavefunctions in H and He are rather localized. One
should therefore exercise special care to find values for the
pseudization radii that give a good compromise between accuracy
and efficiency. In H the pseudization radius for the 1s is set to
1.0 a.u. and 1.25 a.u. in He. Both PSPs contain two s projectors.

The p orbitals in H and He are not bound in GGA-PBE hence we
use only one projector for the p channel. The main test results for
the H and He pseudopotentials are shown in Fig. 11.

7.2. Li, Be

In Li and Be, the 1s states are more localized than in H and He
and the p orbitals are bound. We include the 1s electrons in the
semicore,which yield PSPs that aremore transferable and accurate,
at the price of a non-negligible increase in the Ec, see Fig. 12. For
this reason, the PD-PBE provides two versions for elements. The
standard version uses a s channel cutoff radius of 1.4 a.u. for Li
and 1.35 a.u. for Be with an indicative Ec of 35 Ha and 42 Ha,
respectively. The local part of the PSPs is obtained by pseudizing
the AE potential and two projectors both for s and p. The high
accuracy versions mainly differ from the standard ones in the use

Fig. 10. Correlation between the results of the tests in the PseudoDojo including all PBE pseudopotentials. FCC and BCC denote the relative errors in the lattice parameters
of the GBRV tests, the∆-Gauge and∆′-Gauge are the test from the Delta calculation package tests and ASR the absolute error in the first acoustic mode. The diagonal shows
the distribution of the test results using the x-axis of that column and an arbitrary y-axis scale.



M.J. van Setten et al. / Computer Physics Communications 226 (2018) 39–54 49

Fig. 11. The main test results for H and He PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. The noble gases are
not present in the GBRV tests since the FCC and BCC structures do not bind in GGA-
PBE. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 12. The main test results for Li and Be PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

of smaller rc for the s channel (1.2 a.u.. both for Li and Be) and,
consequently, have a slower convergence in reciprocal space.

7.3. B, C, N, O, F, Ne

In this set of elements, the 1s states are in the core, and the
Ec is governed by the spatial localization of the 2p states. The
choice of rc for the p channel has therefore a significant impact on
the transferability of the PSPs. We use two projectors per angular
channel and a pseudized version of the AE potential as local part.
The maximum angular momentum explicitly included in these
PSPs is the p channel, lmax = 1. For O and F in addition a single
d projector is added to improve transferability. An overview of the
evolution of themain test results for these PSPs is shown in Fig. 13.

F is one of the elements for which the GBRV tests show the
largest error. This is also observed in the PAW tables that have
been tested with the GBRV test. In addition it is observed that

Fig. 13. The main test results for B to Ne PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

the F PSPs perform badly in describing atomization energies or
molecular systems [41].

Ne is one of the few elements with frozen core states for which
adding non-linear core corrections does not improve transfer-
ability. The AE core is rather localized and therefore difficult to
model without spoiling convergence. Especially the equation of
state curves obtained in the ∆-Gauge calculations tend to be far
from the reference curves. Moreover, solving the electronic self-
consistency problem turned out to be unstable for many of the
model core charges tried.

7.4. Na, Mg

In both PSPs with 2s and 2p in the valence no non-linear core
corrections are applied. As for Ne, the very strong localization of
the 1s core makes creating a transferable model core charge very
complicated. Adding the 2s and 2p significantly improves both the
∆-Gauge and GBRV test results. In addition, for Mg, the ghost state
at around 80 eV is removed test results, see Fig. 14.

7.5. Al, Si, P, S, Cl, Ar

In this series the 2s, 2p and 3s states are full and the 3p orbitals
are gradually filled. The shell with n = 2 is well separated
from the n = 3 electrons and can be safely frozen in the core.
Moreover the 3s and 3p electrons are rather delocalized and their
pseudization does not pose any problem in the NC formalism. For
these elements, it is common practice to include d projectors in
order to improve the transferability, see Fig. 15.

For the purpose of convergence studies and the comparison to
AE results we also provide a version with 2s and 2p in the valence
for this series of elements. The high Ec required for these PSPs
and non-systematic accuracy improvement make them however
hardly useful for standard application. They are therefore not part
of the stringent table.

7.6. K, Ca

The default versions for these two elements have the 3s and 3p
in the valence and contain two d projectors to improve transfer-
ability. Given the reasonable Ec hints and the good test results, see
Fig. 16, these are part both of the standard and stringent table.
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Fig. 14. The main test results for Na and Mg PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 15. The main test results for the Al to Ar PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

7.7. 3d transition metals

For the 3d transition metals, the 3s and 3p states are part of the
valence partition. For both Fe PSPs, the degree of continuity at the
pseudization radius was lowered to the third derivative. Genera-
tion a PSP for Fe with continuous derivatives up to fourth order at
the pseudization radius leads to prohibitively large requirements
on the Ec.

