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A B S T R A C T

Ab initio pseudopotential total-energy calculations on infinite monatomic chains of Au are performed within
density functional theory. We use the density functional perturbation theory to study the phonon spectra of these
gold wires as a function of strain. Our results show that there does not seem to be a range of strain for which the
linear chain is stable, contrary to what was stated by Ribeiro and Cohen [Phys. Rev. B 68 (2003) 035423]. For
low strain, the zigzag chain is the stable geometry; while for higher strain, the chains with two or more aligned
gold atoms are found to be more stable. At the limit between these two regimes, we predict a transition structure
(an asymmetric zigzag chain) to be the most stable.

1. Introduction

Metallic nanocontacts have been the subject of many recent in-
vestigations. Among these, gold nanowires have attracted considerable
attention. Indeed, they display very interesting properties from a basic
science standpoint but also have many potential applications (e.g, in
nanoelectronics). In particular, gold nanowires have the ability to
evolve into linear chains which present large Au-Au interatomic dis-
tances before breaking [1–3].

Many experimental works have been devoted to the characteriza-
tion of the mechanical properties of gold nanowires [1,2,4–11]. The
experimental Au-Au distance reported in the literature varies quite a lot
depending on the production method and the measurement technique
[1,5,6].

A great deal of theoretical research has also been dedicated to gold
nanowires using density functional theory (DFT) [12–37]. Hereafter,
we only mention the results obtained for monatomic nanowires. These
adopt a zigzag shape which remains stable under tension and only
become linear just before breaking [12], hence explaining the observed
large interatomic distances. It was also argued that a linear monatomic
gold wire should be unstable at atomic distances greater than about 3Å
and that it should dimerize [18,19]. These findings were further

confirmed by an investigation of the equilibrium configurations of an
infinite chain depending upon stretching and compressing [20].

Several works have also considered the stability of the monatomic
gold chains by computing the phonon frequencies [12,14,15]. Using the
frozen-phonon approximation, Ribeiro and Cohen [14] computed the
phonon frequencies at the X point for the linear chain. They concluded
that there is a range of strains (for a length per atom comprised between
2.71 and 2.83Å) for which the linear wire is stable. Using density-
functional perturbation theory (DFPT), Picaud et al. [15] arrived at the
similar conclusion (the range of stability being comprised between 2.75
and 2.85Å). The phonon frequencies of the zigzag wire were also in-
vestigated as functions of the length per atom (also using the frozen-
phonon approximation) [12]. It was found that the phonon dispersion
curve stays positive in the whole Brillouin zone for a length of 2.62Å
per atom. But the longitudinal mode becomes negative beyond 2.9Å
per atom, which was interpreted as a breaking of the wire.

Due to the importance of the monatomic gold nanowires, in this
paper, we studied several gold wires with different structures under
tension. The structural, energetic, and mechanical properties of these
gold wires are computed. Especially the phonon instability for linear,
zigzag, and dimer gold chains are studied by DFPT.

The paper is organized as follows. The methodological aspects of
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our study are developed in Section 2. Then, our results are presented
and discussed in Section 3. The possible structure and the energetics of
the different chains are investigated (see 3.1). The stability is analyzed
in more details by computing the phonon bandstructures (see 3.2). Fi-
nally, our findings are summarized in Section 4.

2. Methodology

All the calculations are performed using DFT [38] and DFPT
[39,40], as implemented in the ABINIT [41] code. The exchange-corre-
lation energy is evaluated within the local-density approximation (LDA)
using the Perdew-Wang functional, which performs very well for vi-
brational properties of solids [42]. The interaction of the valence
electrons with the ionic cores is represented with a separable, norm-
conserving Troullier-Martins [43]. The wave functions are expanded
into plane-waves up to a cutoff energy of 20 Ha (544 eV), which
guarantees an accuracy of 0.005Å on the bond lengths and of
0.5 cm 1 on the phonon frequencies.
We use a tetragonal periodic cell allowing for 20Å vacuum between

the wires. Different configurations of the chain are considered (see
Fig. 1). The smallest unit cell with one atom per cell (referred to as
linear chain) corresponds to the infinite monatomic chain. We also
consider the double unit cell in order to allow for either a dimerization
(see dimer chain in Fig. 1) or the formation of a zigzag (see zigzag chain
in Fig. 1) along the chain. Finally, we consider other multiples (N-mer
with N=3, 4, 5, and 6) of the original cell (only the trimer and
quadrimer are illustrated in Fig. 1).

