
First-Principles Study of Dynamical and Dielectric Properties of
Orthorhombic Phases of Group IVb Transition Metal Oxides

G.-M. Rignanese

European Theoretical Spectroscopy Facility (ETSF) and
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Using density-functional theory, we investigate the structural, vibra-
tional and dielectric properties of the orthorhombic phases of the
group IVb transition metal dioxides (HfO2, ZrO2, TiO2). We dis-
cuss the Born effective charge tensors, the phonon frequencies at the
Γ point of the Brillouin zone, and the dielectric permittivity tensors.

Introduction

For several decades, silicon dioxide has been used as the gate dielectric in metal-oxide-
semiconductor (MOS) transistors. With the continuous reduction of their size, the thick-
ness of the gate dielectric has steadily decreased in order to increase the gate capacitance
and thereby the drive current and the device performance. Below 2 nm thickness, leak-
age currents appear due to direct tunneling through the oxide, leading to increased power
consumption and reduced device reliability. Therefore, further size reduction of MOS tran-
sistors requires the replacement of the SiO2 gate dielectric with a material of higher permit-
tivity in order to maintain a small gate leakage current (1). Considerable research efforts
have been dedicated to the study of potential dielectric-gate materials.

The group IVb transition metal (Hf, Zr, Ti) metal oxides stand among the most promis-
ing candidates to replace SiO2. Indeed, these materials have shown much promise (1).
On the one hand, the TiO2 system is attractive due to its anomalously high permittivity
(2, 3, 4, 5). On the other hand, HfO2 and ZrO2 in the form of amorphous films are stable in
direct contact with Si up to high temperature, which is highly desirable to avoid the degra-
dation of the interface properties by formation of a low-k interfacial layer (6).

The dynamical (Raman and infrared vibrational frequencies) and dielectric properties
of the various crystalline forms of HfO2, ZrO2, and TiO2 constitute an issue of great practi-
cal relevance, which has stimulated a series of first-principles investigations (7, 8, 9, 10, 11).
First, the tetragonal phase of ZrO2 was considered (7) and compared to the cubic phase,
which had been studied previously for other reasons(12, 13). The study of the monoclinic
phase of ZrO2 (8) completed nicely the analysis of crystalline Zr oxides. Similar studies
were also performed for crystalline HfO2 (9, 11) and TiO2 (10). In this paper, we ex-
tend these previous works by performing a thorough study of the orthorhombic phases of
HfO2, ZrO2 and TiO2 that have been observed at high-pressure (14, 15, 16, 17) or in thin
films (18, 19). Note that the dielectric constants of the orthorhombic phases of HfO2 and
ZrO2 have also been calculated (20).

The present paper is organized as follows. The technical details are described briefly in
the first section. The structural parameters of the O-I and O-II phases of HfO2, ZrO2, and
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TiO2 are discussed in the second section. The corresponding Born effective charge tensors,
the phonon frequencies at the Γ point of the Brillouin zone are presented in the third and
fourth sections, respectively. The respective dielectric permittivity tensors are analyzed in
detail in the fifth section. Finally, we summarize our results and conclude.

Technical Details

All our calculations are performed using the ABINIT package, developed by the au-
thors and collaborators (21). The exchange-correlation energy is evaluated within the local
density approximation to density-functional theory, using Perdew-Wang’s parameteriza-
tion (22) of Ceperley-Alder electron-gas data (23).

Only valence electrons are explicitly considered using pseudopotentials to account for
core-valence interactions. We use norm-conserving pseudopotentials (24, 25). The param-
eters used to generate the pseudopotentials are reported in Table I. We adopt a separable
form for the pseudopotentials (26) treating the following angular-momentum waves as lo-
cal: f for Hf, d for Zr, d for Ti, and p for O.

TABLE I. Pseudopotentials parameters for the different atomic species: levels treated as valence states,
reference configuration, and corresponding core radii (r in a.u.) taken for describing the various angular
waves (s, p, d, and f ).

