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Introduction

The accurate prediction of materials properties is one of the pivotal goals of
computational condensed matter physics. In this framework, the density
functional theory (DFT) has emerged as an extremely successful approach.
The success of DFT not only encompasses standard bulk materials but also
complex systems such as proteins and carbon nanotubes.

In the framework of the quest for an alternative high-k material to
conventional SiO2 as the gate dielectric in MOS devices, first-principles
calculations can provide insight into the nanoscopic behaviour of novel
materials without requiring empirical data. This is particularly relevant for
the early stages of research when relatively few experimental data are
available. DFT is appropriate to study ground state properties of the
electronic system. In this chapter, we focus on structural, vibrational and
dielectric properties, which all relate to the ground state of the electronic
system and are thus well described within DFT.

Despite its predictive accuracy, DFT calculations have one important
limitation associated with their high computational cost, which limits both
the length and time scales of the phenomena which can be modelled. With the
most widespread DFT approach based on plane-wave basis sets and
pseudopotentials, it is currently possible to treat systems containing up to
hundreds of atoms. For our application to high-k materials, it is important
to note that materials containing transition-metal and first-row elements
(e.g. oxygen) generally present an additional difficulty when treated with
plane-wave basis sets. In fact, their valence wave functions are generally
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strongly localized around the nucleus and may require a large number of
basis functions to be described accurately, thus further limiting the size of the
system that can be investigated.

This chapter is dedicated to the first-principles study of the Hf–Si–O
and Zr–Si–O systems which have drawn considerable attention as
alternative high-k materials. Indeed, the metal oxides HfO2 and ZrO2 as
well as the silicates HfSiO4 and ZrSiO4 in the form of amorphous films are
stable in direct contact with Si up to high temperature, which is highly
desirable to avoid the degradation of the interface properties by formation of
a low-k interfacial layer. In fact, the Hf–Si–O and Zr–Si–O phase diagrams
present a large phase field of stable silicates and the static permittivity e0
increases continuously with the amount of Hf and Zr incorporated into the
silicate film. In order to be able to control this process, it is highly desirable to
develop an understanding of how the permittivities of Hf and Zr silicates are
affected by the underlying nanoscopic structure.

This chapter is organized as follows. In the ‘Theoretical background’
section, we present a brief summary of the DFT and the equations related to
the properties that will be presented in the subsequent sections. We also give
some technical details about the calculations. The ‘Crystalline oxides’ section
is dedicated to the study of structural, vibrational and dielectric properties of
hafnia (HfO2) and zirconia (ZrO2). Both the cubic and tetragonal phases are
considered. The differences and the analogies between the two phases and
between hafnia and zirconia are highlighted. In the ‘Crystalline silicates’
section, we present structural and electronic properties of hafnon (HfSiO4)
and zircon (ZrSiO4). We compare their Born effective charge tensors and
discuss the phonon frequencies at the G point. The dielectric permittivity
tensors are analysed in detail. The fifth section is devoted to the study of
amorphous silicates. We introduce a scheme which relates the dielectric
constants to the local bonding of Si and M= (Hf, Zr) atoms. This scheme is
based on the definition of parameters characteristic of the basic structural
units (SUs) formed by Si and M = (Hf, Zr) atoms and their nearest
neighbours, and allows us to avoid heavy large-scale calculations, which are
beyond current computational capabilities. Applied to amorphous Zr
silicates, our scheme provides a good description of the measured dielectric
constants, both of the optical and the static ones. Finally, in the last section,
we give the conclusions.

Theoretical background

Ground state properties

The main idea of DFT is to describe an interacting system of fermions
through the electron density rather than through the many-body wave
function. For N electrons in a solid obeying the Pauli principle and
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interacting via the Coulomb potential, this means that the basic variable of
the system depends only on three (the spatial coordinates x, y and z) rather
than 3N degrees of freedom.

In 1964, Hohenberg and Kohn [1] demonstrated that the ground state of
the electron system is defined by the electron density which minimizes the
total energy. Furthermore, they showed that all the other ground state
properties of the system (e.g. the lattice constant, the cohesive energy, etc) are
functionals of the ground state electron density. This means that, once the
ground state electron density is known, all the other ground state properties
follow (in principle, at least).

In 1965, Kohn and Sham [2] showed that this variational approach leads
to equations of a very simple form:

ðT þ vKS½n$Þjcal ¼ ðT þ vext þ vH½n$ þ vxc½n$Þjcal ¼ eajcal; ð4:5:1Þ

nowadays known as the Kohn–Sham equations. These effectively single-
particle eigenvalue equations are similar in form to the time-independent
Schroedinger equation, T being the kinetic energy operator and vKS the
potential experienced by the electrons. The latter is generally split into a part
which is external to the electronic system vext, for instance the electron–ion
interaction, and a part describing the electron–electron interactions. For
convenience, the latter is further split into the Hartree potential vH and the
exchange–dcorrelation potential vxc, whose form is, in general, unknown.

The ground state energy of the electronic system is given by:

Eelfcag ¼
X

occ

a

kcajT þ vextjcalþ EHxc½n$; ð4:5:2Þ

where EHxc is the Hartree and exchange–correlation energy functional of the
electron density nðrÞ with dEHxc=dn ¼ vH þ vxc; and the summation runs over
the occupied states a. The occupied Kohn–Sham orbitals are subject to the
orthonormalization constraints,

Z

c*
aðrÞcbðrÞ dr ¼ kcajcbl ¼ dab; ð4:5:3Þ

where a and b label occupied states. The density is generated from

nðrÞ ¼
X

occ

a

c*
aðrÞcaðrÞ: ð4:5:4Þ

Nowadays, DFT is considered as the method of choice for simulating
solids and molecules from first principles. For a review of DFT applications,
we recommend the article of Pickett [3]. The interested reader may find more
technical details about DFT in the review article of Payne et al [4].
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Response properties

In this brief presentation, we focus on the responses of solid systems to two
classes of perturbations: (a) collective displacements of atoms characterized
by a wavevector q (phonons) and (b) homogeneous static electric fields.
These responses can also be calculated within DFT using various methods, as
reviewed by Baroni et al [5].

The method that we adopt in the calculations presented here relies on a
variational approach to density-functional perturbation theory: a complete
description can be found in [6, 7]. The first paper [6] describes the
computation of the first-order derivatives of the wave functions, density and
self-consistent potential with respect to the perturbations mentioned above;
while the second paper [7] is dedicated to the second-order derivatives. We
adopt the same notations as in those references to introduce the properties
that are studied in the subsequent sections. In particular, k and a run over the
atoms in the unit cell and over the three Cartesian directions, respectively; tka
denote the equilibrium positions.

The squares of the phonon frequencies v2
mq at q are obtained as

eigenvalues of the dynamical matrix D̃ka;k0bðqÞ; or as solutions of the
following generalized eigenvalue problem:

k0b

X

~Cka;k0bðqÞUmqðk 0bÞ ¼ Mkv
2
mqUmqðkaÞ; ð4:5:5Þ

where Mk is the mass of the ion k, and the matrix C̃ is connected to the
dynamical matrix D̃ through:

~Dka;k0bðqÞ ¼ ~Cka;k0bðqÞ=ðMkMk0Þ1=2: ð4:5:6Þ

The matrix ~Cka;k0bðqÞ is the Fourier transform of the matrix of the inter-
atomic force constants. It is related to the second-order derivative of the total
energy with respect to collective atomic displacements [7].

The limit q! 0 must be performed carefully [7] by the separate
treatment of the macroscopic electric field associated with phonons in this
limit. A bare dynamical matrix at q ¼ 0 is first computed, then a non-
analytical part is added, in order to reproduce correctly the q! 0 behaviour
along different directions:

~Cka;k0bðq! 0Þ ¼ ~Cka;k0bðq ¼ 0Þ þ ~C
NA
ka;k0bðq! 0Þ: ð4:5:7Þ

The expression of the non-analytical part will be given later on in this section.
For insulators, the dielectric permittivity tensor is the coefficient of

proportionality between the macroscopic displacement field and the
macroscopic electric field, in the linear regime:
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Dmac;a ¼
b

X

eabEmac;b: ð4:5:8Þ

It can be obtained as

eab ¼ ›Dmac;a

›Emac;b
¼ dab þ 4p

›Pmac;a

›Emac;b
: ð4:5:9Þ

In general, the displacement Dmac, or the polarization Pmac, will include
contributions from ionic displacements. In the presence of an applied field of
high frequency, the contribution to the dielectric permittivity tensor resulting
from the electronic polarization, usually denoted e1ab; dominates. This ion-
clamped dielectric permittivity tensor is related to the second-order
derivatives of the energy with respect to the macroscopic electric field [7].
Later on in this section, we will consider the supplementary contributions to
the polarization coming from the ionic displacements.

For insulators, the Born effective charge tensor Z*
k;ba is defined as the

proportionality coefficient relating, at linear order, the polarization per unit
cell, created along the direction b, and the displacement along the direction a
of the atoms belonging to the sublattice k, under the condition of zero electric
field. The same coefficient also describes the linear relation between the force
on an atom and the macroscopic electric field:

Z*
k;ba ¼ V0

›Pmac;b

›tkaðq ¼ 0Þ ¼
›Fk;a

›Eb
; ð4:5:10Þ

where V0 is the volume of the primitive unit cell. The Born effective
charge tensors are connected to the mixed second-order derivative of
the energy with respect to atomic displacements and macroscopic electric
field [7].