The Brillouin Zone (BZ) integrations were performed within
Monkhorst-Pack (MP) scheme. For the smallest unit cell, a 100 1 1× ×
k-point grid was used. For the larger unit cells, the k-point sampling was
adapted to achieve a similar density in the BZ. The energy levels are
populated using either a Gaussian broadening [44] or a Fermi-Dirac
(FD) distribution within Mermin’s generalization [45] of DFT to the
canonical ensemble. The latter technique explicitly accounts for the
effect of temperature. Unless otherwise stated, the results presented in
the paper are obtained using a Gaussian smearing of 0.001 Ha
(27.2 meV). With these parameters, the total-energy precision is better
than 1meV/atom.

The DFPT phonon calculations are limited to the linear, dimer, and
zigzag chains. Special care must be taken due to the possible presence
of both Kohn anomalies [46] and Peierls instabilities [47] as it will be
discussed later on. Hence, we use both the usual interpolation techni-
ques based on the explicit calculation of the dynamical matrices on
regular q-point grids and a cubic spline interpolation of the phonon
frequencies computed on a non-uniform grid of q-points.

3. Results and discussions

3.1. Structure and energetics

We first relax the geometry for the linear chain. We find that the
equilibrium length per atom d0 is 2.54Å, which is in agreement with
the experimental value 2.5 0.2± Å [6]. This is also consistent with the
previous theoretical values 2.56Å[12,13] and 2.49Å[14,15].

We also study the structural parameters, energetics, and mechanical
properties of the linear, zigzag, dimer, trimer and quadrimer chains,
which are illustrated in Fig. 1. The cohesive energy per atom Ecoh
(computed with respect to the isolated atom) and the tension are re-
ported in Fig. 2 as a function of the length per atom for these five
different structures. A given length per atom d can easily be converted
into a strain with respect to the equilibrium length per atom for the
linear chain d0 by 1d

d0
= .

Due to the well-known Peierls distortion [47], a uniform one-di-
mensional chain with a partially filled band cannot be stable. As can be
seen in the upper panel of Fig. 2, the zigzag and dimer chains are indeed
found to be energetically favored depending on the strain (the length
per atom).

At very low and negative strain ( 0.09< , d < 2.78Å), the zigzag
chain is the most stable. The corresponding energy (tension) curve
actually shows two minima (zeroes) for a length per atom d of 1.27 and
2.31Å ( =−0.50 and −0.09). The angles are calculated to be
roughly 56° and 135° at these two energy minima. These are very similar
to the theoretical results reported in Ref. [13] (60° and 131°) and Ref.
[17] (58.8° and 130.6°). As we stretch the zigzag chain, the angle in-
creases monotonically up to 180° (linear chain), as can be seen in the
upper panel of Fig. 3. Then, it becomes a linear chain (the red dots in

Fig. 1. Structures of the linear, zigzag, dimer, trimer and quadrimer chains.

Fig. 2. Calculated cohesive energy per atom (calculated with respect to the
isolated atom) and tension of Au chains as a function of the length per atom d.
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the lower panel of Fig. 3 follow the black solid line).
At high strain ( > 0.10, d > 2.80Å), the dimerized chain is more

stable than the linear one. Actually, before d=2.80Å, there is basically
no dimerization (the green and blue dots in the lower panel of Fig. 3
follow the black solid line). Beyond, one of the bond lengths (d1 in
green) slowly converges towards the isolated dimer value 2.49Å, while
the second one (d2 in blue) tends to be proportional to the lattice
parameter, hence to twice the length per atom, as indicated by the black
dashed in the right panel of Fig. 3.

In the upper panel of Fig. 2, we can see that the trimer and quad-
rimer chains are even more energetically favorable than the dimer:
when the chain is stretched, one of the bonds in the wire breaks. This is
in accordance with results of Ref. [17] in which the linear, dimer, and
quadrimer gold chains were studied. In fact, as the number of atoms N
in the unit cell increases, the corresponding cohesive energy per atom
E N( )coh decreases. This can also be seen in Table 1 where we report the
asymptotic value (as length per atom goes to infinity, the energy does
not change anymore upon pulling the nanowire in the broken struc-
ture). In this Table, we also indicate the values calculated for a pen-
tamer (N=5) and an hexamer (N=6). Note that in these latter cases,
we did not compute the full energy curve but just the asymptotic value
(which is obtained by allocating a distance larger than 5Å to the broken
bond). From the upper panel of Fig. 2 and Table 1, it seems that E N( )coh
decreases towards the equilibrium energy of the linear gold chain
(E0 =−2.131 eV/atom) as the number of atoms N increases. Indeed, as