Atom Valence states Reference configuration rs rp rd rf

Hf 5s, 5p, 5d, 6s 5s25p65d26s2 1.50 2.85 2.45 3.50
Zr 4s, 4p, 4d, 5s 4s24p64d25s0 1.75 1.55 1.70
Ti 3s, 3p, 3d, 4s 3s23p63d24s0 1.25 1.25 1.65
O 2s, 2p 2s22p4 1.50 1.50

The wavefunctions are expanded in plane waves up to a kinetic energy cutoff of 30 Ha.
The Brillouin zone is sampled by Monkhorst-Pack grids (27). For the O-I phase, we use a
2×4×4 mesh that leads to 4 special k-points in the irreducible Brillouin zone; while, for
the O-II phase, we adopt a 4×6×3 mesh that results in 12 special k-points. The chosen
kinetic energy cutoff and k-point sampling of the Brillouin zone ensure convergence of all
the calculated properties.

Linear response properties such as the Born effective charge tensors or the phonon
frequencies are obtained as second-order derivatives of the total energy with respect to
an external electric field or to atomic displacements. These second-order derivatives are
calculated within a variational approach to density-functional perturbation theory (28, 29,
30). parameters as for the calculation of the ground state properties.

Structural Properties

The O-I phase (space group Pbca, N◦ 61) of HfO2, ZrO2, and TiO2 has an orthorhom-
bic unit cell which contains 8 formula units of MO2 with M=(Hf, Zr, Ti). All the atoms
occupy 8c Wyckoff sites (x, y, z) with parameters x, y, and z specified for M atoms and
two non-equivalent oxygen atoms O1 and O2. The atoms of type O1 are threefold coor-
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dinated, while O2 are fourfold coordinated. All M atoms are equivalent and are sevenfold
coordinated. Three lattice-vector parameters (a, b, and c) and nine internal parameters are
needed to fully specify the structure. Our calculated structural parameters for the O-I phase
of HfO2, ZrO2, TiO2 are reported in Table II. Our results are in good agreement with pre-
vious theoretical calculations (15, 17).

TABLE II. Structural parameters for the O-I and O-II phases of of HfO2, ZrO2, and TiO2. The length unit is
the Å. The volume per formula unit V is given in Å3.

HfO2 ZrO2 TiO2

O-I a b c 10.14 5.30 5.11 9.94 5.20 4.88 9.17 4.88 4.70
M (0.885 0.034 0.254) (0.885 0.035 0.254) (0.886 0.043 0.253)
O1 (0.792 0.377 0.128) (0.792 0.378 0.132) (0.791 0.380 0.143)
O2 (0.977 0.739 0.497) (0.977 0.739 0.497) (0.972 0.737 0.495)

O-II a b c 5.61 3.32 6.57 5.50 3.27 6.41 5.18 3.03 6.05
M (0.246 0.250 0.115) (0.246 0.250 0.114) (0.243 0.250 0.117)
O1 (0.359 0.250 0.427) (0.359 0.250 0.427) (0.359 0.250 0.427)
O2 (0.026 0.750 0.337) (0.026 0.750 0.337) (0.027 0.750 0.340)

The O-II phase (space group Pnma, N◦ 62) of HfO2, ZrO2, and TiO2 has an orthorhom-
bic unit cell which contains 4 formula units of MO2 with M=(Hf, Zr, Ti). All the atoms
occupy 4c Wyckoff sites (x, 1

4
, z) with parameters x and z specified for M atoms and two

non-equivalent oxygen atoms O1 and O2. The atoms of type O1 are fourfold coordinated,
while O2 are fivefold coordinated. All M atoms are equivalent and are ninefold coordi-
nated. Three lattice-vector parameters (a, b, and c) and six internal parameters are needed
to fully specify the structure. Our calculated structural parameters for the O-II phase of
HfO2, ZrO2, TiO2 are reported in Table II. Our results are in good agreement with previous
theoretical calculations (15).

Born Effective Charge Tensors

In Table III, we report the calculated Born effective charge tensors of M=(Hf, Zr, Ti)
and O atoms in the two phases of hafnia, zirconia, and titania. Due to the symmetry of the
O-II phase, the xy and yx components of the Born effective charge tensors vanish for all
atoms. The principal values of the symmetric part of the tensors are also given in Table III.

In both phases, the principal values of Z∗ are anomalously large for M=(Hf, Zr, Ti)
atoms compared to the nominal ionic charge Z=+4, indicating a mixed covalent-ionic
bonding (31). The same observation holds for the O1 and O2 atoms for which the nominal
ionic charge is Z=−2. On average, the principal values of Z∗ are slightly larger in the O-I
phase. Note also that the anisotropy of the Born effective charge tensors is less pronounced
for the O-II phase, the highest anisotropy being encountered for the O1 atoms in the O-I
phase with a ratio between the largest and smallest components of about 2.6, 2.8 and 3.5
for HfO2, ZrO2, and TiO2, respectively.