Finally, we discuss two phenomena that arise from the same basic
mechanism: the coupling between the macroscopic electric field and the
polarization associated with the q! 0 atomic displacements. The Born
effective charges are involved in both cases.

First, in the computation of the low-frequency (infrared) dielectric
permittivity tensor, one has to include the response of the ions. Their motion
will be triggered by the force due to the electric field, while their polarization
will be created by their displacement.

At the lowest order of approximation in the theory, the macroscopic
frequency-dependent dielectric permittivity tensor eabðvÞ is calculated as
follows:

eabðvÞ ¼ e1ab þ
4p

V0 m

X Sm;ab
v2
m 2 v2

; ð4:5:11Þ

Theoretical background 435



where the mode-oscillator strength Sm;ab is defined as:

Sm;ab ¼
ka0

X

Z*
k;aa0U*

mq¼0ðka0Þ

0

@

1

A

k0b0

X

Z*
k0;bb 0Umq¼0ðk0b0Þ

0

@

1

A: ð4:5:12Þ

A damping factor might be added to equation (4.5.11) in order to take into
account anharmonic effects, and fit frequency-dependent experimental data.
For our purpose, such a damping factor can be ignored.

At zero frequency, the static dielectric permittivity tensor is usually
denoted e0ab; it is obtained by:

e0ab ¼ e1ab þ
m

X

Dem;ab ¼ e1ab þ
4p

V0 m

X Sm;ab
v2
m

: ð4:5:13Þ

In parallel to this decomposition of the static dielectric tensor, one can define
a mode-effective charge vector:

Z*
m;a ¼

P

kbZ
*
k;abUmq¼0ðkbÞ

P

kbU
*
mq¼0ðkbÞUmq¼0ðkbÞ

! "1/2
: ð4:5:14Þ

This vector is related to the global polarization resulting from the atomic
displacements for a given phonon mode m. The non-zero components
indicate the directions in which the mode is infrared active.

Second, in the computation of phonons in the long-wavelength limit, a
macroscopic polarization and electric field can be associated with the atomic
displacements. At the simplest level of theory, the phonon eigenfrequencies
then depend on the direction along which the limit is taken as well as on the
polarization of the phonon. This gives birth to the LO–TO splitting, and to
the Lyddane–Sachs–Teller relation [7].

For insulators, the non-analytical, direction-dependent part of the
dynamical matrix ~C

NA
ka;k0bðq! 0Þ is given by:

~C
NA
ka;k0bðq! 0Þ ¼ 4p

V0

P

gqgZ
*
k;ga

! "

P

g 0qg 0Z*
k 0;g 0b

! "

P

abqae
1
abqb

: ð4:5:15Þ

Hence, once the dynamical matrix at q ¼ 0 as well as e1ab and the Born
effective charge tensors are available, it is possible to compute the LO–TO
splitting of phonon frequencies at q ¼ 0:

Technical details

All our calculations are performed using the ABINIT package, developed by
the authors and collaborators [8]. The exchange–correlation energy is
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evaluated within the local density approximation (LDA) to DFT, using
the Perdew–Wang parametrization [9] of Ceperley–Alder electron-gas
data [10].

Only valence electrons are explicitly considered using pseudopotentials
to account for core–valence interactions. We use norm-conserving
pseudopotentials [11, 12] with Hf(5s, 5p, 5d, 6s), Zr(4s, 4p, 4d, 5s), Si(3s,
3p) and O(2s, 2p) levels treated as valence states.

The wave functions are expanded in plane waves up to a kinetic energy
cut-off of 30Ha. The chosen kinetic energy cut-off and k-point sampling of
the Brillouin zone ensure convergence of all the calculated properties.

Crystalline oxides

Introduction

Hafnia (HfO2) and zirconia (ZrO2) have many similar physical and chemical
properties. These similarities result from the structural resemblance between
the two oxides, which can in turn be explained by the chemical homology of
Hf and Zr.

The electron configuration of hafnium is 4f145d26s2 while it is 4d25s2 for
zirconium. In the periodic table, the inner transition (rare-earth) elements
immediately preceding Hf add electrons to the inner 4f shell from element
no 58, cerium, to no 71, lutetium. Because the nuclear charge increases while
no additional outer shells are filled, there is a contraction in the atomic size.
Consequently, element no 72, hafnium, has a slightly smaller atomic size than
element no 40, zirconium, the group IVB element in the preceding. This
results in the so-called lanthanide contraction. The atomic radii of Hf and Zr
are close to each other: 1.44 and 1.45 Å, respectively [13]. They also have
quasi-identical ionic radii (M4+), 0.78 for Hf and 0.79 Å for Zr, respectively
[14]. Their electronegativity values are almost equal, 1.23 for hafnium and
1.22 for zirconium [15]. All this explains the origin of the similarity between
HfO2 and ZrO2.

Hafnia and zirconia undergo polymorphic transformations with
changes in external parameters. At high temperature, the compounds are
highly defective and their structure is fluorite type (Fm3m). The decreasing
temperature induces a cubic to tetragonal (P42/nmc) phase transition ðc– tÞ
at about 26508C for HfO2 [16] and about 23508C for ZrO2 [17]. This
transition is followed by a tetragonal to monoclinic ðP21=cÞmartensitic phase
transition ðt–mÞ at about 16508C for hafnia [18] and about 11508C for
zirconia [19].

The crystalline structure may also depend on the presence of dopants
(MgO, CaO, Y2O3). For instance, an addition of 3% (wt) Y2O3 stabilizes the
tetragonal form of ZrO2 at room temperature [20]. Finally, the contribution
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of the surface energy also influences the structural stability of nanocrys-
tallites. A crystallite of 30 nm or less is now believed to stabilize the
tetragonal form of ZrO2 at room temperature [21], while for HfO2 the critical
size is about 10 nm [22].

The structural, electronic and dynamical properties of hafnia and
zirconia have been the object of several first-principles studies [23–27]. For
the sake of brevity, our results are only presented here for the cubic and
tetragonal phases. For the monoclinic phase, we refer the interested reader to
the work of Zhao and Vanderbilt [26, 27].

Structural properties

The cubic and tetragonal crystalline structures of HfO2 and ZrO2 are
illustrated in figure 4.5.1. The cubic phase takes the fluorite structure (space
group Fm3m), which is fully characterized by a single lattice constant a. The
M = (Hf, Zr) atoms are in a face-centred-cubic structure and the O atoms
occupy the tetrahedral interstitial sites associated with this fcc lattice.
The unit cell contains one formula unit of MO2 with M = (Hf, Zr). The
tetragonal phase (space group P42/nmc) can be viewed as a distortion of the
cubic structure obtained by displacing alternating pairs of O atoms up and
down by an amount Dz along the z direction, as shown in figure 4.5.1, and by
applying a tetragonal strain. The resulting primitive cell is doubled compared
to the cubic phase, including two formula units of MO2. The tetragonal
structure is completely specified by two lattice constants (a and c) and the
dimensionless ratio dz ¼ Dz=c describing the displacement of the O atoms.
The cubic phase can be considered as a special case of the tetragonal
structure with dz ¼ 0 and c=a ¼ 1 (if the primitive cell is used for the
tetragonal phase, c=a ¼

ffiffiffi

2
p

).
In table 4.5.1, our calculated structural parameters for the cubic and

tetragonal phases of HfO2 and ZrO2 are compared with the experimental

Figure 4.5.1. Structures of the cubic and tetragonal phases of HfO2 and ZrO2. The O
atoms are in white while M= (Hf, Zr) atoms are in grey. For clarity, the Zr–O bonds are
not indicated. For the tetragonal phase, the arrows indicate the displacements of oxygen
pairs relative to the cubic structure.
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values [19, 28]. The agreement is very good: the errors on the lattice constants
and the volumes are smaller than 2%, as is typical for LDA calculations. The
largest discrepancy is for dz in t-ZrO2 (the small displacement from the cubic
phase localization): our value is about 30% smaller than the experimental
data, but it is in excellent agreement with the results of other first-principles
calculations. The discrepancy with experiment is probably due to the fact
that our calculations are performed at zero temperature.

The bond lengths are also found to be in good agreement with
experimental data, as indicated in table 4.5.1. In both the cubic and
tetragonal structures, the M= (Hf, Zr) atoms are eightfold coordinated and
the O atoms are fourfold coordinated. However, in the tetragonal phase,
four O atoms are closer to the M = (Hf, Zr) atom than the other four
(8 and 10% difference in the Hf–O and Zr–O bond lengths, respectively).

Born effective charge tensors

In table 4.5.2, we report non-vanishing components of the calculated Born
effective charge tensors for M=Hf, Zr) and O atoms in the cubic and tetra-
gonal phases of hafnia and zirconia. Due to the symmetry of the cubic phase,
the Born effective charge tensors of M=(Hf, Zr) and O atoms are diagonal
and isotropic. The value of Z* is anomalously large for M = (Hf, Zr)

Table 4.5.1. Structural parameters for the cubic (C) and tetragonal (T) phases of HfO2

and ZrO2.

