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ABSTRACT: Traditionally, chemistry problems are solved by means
of a deductive approach. The question to be addressed is typically
related to the value of a property that is either measured
experimentally, computed using quantum-chemistry software, or
(more recently) predicted using a machine-learned model. In this
paper, we demonstrate that an inductive approach can be adopted
using End-to-End (E2E) machine learning. This approach is
illustrated for tackling the following chemistry problems: (i) determine
the fully coordinated (FC) and undercoordinated (UC) atoms in a
molecule with one missing atom, (ii) identify the type of atom that is
missing in such an incomplete molecule, and (iii) predict the direction
of a reaction between two molecules according to an existing dataset.
The E2E approach leads to accuracies higher than 99%, 98%, and 93%
for these three problems, respectively. Finally, in order to achieve such accuracies, a descriptor for the molecules, called bag of
clusters, is introduced and compared with a series previously proposed descriptors, highlighting a series of advantages.

1. INTRODUCTION

In recent years, deep learning has been widely used in many
fields, such as speech recognition, visual object recognition,
object detection, drug discovery, and genomics.1 In this
framework, End-to-End (E2E) deep learning is one of the most
exciting new developments. Traditional machine learning is a
multistage procedure involving processing systems, which
manually extract features from the raw data, and learning
systems. In contrast, E2E deep learning ignores all of these
stages and replaces them with a single neural network that
outputs complex data types directly from the original raw
features. For example, for speech recognition (something like
Siri or Google Assistant), the traditional method that has been
used for a long time and is still used today is to break the audio
signal into phonemes (the fundamental building sound units),
which can then used as features for the model generating the
transcript. In contrast, the E2E approach goes straight from the
audio waveform to the written transcript without going
through the complex process of feature extraction.2 Another
example is self-driving cars. While the traditional approach is a
very cumbersome process involving a lot of steps (getting
images, identifying the types and positions of objects, self-
positioning, traffic signal understanding, and using this
information to calculate the trajectory, which can control the

steering on the basis of a series of human made rules), the E2E
approach goes straight from the images to steering and long-
term planning.3 It trains an artificial intelligence (AI) driver
entirely from sensor input data and feedback from a human
expert.
E2E deep learning is especially used in the field of

perception and control4 or object detection.5 It usually
performs better than traditional machine learning. In 2012,
at the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), the deep convolutional neural network alexNet6

made the top-five classification error rate drop from 28.2%
(best performance in 2010) to 16.4%.7 Future refinements
improved the results to a performance level of about 3%, which
is better than that of humans, proving that E2E learning is a
reliable way to solve a problem as long as enough labeled data
are available. There are also lots of excellent works about E2E
learning in the fields of music audio8 and speech recognition.9
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In chemistry, there have been numerous reports about the
possible use of machine learning (see refs 10−12 for some
recent reviews). Most of these machine learning studies
consisted of the regression of properties either measured
experimentally or calculated using quantum chemistry followed
by the prediction of those properties for various new
substances.13−18 Often good results were achieved with error
values lower than the widely accepted thresholds for chemical
accuracy.19 For example, the prediction error in the internal
energy at 0 K can be as low as 9 meV/atom.14 All of these very
successful machine learning applications, however, followed an
indirect route for solving chemistry problems, just like
traditional empirical or quantum chemistry approaches.
Indeed, the initial problem to be addressed is first related to
some properties that can be measured, calculated with a
quantum-chemistry simulation, or predicted by a machine
learning model. Then the solution of the problem is
determined from the values of those properties. However,
such an indirect approach may show serious limitations. For
instance, it was recently found by Bartel et al. that reasonably
accurate predictions of formation energy do not imply accurate
predictions of stability.20