Turning to the comparison between hafnia, zirconia, and titania, it appears that the Born
effective charges are very similar in HfO2 and ZrO2 while the difference are noticeable with

ECS Transactions, 11 (4) 47-58 (2007)



50

TABLE III. Calculated Born effective charge tensors of M=(Hf, Zr, Ti) and for the two types of O atoms in
the O-I and O-II phases of HfO2, ZrO2, and TiO2. The principal values of the symmetric part of the tensors
are also indicated between brackets.

HfO2 ZrO2 TiO2

O-I M
⎛
⎝ 5.50 -0.03 0.27

-0.42 5.33 0.05

0.03 0.14 4.99

⎞
⎠

⎛
⎝ 5.68 0.01 0.31

-0.44 5.48 0.03

0.04 0.14 5.07

⎞
⎠

⎛
⎝ 6.01 0.16 0.52

-0.78 6.06 -0.06

0.04 0.16 4.80

⎞
⎠

[
5.66 5.27 4.89

] [
5.83 5.42 4.98

] [
6.36 5.78 4.73

]
O1

⎛
⎝ -2.98 0.97 0.60

0.79 -2.55 0.34

0.67 0.34 -2.46

⎞
⎠

⎛
⎝ -3.08 1.09 0.64

0.87 -2.64 0.35

0.67 0.35 -2.49

⎞
⎠

⎛
⎝ -3.33 1.60 0.63

1.10 -3.08 0.34

0.71 0.36 -2.28

⎞
⎠

[
-3.75 -2.84 -1.43

] [
-3.93 -2.87 -1.41

] [
-4.59 -2.78 -1.32

]
O2

⎛
⎝ -2.52 -0.01 0.03

-0.04 -2.78 0.36

0.08 0.32 -2.53

⎞
⎠

⎛
⎝ -2.60 -0.01 0.02

-0.05 -2.84 0.38

0.11 0.32 -2.58

⎞
⎠

⎛
⎝ -2.68 0.00 -0.08

-0.04 -2.98 0.43

0.20 0.41 -2.52

⎞
⎠

[
-2.52 -3.02 -2.29

] [
-2.60 -3.09 -2.33

] [
-2.68 -3.23 -2.27

]

O-II M
⎛
⎝ 4.99 0.00 0.22

0.00 4.97 0.00

0.07 0.00 5.13

⎞
⎠

⎛
⎝ 5.05 0.00 0.20

0.00 5.02 0.00

0.12 0.00 5.19

⎞
⎠

⎛
⎝ 4.84 0.00 0.29

0.00 4.83 0.00

0.10 0.00 4.99

⎞
⎠

[
4.90 4.97 5.22

] [
4.95 5.02 5.29

] [
4.71 4.83 5.12

]
O1

⎛
⎝ -2.38 0.00 0.25

0.00 -2.31 0.00

0.21 0.00 -2.80

⎞
⎠

⎛
⎝ -2.40 0.00 0.24

0.00 -2.36 0.00

0.21 0.00 -2.85

⎞
⎠

⎛
⎝ -2.18 0.00 0.37

0.00 -2.11 0.00

0.19 0.00 -2.74

⎞
⎠

[
-2.28 -2.31 -2.90

] [
-2.31 -2.36 -2.94

] [
-2.06 -2.11 -2.86

]
O2

⎛
⎝ -2.61 0.00 0.14

0.00 -2.67 0.00

0.01 0.00 -2.33

⎞
⎠

⎛
⎝ -2.64 0.00 0.09

0.00 -2.66 0.00

-0.03 0.00 -2.35

⎞
⎠

⎛
⎝ -2.66 0.00 0.19

0.00 -2.72 0.00

0.14 0.00 -2.25

⎞
⎠

[
-2.63 -2.67 -2.31

] [
-2.64 -2.66 -2.35

] [
-2.72 -2.72 -2.19

]

respect to TiO2 with the the following global trend: Z∗(HfO2) ≤ Z∗(ZrO2) ≤ Z∗(TiO2).
For the metal atoms, titania presents the largest principal values in the O-I phase (up to
10% larger in TiO2 than in ZrO2) while in the O-II phase the differences between HfO2,
ZrO2, and TiO2 are smaller (at most 4%). For the oxygen atoms, the difference in the Born
effective charges are also a few percent at the noticeable exception of the O1 atoms in the
O-I phase (already pointed out) for which the principal values can be up to 17% larger in
titania compared to zirconia.