HfO2 ZrO2

Theoretical Experimental Theoretical Experimental

C
a 5.11 5.08 5.01 5.09
Volume 33.36 32.77 31.44 32.97
d(M–O) 2.21 2.20 2.17 2.20

T
a 5.11 5.15 5.02 5.05
c 5.17 5.29 5.09 5.18
dz 0.0310 – 0.0400 0.0574
Volume 33.75 35.08 32.07 33.04
d(M–O) 2.13 – 2.07 2.05

2.32 – 2.31 2.39

The length unit is the Å. The experimental results for HfO2 are taken from [28], while those for

ZrO2 are obtained by extrapolation to zero temperature using the thermal expansion data of

Aldebert and Traverse [19].
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atoms compared to the nominal ionic charge Z ¼ 4: This behaviour has
also been observed in the case of PbZrO3 [29], and indicates a mixed
covalent–ionic bonding. In the tetragonal structure, the symmetry imposes
that the Born effective charge tensor of M = (Hf, Zr) atoms is diagonal and
only has two independent components: parallel ðZ*

kÞ and perpendicular ðZ*
’Þ

to the c-axis. The value of Z*
’ is identical to the one calculated for

the cubic phase, while Z*
k is 6 and 10% smaller for HfO2 and ZrO2,

respectively. The Born effective charge tensor of O atoms is also diagonal,
but with three independent components. It is quite anisotropic compared
to the cubic phase. Such a strong anisotropy of the Born effective charge
tensor for O atoms has already been observed in SiO2-stishovite [30] and
TiO2-rutile [31].

It is interesting to note that the Born effective charges of c-HfO2 are
about 3% smaller (in absolute value) than those of c-ZrO2. The
comparison between the Z*-values of t-HfO2 and t-ZrO2 is also very
instructive. In directions perpendicular to the c-axis, the Born effective
charges of the M=(Hf, Zr) atoms compare in the same way as for the
cubic phase, while the comparison for the Born effective charges of O
atoms shows an anisotropy in t-ZrO2 stronger than that in t-HfO2 by
about 30% (the values of Z*

’ for t-HfO2 are comprised between those of
t-ZrO2). In the direction parallel to the c-axis, the Born effective charges
in t-HfO2 are larger than in t-ZrO2 by about 2%, showing an opposite
trend with respect to the comparison for the cubic phase. The slightly
different behaviour between hafnia and zirconia can be related to
the differences in the inner electronic shells between Hf and Zr, which
lead to different polarizabilities. This discussion shows the interest of ana-
lysing a dynamical property such as the Born effective charge tensors,
which is able to highlight subtle differences between two very similar
systems.

Table 4.5.2. Non-vanishing components of the calculated Born effective charge tensors for
M= (Hf, Zr) and O atoms in the cubic (C) and tetragonal (T) phases of HfO2

and ZrO2.

Atom HfO2 ZrO2

C
M (þ5.58 þ5.58 þ5.58) (þ5.74 þ5.74 þ5.74)
O (22.79 22.79 22.79) (22.87 22.87 22.87)

T
M (þ5.57 þ5.57 þ5.24) (þ5.74 þ5.74 þ5.14)
O (23.22 22.35 22.62) (23.51 22.24 22.57)

The tensors are diagonal and only the principal elements are given.
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Phonon frequencies at the G point

The theoretical group analysis predicts the following irreducible represen-
tations of optical and acoustical zone-centre modes for the cubic phase:

and for the tetragonal phase:

Because of the non-vanishing components of the Born effective charge
tensors, the dipole–dipole interaction must be properly included in the
calculation of the interatomic force constants [7, 32, 33]. In particular,
the dipole–dipole contribution is found to be responsible for the splitting at
the G point between the longitudinal and transverse optic (LO and TO,
respectively) modes F1u in the cubic phase, and Eu (perpendicular to the
c-axis) and A2u (parallel to c-axis) in the tetragonal phase.

In the absence of experimental data for the cubic phase of both materials
and for the tetragonal phase of hafnia, the following discussion will first
focus on the tetragonal phase of zirconia. A comparison will then be made
between the calculated results for the various phases of both materials.

In the experimental Raman spectra, six lines corresponding to the six
active modes have been observed for pure t-ZrO2 at high temperature [34, 35]
and for samples stabilized by dopants [34, 36–38]. In the case of pure t-ZrO2,
the Raman spectra are found to be very similar except for a slight down-shift
of the frequencies, which was attributed to the increase in lattice constant
with dopant concentration and to temperature effects [34]. In the absence of
t-ZrO2 single crystals of good quality, a reliable assignment of those lines
could not be made. However, the symmetry classification proposed by
Feinberg and Perry [34] is widely used in the literature. It is reported in table
4.5.3, together with the measured phonon frequencies for their yttria-
stabilized t-ZrO2 sample. Theoretical studies have been performed using
lattice-dynamical models, and phonon frequencies in relatively good
agreement with the experimental values have been predicted [39–41].
Consequently, the symmetry assignments given by Feinberg and Perry [34]
were criticized and a second set of assignments was proposed. In particular,
Mirgorodsky et al [40, 41] argued that the A1g mode should be at lower
frequency to account for the change in the dynamical properties of ZrO2.
More recently, using crystallite size effects to stabilize the tetragonal phase,
Bouvier and Lucazeau [42] obtained experimental Raman spectra of pure
t-ZrO2 at room temperature. They proposed a third assignment of the
vibration modes on the basis of a linear chain model: compared to Feinberg
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and Perry [34], it consists in an interchange of the B1g mode and the highest
Eg mode (see table 4.5.3).

As for the infrared (IR) spectra of t-ZrO2, experiments have been carried
out on crystals [43], doped powders [34, 37, 44] and undoped powders
stabilized by their small particle size [39]. But, in the absence of t-ZrO2 single
crystals of good quality, a general agreement has not been reached so far. The
two most recent studies [37, 39], which are reported in table 4.5.3, agree to
assign the Eu TO modes to the lines at about 150 and 500 cm21. These
assignments were also confirmed by calculations [39–41]. However, the
situation is more confused for the A2u mode. To properly fit their reflectance

Table 4.5.3. Fundamental frequencies of the cubic (C) and tetragonal (T) phases of HfO2

and ZrO2 (in cm21) with their symmetry assignments.

HfO2 ZrO2

Mode Theoretical Theoretical Experimental

C
Raman

F2g 579 596
Infrared

F1u (TO) 285 280
F1u (LO) 630 677

T
Raman

A1g 218 259 266 (Eg) 269 (Eg)
B1g(1) 244 331 326 319
B1g(2) 582 607 616 (A1g) 602 (A1g)
Eg(1) 110 147 155 (B1g) 149
Eg(2) 479 474 474 461
Eg(3) 640 659 645 648 (B1g)
Infrared

A2u (TO) 315 339 320 339
A2u (LO) 621 664 – 650 (Eu)
Eu (TO1) 185 153 140 164
Eu (LO1) 292 271 – 232
Eu (TO2) 428 449 550 467
Eu (LO2) 669 734 – 734 (m-ZrO2)
Silent

B2u 665 673

For tetragonal zirconia, the experimental values of the Raman modes are taken from [34, 42] (in

the last two columns, respectively). For the infrared modes, the data for t-ZrO2 are from [37, 39]

(in the last two columns, respectively).
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spectra, Pecharromán et al [39] had to introduce three oscillators in addition
to the two Eumodes. They placed the A2u at 339 cm

21 and attributed the extra
modes at 580 and 672 cm21 to a secondary oscillator and to the presence of
monoclinic zirconia, respectively. Hirata et al [37] also mentioned a broad
band located at 320 cm21, but they attributed it to a Bu mode associated with
traces of monoclinic zirconia.

Our calculated phonon frequencies and symmetry assignments are
reported in table 4.5.3, where they are compared with those of various
experimental results for t-ZrO2. For the phonon frequencies, our results are
globally in better agreement with experimental data than those of previous
theoretical studies. Our symmetry assignments meet all the requirements
discussed in the literature, solving the existing contradictions and clarifying
some important issues.

For the Raman spectra of t-ZrO2, our calculation presents an rms
absolute deviation of 8.4–9.6 cm21, and an rms relative deviation of 2.7–
2.6% with respect to the experimental data of Feinberg and Perry [34] and
those of Bouvier and Lucazeau [42]. Our symmetry assignments reconcile the
arguments developed by Mirgorodsky et al [40, 41] with those proposed by
Bouvier and Lucazeau [42]. On the one hand, the A1g mode is at lower
frequency compared to the assignments by Feinberg and Perry, in agreement
with the arguments of Mirgorodsky et al [40, 41]. On the other hand, the B1g

is found to have high frequency in accordance with Bouvier and
Lucazeau [42].

For the IR-active frequencies of t-ZrO2, our calculation presents an rms
absolute deviation of 18.8 and 59.5 cm21, and an rms relative deviation of 7.6
and 12.3%, with respect to the experimental data of Pecharromán et al [39]
and Hirata et al [37], respectively. We find an LO–TO splitting for the A2u

mode of 325 cm21, much larger than the 15 cm21 found by Pecharromán et al
[39]. Our result is consistent with the large difference between e1 and e0 as
discussed in the ‘Dielectric permittivity tensors’ section. As a result, we
propose that the LO peaks at 650 and 734 cm21 should be attributed to the
A2u and the second Eu modes.

In table 4.5.4, we indicate the relationship between the phonon modes of
the cubic and tetragonal phases in the case of zirconia. Cubic zone boundary
(X point) modes become zone-centre (G point) modes in the tetragonal
structure. Note in particular that the unstable X2

2 zone-boundary mode in
the cubic phase transforms into a stable zone-centre A1g phonon in the
tetragonal form.