In contrast, the E2E approach in this context would be a
direct route from a given representation of the molecule (the
raw data) to the results without resorting any intermediate
property (measured or computed). This obviously raises the
question of how the molecule can be introduced into a
machine learning model, which can basically only process data
in the form of vectors. While two-dimensional (2D) or three-
dimensional (3D) images (consisting of pixels or voxels) are
naturally represented by a vector, the structure of a molecule
needs to be transformed before it can be fed to a neural
network. Different from previous E2E attempts in the field of
chemistry, which generally relied on the Simplified Molecular
Input Line Entry Specification (SMILES) or other line
notations of chemical structures21−23 based on Natural
Language Processing (NLP), we rather start from the 3D
specification of the molecule. Many sophisticated descriptors
have been developed to perform a regression from this
representation. However, as we shall see, they are not totally
suitable for an E2E approach. Therefore, we propose to use a
descriptor called a bag of clusters (BoC), which reflects the
chemistry information in a simple way. It fits very well in an
E2E approach and can solve a series of chemistry problems
with very high accuracy.
1.1. Chemistry Problems Addressed. In this paper,

three typical chemistry problems (illustrated in Figure 1) are
addressed using an E2E approach:

1. determine the fully coordinated (FC) and under-
coordinated (UC) atoms in a molecule with one missing
atom;

2. identify the type of atom that is missing in such a
molecule;

3. predict the direction of a reaction between two
molecules according to an existing dataset.

The first two problems are related to one of the most
fundamental concepts in chemistry, namely, bonding. Teach-
ing students how to recognize typical bonding patterns is still
the subject of various studies in chemical education.24−26 It is
thus interesting to understand what can be taught to a
machine. The last problem is also among the major topics in
chemistry.

2. METHODS
2.1. Traditional Approach. These three problems are

usually addressed by rule-based and quantum chemistry
approaches and more recently by machine learning.27,28 For
problems 1 and 2, a reasonable quantum chemistry approach
could be as follows. One would consider the different
possibilities for the missing element (C, H, O, N, or F) one
at a time. For each of them, the atom would be added close to
the molecule, and then a global optimization of its position
would be performed while the atoms of the incomplete
molecule are kept fixed. The possibility with the highest
binding energy would provide the type of the missing atom
and even its position, and from the latter it would be possible
to identify the UC and FC atoms. For problem 3, the reaction
direction could be assessed by computing the energies of the
reactants (A and B) and the product (C). In short, all three
problems could be related to minimization of the energy,
which could in turn be calculated using any kind of human
designed approximation (from ab initio to empirical methods).
The machine learning approaches used to date have simply
aimed at replacing this latter calculation step by a model.

2.2. E2E Approach. Our E2E workflow for solving these
three problems starts by establishing a direct one-to-one
relation between a given representation of the molecules and
the results. A machine learning model is then trained to infer
the answers from the descriptor of a given molecule. Specific
training and test sets were generated starting from the QM9
dataset29,30 (see section 4.1). For the representation of the
molecules, we first considered commonly used descriptors
(their complete definitions can be found in Supporting
Information (SI) section A): the standard Coulomb matrix
(CM),31 the standard distance matrix (DM), the modified
distance matrix with the proton number (DMP), the combined
Coulomb/distance matrix (CDM), the combined Coulomb/
inverse distance matrix (CIM), the coordinate data with the
atomic number (XYZ), and graph neural network (GNN).32

Because of the limitations of these descriptors, we also
introduced a descriptor named bag of clusters (BoC), which is
presented below.

2.3. Bag of Clusters. Besides the seven reference
descriptors presented in SI section A, we used another one,
called bag of clusters, to solve the three chemistry problems in

Figure 1. Graphical representation of the three chemistry problems
addressed by an E2E approach.
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a way that more resembles human intuition. In contrast with
the previous ones, the BoC descriptor is not based specifically
on the pair distances. It is actually inspired by the cluster
expansion (CE) approach33,34 and the bag of bonds (BoB)
concept.35