Phonon Frequencies at the Γ Point

The theoretical group analysis predicts the following irreducible representations of op-
tical and acoustical zone-center modes for the O-I phase:

ΓO−I = 9Ag ⊕ 9B1g ⊕ 9B2g ⊕ 9B3g︸ ︷︷ ︸
Raman

⊕ 8B1u ⊕ 8B2u ⊕ 8B3u︸ ︷︷ ︸
IR

⊕ 9Au︸︷︷︸
Silent

⊕B1u ⊕ B2u ⊕ B3u︸ ︷︷ ︸
Acoustic
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and for the O-II phase:

ΓO−II = 6Ag ⊕ 3B1g ⊕ 6B2g ⊕ 3B3g︸ ︷︷ ︸
Raman

⊕ 5B1u ⊕ 2B2u ⊕ 5B3u︸ ︷︷ ︸
IR

⊕ 3Au︸︷︷︸
Silent

⊕B1u ⊕ B2u ⊕ B3u︸ ︷︷ ︸
Acoustic

Due to the non-vanishing components of the Born effective charge tensors, the dipole-
dipole interaction leads to the splitting at the Γ point between the longitudinal and trans-
verse optic (LO and TO, respectively) modes B1u, B2u, and B3u in both phases. Our calcu-
lated phonon frequencies and symmetry assignments are reported in Tables IV and V.

TABLE IV. Fundamental frequencies (in cm−1) of the O-I phase of HfO2, ZrO2, and TiO2 with their sym-
metry assignments. The superscript (m or o) indicates the atoms (metal or oxygen) whose motion dominates
in the vibrational mode.

Mode HfO2 ZrO2 TiO2 Mode HfO2 ZrO2 TiO2 Mode HfO2 ZrO2 TiO2

Raman Ag(1) 109.0 141.0 173.3 Ag(2)m 135.3 189.4 242.5 Ag(3) 186.7 209.1 277.1
Ag(4) 252.1 328.4 320.7 Ag(5) 334.4 352.8 358.6 Ag(6) 382.6 371.2 443.2
Ag(7) 434.8 429.3 486.0 Ag(8) 564.3 564.4 614.7 Ag(9) 616.0 614.8 671.6

B1g(1)m 127.8 178.0 207.6 B1g(2)m 156.4 217.8 310.9 B1g(3)m 214.2 289.7 330.8
B1g(4) 288.6 313.0 404.5 B1g(5)o 428.1 430.7 465.3 B1g(6)o 466.8 454.1 468.3
B1g(7) 567.3 576.5 639.1 B1g(8)o 651.0 655.3 713.6 B1g(9) 679.8 690.0 748.8

B2g(1)m 138.5 195.9 259.1 B2g(2)m 166.2 226.1 291.2 B2g(3)m 196.0 267.2 309.3
B2g(4) 296.3 313.8 348.5 B2g(5)o 339.2 341.5 392.2 B2g(6)o 455.7 454.1 486.4
B2g(7) 495.1 491.7 552.9 B2g(8) 574.5 577.8 624.3 B2g(9) 770.6 801.8 880.2

B3g(1)m 111.2 152.2 193.2 B3g(2)m 127.3 174.6 248.5 B3g(3) 245.9 269.6 330.6
B3g(4) 247.0 330.5 338.0 B3g(5) 348.0 355.3 440.6 B3g(6)o 488.2 484.2 521.2
B3g(7) 563.9 563.6 598.6 B3g(8) 603.4 616.1 668.2 B3g(9)o 694.1 700.8 740.5

Silent Au(1)m 88.4 119.6 153.6 Au(2)m 132.9 176.6 226.4 Au(3)m 146.8 206.3 279.4
Au(4) 292.6 315.1 363.7 Au(5) 388.0 391.2 424.5 Au(6) 425.6 433.4 466.9
Au(7) 512.7 505.1 525.2 Au(8) 576.0 576.5 639.8 Au(9) 716.6 731.9 806.0