It is also very interesting to compare the phonon frequencies calculated
for HfO2 and ZrO2 (see table 4.5.3). There are several possible origins for the
variations that are observed: structural changes (e.g. the volume), change of
the mass ratio Hf=Zr ¼ 1:96; and differences in interatomic force constants.
Given the small structural changes reported in table 4.5.1, we suspect that
their effect should be very small. In order to check this, we compute the
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phonon frequencies for hafnia assuming that the interatomic force constants
are the same as those for zirconia, while the volume is allowed to vary. This
analysis shows that the structural changes play a very minor role, in
agreement with our intuition. As for the role of the mass ratio, it can be
clearly evidenced in the modes in which the M=(Hf, Zr) atoms move
significantly more than O atoms: the B1g(1) and Eg(1) modes of the tetragonal
phase for which the frequencies vary by about 35%. In contrast, the modes in
which the M=(Hf, Zr) atoms are not involved (i.e. F2g in the cubic phase,
and A1g and B2u in the tetragonal phase), as well as those for which the O
atoms move significantly more than the M=(Hf, Zr) atoms (i.e. F1u in the
cubic phase, and B1g(2), Eg(2) and (3), A2u, and Eu(1) and (2) in the tetragonal
phase), should have frequencies very similar in HfO2 and ZrO2. This is
indeed what is observed in most of the cases. However, there are some
significant exceptions for the tetragonal phase: A1g and Eu(1) for which the
frequencies vary by 19 and 17%, respectively. These are cases in which the
effects due to differences in the interatomic force constants are dominant.

Dielectric permittivity tensors

In the cubic phase, the electronic (e1) and static (e0) permittivity tensors are
diagonal and isotropic. Due to the symmetry of the tetragonal crystal, these
tensors are still diagonal, but have two independent components ek and e’,
parallel and perpendicular to the c-axis, respectively. In table 4.5.5, the

Table 4.5.4. Relationship of phonon modes for cubic and tetragonal phases.

Cubic Tetragonal

G X G

Acoustic F1u 0 A2u

Eu

0
0

X2
4 361 B1g 331

X2
5 141 Eg 147

Optic F2g 596 B1g

Eg

607
659

X2
2 191i A1g 259

X2
5 568 Eg 474

F1u 280 A2u

Eu

339
153

Xþ
1 697 B2u 673

Xþ
5 325 Eu 449

The calculated frequencies are given in cm21. For the infrared modes, only the TO frequencies

are reported.

Structural, electronic and dynamical properties of high-k dielectrics444



calculated values of e1 and e0 are reported for the cubic and the tetragonal
phases of hafnia and zirconia. In the tetragonal phase, the e1 tensor is
only slightly anisotropic with about 5 and 10% difference between the
parallel and perpendicular values for t-HfO2 and t-ZrO2, respectively. In
contrast, the e0 tensor is highly anisotropic: the value of e0 in the direction
parallel to the c-axis is 1.6 and 2.4 times smaller than that in the perpendicular
direction for t-HfO2 and t-ZrO2, respectively. While the values of e1 for
the cubic and tetragonal phases are very close, there is a significant difference
in the values of e0.

Adirect comparisonof the calculated dielectric tensorswith experimental
values is very difficult since there are very few data available in the literature,
especially for hafnia. The main problem encountered in the experimental
determination of the dielectric properties is that good quality single crystals
are not available. For the tetragonal phase, the results obtained for undoped
powders stabilized by their small particle size must be analysed in the
framework of effective medium theory [45]. As a result, a unique value of e is
foundwithout distinction between the directions parallel andperpendicular to
the c-axis. In order to compare our results with experimental data, we average
the values parallel and perpendicular to the c-axis:

!e ¼ 2e’ þ ek
3

:

Table 4.5.5. Electronic and static dielectric tensors for the cubic (C) and tetragonal (T)
phases of HfO2 and ZrO2.

HfO2 ZrO2

C
e1 5.37 5.74
De 20.80 27.87
e0 26.17 33.61

T
k ’ k ’

e1 5.13 5.39 5.28 5.74
De1 14.87 22.34 15.03 35.48
De2 5.08 6.91
e0 20.00 32.81 20.31 48.13

The contributions of the different phonon modes to the static dielectric tensor are also indicated.

For the cubic phase, the tensors are diagonal and isotropic. The phonon mode contributions to

ek0 come from the IR-active F1u mode. For the tetragonal phase, the tensors are also diagonal but

they have different components parallel (k) and perpendicular (’ ) to the c-axis. The phonon

mode contributions to ek0 come from the IR-active A2u mode, while the contributions to e’0 come

from the two IR-active Eu modes.
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This average does not really have any physical meaning, and therefore the
comparison is rather qualitative.

For hafnia, we are only aware of measurements of e0. Our calculated
values of 26.17 for the cubic phase, and !e0 ¼ 28:54 for the tetragonal phase
significantly overestimate the values of 16 [46] and 20 [47] obtained in recent
measurements. This overestimation is considerably higher than what can be
expected from our density functional approach and the origin of this
difference remains poorly understood. For the cubic phase, our results agree
within 1% with those obtained by Zhao and Vanderbilt [26] using similar
methods. However, for the tetragonal phase, our calculations disagree
significantly with those of Zhao and Vanderbilt [26]. In fact, we find a ratio of
1.6 between the values of the e0 tensor in directions parallel and
perpendicular to the c-axis, to be compared with the value of 8.6 reported
by Zhao and Vanderbilt [26]. We note that the value of !e0 ¼ 70 proposed by
the latter authors appears excessively high in view of the dielectric constant of
the cubic phase ( ,26.17) and the trends observed for zirconia (see below).

For zirconia, an experimental value of e1 ¼ 4:8 is reported in the
literature for c-ZrO2 [43, 48], while measured values for t-ZrO2 range between
4.2 [39] and 4.9 [49]. Our theoretical values (e1 ¼ 5:74 and !e1 ¼ 5:59 for the
cubic and tetragonal phases, respectively) are larger than the experimental
ones by about 10–15%, as often found in the LDA to DFT. For e0, the
experimental values found in the literature vary from 27.2 [50] to 29.3 [51] for
c-ZrO2, and from 34.5 [51] to 39.8 [51] for t-ZrO2. For the cubic phase, our
calculated value e0 ¼ 33:61 is somewhat larger than experimental estimates,
whereas, for the tetragonal phase, our calculated average !e0 ¼ 38:86 falls in
the range of the experimental data.

For a deeper analysis of the static dielectric tensor, we can rely not only
on the frequencies of the IR-active modes, but also on the corresponding
eigendisplacements and Born effective charges. Indeed, the static dielectric
tensor can be decomposed in the contributions of different modes as
indicated in equation (4.5.13).

The contribution of the individual modes Dem to the static dielectric
constants is presented in table 4.5.5. For each IR-active mode, the relevant
component of the oscillator strength tensor is reported in table 4.5.6. This
tensor is isotropic for the F1u mode in the cubic phase, while in the tetragonal
phase we indicate the parallel–parallel component for the A2u mode, and the
perpendicular–perpendicular component for the Eu modes. We also give the
magnitude of the mode-effective charge vector defined by equation (4.5.14)
which is parallel and perpendicular to the tetragonal axis for A2u and Eu

modes, respectively, while it has an arbitrary orientation for the F1u mode.
The atomic motions for these vibrational modes have been described in detail
in the literature [39, 52, 53].

In table 4.5.6, the Eu(1) mode in the tetragonal phase has the lowest
oscillator strength (Sm) and the lowest mode-effective charge ðZ*

mÞ: However,
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it also has the lowest frequency (see table 4.5.3), which results in the largest
contribution to the static dielectric constant in table 4.5.5. The F1u mode in
the cubic phase has similar characteristics: the oscillator strength is quite
small (though larger than for the Eu(1) mode) but it also has a low frequency
(though not as low as for the Eu(1) mode). The resulting contribution is of the
same order of magnitude as the Eu(1) mode in the tetragonal phase (though
rather smaller). Comparatively, the Eu(2) mode in the tetragonal phase gives
a much smaller (but not negligible) contribution despite its larger oscillator
strength and mode-effective charge.

In fact, the frequency factor plays a crucial role in equation (4.5.13). The
A2u has the largest oscillator strength (about twice that of the Eu(1) mode)
and the largest mode-effective charge. However, its frequency is about twice
that of the Eu(1) mode, and its contribution to the static dielectric constant is
roughly half that of the Eu(1) mode. This difference between A2u and Eu

modes explains why the e0 tensor is highly anisotropic, while the e1 tensor is
only slightly anisotropic.

The same argument holds to rationalize the differences observed in the
static dielectric tensor between the tetragonal and the cubic phases. Indeed,
as already mentioned, the oscillator strength and the mode-effective charge
of the F1u mode are comparable to those of the Eu modes of the tetragonal
phase, while the frequency of the Fu mode is 1.7 times larger than that of the
Eu(1) mode. As a result, the static dielectric constant is noticeably smaller in
the cubic case.

In table 4.5.6, it can be observed that the oscillator strengths and the
mode-effective charges are smaller for HfO2 than for ZrO2. This can be

Table 4.5.6. Components of mode-effective charge vectors Z*
m and oscillator strength

tensor Sm for each of the IR-active modes of the cubic (C) and tetragonal (T)
phases of HfO2 and ZrO2.