The core concept of CE is to express the physical properties
of materials as functions of the atomic configuration. The latter
is described in terms of clusters of atoms of fixed shape to
which an effective interaction is associated. It can be
demonstrated that there is an exact infinite expansion for any
physical property.36,37 In practice, sufficient accuracy is often
reached by limiting the expansion to clusters with a small
number of atoms (e.g., one-, two-, and three-body clusters)
that are relatively compact in size (e.g., 5−7 Å in diameter).
The BoB concept35 is based on the bag of words (BoW)

descriptor used in NLP. The latter encodes the frequencies of
occurrence of words in text and is used for solving classification
problems. Similarly, within BoB the molecules are described by
a vector composed of bags, each representing a particular bond
type (C−C, C−N, etc.). The entries in every bag are
computed as ZiZj/|Ri − Rj| and sorted according to their
magnitude. The vector is then obtained by concatenating all
bags of bonds, padding each bag with zeros to give the bags
equal sizes and to allow for dealing with other molecules with
larger bags.
In BoC, the molecules are also described by a vector

composed of bags, but now each bag represents a particular
cluster of atoms of fixed shape, and each entry is simply the
number of occurrences of each cluster. Here only clusters
consisting of one or two atoms are considered, but this could
easily be extended to larger clusters if needed. Since the
molecules of the QM9 database are composed of five different
types of atoms (C, H, O, N, and F), there are five different
one-atom clusters. The different two-atom clusters are
obtained by considering the 15 (C5

2 + 5) different atom pairs
generated by the five different atoms and distinguishing their
different shapes, which depend only on the pair distance d. In
fact, for a given pair, the different shapes are established by
clustering (in the machine learning sense). The distribution of
the distances is illustrated in Figure S1 for each of the atom
pairs in the QM9 database. The counts are established using an
interval of 10−3 Å, focusing on pair distances smaller than 5 Å.
The counts that are less than 5% of the maximum count for
that particular pair are considered as noise and thus are
omitted. The standard K-means algorithm is used to process
the data, requesting a number of groups Ng between 2 and 20.
The quality of the clustering is assessed through the goodness
of variance fit (GVF), which ranges from 0 (bad) to 1
(perfect). The GVF is defined in terms of the sum of squared
deviations from the class mean (SDCM) and the sum of

squared deviations from the array mean (SDAM) as −1 .SDCM
SDAM

38 To prevent dimensional explosion, the smallest Ng that
provides a GVF above 99.5% is selected. Since the counts for
the F−O pair are too small and there is only one cluster for the
F−F pair, these two pairs are discarded from the descriptor. In
the end, we obtain 92 different two-atom clusters, as shown in
Table S1. Therefore, the molecules are described by a vector
with 97 elements (five bags for the one-atom clusters and 92
bags for the two-atom clusters).
As an example, in Figure 2 we present the BoC descriptor of

the ethane molecule. Interestingly, it can be easily split into the
contributions of each of its atoms. For a particular atom, the

latter is obtained by indicating 1 in the vector for the
corresponding one-atom cluster and dividing by two the
number of pairs in which this atom is involved. This possibility
is used here to address problem 1.
Even more excitingly, because there is no zero padding in

BoC, the vector for any molecule can be subtracted from (or
added to) that of another molecule. We refer to this possibility
as ΔBoC. It will be used here to address problem 3.
It should be noted that upon careful analysis of Table S1 and

Figure S1, we can see that the clustering result is not perfect.
For instance, it does not distinguish C−C double and triple
bonds. This is probably the case because the distance
difference between the C−C double and triple bonds is too
small and the count of double bonds in the QM9 distribution
is quite low. We verified that if we preprocess the data by, e.g.,
converting X versus Y to −1

X
1

2 versus log(Y), the C−C
double and triple bonds can be distinguished by the automatic
clustering. Since our focus is on E2E, we prefer to try to feed
raw data to the machine with minimal manual intervention,
and hence, we do not apply this data preprocessing.
We also note that after developing BoC, we became aware of

the existence of a similar descriptor called bag of fragments
(BoF) that was also introduced recently39,40 and is inspired by
the BoW concept. The main difference is that in BoF the
clusters consist only of bonded atoms. We verified that the
reduction of the BoC basis is bad for the learning process.
There is no need to introduce the concept of bond to the
algorithm to achieve an E2E process. In fact, BoC can be seen
as a generalization of BoF: for instance, it also includes two-
atom clusters involving second-nearest neighbors (2NN),
third-nearest neighbors (3NN), etc. However, in some extreme