Infrared B1u(TO1) 177.0 184.5 227.3 B1u(TO2) 190.5 256.0 283.7 B1u(TO3) 217.1 288.6 340.6
B1u(LO1) 188.2 206.3 252.2 B1u(LO2) 194.3 256.0 284.4 B1u(LO3) 222.9 289.6 353.8
B1u(TO4) 349.0 352.0 377.3 B1u(TO5) 373.6 372.8 437.5 B1u(TO6) 426.9 428.4 465.1
B1u(LO4) 353.0 355.2 377.3 B1u(LO5) 417.0 410.3 450.6 B1u(LO6) 543.7 545.8 582.0
B1u(TO7) 568.3 563.2 596.0 B1u(TO8) 636.0 663.1 712.5
B1u(LO7) 635.6 662.9 708.6 B1u(LO8) 660.4 694.6 727.7

B2u(TO1)m 127.0 176.3 228.3 B2u(TO2)m 186.2 255.1 325.0 B2u(TO3) 259.0 279.0 335.6
B2u(LO1) 127.0 176.4 228.4 B2u(LO2) 186.4 257.3 327.6 B2u(LO3) 291.0 306.6 368.6
B2u(TO4) 395.2 396.2 429.2 B2u(TO5) 412.9 419.4 448.8 B2u(TO6)o 475.7 470.0 506.3
B2u(LO4) 407.4 407.3 446.9 B2u(LO5) 467.7 466.8 500.7 B2u(LO6) 590.2 590.7 593.0
B2u(TO7) 612.8 608.4 628.2 B2u(TO8) 677.6 692.3 750.2
B2u(LO7) 660.3 680.4 746.8 B2u(LO8) 715.5 751.2 825.1

B3u(TO1) 80.3 104.2 120.9 B3u(TO2) 244.1 263.9 297.3 B3u(TO3) 250.1 321.4 320.4
B3u(LO1) 81.5 106.2 123.8 B3u(LO2) 244.2 297.7 305.0 B3u(LO3) 302.8 335.2 355.4
B3u(TO4) 346.9 357.0 363.7 B3u(TO5) 390.0 397.4 453.6 B3u(TO6) 417.3 427.2 523.1
B3u(LO4) 348.0 371.9 444.5 B3u(LO5) 417.3 426.6 506.5 B3u(LO6) 492.4 486.8 533.5
B3u(TO7) 519.3 517.2 578.8 B3u(TO8) 714.8 728.0 788.5
B3u(LO7) 623.1 650.8 692.2 B3u(LO8) 770.1 802.7 881.4

It is very interesting to compare the phonon frequencies calculated for HfO2, ZrO2, and
TiO2. There are several possible origins for the variations that are observed between Hf, Zr,
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TABLE V. Fundamental frequencies (in cm−1) of the O-II phase of HfO2, ZrO2, and TiO2 with their sym-
metry assignments. The superscript (m or o) indicates the atoms (metal or oxygen) whose motion dominates
in the vibrational mode.

Mode HfO2 ZrO2 TiO2 Mode HfO2 ZrO2 TiO2 Mode HfO2 ZrO2 TiO2

Raman Ag(1)m 118.3 171.8 222.5 Ag(2)m 175.8 248.1 334.9 Ag(3)o 364.1 367.2 399.6
Ag(4)o 443.3 447.2 482.0 Ag(5)o 574.5 581.7 650.0 Ag(6)o 620.3 634.2 706.1

B1g(1)m 125.6 181.1 250.7 B1g(2)o 379.7 384.0 413.2 B1g(3)o 599.9 612.5 674.3

B2g(1) 215.8 294.7 359.4 B2g(2) 255.7 349.4 430.0 B2g(3) 386.1 399.6 492.1
B2g(4) 533.4 551.8 597.8 B2g(5)o 560.1 566.6 607.8 B2g(6)o 665.4 677.9 734.8

B3g(1)m 109.8 159.2 242.4 B3g(2)o 410.4 415.0 444.1 B3g(3)o 605.4 619.0 674.5
Silent Au(1) 82.7 123.9 184.3 Au(2) 322.1 324.2 337.9 Au(3) 489.5 497.5 542.3

Infrared B1u(TO1) 139.2 186.0 223.9 B1u(TO2) 285.8 322.5 394.0 B1u(TO3) 419.4 438.6 498.2
B1u(LO1) 153.6 210.8 260.6 B1u(LO2) 345.1 363.2 420.3 B1u(LO3) 531.2 555.4 600.2
B1u(TO4)o 612.8 620.9 674.3 B1u(TO5)o 628.6 643.3 691.4
B1u(LO4) 624.5 639.4 675.0 B1u(LO5) 708.5 743.2 789.5