HfO2 ZrO2

Z*
m Sm Z*

m Sm

C
F1u 5.82 6.31 6.42 7.65

T
A2u 7.71 11.10 8.14 12.28
Eu(1) 5.75 5.76 5.95 5.91
Eu(2) 5.91 7.03 6.99 9.95

The description of the reported vector and tensor components corresponding to the different

modes is given in the text. The components of the mode-effective charge vectors are given in units

of jej, where e is the electronic charge. The oscillator strengths are given in 1024 atomic units

ð1 a:u: ¼ 0:342 036m3 s22Þ:
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related to the behaviour of the Born effective charges Z*
k;aa0 and the

eigendisplacements UmðkaÞ; the two quantities that appear in the definitions
of Sm,ab and Z*

m;a given in equations (4.5.12) and (4.5.14). On the one hand,
as discussed in the ‘Born effective charge tensors’ section, the Born effective
charges are globally smaller in HfO2 than in ZrO2. On the other hand,
the displacements of Hf atoms are smaller than those of Zr atoms
simply because they are heavier (as discussed in the ‘Phonon frequencies
at the G point’ section).

If one now considers the contributions to the static dielectric constant
reported in table 4.5.5, it appears clearly that for HfO2 the contributions are
smaller than for ZrO2. However, despite the fact that in all cases the
oscillator strengths are smaller for hafnia than for zirconia, two different
situations can be distinguished depending on the behaviour of the phonon
frequencies. On one hand, for the Eu(1) mode, the frequency for HfO2 is
larger than for ZrO2. In this case, the contribution for ZrO2 is noticeably
larger (about 60%) than for HfO2. For the F1u in the cubic phase, the
situation is very similar though the frequency does not change very much. On
the other hand, for the A2u mode, the frequency changes in the opposite way.
As a result, the increase by 6% of the oscillator strengths is almost completely
compensated by the rise of 7% in the frequency: in the end, there only
remains a 1% difference between the contributions for HfO2 and ZrO2. For
the Eu(2) mode, the rise of 5% in the frequency only slightly attenuates the
15% increase of the oscillator strengths.

Crystalline silicates

Introduction

Due to the chemical homology of Hf and Zr discussed in the ‘Introduction’
section, hafnon (HfSiO4) and zircon (ZrSiO4) resemble each other in many
physical and chemical properties. Their similarities are such that there is
complete miscibility between ZrSiO4 and HfSiO4 [54]. In addition to their
importance as potential alternative gate dielectrics, hafnon and zircon are of
geological significance. They both belong to the orthosilicate class of
minerals, which can be found in igneous rocks and sediments. Zircon is used
as a gemstone, because of its good optical quality, and resistance to chemical
attack. In the earth’s crust, hafnon and zircon are host minerals for the
radioactive elements uranium and thorium. Therefore, they have been widely
studied in the framework of nuclear waste storage.

In a recent paper [55], we have studied the structural, electronic and
dynamical properties of zircon using first-principles calculations. In this
section, we present a comparison between hafnon and zircon.
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Structural properties

Hafnon and zircon have a conventional unit cell which is body-centred
tetragonal (space group I41/amd, no 141) and contains four formula units of
MSiO4 withM= (Hf, Zr), as illustrated by the dashed lines in figure 4.5.2(a).
A primitive cell containing only two formula units of MSiO4 can also be
defined, as indicated by the heavy lines in figure 4.5.2(a).

The structure of hafnon and zircon may be viewed as consisting of
(SiO4)

42 anions and M4+ cations with M = (Hf, Zr), as illustrated by the
grey tetrahedra and the black spheres in figure 4.5.2(a). This is consistent
with the larger bond length (about 25%) of the M–O compared to the Si–O
bond. The experimental data describing the structure of hafnon [54] and
zircon [56] are reported in table 4.5.7.

Alternatively, as presented in figure 4.5.2(b), a different view may be
adopted in which HfSiO4 and ZrSiO4 consist of alternating (discrete) SiO4

tetrahedra and MO8 units, sharing edges to form chains parallel to the c-
direction. Note that in these MO8 units four O atoms are closer to the M
atom than the other four (about 6% difference in the M–O bond length; see
table 4.5.7).

The positions of the M = (Hf, Zr) and Si atoms are imposed by
symmetry: they are located at (0, 34,

1
8) and (0, 14,

3
8) on the 4a and 4b Wyckoff

sites, respectively. The O atoms occupy the 16h Wyckoff sites (0, u, v), where
u and v are internal parameters.

Table 4.5.7 summarizes our results obtained after structural and atomic
relaxation. The calculated lattice constants a and c, as well as the internal
parameters u and v, are found to be in excellent agreement with their
corresponding experimental values [54, 56]. Interatomic distances and angles
are within 1 or 2% of the experimental values. This accuracy is to address in a
meaningful way the dynamical and dielectric properties.

Figure 4.5.2. Structure of hafnon and zircon. (a) The individual SiO4 units are represented
schematically by the grey tetrahedra, while M = (Hf, Zr) atoms are indicated by black
spheres. The two sets of dashed lines and heavy lines outline the body-centred-tetragonal
unit cell and the primitive cell, respectively. (b) Besides the SiO4 units, the MO8 triangular
dodecahedra with the M atoms in their centre are also drawn.
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Electronic structure

In figure 4.5.3, we present the calculated electronic density of states (DOS)
for hafnon and zircon. The complete electronic band structure for ZrSiO4

along several directions in the Brillouin zone can be found elsewhere [55]. For
HfSiO4, the electronic band structure is very similar apart from the position
of the Hf 5s and 5p bands, as explained hereafter.

We clearly distinguish four groups in the DOS of the valence bands, of
which the three lowest ones are rather peaked (small dispersion of the bands),
indicative of a weak hybridization. The DOS of hafnon (zircon) exhibits a
very sharp peak at 260.2 eV (247.1 eV) attributed to the Hf 5s (Zr 4s)
states, corresponding to two flat bands in the band structure [55]. The peak
at 229.8 eV for hafnon (225.5 eV for zircon) is related to the Hf 5p (Zr 4p)
states: it includes six electrons per unit cell. The O 2s peak (eight electrons per
unit cell) is located between 218.0 and 216 eV for both hafnon and zircon.

By contrast, the fourth group (24 electrons per unit cell) has a much
wider spread of 8 eV. These states have mainly an O 2p character with some
mixing of Si and M = (Hf, Zr) orbitals. This mixed covalent–ionic bonding
of HfSiO4 and ZrSiO4, appearing in this group of valence bands, should be
kept in mind when interpreting the Born effective charge tensors.

Born effective charge tensors

In the hafnon and zircon structures, the local site symmetry of M= (Hf, Zr)
and Si atoms is rather high (4m2). The Born effective charge tensors of

Table 4.5.7. Structural parameters of HfSiO4 and ZrSiO4.

HfSiO4 ZrSiO4

Theoretical Experimental Theoretical Experimental

a 6.61 6.57 6.54 6.61
c 5.97 5.96 5.92 6.00
u 0.0672 0.0655 0.0645 0.0646
v 0.1964 0.1948 0.1945 0.1967
Volume 130.42 128.63 126.60 131.08
d(Si–O) 1.62 1.61 1.61 1.62
d(M–O) 2.14 2.10 2.10 2.13

2.27 2.24 2.24 2.27
/(O–Si–O) 978 978 978 978

1168 1178 1168 1168

The length unit is the Å. The experimental data are taken from [54] for HfSiO4, and from [56] for

ZrSiO4.
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M = (Hf, Zr) and Si atoms are diagonal and have only two independent
components: parallel and perpendicular to the tetragonal axis, Z*

k and Z*
’;

respectively. The Born effective charge tensors of M= (Hf, Zr) and Si atoms
are reported in table 4.5.8.

We note that Z*
’ for M= (Hf, Zr) is anomalously large compared to the

nominal ionic charge of the hafnium and zirconium ions Z ¼ þ4: A similar
behaviour was also observed in the case of PbZrO3 [29] and of hafnia and
zirconia, as discussed in ‘Crystalline oxides’ section. A detailed analysis of
the physics of Born effective charges in the case of perovskite ferroelectrics
(like PbZrO3) ascribed this effect to a mixed covalent–ionic bonding [57]. In
the ‘Electronic structure’ section, we have seen the occurrence of M–O
2p hybridization. Thus, the physical interpretation of this phenomenon
is probably similar to the case of perovskite ferroelectrics. The other
component of theM= (Hf, Zr) Born effective charge tensor ðZ*

kÞ is also larger
than the nominal ionic charge, although the effect is not as pronounced.

For the silicon atom, there are also some (weaker) deviations with
respect to the nominal value ðZ ¼ þ4Þ; one component being slightly larger,
and one being definitely lower. These are not very different from those
observed in tetrahedrally bonded silica polymorphs, like quartz [58], in which
each O atom is strongly bonded to two Si atoms, or in the more compact
polymorph of silica, stishovite [30], in which each O atom has three close
Si neighbours.

Note that Z*
’ is about 3% smaller for hafnium in HfSiO4 than for

zirconium in ZrSiO4, similarly to what is observed in hafnia and zirconia,

Figure 4.5.3. Electronic DOS for HfSiO4 and ZrSiO4.
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as discussed in the ‘Born effective charge tensors’ section. The Born effective
charge of Si atoms for directions perpendicular to the tetragonal axis shows a
very similar behaviour: it is about 2% smaller in hafnon than in zircon. For
the Born effective charge in a direction parallel to the c-axis, we find for Si
atoms the same trend as for perpendicular directions, but the opposite one
for M = (Hf, Zr) atoms, the Born effective charges for Hf in hafnon being
about 1% higher than for Zr in zircon.