Figure 2. Determination of the BoC for the ethane molecule with the
different atomic contributions. The molecule is composed of two
single C atoms and six single H atoms. Hence, the five first
components of the vector related to the one-atom clusters are [2, 6, 0,
0, 0]. The molecule shows one C−C pair with d = 1.542 Å, which falls
into cluster #2 in Table S1. It also displays six C−H pairs with d =
1.092 Å (cluster #8), six C−H pairs with d = 2.172 Å (cluster #9), six
H−H pairs with d = 1.765 Å (cluster #10), six H−H pairs with d =
2.528 Å (cluster #11), and three H−H pairs with d = 3.083 Å (cluster
#12). Hence, the final BoC vector for the molecule is [2, 6, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 6, 6, 6, 6, 3, 0, ..., 0]. In terms of atomic contributions,
each C atom is involved in one C−C pair with d = 1.542 Å (cluster
#2), three C−H pairs with d = 1.092 Å (cluster #8), and three C−H
pairs with d = 2.172 Å (cluster #9). The contribution of each C atom
to the BoC vector is [1, 0, 0, 0, 0, 0, 1/2, 0, 0, 0, 0, 0, 3/2, 3/2, 0, 0, 0,
0, ..., 0]. Similarly, the contribution of each H atom to the BoC vector
is [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, 1/2, 1, 1, 1/2, 0, ..., 0].
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cases such as chiral molecules, additional rules are needed to
further improve the distinguishing ability of BoC descriptors.
BoC also presents some similarities to the work of Natarajan
and Van der Ven,37 who extended the CE approach by
expressing the energy of a crystal as a sum of site energies while
allowing for the site energies to be nonlinear functions of the
local correlation functions. However, the E2E philosophy
adopted here is quite different since we are not trying to
machine-learn a specific property (e.g., the energy). Another
interesting difference with all of those previous works lies in
the method of clustering (in the machine learning sense)
employed to automatically determine the clusters used in the
descriptor. It would actually be interesting to determine which
cluster type (two-atom, three-atom, etc.) and range (2NN,
3NN, etc.) are needed to improve the accuracy. One could also
evaluate other clustering methods (e.g., mean shift) and test
different clustering scores (e.g., silhouette score or Calinski−
Harabasz score). However, that goes beyond the scope of the
present paper and will be explored in the future.

3. RESULTS AND DISCUSSION
For problem 1, we need to split the descriptors into the
contributions of each of the individual atoms. As already
explained, this can be done easily for BoC. For DM, DMP, and
CM, the different rows of the descriptor matrix (see SI section
A) can be understood as atomic descriptors too. For XYZ, we
can simply take the coordinates and atomic number of each
atom as an atomic descriptor. For GNN, we have not yet
figured out a way to obtain such an atomic descriptor, so that
method could not be used to address this problem. For most of
the descriptors apart from XYZ, the total accuracy is excellent
(99.81% for BoC, 99.74% for DMP, and 99.66% for CM). For
XYZ, the accuracy falls to 87.8%. In fact, as can be seen in SI
section C (Tables S2−S4), this corresponds to guessing FC for
every site: FC/(UC + FC) = 311441/354696 = 87.8%. The
poor performance of XYZ can simply be understood by the
fact that the atomic descriptor does not contain any
information about the relations of that atom to the other
ones. Indeed, the DM and DMP descriptors contain
information about the distances of each atom to all of the
other ones; the CM descriptor also includes information about
the atomic numbers of the other atoms, and the BoC
descriptor indicates which clusters the atom forms with the
other ones.
In Figure 3, we show a partial enlarged view of the receiver