N goes to infinity the system goes closer and closer to the perfect linear
chain plus a broken bond. This is also confirmed by the asymptotic
geometry of the different structure (see distances in Table 1). The bonds
inside the chain quickly approach the equilibrium value d0 =2.54Å.
Finally, we compute the energy of the broken bond (EBB) as the dif-
ference between the cohesive energy of the equilibrium geometry for
the linear chain and the asymptotic cohesive energy E N( )coh for a given
N-mer (with a completely broken wire): E E N NE( )BB coh 0= . The
calculated values of EBB are reported in Table 1 for different structures.
As N increases, EBB converges towards 1.4–1.5 eV. This value is sig-
nificantly bigger than the value 0.87 eV reported in Ref. [17], that was
calculated using the GGA for the exchange-correlation and limited to
the case of the quadrimer (that is slightly lower than for the pentamer
and hexamer).

The inset of the upper panel of Fig. 2 focuses on the transition from
the region where the zigzag chain is the most stable to the region where
it is the dimer chain. The difference in energy with respect to the linear
chain is reported for d=2.72, 2.75, 2.78, 2.81, 2.83, and 2.86 Å
( = 0.07, 0.08, 0.09, 0.10, 0.11, and 0.12). For the two central points
(d=2.78Å, = 0.09 and d=2.81Å, = 0.10), the difference in en-
ergy between the linear, zigzag, and dimer chain falls below 1meV
(reaching the limit of the accuracy of our total energy calculations). For
these values of the strain, calculations of the phonon bandstructures are
highly desirable. For d < 2.78Å ( < 0.09), the dimer chain is strictly
equivalent to the linear chain; and similarly, for d > 2.81Å
( > 0.10), the same happens for the zigzag chain. For those values of
the length per atom (strain), the trimer chain (purple curve with tri-
angles) is also equivalent to the linear chain. There is not enough room
for a bond to break. For d=2.83Å ( = 0.11), the quadrimer (blue
curve with squares) is already more stable than the dimer. But, it was
not possible to stabilize it for d=2.81Å ( = 0.10): whatever the
starting point, the system would always relax into the dimer geometry.
Considering the trimer and the quadrimer, we see that the former tends
to the linear chain while the latter tends to the dimer chain. As a result,
a detailed analysis of the curves (not reported here) shows that the
trimer curve crosses the dimer curve somewhere between d=2.92Å
( = 0.14) and d=2.95Å ( = 0.15).

In the lower panel of Fig. 2, we see that the tension on the linear
chain under uniaxial tension reaches a maximum value of 2.4 nN
(1.528 eV/Å) when xx =0.184. This value is in agreement with the
recent experimental results of Ref. [8] in which a tensile force of
1.6 0.7± nN was needed to observe the one-dimensional arrays of single
gold atoms. Our value is also in agreement with previous DFT-LDA
results: 2.2 nN [12], 2.5 nN [14], and 2.4 nN [16]. It is higher than the
DFT-GGA value (1.9 nN) reported in Ref. [16], which agrees with the
older experimental results 1.5 0.3± nN of Ref. [4].

3.2. Phonons and stability

We now turn to the study of the phonon bandstructures. We start
with the linear chain studying the effect of strain, as illustrated in Fig. 4.
This figure calls for a series of comments.

Globally, it can be described as follows:

1. for = 0.09 (yellow curve), both the transverse and longitudinal
modes seem to be stable (the frequencies are positive everywhere);

2. for < 0.09 (from orange to red curves), the longitudinal mode is
stable whereas the transverse mode is unstable;

3. for > 0.09 (from green to blue curves), it is the reverse.

But, as already mentioned, we must pay attention to the possible pre-
sence of both Kohn anomalies [46] and Peierls instabilities [47].