B2u(TO1) 291.6 307.5 351.0 B2u(TO2) 541.7 555.3 607.4
B2u(LO1) 481.8 491.6 517.4 B2u(LO2) 634.5 678.9 713.6

B3u(TO1) 178.9 221.6 264.9 B3u(TO2) 323.2 378.0 434.8 B3u(TO3) 387.3 403.4 474.5
B3u(LO1) 202.7 258.2 319.3 B3u(LO2) 361.4 397.8 462.7 B3u(LO3) 510.8 515.0 568.7
B3u(TO4)o 518.2 525.0 585.6 B3u(TO5)o 692.8 707.2 738.6
B3u(LO4) 610.8 657.4 676.4 B3u(LO5) 695.0 710.6 744.0

and Ti oxides: structural changes (e.g. the volume), change of the mass ratio Hf/Zr=1.96
and Zr/Ti=1.90, and differences in interatomic force constants.

The structural changes reported in Table II are not very big, in particular between haf-
nia and zirconia. We suspect that their effect should not be the most important origin for
the variations observed in the phonon frequencies. In order to check this, we compute the
phonon frequencies for hafnia and titania assuming that the interatomic force constants are
the same as those for zirconia, while the volume is allowed to vary. In hafnia, we find that
the frequencies are decreased by 2% on average (at most 8%) in both O-I and O-II phases;
where as in titania, they are increased by 4% and 3% on average (at most 13% and 7%)
in the O-I and O-II phases, respectively. This analysis shows that the structural changes
play a relatively minor role in agreement with our intuition. Their effect is slightly more
important in titania since the structural changes are larger.

As for the role of the mass ratio, it is interesting to focus on the modes in which the
M=(Hf, Zr, Ti) atoms are not much involved (indicated by the superscript o in Tables IV
and V) and on those in which on the contrary the M=(Hf, Zr, Ti) atoms move significantly
more than O atoms (indicated by the superscript m in Table IV and V). In the former case,
the phonon frequencies should not be affected very much by the change between Hf, Zr, or
Ti; whereas, in the latter case the variation should be very important. In both phases, there
are no modes in which the metal atoms are fixed by symmetry.

For the modes in which the M=(Hf, Zr, Ti) atoms are not much involved (indicated by
the superscript o in Tables IV and V), we observe indeed that the phonon frequencies do
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not vary very much between hafnia and zirconia, indicating the interatomic forces are very
similar in these materials. In contrast, the phonon frequencies in titania differ significantly
from those in hafnia and zirconia indicating that the differences in the interatomic force
constants are important.

For the modes in which the M=(Hf, Zr, Ti) atoms move significantly more than O
atoms (indicated by the superscript m in Tables IV and V), it is also possible to evidence
the influence of the interatomic force constants. For this purpose, we compute the phonon
frequencies for hafnia and titania assuming that the interatomic force constants are the same
as those for zirconia, while the mass of the metal atom is changed to that of Hf or Ti. These
simple calculations lead to frequencies which are reduced by roughly 28% for hafnia and
increased by about 34% for titania with respect to zirconia. When these results compare
well with those of Tables IV and V, it can be considered that the effect of the interatomic
force constants is negligible. This is actually what we find in all cases for hafnia compared
to zirconia in both O-I and O-II phases. For the comparison between titania and zirconia,
it is only true for the modes B2g(1) and Au(3) in the O-I phase and the mode Ag(2) in the
O-II phase, indicating once more significant differences in the interatomic force constants.

In conclusion, while the interatomic force constants in hafnia and zirconia are very
similar, they differ considerably in titania. As a result, while the differences in the phonon
frequencies in Hf and Zr oxides can mostly be explained by the ratio between the masses
of the two metals, the most important origin for the variation in Ti oxides is the interatomic
force constants.

Dielectric Permittivity Tensors

In both phases, the electronic (ε∞) and static (ε0) permittivity tensors are diagonal. They
have three independent components εxx, εyy and εzz. In Table VI, the calculated values of
ε∞ and ε0 are reported for the O-I and the O-II phases of hafnia, zirconia, and titania. The
dielectric constants are larger in the O-II phase: the average values of ε∞ and ε0 are roughly
10% larger (in ZrO2, the average value of ε0 is only 5% larger in the O-II phase, and in TiO2

it is 15% larger).