operating characteristic (ROC) curves for BoC, DMP, and CM
(detailed data are given in SI section C). In ROC evaluation,
the curve that is closer to left-upper point of the figure
represents a better-performing classifier for handling an
unbalanced binary classification. As problem 1 is not a difficult
challenge, most of the descriptors give very good accuracy
results. Among them, BoC performs better than the others.
The breakdown of species of the UC−FC classification are
shown in Table S5. Most of errors originate from C and N
atoms, around which the coordination environment is more
complicated. H, F, and O atoms are easy to spot because of
their small coordination number in most cases.
It is interesting to compare the performance of our E2E

approach with that of the traditional electron counting (EC)
method. The accuracy result tagged with the EC method is
90−96% and fluctuates with the determination of the bond
distance (implementation details can be found in SI), which is
far worse than E2E (99.8%). The EC method faces at least

three problems. The first problem is the determination of the
bond distance. We need to tell the machine what range of
distances between two atoms can be viewed as a bond. This
acts as a sensitive hyperparameter that influences the result a
lot. Second, it is a multisolution problem to complete an
incomplete formula of unsaturated molecular structure. For
example, considering a propylene structure with one H atom
removed from CH3, we cannot determine the location of the
double bond of the remaining CH2CHCH2 part if we rely only
on the electron counting information. Third, the tagging error
of the EC method doubles. One tagging error of an atom with
more electrons inevitably results in a prediction error of
another atom with fewer electrons.
This UC−FC tagging can be exploited to find the position of

missing atom. In SI section E, we show that taking the average
position of the UC atoms already provides a better guess than
any direct regression based on the different descriptors.
Furthermore, we use a conjugate gradient optimizer to refine
the position taking into account the fact that the distance di
between atom i and the missing one should be bigger
(respectively smaller) than D1 when atom i is FC (respectively
UC). However, when atom i is UC, di should be bigger than
D0 = 1.0 Å in order to avoid being too close to any atoms, as
shown in Figure 4. To this end, we define the loss function of
the optimizer as follows:

∑

∑

= [ − ]

+ {[ − ]

+ [ − ] }

d D D

d D D

d D D

Loss min( , )

max( , )

min( , )

i
i

i
i

i

FC

1 1
2

UC

1 1
2

0 0
2

(1)

For problem 2, eight different descriptors are used to find
the missing atom type. As shown in Figure 5, the molecular
BoC descriptor shows the best performance, with an accuracy
of about 98.2%. The descriptors of the CM series reach about
91−93% accuracy (91.9% for CM, 92.4% for CDM, and 93.0%
for CIM), and GNN is a little better (94.6%). The atom
coordinates and the descriptors of the DM series reach even

Figure 3. Partial enlarged view of the ROC curves for UC−FC
classification.
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lower accuracy (84.8% for XYZ, 79.9% for DM, and 86.5% for
DMP). Molecular BoC seems to express the relations between
the atoms in a better way. This enables its unique advantage in
solving molecular-level problems, because finding the missing
atom type can also be understood as classifying the remaining
molecular group.
Small modifications of the Coulomb matrix (CDM and

CIM) improve the performance. However, this improvement is
not significant. This is understandable since the neural network
can easily fit the simple multiplication and division operation
of the input. DMP is significantly improved compared with
DM. Obviously, the extra information about the element types
(i.e., the atomic numbers) is very helpful in understanding the
whole structure of the molecule. DMP is slightly better than
coordinate data that also contains the atomic numbers. This
indicates that simple extraction of specific distance information
helps in this problem. Generally, we believe that the matrices
from the DM and CM series are not able to express the essence
of the problem when dealing with nonregression. GNN has
recently attracted considerable attention in machine learning.
Here it gives better accuracy than the other reference
descriptors. The errors are comparable to those for BoC in
certain cases, but the variance is very large. GNN may need
further fine-tuning since it is really a different approach
compared with the others. As can be seen in Table 1, the