The local site symmetry of the O atoms has only a mirror plane. As a
consequence, the Born effective charge tensors of O atoms are not diagonal,
and depend on five independent quantities. We examine the tensor for the O
atom located at (0, u, v), which is reported in table 4.5.8. The Born effective
charge tensors of the other oxygen atoms can be obtained using the
symmetry operations. For this particular atom, the mirror plane is
perpendicular to x. Note that Z*

yz and Z*
zy are different, but rather small,

making the Born effective charge tensor almost diagonal. They appear in the
mirror plane, where one O–Si bond and two O–M bonds (one long and one
short) are present. One can compute the projection of the Born effective
charge on these directions: for the O–Si bond, the projection is 22.30 in
HfSiO4 (22.29 in ZrSiO4, while it is 23.16 (23.23) for the shorter O–Hf
(O–Zr) bond, and 22.97 (23.02) for the longer bond. In this plane, the
magnitude of the Born effective charge components is larger than the
nominal ionic charge of oxygen ðZ ¼ 22Þ: Following an alternative approach
to the characterization of the anisotropy of this tensor, we select its
symmetric part and diagonalize it. The principal values are given in table
4.5.8 and the principal direction associated with the largest principal value
forms an angle of about 148 with the y-axis. Both analyses give the same type
of anisotropy.

Table 4.5.8. Non-vanishing components of the calculated Born effective charge tensors for
M = (Hf, Zr), Si and O atoms in HfSiO4 and ZrSiO4.

Atom HfSiO4 ZrSiO4

M (+5.28 +5.28 +4.68) (+5.41 +5.41 +4.63)

Si (+3.18 +3.18 +4.35) (+3.25 +3.25 +4.42)

O

21:15 0 0

0 23:08 20:19

0 20:35 22:26

0

B

B

@

1

C

C

A

21:15 0 0

0 23:17 20:16

0 20:34 22:25

0

B

B

@

1

C

C

A

[ 21.15 23.16 22.18] [2 1.15 2 3.23 22.19]

For M = (Hf, Zr) and Si atoms, the tensors are diagonal and only the principal elements are

given. For O atoms, the full tensor is reported and the principal elements of its symmetric part

are indicated between brackets.
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Such a strong anisotropy of the Born effective charge tensor for O
atoms, with one component of magnitude much smaller than two and much
smaller than the two others, has already been observed in SiO2-stishovite [30]
and TiO2-rutile [31]. By contrast, in tetrahedrally bonded silica, there are two
components of magnitudes much smaller than two. Thus, at the level of the
Born effective charges, the ionic–covalent bonding of O atoms to M = (Hf,
Zr) and Si atoms in HfSiO4 and ZrSiO4 is closer to stishovite than to quartz,
in agreement with a naive bond-counting argument. Models of amorphous
silicates MSixOy should take into account this difference, and might be
classified according to the anisotropy of the O Born effective charges. One
expects that for a small content of M = (Hf, Zr) the quartzlike behaviour
dominates, while for M atomic fractions closer to that of hafnon and zircon
the stishovite-like behaviour becomes stronger.

Note finally that the Born effective charges for O atoms are very similar
in HfSiO4 and ZrSiO4. The only significant difference is for the second
principal value, which is 2% smaller in hafnon than in zircon.

Phonon frequencies at the G point

We also compute the phonon frequencies at the G point of the Brillouin zone
for hafnon and zircon. The theoretical group analysis predicts the following
irreducible representations of optical and acoustical zone-centre modes:

Because of the non-vanishing components of the Born effective charge
tensors, the dipole–dipole interaction must be properly included in the
calculation of the interatomic force constants [7, 32, 33]. In particular, the
dipole–dipole contribution is found to be responsible for the splitting
between the longitudinal and transverse optic (LO and TO, respectively)
modes Eu (perpendicular to c) and A2u (parallel to c) at the G point.

In table 4.5.9, the calculated phonon frequencies are compared with
experimental values. For hafnon, experimental data are only available for
Raman modes, in the form of two sets of measurements [59, 60]. Since the
agreement with both sets of data is excellent, we report here only the most
recent data [60]. For zircon, both Raman and IR-active modes have been
studied experimentally [61], the IR data being confirmed by more recent
experiments [62, 63].

Overall, the agreement between theory and experiment is excellent, with
an rms absolute deviation of 4.1 cm21 for HfSiO4 (9.4 cm

21 for ZrSiO4), and
an rms relative deviation of 4.2% (2.5%). We obtain four Raman active
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Table 4.5.9. Fundamental frequencies of HfSiO4 and ZrSiO4 (in cm21) with their
symmetry assignments.

HfSiO4 ZrSiO4

Mode Theoretical Experimental Theoretical Experimental

Raman
A1g(1) 462 450 442 439
A1g(2) 970 984 971 974
B1g(1) 162 157 225 214
B1g(2) 395 401 397 393
B1g(3) 638 620 632 –
B1g(4) 1016 1020 1017 1008
B2g 247 267 252 266
Eg(1) 161 148 194 201
Eg(2) 204 212 225 225
Eg(3) 369 351 375 357
Eg(4) 530 – 536 547
Eg(5) 923 – 923 –

Infrared
A2u (TO1) 312 348 338
A2u (LO1) 423 476 480
A2u (TO2) 598 601 608
A2u (LO2) 656 646 647
A2u (TO3) 983 980 989
A2u (LO3) 1095 1096 1108
Eu (TO1) 252 285 287
Eu (LO1) 313 341 352
Eu (TO2) 395 383 389
Eu (LO2) 409 420 419
Eu (TO3) 420 422 430
Eu (LO3) 461 466 471
Eu (TO4) 873 867 885
Eu (LO4) 1023 1029 1035

Silent
B1u 107 120
A2g 233 242
A1u 383 392
B2u(1) 573 566
B2u(2) 945 943

The experimental values are taken from [60] for HfSiO4 (Raman modes only), and from [61] for

ZrSiO4.
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modes that could not be detected experimentally: two for hafnon (at
530 cm21 [Eg(4)] and 923 cm21 [Eg(5)]) and two for zircon (at 632 cm21

[B1g(3)] and 923 cm21 [Eg(5)]).
We also obtain silent modes, inactive for both IR and Raman

experiments. They are found to range from 107 to 945 cm21 in HfSiO4, and
from 120 to 943 cm21 in ZrSiO4. Two of these (B1u and A2g) are very soft, and
correspond, in a first approximation, to vibration modes in which the SiO4

tetrahedra rotate as a unit [61] (in the u and g modes the tetrahedra move
with opposite phases).

In the ‘Phonon frequencies at the G point’ section, we pointed out three
origins for the variations of the frequencies in Hf- and Zr-based oxides: the
structural changes, the mass ratio Hf/Zr equal to 1.96 and the differences in
interatomic force constants. It is quite interesting to compare on the same
basis the phonon frequencies calculated for HfSiO4 and ZrSiO4 (see
table 4.5.9).

By performing a similar analysis as for HfO2 versus ZrO2, we find that
the structural changes play a very minor role, in agreement with the intuition
resulting from the very small variations observed in table 4.5.7. The effect of
the mass ratio is clear for the B1g(1) mode in which the M = (Hf, Zr) atoms
move significantly more than O atoms: the frequency increases by about 28%
in ZrSiO4. In contrast, the frequencies should not vary much from HfSiO4 to
ZrSiO4 for modes in which the M = (Hf, Zr) atoms are not involved (i.e. all
the silent modes, A1g(1) and (2), and B2g), as well as for those in which the O
atoms move significantly more than the M = (Hf, Zr) atoms. In most of
these cases, this is indeed what is observed; in a few cases, however, the
differences in the interatomic force constants dominate, e.g., for the B1u

mode for which the frequency increases by about 11%.

Dielectric permittivity tensors

Due to the tetragonal symmetry of the hafnon and zircon crystals, the
electronic (e1) and static (e0) permittivity tensors have two independent
components ek and e ’ parallel and perpendicular to the c-axis, respectively.
The calculated values of e1 and e0 are reported in table 4.5.10.

For zircon, values of 10.69 (3.8) [62] and 11.25 (3.5) [63] are reported for
the static (electronic) dielectric permittivity in the directions parallel and
perpendicular to the tetragonal axis, respectively. Our theoretical values are
larger than the experimental ones by about 10%, as often found in the LDA
to DFT. For hafnon, we were not able to find accurate measurements in the
literature: for hafnium silicates, values ranging from 11 to 25 have
been reported.

The contribution of the individual modes Dem to the static dielectric
constant, as defined in equation (4.5.13), is also indicated in table 4.5.10. The
largest contribution comes from the lowest frequency mode. The
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decomposition of the static dielectric tensor can further be analysed using the
mode-effective charge vectors and the oscillator strength tensors, defined by
equations (4.5.12) and (4.5.14), respectively. In table 4.5.11, we present, for
each IR-active mode, the magnitude of its mode-effective charge vectors (this
vector is parallel and perpendicular to the tetragonal axis for A2u and Eu

modes, respectively), as well as the relevant component of the oscillator
strength tensor (the parallel–parallel component for A2u modes, and the
perpendicular–perpendicular component for Eu modes).

Table 4.5.10. Electronic and static dielectric tensors of HfSiO4 and ZrSiO4.

HfSiO4 ZrSiO4

k ’ k ’

e1 4.11 3.88 4.26 4.06
De1 4.93 4.38 5.90 5.16
De2 0.81 0.75 0.52 1.31
De3 0.80 0.35 0.85 0.05
De4 1.27 1.38

e0 10.65 10.63 11.53 11.96

The contributions of individual phonon modes to the static dielectric tensor are indicated. The

tensors are diagonal and have different components parallel (k) and perpendicular (’) to the

c-axis. The phonon mode contributions to ek0 come from the three IR-active A2u modes, while

the contributions to e’0 come from the four IR-active Eu modes.