In the O-I, the average value of ε∞ (ε0) is 7% (15%) smaller in hafnia than in zirconia
and 45% (43%) larger in titania than in zirconia. In the O-II, the average value of ε∞ (ε0) is
6% (6%) smaller in hafnia than in zirconia and 47% (18%) larger in titania than in zirconia.
Like for the frequencies at Γ (see discussion of the fourth section), the dielectric constants
in hafnia and in zirconia are quite similar while they differ significantly in titania. This
difference is less pronounced in the O-II phase.

In order to analyze the static dielectric tensors, we can rely not only on the frequencies
of the IR-active modes, but also on the corresponding eigendisplacements and Born effec-
tive charges. Indeed, the static dielectric tensor can be decomposed in the contributions of
different modes as follows (see Ref. (32); we follow the notations of Ref. (30)):

ε0
αβ(ω) = ε∞αβ +

∑
m

∆εm,αβ = ε∞αβ +
4π

Ω0

∑
m

Sm,αβ

ω2
m

, [1]

where Ω0 is the volume of the primitive unit cell and Sm,αβ the mode-oscillator strength,
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TABLE VI. Electronic and static dielectric tensors for of the O-I and O-II phases of HfO2, ZrO2, and TiO2.
The contributions of the different phonon modes to the static dielectric tensor are also indicated. The tensors
are diagonal but they have different components in the three directions parallel. The phonon mode contribu-
tions to εxx

0 , εyy
0 , and εzz

0 come from the IR-active B3u, B2u, and B1u modes, respectively.

HfO2 ZrO2 TiO2

O-I ε∞
∆ε1
∆ε2
∆ε3
∆ε4
∆ε5
∆ε6
∆ε7
∆ε8
ε0

xx yy zz

5.30 5.17 5.05
0.70 0.01 3.27
0.22 0.04 0.15
9.13 5.29 0.64
0.14 4.67 1.38
5.09 1.88 5.69
0.01 0.50 1.00
0.62 0.17 0.27
0.30 0.06 0.00

21.52 17.78 17.45

xx yy zz

5.68 5.53 5.35
1.08 0.04 4.98
9.75 0.96 0.01
1.89 5.00 0.18
1.94 4.31 1.40
3.71 4.20 6.00
0.08 0.35 2.29
1.05 0.25 0.32
0.36 0.06 0.00

25.53 20.69 20.53

xx yy zz

8.31 8.43 7.23
2.04 0.02 5.67
8.87 3.48 0.09

13.78 8.21 2.01
0.00 9.79 0.00
0.56 1.00 4.24
0.18 0.63 4.04
1.64 1.16 0.35
0.72 0.03 0.01

39.08 32.74 23.63

O-II ε∞
∆ε1
∆ε2
∆ε3
∆ε4
∆ε5
ε0

5.87 5.75 5.88
6.36 15.16 4.57
7.28 0.63 7.52
3.24 3.32
0.12 0.59
0.01 0.19

22.88 21.54 22.06

6.21 6.08 6.23
8.41 16.21 6.28
7.39 0.94 5.21
1.81 4.39
0.27 0.78
0.01 0.16

24.11 23.22 23.05

9.19 8.93 9.19
11.89 16.44 8.25

5.92 1.40 3.37
1.98 4.76
0.39 0.00
0.04 1.23

29.41 26.77 26.86

which can be expressed in terms of the eigendisplacements and the Born effective charge
tensors by:

Sm,αβ =
(∑

κα′
Z∗

κ,αα′U∗
m(κα′)

)(∑
κ′β′

Z∗
κ′,ββ′Um(κ′β′)

)
. [2]

Displacements are normalized thanks to the condition
∑
κβ

Mκ[Um(κβ)]∗Un(κβ) = δmn, [3]

where Mκ is the mass of the ion κ.

The contribution of the individual modes ∆εm to the static dielectric constants, as de-
fined in Eq. [1], are presented in Table VI.