breakdown of atoms shows that the performance is good for C,
H, O, and N but poor for F (the accuracy is only
12/(26 + 1 + 12) = 30.7%), which is disturbed by the large
amount of H with similar electron property.
As we have seen, for problems 1 and 2 BoC shows the best

performance. Although the performance of the other
descriptors is slightly worse, they can also be used to address
these two E2E problems (e.g., using DMP for problem 1 and
GNN or CIM for problem 2). In contrast, for problem 3, BoC
shows the unique advantage that the number of elements in
the descriptor vector does not increase drastically when dealing
with more atoms and more complex systems. This confers to
BoC a wide application potential in the prediction of large
molecular structures. Indeed, let us consider a system with N
atoms. For each atom added to the system, the CM and DM
series matrix representations require 2N + 1 additional
elements, the XYZ representation requires four additional
elements (x, y, z, and Z), and the BoC requires none (unless
the additional atom type was not among those considered
previously, in which case new clusters would need to be added
to the list). Considering a large biological molecule such as
hemoglobin (the oxygen carrier in red blood cells), which is
made up of more than 10k atoms,41 any CM and DM series
matrix descriptor will contain more than 100 million elements.
This is much larger than the number of pixels in a 720p
(1280 × 720) image. Dealing with such a large number of
elements would really be very expensive. Hence, the BoC
approach is a much better choice. Furthermore, BoC does not
require any zero padding for small molecules. This makes it
possible within BoC to compute the difference between (or the
sum of) the representations of two molecules, ΔBoC. ΔBoC is
particularly useful to address problem 3. Indeed, as an input for
the machine learning model, we use the difference between the
BoC of the product (C) and the sum of the BoCs of the
reactants (A and B): ΔBoC = Boc(C) − [BoC(A) + BoC(B)].
In Figure 6, the results obtained with this E2E approach are
presented for four datasets generated using different tagging
algorithms (see SI section F). The results obtained for the
random assignment (Figure 6d) are completely wrong,
indicating that the machine learning model cannot find any
chemistry in that case. This is in clear contrast with the results
obtained for the other three datasets.
All of these results demonstrate that E2E machine learning is

able to solve different chemistry problems by adopting a direct
route similar to human intuition without resorting to any
intermediate property (measured or computed). A simple
neural network with several dense layers is sufficient to solve
these problems as long as there are enough training data.

4. COMPUTATIONAL DETAILS
4.1. Datasets. A dataset specific to each problem was

generated starting from the QM9 dataset,29,30 which contains

Figure 4. Schematic diagram of the loss function. The red spheres
indicate exclusion zones: their radius is either D0 for UC atoms or D1
for FC atoms. The green sphere indicates where the missing atom
should be; its radius is D1. The missing atom position is constrained
to be in the gray area.

Figure 5. Prediction accuracies for the missing atom type.

Table 1. Breakdown of the BoC Prediction Results in
Problem 2

prediction

H C O F N actual

10412 7 14 11 5 H
0 7305 20 0 55 C
66 17 1515 1 45 O
26 0 1 12 0 F
24 61 46 0 1188 N
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134k small stable molecules made of five elements (C, H, O,
N, and F).
For problems 1 and 2, a dataset was first generated by

deleting randomly one atom from each molecule. This
produced 134k high-quality data relating an incomplete
molecule to the type (label) of the missing atom, which
could be used right away for problem 2. For problem 1,
however, it was still necessary to label the different atoms as
being either FC or UC for each incomplete molecule. To this
end, different algorithms were tested (as described in SI
section G). Here we focus on the results obtained with the
following procedure. First, we set a radius for the first-nearest-
neighbor (1NN) shell for the different atom types according
their typical maximum bond lengths as extracted from ref 42:
r1NN
C = 1.86 Å, r1NN