The most complicated elements in this series are Cr, Mn, and
Fe. Especially obtaining a PSP that performs well in the magnetic
structures of the∆-Gauge test is very hard. The standard versions,
with a still reasonable Ec hint, have ∆-Gauge results that are
well beyond what is usually considered acceptable (see Fig. 17).
The high accuracy version fixes this, however at the cost of a
considerable increase in the Ec needed. Both the standard and the
high versions, however performequallywell in the (non-magnetic)
GBRV tests. Special care has hence to be taken when selecting a
PSP for these elements. It is suggested to double-check the final

Fig. 16. Themain test results for the K and Ca PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 17. The main test results for the 3d transition metal PSPs. The blue, green,
and red data are calculated at the high, normal, and low Ec hints respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

results obtainedwith the standard PSPwith those coming from the
stringent version.

7.8. Ga, Ge, As, Se, Br, Kr

In these elements, the 3d shell is full and we have a progressive
filling of the 3p states. The 3d electrons, however, overlap with the
3p states and therefore can play a role in determining the physical
properties of a crystalline system. For this reason, our standard
table contains pseudopotentials with 3d electrons in valence for
Ga, Ge, As, Se, while 3d electrons are frozen in Br and Kr. This is our
recommended configuration albeit the presence of the localized 3d
states leads to a relatively large Ec, see Fig. 18. A version of Ga–Ge–
As–Se with the 3d electrons frozen in the core is also available for
low Ec applications.
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Fig. 18. Themain test results for the Ga to Kr PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

For Br (and as well for I) we also provide a version with 3s, 3p,
and 3d (4s, 4p, 4d for Iodine) in the valence. These are provided
mainly for the use in accurate GW calculations in which the inclu-
sion of entire electronic shells can be important, see e.g. Ref. [42]
for the example on I. For ground state calculations the 3d (4d)
valence has been found to be sufficiently accurate and is therefore
the choice for the stringent table.

7.9. Rb, Sr

The main test results and Ec hints for the PSPs for Rb and Sr are
shown in Fig. 19. For both elements, very reasonable Ec hints can be
achieved. The alkaline elements from Rb downward start to show
a decreasing performance in the GBRV test. As for F and S, this is
in line with the results obtained for PAW data sets in the GBRV
tests. Attempts to make harder, more accurate PSPs did not lead to
improved GBRV results.

7.10. 4d transition metals

The PSPs for the 4d transition metals all contain the 4s and
4p states in the valence. This leads to both reasonable Ec energies
and test results, see Fig. 20. Only Ru and Rh have ∆-Gauge results
that are only barely acceptable. The ∆′-Gauge results for these
two PSPs (1.5 and 2.2) are still well within the acceptable range.
The relatively high bulk modulus of these two elemental solids
(310 and 250) causes the high ∆-Gauge values. For Cd, finally, we
provide three versions. The versionwith the 4s and 4p states in the
core (Cd) gives the best results for the∆-Gauge but the GBRV is far
from ideal. Including the 4s and 4p states in the valence (Cd-sp)
improves the GBRV results at the price of a non-negligible increase
of Ec while the∆-Gaugeworsens. Decreasing the core radius in the
high-accuracy version (Cd-sp-high) leads to acceptable GBRV and
∆-Gauge results but at the cost of a larger Ec. Our standard table
includes Cd-sp while the stringent table uses Cd-sp-high.

Fig. 19. Themain test results for the Rb and Sr PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 20. The main test results for the 4d transition metal PSPs. The blue, green,
and red data are calculated at the high, normal, and low Ec hints respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

7.11. In, Sn, Sb, Te, I, Xe

In the series from In to I, we provide three different versions of
core-valence partitioning: no n = 4 states in the valence (except
for In), 4d in the valence, and the full n = 4 shell in the valence.
For all these pseudopotentials ∆-Gauge, ∆′-Gauge and GBRV are
well within the acceptable range. The main difference lies in the
description of the unoccupied space. The PSPs for which all n = 4
states are frozen in the core show deviations in the logarithmic
derivative starting around 3 Ha above the Fermi level. Including
the 4d,which lie 0.7–1.5Ha below the Fermi level, introduces ghost
states in the elemental solid between 20 and 80 eV above the Fermi
level. Finally including the full n = 4 shell we see no sign of ghost
states and the logarithmic derivatives agree well up to 7–10 Ha
above the Fermi level. The cost for this accuracy is an increase in Ec
of 20–30 Ha, see Fig. 21.
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Fig. 21. Themain test results for the In to Xe PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

For Xewe freeze the full n = 4 shell. The tests did not reveal any
ghost states but the logarithmic derivative shows a sharp deviation
around 4 Ha above the Fermi level. A version with the full n =

4 shell in the valence is also available but not included in our
recommended tables.