Table 4.5.11. Components of mode-effective charge vectors Z*
m and oscillator strength

tensor Sm for each of the IR-active modes for HfSiO4 and ZrSiO4.

HfSiO4 ZrSiO4

Z*
m Sm Z*

m Sm

A2u(1) 6.85 7.39 7.68 10.06
A2u(2) 3.78 4.24 2.76 2.64
A2u(3) 6.60 11.22 6.71 11.50
Eu(1) 5.93 4.05 6.79 5.91
Eu(2) 2.94 1.70 3.51 2.71
Eu(3) 1.69 0.91 0.28 0.12
Eu(4) 7.21 14.02 7.37 14.69

The description of the reported vector and tensor components corresponding to the two types of

mode is given in the text. The components of the mode-effective charge vectors are given in units

of jej, where e is the electronic charge. The oscillator strengths are given in 1024 atomic units

ð1 a:u: ¼ 0:342 036m3 s22Þ:
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For each symmetry representation (A2u and Eu), the lowest- and highest-
frequency modes exhibit the largest effective charges and the largest
oscillator strengths. Despite their similar oscillator strengths, the modes of
lowest frequency contribute much more to the static dielectric constant than
the modes of highest frequency, the frequency factor in equation (4.5.13)
playing a crucial role. The second-lowest-frequency modes are moderately
strong, while the third Eu modes have a negligible IR activity.

Similarly to what was observed when comparing hafnia and zirconia
(see the ‘Dielectric permittivity tensors’ section), the oscillator strengths and
the mode-effective charges are smaller for HfSiO4 than for ZrSiO4 (except
for the A2u(2) and Eu(3) modes). The origin of this difference can be traced
back to the Born effective charges and the eigendisplacements. Indeed, as
discussed in the ‘Born effective charge tensors’ section, the Born effective
charges of M = (Hf, Zr) and Si atoms are smaller in HfSiO4 than in ZrSiO4.
Moreover, due to their heavier weight, the displacements of Hf atoms are
smaller than those of Zr atoms.

Coming back to the contributions to the static dielectric constant
reported in table 4.5.10, we observe that most of the contributions for
HfSiO4 are smaller than those for ZrSiO4 (except those of the A2u(2) and
Eu(3) modes). In the cases where the oscillator strengths are smaller for
hafnon than for zircon, the behaviour of the phonon frequencies will also
influence the contribution to e0. Indeed, when the corresponding frequency
in HfSiO4 is higher than in ZrSiO4, the contribution to the static dielectric
constant is further increased (as for the Eu(2) modes). In contrast, when the
frequency is lower, the difference in the contribution is lower than in the
oscillator strength. For instance, for the A2u(1) mode, the oscillator strength
Sm in hafnon is 30% smaller than in zircon, but the corresponding
contribution to e0 is only 20% smaller, since the associated frequency is
about 10% larger. Finally, for the A2u(2) and Eu(3) modes, the frequencies
are very similar (these modes essentially involve displacements of the Si
atoms and of some of the O atoms) and therefore the oscillator strength
governs the trend of the contributions to the static dielectric constant (larger
in hafnon than in zircon).

Amorphous silicates

The dielectric properties of Zr and Hf amorphous silicates constitute an issue
of great practical importance. Early experimental measurements suggested a
supralinear dependence of the static dielectric constant e0 on the M = (Hf,
Zr) concentration [64]. While several phenomenological theories addressed
this behaviour [65, 66], more recent data appear to favour instead a close to
linear dependence [67, 68]. In a recent paper [69], we have used DFT
simulations to shed some light on this particularly relevant issue by
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investigating how the permittivity of Zr silicates is affected by the underlying
nanoscopic structure.

In tackling this technological problem, we face the more general issue of
predicting the dielectric properties of amorphous alloys from first principles.
Brute force analysis of numerous large supercells is beyond present
computational capabilities. To overcome this difficulty, we establish a
relationship between the dielectric properties of Zr silicates and their
underlying nanoscopic structure. Using DFT, we compute optical and static
dielectric constants for various model structures of Zr silicates, both ordered
and disordered. We introduce a scheme which relates the dielectric constants
to the local bonding of Si and Zr atoms. This scheme is based on the
definition of parameters characteristic of the basic SUs formed by Si and Zr
atoms and their nearest neighbours.

Applied to amorphous Zr silicates, our scheme provides a good
description of measured dielectric constants, both optical [68, 70] and static
[67, 68], and reveals the important contribution of ZrO6 SUs to the static
dielectric constant. In a very similar way, our scheme can also be used to
investigate Hf silicates. Only here we briefly indicate how the two
systems compare.

We consider model structures of (ZrO2)x(SiO2)12 x, nine crystalline and
one amorphous, with x ranging from 0 to 0.5, and describe them in terms of
cation-centred SUs. We start with three different SiO2 polymorphs ðx ¼ 0Þ :

[C0] a-cristobalite with four SiO4 SUs per unit cell
[Q0] a-quartz with three SiO4 SUs
[S0] stishovite with two SiO6 SUs

By substituting one of the Si atoms by a Zr atom for each of these models, we
generate three new crystal structures:

[C1] ZrSi in a-cristobalite with three SiO4 and one ZrO4 SUs per unit
cell ðx ¼ 0:25Þ

[Q1] ZrSi in a-quartz with two SiO4 and one ZrO4 SUs ðx ¼ 0:33Þ
[S1] ZrSi in stishovite with one SiO6 and one ZrO6 SUs

We also consider zircon, as well as two other structures generated by
replacing Zr by Si:

[Z2] zircon that contains two SiO4 and two ZrO8 SUs per unit cell
ðx ¼ 0:5Þ

[Z1] SiZr in zircon with two SiO4, one SiO6 and one ZrO8 SUs ðx ¼
0:25Þ

[Z0] fully Si-substituted zircon with two SiO4 and SiO6 SUs ðx ¼ 0Þ
Finally, the amorphous structure [A] is generated using classical molecular
dynamics with empirical potentials [69]. In this study, only a single
disordered structure could be afforded because of the noticeable
computational cost associated.

The atomic coordinates and the cell parameters of all our model
structures are fully relaxed within the LDA to DFT. The calculated optical
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and static dielectric constants for our model structures are given in table
4.5.12. Due to the well-known limitations of the LDA, the theoretical values
are larger than the experimental ones (when available) by about 10%.

In order to understand how the optical dielectric constant (e1) depends
on the underlying atomic nanostructure, we consider the electronic
polarizability !a which is related to e1 by the Clausius–Mosotti relation
[66, 68]:

e1 2 1

e1 þ 2
¼ 4p

3

!a
!V

ð4:5:16Þ

where V̄ is the average SU volume. The polarizability ā can be taken as a
local and additive quantity, in contrast with e1. Therefore, we define ai

values for each SU i, where i ; SiOn (with n ¼ 4 or 6) or ZrOn (with n ¼ 4; 6
or 8), such that:

!a ¼
i

X

xiai; ð4:5:17Þ

where xi is the molecular fraction. In table 4.5.13, we report the five ai values
that we obtain by solving in a least-squares sense the over-determined system
based on the calculated e1 values for the nine crystalline models. The optical
dielectric constants derived from these ai values using equations (4.5.16) and
(4.5.17) compare well with those calculated from first principles, showing
average and maximal errors smaller than 1 and 2.5%, respectively. For
the amorphous model, which was not used to determine the ai values, the
derived value e1 ¼ 3:25 is in excellent agreement with the first-principles

Table 4.5.12. Composition (x), optical (e1) and static (e0) dielectric constants, volume (V̄)
in bohr3, polarizability !a in bohr3, characteristic dynamical charge ð !ZÞ; and
characteristic force constant (C̄) in hartree/bohr2 for the various model
systems.

Model x e1 e0 V̄ !a !Z !C

C0 0.00 2.38 4.30 264.77 19.92 4.21 0.4391
C1 0.25 2.76 5.25 273.21 24.12 4.59 0.3895
Q0 0.00 2.54 4.83 240.34 19.46 4.28 0.4169
Q1 0.33 2.91 5.84 275.28 25.56 4.85 0.3661
S0 0.00 3.36 10.33 153.74 16.16 4.81 0.2716
S1 0.50 4.44 24.20 201.88 25.74 6.14 0.1188
Z0 0.00 3.37 10.11 167.80 17.68 4.76 0.2512
Z1 0.25 3.94 18.36 189.74 22.42 5.29 0.1287
Z2 0.50 4.13 11.81 213.28 26.00 5.58 0.2385
A 0.15 3.24 8.92 213.12 21.75 4.83 0.2424

The reported dielectric constants correspond to orientational averages.
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result e1 ¼ 3:24: These results justify a posteriori the use of equations
(4.5.16) and (4.5.17) to model the optical dielectric constant.

For the static dielectric constant (e0), the phonon contributions preclude
a description in terms of a single local and additive quantity as the electronic
polarizability. To overcome this difficulty, we focus on the difference
between dielectric constants (De):

De ¼ e0 2 e1 ¼ 4p

V0 m

X Sm
v2
m

¼ 4p
!V

!Z2

!C
; ð4:5:18Þ

where vm and Sm are the frequency and the oscillator strength of the mth
mode. The volume of the primitive unit cell V0 is related to the volume V̄ and
to the number of SUs N̄ by V0 ¼ !N !V: The characteristic dynamical charge Z̄
and characteristic force constant C̄ are defined by:

!Z2 ¼ 1
!N k

X

Z2
k and !C21 ¼ 1

!N m

X Sm
v2
m
!Z2
; ð4:5:19Þ

where Zk are the atomic Born effective charges.
The variation of De due to a Si! Zr substitution has been analysed in

detail in [69], where the contribution from sixfold-coordinated atoms has
been highlighted. In fact, these configurations resemble those in ABO3

perovskites. The enhancement of De originates from very low-frequency
modes in which the cations (A or B) move in opposition with the O atoms
while carrying opposite effective charges.