For instance, for the longitudinal mode, these induce either an
abrupt change (Peierls instability) or a dip (Kohn anomaly) in the
bandstructure close to the X point. As a result, focusing on a case for
which there is a Peierls instability (e.g. for = 0.09), if we apply the

Fig. 3. Evolution of the structural parameters of the zigzag (s and in Fig. 1)
and and the dimer (d1 and d2) chain as a function of the length per atom. The
angle is reported in the upper panel, while the distances s, d1, and d2 are
shown in the lower panel. The panel on the right focuses on the dimer chain
showing the asymptotic behavior (when the bond is broken). The solid black
line represents the linear chain. Its slope is equal to 1 (since the bond length is
exactly the length per atom), whereas the slope of the dashed line is equal to 2.

Table 1
Asymptotic values of the cohesive energy per atom (Ecoh), the energy of broken
bond (EBB), the different nearest-neighbor distances as a function of the number
of atoms N in the unit cell.

N=2 N=3 N=4 N=5 N=6

Energies (in eV)
Ecoh −1.536 −1.619 −1.797 −1.839 −1.896
EBB 1.189 1.536 1.335 1.457 1.405

Distances (in Å)
d1 2.49 2.52 2.51 2.51 2.51
d2 2.52 2.58 2.53 2.58
d3 2.51 2.53 2.54
d4 2.51 2.58
d5 2.51
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usual interpolation scheme of the dynamical matrices (using Fourier
transform) for the longitudinal frequencies, we either obtain a smooth
curve with an overestimated value at X when the X point is not among
the q-point of the uniform grid chosen for the explicit calculations, or a
curve oscillating but going to the correct value at X if the X point is
among them. This is illustrated in the Fig. 5 for = 0.09.

The black circles are the explicit calculations (on a non-uniform
grid). The green and red curves are the results obtained using the usual
interpolation scheme of the interatomic force constants. The green (red)
curve is the result of the interpolation based on calculations on a uni-
form grid with 20 (25) q-points including (not including) the X point.
Increasing the number of q-points in the uniform grid will obviously
lead to the same result (either the oscillations reduce or the frequency
at the X point converges towards the correct value). However, the
number of q-points needs to be very high to get rid of both problems
(for instance, we found that there are still oscillations with 50 q-points).
In order to overcome these problems, we work with a non-uniform grid
(with more q-points in the region where there is an abrupt change) and
we interpolate using splines. The resulting phonon bandstructure is the
black dashed line in Fig. 5. For the transverse mode, all the schemes
lead to the same results since there is no Peierls instability at X.

A second issue with the Peierls instabilities and the Kohn anomalies

is the effect of the smearing. As already mentioned, the frequencies are
positive everywhere for = 0.09 (yellow curve) in Fig. 4, even at the X
point. However, it seems that there is a Peierls instability that is hidden
by the use of the Gaussian smearing. We check this by reducing the
smearing to 0.0002 Ha (while carefully checking the convergence with
respect to the k-point sampling). We observe that the major part of the
curve is not affected but the frequency becomes negative at X, as illu-
strated in the left panel of Fig. 6. We further decrease the smearing (still
checking the convergence with respect to the k-point mesh, using up to
5000 points) focusing on the frequency at the X point. We find that the
frequency seems to converge, but this would have to be checked by
further decreasing the smearing (while increasing the density of the k-
point mesh).

The smearing also has an effect on the Kohn anomaly that appears
for the longitudinal mode close to the X point for 0.00 0.08, but
the frequency is much less affected. As the strain increases, the Kohn
anomaly moves closer and closer to the X point, turning into a Peierls
instability. We compute the corresponding electronic bandstructures. In
Fig. 7, we report the evolution of the Fermi wavevector kF as a function
of the distance. We see that it decreases until it reaches 0.250 (for

Fig. 4. Phonon dispersion curves of the linear chain as a function of the strain.
= 0.00, 0.07, 0.08, 0.09, 0.17 are represented in red, orange, yellow, green,

and blue; the intermediate values of strain being in grey. The left (right) panel
shows the transverse (longitudinal) mode.

Fig. 5. Phonon bandstructure of the linear chain at 0.09= . Explicit calcula-
tions (black circles) are compared with different interpolation schemes. The
green and red curves are the results obtained using the usual interpolation
scheme of the interatomic force constants calculated on a uniform with 20 and
25 q-points, respectively. The first grid explicitly includes the X point, whereas
the second does not. The black dashed curve is simply a spline interpolation of
the calculations on a non-uniform grid.