7.12. Cs, Ba

The pseudopotentials for Cs and Ba both have the 5s and 5p
states in the valence. For Cs, the transferability could be improved
by adding explicit f projectors. For Ba, also a PSP is provided
based on a reference state in which a 6s-electron is excited to the
5d-state. This version improves the ∆-Gauge results but at the
same time worsens the GBRV test results to a similar degree, see
Fig. 22.

7.13. 5d transition metals

For the 5d transitionmetalswe observed that including only the
5d in the valence led to PSPs that sometimes have good test results
for∆-Gauge and GBRV but tend to have ghost states only a few eV
above the Fermi level. For this reason,we always include the 5s and
5p in the valence partition.

An additional difficulty in the series of the 5d transition metals
is that in PBE the 4f states lie in the same energy range as the 5s
and 5p states. For Hf and Ta, the 4f even lie above the 5p states.
Indeed for Hf the agreement with the AE reference for both the
∆-Gauge and GBRV tests improves significantly if, besides the 5s
and 5p also the 4f is taken into the valence partition, see Fig. 23.
For Ta, this still improves the∆-Gauge results significantly but the
GBRV results worsen. For W the changes are rather small.

For all PSPs for the 5d transition metals it turned out to be ben-
eficial to include explicit f-projectors even when the 4f electrons
are frozen in the core.

Finally, we note that, although for W–Hg the ground state
properties can be described well enough with the 4f frozen, for
optical properties and GW this may not be the case. This is the case
even for elements like Au where the 4f electrons lie about 3 Ha
below the Fermi level.

Fig. 22. Themain test results for the Cs andBa PSPs. The blue, green, and red data are
calculated at the high, normal, and low Ec hints respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 23. The main test results for the 5d transition metal PSPs. GBRV reference data
is not available for Lu and Hg. The blue, green, and red data are calculated at the
high, normal, and low Ec hints respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

7.14. Lanthanides

In crystalline systems the lanthanides usually occur in the 3+
oxidation state with three electrons donated to an anion. Typical
examples of lanthanides with 3+ oxidation state are given by their
nitrides. Since in standard KS theory, GGA or LDA, the strongly
localized f states are not described correctly, these 3+ pseudopo-
tentials with 4f electrons frozen in the core offer a convenient
solution. They are all generated with the valence configuration:
5s25p65d16s2. It should be stressed, however, that these pseudopo-
tentials are supposed to be used only if the f electrons are not im-
portant in the physics of the crystal (e.g. magnetism, bonding, etc.).
These PSP will be mostly useful when only the steric effect of the
lanthanide is of importance. Due to this limitation the lanthanide
PSPs are not part of the predefined tables standard and stringent.
PSPs for lanthanides with 4f states in valence are currently being
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Fig. 24. Lattice parameters of the nitrides of the lanthanide series. Comparison of
PD-PBE to VASP results obtainedwith comparable PAWdata sets. For reference also
the experimental results are shown.

Fig. 25. The main test results for the Tl to Rn PSPs. GBRV reference data is not
available for Po and Rn. The blue, green, and red data are calculated at the high,
normal, and low Ec hints respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

developed but testing these correctly is a topic on its own and will
be presented elsewhere.

For La, GBRV reference results are available, our La-sp PSP
underestimates the BCC lattice parameter by 0.1%, no ∆-Gauge
reference is available for La. For Lu the availability of reference
results is opposite;we find a∆-Gauge of 1.0 for our Lu-fsp, Lu is the
only exceptionwhere the 4f is included in the valence. The hintswe
derive for these two elements based on the convergence of these
tests are 50, 55, and 65 and 46, 50, and 58 Ha (low, normal, high)
for La and Lu respectively.

For the other lanthanides, no GBRV or ∆-Gauge reference data
are available. The PSPs presented here are therefore tested by
comparing the relaxed lattice parameters of their nitride rock salt
structures with those obtained from PAW calculations. Fig. 24
compares the lattice parameters obtained using our PSPs to those
obtained using VASP [43] with comparable 3+ PAW data sets.10

10 In the VASP calculations we use a Gaussian smearing with 1 mH broadening,
precision accurate settings, and converge the lattice parameters with respect to the
kinetic energy cutoff.