By analogy with the polarizability, we define Zi and Ci values for each
SU such that:

!Z2 ¼
i

X

xiZ
2
i and !C21 ¼

i

X

xiC
21
i ; ð4:5:20Þ

though the locality and the additivity of these parameters is not guaranteed a
priori. We determine the optimal values Zi and Ci in the same way as for ai

(table 4.5.13).
For the nine crystalline models, the values of De obtained by

introducing these parameters in equations (4.5.18) and (4.5.20) match quite

Table 4.5.13. Polarizability (a in bohr3), characteristic dynamical charge (Z) and
characteristic force constant (C in hartree/bohr2) for various SUs.

SiO4 SiO6 ZrO4 ZrO6 ZrO8

a 19.68 16.14 37.37 35.35 32.69
Z 4.29 4.92 5.66 7.16 6.73
C 0.3597 0.2176 0.4202 0.0817 0.1153
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well with those calculated from first principles [69], though the agreement is
not as impressive as for e1. Differences result primarily from the
determination of C̄. By contrast, the values of Z̄ given by equation (4.5.20)
agree very well with those computed from first principles, showing an average
and maximal error smaller than 2 and 3%, respectively. A posteriori, C̄
appears to be less local and additive. In fact, it can be demonstrated that the
locality of C̄ is closely related to the dynamical charge neutrality of the SUs
[69].

For the amorphous model, which was not used to determine the Zi and
Ci values, the agreement between the model and the first-principles De is
excellent with an error smaller than 1% [69]. Indeed, our scheme is more
accurate for disordered systems, where the localization of vibrational modes
is enhanced and the dynamical charge neutrality appears better respected.

For Zr silicates of known composition in terms of SUs, the parameters
in table 4.5.13 fully determine the dielectric constants. Several points are
noteworthy. First, the three parameters of Zr-centred SUs all contribute to
enhancing the dielectric constants over those of Si-centred ones of
corresponding coordination1. This is clearly at the origin of the increase of
e1 and e0 with increasing Zr concentration. Second, while the polarizability
ai of a given SU (Si or Zr centred) steadily decreases with increasing
coordination, such a regular behaviour is not observed for the parameters Zi
and Ci determining De. In fact, Zi and Ci concurrently vary to enhance the
contribution of ZrO6 units, which are the SUs giving the largest contribution
to De in amorphous Zr silicates.

Based on the scheme given by equations (4.5.16)–(4.5.20), we can now
estimate e1 and e0 for amorphous (ZrO2)x(SiO2)12x as a function of Zr
composition ð0 , x , 0:5Þ: Using measured densities for Zr silicates [70], we
first obtain e1 as a function of x. As shown in figure 4.5.4, our theoretical
values2 are in excellent agreement with available experimental data [68, 70].

To apply our scheme for De, we need additional information on the
cationic coordination. We take the Si atoms to be fourfold coordinated. The
coordination of Zr atoms is less well determined. Recent EXAFS
measurements [65] indicate that the average Zr coordination grows from
about four to about eight for Zr concentrations increasing from x , 0 to
x , 0:5: In figure 4.5.4, we report calculated e0 for amorphous (ZrO2)x
(SiO2)12x as a function of x, together with the available experimental data
[64, 67, 68, 71].

1In table 4.5.13, the value of C for SiO4 apparently leads to a higher contribution to
De than that for ZrO4. This is an artifact of the approach we used to determine the Zi
and Ci.
2Because the various Zr-centred units have close a values compared to SiO4 (table
4.5.13), the effect of Zr coordination on e1 is negligible.
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The theoretical results are given in the form of a band reflecting the
indetermination of the coordination of Zr atoms. We modelled the dielectric
constant in terms of suitable distributions of three representative SUs (ZrO4,
ZrO6 and ZrO8). The upper curve delimiting the band in figure 4.5.4
corresponds to structures entirely composed of ZrO6 units. The lower curve
is for amorphous systems which do not contain any ZrO6 units. The average
Zr coordination varies linearly from four to eight between x ¼ 0 and x ¼ 0:5;
with concentrations of ZrO4 and ZrO8 SUs varying at most quadratically.
Note that the upper part of the band agrees well with the recent experimental
data [67, 68]. The earlier data [64, 71] cannot be explained. Figure 4.5.4 shows
that, for a sufficient number of ZrO6 units, values of e0 at intermediate x can
indeed be larger than estimated from a linear interpolation between SiO2 and
ZrSiO4. However, in accord with recent experiments [67, 68], our theory
indicates that the extent of this effect is more limited than previously as-
sumed [64, 65].

Our scheme could also be applied to Hf silicates which are very similar
to Zr silicates. In this respect, the comparison between HfSiO4 and ZrSiO4

carried out in the ‘Crystalline silicates’ section is very useful. Translated in
terms of the quantities defined in this section, we get V̄=220.13, !a ¼ 25:74;
!Z ¼ 5:50 and !C ¼ 0:2581 for hafnon to be compared with !V ¼ 213:28; !a ¼
26:00; !Z ¼ 5:58 and !C ¼ 0:2385 for zircon. Basically, all these parameters
show a similar trend that leads to smaller dielectric permittivities (both

Figure 4.5.4. Dielectric constants (e1 and e0) as a function of composition x for
amorphous (ZrO2)x(SiO2)12 x. The grey region corresponds to results derived from our
model scheme and reflects the indetermination of the number of ZrO6 units. The upper
curve delimiting the band corresponds to structures entirely composed of ZrO6 units, while
the lower curve represents a smooth transition from a structure composed of ZrO4 units at
x ¼ 0 to one composed of ZrO8 units at x ¼ 0:5, without the occurrence of any ZrO6

units. The references for the experimental data are: V [70], X [67], W [68], B [64], A
[71], O [72] and K [73].
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electronic and static) for hafnon than for zircon. For amorphous Hf silicates,
we expect the same kind of consideration to apply.

Conclusions

Using DFT, we have investigated the structural, electronic, dynamical and
dielectric properties for a series of high-k materials belonging to the Hf–Si–
O and Zr–Si–O systems. We have considered hafnia and zirconia (the
crystalline oxides), hafnon and zircon (the crystalline silicates) and finally the
amorphous silicates.

In all the investigated systems, the parameters of the relaxed atomic
structures are found to be in very good agreement with experimental ones
(when available). The phonon frequencies at the centre of the Brillouin zone,
the Born effective charge tensors, and the dielectric permittivity tensors have
been obtained using density-functional perturbation theory.

For the crystalline systems, we have found an excellent agreement
between the calculated phonon frequencies and their corresponding
experimental values. For hafnia and zirconia, both the cubic and the
tetragonal phases have been investigated. For t-ZrO2, we have proposed new
symmetry assignments that meet all the arguments discussed in the literature.
Our assignments solve the apparent contradictions of previous works,
clarifying some important issues. We have also illustrated the relationship
between the phonon modes of the cubic and the tetragonal phases. In all the
cases, the differences between the Hf- and Zr-based systems have been
analysed in detail and interpreted in terms of structural changes, the mass
ratio and variations of interatomic force constants.

An important anisotropy was observed in the Born effective charge
tensors. For some directions, these effective charges are found to be larger
than the nominal ionic charge, indicating a mixed covalent–ionic bonding
between M = (Hf, Zr) and O atoms, and between Si and O atoms. We have
also discussed the effective charges focusing on the changes between the
systems containing hafnium and those containing zirconium.

The electronic and static dielectric permittivity constants have been
computed, and a detailed analysis of the contributions of individual
vibrational modes has been performed, including the computation of mode-
effective charges and oscillator strengths. For the tetragonal systems (t-HfO2,
t-ZrO2, HfSiO4 and ZrSiO4), we observed, for directions both parallel and
perpendicular to the tetragonal axis, that a single mode contributes for more
than 60% of the full ionic contribution. Our first-principles approach allows
us to obtain the corresponding eigenvectors, showing clearly that the
displacement is characterized by Zr and O atoms moving in opposite
directions. In the silicates, the displacement of Si atoms in these modes is less
than half those of the other species, inducing a substantial distortion of
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the SiO4 tetrahedra in contradiction to what was previously thought. For all
systems, the modifications related to the presence of Zr rather than Hf have
been rationalized in terms of the difference in mass between these atoms,
variations of interatomic force constants and changes in structural
parameters (minor effect).

For hafnon and zircon, we have also calculated the electronic DOS in
which the contributions from Hf 5s and 5p, Zr 4s and 4p and O 2s and 2p are
clearly distinguishable, although the spread of the latter indicates
hybridization with atomic M = (Hf, Zr) and Si orbitals.

Finally, we have investigated the dielectric properties of amorphous
silicates. We have provided a simple scheme which relates the optical and
static dielectric constants of Zr silicates to their underlying nanoscopic
structure. Our theory supports recent experiments which find a close to linear
dependence of e0 on the Zr fraction x, and shows that higher dielectric
constants can be achieved by increasing the concentration of ZrO6 SUs. For
Hf silicates, we expect a very similar behaviour based on the comparison
made throughout this chapter.
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