Fig. 6. Effect of the smearing on the Peierls instability for the longitudinal
mode of the linear chain at 0.09= . In the left panel, the phonon dispersion
curve is illustrated for two different values of the Gaussian smearing: 0.0010 Ha
(blue dots) and 0.0002 Ha (red circles). In the right panel, the phonon fre-
quencies at X are reported as functions of the Gaussian (blue curve with circles)
or Fermi-Dirac (red curve with squares) smearing. When the smearing is too
high, the Peierls instability is hidden.

Fig. 7. Evolution of the Fermi wavevector kF for the linear chain as a function
of the length per atom d (expressed in Å). The corresponding electronic
bandstructures are illustrated for three different strain values ( =−0.09, 0.00,
and 0.09).
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=0.09) meaning that 2kF tends to X. The decrease is basically linear
though there is a change in the slope at = 0.00. This is probably due
to the fact that for < 0.00 another band also crosses the Fermi level
at (hence, it is not fully occupied). From =0.00 on, the maximum of
that band is below the Fermi level (the band is fully occupied). Note
that close to X, another band approaches the Fermi level but it never
crosses it (hence, it is always fully occupied).

Based on the discussion above, there does not seem to be a range of
strain for which the linear chain is stable. This in contradiction with one
of the main conclusions of Ref. [14]. The smearing that they used was
probably too high, hence hiding the Peierls instability.

Finally, we turn to the computation of the phonon bandstructures
for the zigzag and dimer chains. Here, there may be a Kohn anomaly at
point for both the zigzag and dimer chains. Indeed, due to the zone

folding (related to the doubling of the unit cell), the point in these
chains is equivalent to the X point in the linear chain (where a Peierls
instability could appear). This is causing the oscillations of the highest
frequency mode when interpolating using the usual scheme. So, we use
a non-uniform mesh of q-points and a spline interpolation, see Fig. 8.

For low strain ( < 0.09), one of the transverse modes of the dimer
chain is unstable at . In contrast, the zigzag chain seems to be stable:
the phonon frequencies are positive everywhere from to X. For high
strain ( > 0.09), the zigzag chain is almost linear due to the
stretching. Hence, it has an unstable mode (the longitudinal one) at .
The dimer chain is stable for = 0.10, but it is unstable for higher
strain. For = 0.11, the biggest instability appears in the longitudinal
mode close to . For = 0.12, the biggest instability is at X and it is also
a longitudinal mode (meaning that the unit cell should be double to
allow for a quadrimer to form).

For = 0.09, both the dimer and zigzag chain seem to be stable. In
fact, the geometries are not very different. In the dimer, the bond length

alternation (BLA= d d
d

2 1) is very small (less than 1%); while in the
zigzag chain is almost 180°. However, as already mentioned, the
precise situation at the point must be investigated more carefully: the
instability present at the X point in the linear chain could be hidden by
the use of the Gaussian smearing of 0.0010 Ha. When reducing the
smearing to 0.0002 Ha (while carefully checking the convergence with
respect to the k-point sampling), we find that the longitudinal fre-
quency becomes negative at . This indicates that none of these two
structures is actually stable. As illustrated in Fig. 9, the equilibrium
geometry is a zigzag chain with two different bonds s1 and s2, the op-
timum bond length alternation (BLA=s s

d
2 1) being very small though

(less than 1%).
Following this finding we also investigate more carefully the zigzag

chain for = 0.08. We find that, when reducing the smearing to
0.0002 Ha, the longitudinal frequency remains positive at . So, for
< 0.09, the zigzag chain is indeed the optimum geometry.

4. Summary

In this paper, we have investigated monatomic chains of gold using
both density functional theory and density functional perturbation
theory. Different possible structures (linear, zigzag, dimer, trimer and
quadrimer) have been considered for the chains focusing on both their
geometry and their energetics as a function of the strain. Then, their
stability has been investigated very thoroughly by computing their
phonon spectra. We have observed that the linear chain is unstable
whatever the strain in contrast with the findings of Ribeiro and Cohen.
For low strain ( < 0.09), the stable geometry was found to be the
zigzag chain. For higher strain ( > 0.09), we observed that the chains
with two or more gold atoms are more stable (the trimer and quadrimer
chains being even more energetically favorable than the dimer). At the

Fig. 8. The phonon dispersion curves of the zigzag and dimer chains compared to those obtained by folding the Brillouin zone for the linear chain. The transverse and
longitudinal modes are represented in blue and red, respectively.
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limit between these two regimes ( = 0.09), we found that the most
stable structure is an asymmetric zigzag chain.
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