In general we observe a very decent agreement between the
PD-PBE and the VASP results. Moreover, comparing to the exper-
imental results we conclude that for the structural properties of
rocksalt nitrides, the 4f states of Sm–Lu can indeed be frozen in the
core.

7.15. Tl, Pb, Po, At, Rn

For the final set of elements, Tl–Rn, the pseudization of 6p
valence electrons is not very demanding.We provide versionswith
the 5d in the valence in the standard table and versions with 5s
and 5p in the valence as well in the stringent table. Both for the
∆-Gauge and GBRV tests the results are good and also converge
quickly, see Fig. 25.

8. Conclusions

In this paper we have presented the PseudoDojo project, a
framework for developing, testing and storing pseudopotentials,
and discussed our PD-PBE: an 84 element table of PBE norm-
conserving pseudopotentials. The PseudoDojo is interfaced with
ONCVPSP [17,18] to generate the PSPs and ABINIT [27,28] via the
AbiPy package for running the tests. The PSP files are available
on the PseudoDojo web-interface at www.pseudo-dojo.org in the
psp8, UPF2, and PSML 1.1 formats.

The PseudoDojo toolkit contains a graphical interface to the
ONCVPSP [17,18] code. It enables the generation of (series of)
pseudopotentials and the preparation of tests.

The validation part of the PseudoDojo consists of a series of 7
tests in crystalline environments: ∆-Gauge [24], ∆′-Gauge [38],
GBRV-FCC, GBRV-BCC, GBRV-compound [23], ghost state detec-
tion, and phonons at Γ , all executed using ABINIT [27,28]. By
studying the correlation between the results for the different tests
we show that these form a complementary set. Only the GBRV-FCC
and BCC show a strong correlation, such that performing both does
not increase the amount of information.

The present version of the PD-PBE contains a total of 141 PSPs
and defines two tables, with standard and stringent accuracy. Both
tables contain one PSP per element. For the final set of PSPs a total
of around 70,000 calculations have been performed during the
testing process. All these calculations have been performed using
the PseudoDojo tools building on the high-throughput framework
of theAbiPy project. The present DFT calculations are all performed
using ABINIT version 8.4.

In the development of the PD-PBE, valuable insights were ob-
tained concerning the effects of the core-valence partitioning and
the non-linear core corrections on the stability, convergence, and
transferability of norm-conserving pseudopotentials.

Non-linear core corrections—PSP that have the 1s frozen in the
core and the 2s and 2p completely filled (included in the valence
partition) do not improve upon adding non-linear core corrections.
Often they even become unstable (small changes in the unit cell
volume or Ec lead to drastic changes in the total energy). For the
magnetic 3d transition metals adding well-balanced non-linear
core corrections dramatically improves the results on magnetic
systems. Non-magnetic systems are much less sensitive and also
perform well without non-linear core corrections. In some cases
the model core charges for non-linear core correction can be quite
localized. These hard models reproduce the AE results very well,
and can have beneficial effects on ground state properties, butmay
render the PSP difficult to converge, especially inDFPT calculations.

Core-valence partitioning—In the fifth row main group ele-
ments, the description of the unoccupied space improves clearly
by increasing the valence partition. Including 4d alone leads to
actual ghost states in the range of 20–80 eV above the Fermi level.
Including the full n = 4 shell removes all signs of ghost states up

http://www.pseudo-dojo.org
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to several hundreds of eV. The exception is Xe for which putting
the n = 4 shell in the valence partition does not lead to any neg-
ative effect. A similar situation arises in the 5d transition metals.
Including only the 5d in the valence partition for these elements
leads to ghost states just above the Fermi level. Despite the good
results obtained for the ∆-Gauge, these pseudopotentials are not
transferable and can perform poorly if used in other crystalline
environments.

Extra projectors—In both the second row B-F and fifth row
transition metals with frozen 4f, the PSPs are improved by the
addition of additional projectors, d and f, respectively.

Supplementary material: PD_v0.4_supplementary-data-and-
tests: HTML version of the Jupyter Notebook performing the
statistical analysis presented in this work, PD_v0.4_supplemen-
tary-correlations-elements: HTML version of the Jupyter Notebook
performing the element wise comparison and correlation stud-
ies between the tests, PD_v0.4_supplementary-GBRV-compounds-
standard: HTML version of the Jupyter Notebook performing
statistical analysis of the GBRV compound tests and the lanthanide
nitride lattice parameter comparison.
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