H = 1.65 Å, r1NN
O = 1.86 Å, r1NN

N = 1.83 Å,
r1NN
F = 1.85 Å. Then we tag as UC all of the atoms for which
the missing atom (if present) would have been in their 1NN
shell (i.e., within the sphere of radius r1NN centered on them).
At the end of the procedure, 87.8% (respectively 12.2%) of the
atoms are FC (respectively UC) in the whole dataset.
For problem 3, the dataset was generated by selecting

triplets of molecules from the QM9 database, two of them
being considered as the reactants (A and B) and one as the
product (C) of the chemical reaction A + B → C and by
imposing that the total number of atoms of each type is the
same on both sides of the reaction (i.e., for the reactants and
the product). As a result, 136M (136 821 740) triplets of
molecules were identified as potential candidates for a reaction.
Then four different methods (as described in SI section F)
were used to determine whether the reaction would occur.
Alternatively, one might have used a database of known
reactions, though it should be complemented by a list of
reactions known not to occur. Finally, after all of the reactions
were labeled, a limited dataset was built by randomly selecting

5M reactions tagged as occurring and 5M ones tagged as not
occurring.
For problems 1 and 2, the 134k incomplete molecules

obtained from QM9 were divided into three sets: 99k were
used for training, 11k were employed for validation, and the
rest (about 24k) were utilized for testing. For problem 1, the
134k incomplete molecules generate 2.27M atoms tagged as
UC or FC. Basically, they were obtained from the previously
divided datasets, so that the training set included 1.68M data,
the validation set consisted of 0.19M data, and the test set
comprised 0.4M data. For problem 3, the training set was
taken to be 8 times as large as the validation and test sets, and
four different datasets were considered depending on the
labeling scheme adopted for assessing the direction of the
reaction.

4.2. Machine Learning Model. The molecules were
handled using the Atomic Simulation Environment (ASE).43

For problems 1 and 2, the neural networks were built using
TensorFlow,44 except for GNN, for which we utilized a
modified version of the open source code32 based on
PyTorch.45 In problem 3, we also employed PyTorch. Since
the first five descriptors (CM, DM, DMP, CDM, and CIM) are
2D, they required an extra flattening layer to transform the
format of the data from a 2D tensor to a 1D tensor. Afterward,
the 1D tensor flowed through a sequence of four fully
connected layers. Each dense layer was composed of 256 units
with rectified linear unit (ReLU)46 as the activation function.
For problems 1 and 3, the individual atomic contributions to

the BoC vector and ΔBoC were used as the input with the
same shape. The output of the neural network is a scalar with a
sigmoid activation function. The loss function is the binary
cross-entropy.
To find out the missing atom type (problem 2), an extra

fully connected layer with five nodes and a softmax activation
function was added at the end of the sequence. In our E2E
method, this problem was understood as a molecular challenge,
and the molecular BoCs were used as the input. The loss
function of the model is the sparse categorical cross-entropy.
We used the Adam optimizer47 for all neural network

optimization.

5. CONCLUSIONS

We have demonstrated that it is possible to imitate human
intuition for learning and solving chemistry problems in an
E2E approach, which is inductive rather than deductive. This
approach leads to accuracies higher than 99%, 98%, and 93%
for tackling the following important chemistry problems:
(i) determine the fully coordinated and undercoordinated
atoms in a molecule with one missing atom, (ii) identify the
type of the atom that is missing in such an incomplete
molecule, and (iii) predict the direction of a reaction between
two molecules according to an existing dataset. To achieve
such accuracies, we have used a descriptor for the molecules
called bag of clusters. We have compared it to a series of
previously proposed descriptors, highlighting its advantages: it
is a nonzero padding descriptor, and it can be used at different
levels (atomic contributions, molecule, or sum and difference).
We believe that our findings will generate new ideas and hence
open a new way for machine learning in chemistry.

Figure 6. E2E classification of the reactions starting from different
datasets: direction tagging (a) based on Gibbs free energy, (b) based
on HOMO−LUMO, (c) based on both, or (d) at random.
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