In parallel to this decomposition of the static dielectric tensor, one can define a mode-
effective charge vector:

Z∗
m,α =

∑
κβ Z∗

κ,αβUm(κβ)
(∑

κβ U∗
m(κβ)Um(κβ)

) 1
2

. [4]

In Table VII, we present for each IR-active mode, the magnitude of its mode-effective
charge vectors (this vector is parallel to the z, y, and x axis for the B1u, B2u, and B3u

modes, respectively), as well as the relevant component of the oscillator strength tensor
(the zz component for B1u modes, the yy component for B2u modes, and the xx compo-
nent for the B3u modes).
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TABLE VII. Components of mode-effective charge vectors Z∗
m and oscillator strength tensor Sm for each

of the IR-active modes of the O-I and O-II phases of HfO2, ZrO2, and TiO2. The description of the reported
vector and tensor components corresponding to the different modes is given in the text. The components of
the mode-effective charge vectors are given in units of |e|, where e is the electronic charge. The oscillator
strengths are given in 10−4 a.u. (1 a.u.=0.342036 m3/s2).

HfO2 ZrO2 TiO2

Z∗
m Sm Z∗

m Sm Z∗
m Sm

O-I B1u(1) 3.37 3.14 3.89 4.89 4.61 6.86
B1u(2) 1.61 0.16 0.35 0.02 0.80 0.16
B1u(3) 3.14 0.93 1.98 0.43 4.51 5.45
B1u(4) 3.97 5.16 3.90 5.01 0.04 0.00
B1u(5) 8.72 24.32 9.32 24.06 9.64 19.00
B1u(6) 4.10 5.56 6.29 12.10 8.99 20.49
B1u(7) 2.81 2.63 2.97 2.93 2.98 2.89
B1u(8) 0.21 0.01 0.15 0.01 0.50 0.07

B2u(1) 0.41 0.01 0.67 0.03 0.38 0.02
B2u(2) 1.01 0.04 3.96 1.80 6.74 8.60
B2u(3) 5.85 10.86 6.51 11.22 9.02 21.66
B2u(4) 8.32 22.32 7.91 19.50 12.24 42.23
B2u(5) 5.43 9.81 8.21 21.33 3.99 4.70
B2u(6) 3.18 3.45 2.56 2.24 3.34 3.76
B2u(7) 2.40 1.96 2.80 2.65 5.66 10.73
B2u(8) 1.57 0.85 1.55 0.82 1.06 0.38

B3u(1) 1.41 0.14 1.66 0.34 1.91 0.70
B3u(2) 2.24 0.40 8.22 19.58 7.95 18.36
B3u(3) 8.03 17.49 5.84 5.62 11.10 33.15
B3u(4) 1.26 0.53 4.76 7.14 0.01 0.00
B3u(5) 8.68 23.71 7.99 16.88 3.09 2.71
B3u(6) 0.45 0.06 1.26 0.43 2.75 1.17
B3u(7) 3.87 5.09 4.90 8.10 6.22 12.86
B3u(8) 3.72 4.73 4.01 5.46 5.58 10.46

O-II B1u(1) 3.67 1.21 4.05 2.79 4.18 4.38
B1u(2) 5.59 8.36 5.74 6.95 5.41 5.55
B1u(3) 5.00 7.96 6.01 10.86 6.63 12.53
B1u(4) 2.98 3.00 3.39 3.84 0.00 0.00
B1u(5) 1.72 1.01 1.56 0.83 4.36 6.23

B2u(1) 7.61 17.56 8.32 19.68 8.79 21.47
B2u(2) 2.74 2.52 3.36 3.72 4.16 5.47

B3u(1) 4.70 2.77 4.98 5.30 5.74 8.84
B3u(2) 6.75 10.36 8.47 13.56 6.29 11.87
B3u(3) 4.54 6.62 3.65 3.79 5.38 4.71
B3u(4) 1.14 0.44 1.69 0.96 2.06 1.42
B3u(5) 0.47 0.08 0.47 0.08 0.78 0.20

The largest contribution ∆εm to ε0 is by far that of the B2u(1) mode in the O-II phase. In-
deed, it is the only mode that combines both a large oscillator strength (Sm ∼ 20×10−4 a.u.)
and a relatively low frequency (ωm ∼ 300 − 350 cm−1).

The frequency factor in Eq. [1] plays a crucial role. For instance, let us compare the
B1u(1) mode and the B2u(4) mode in the O-I phase of TiO2. The latter has an oscil-
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lator strength about 6 times larger than the former (Sm ∼ 40 × 10−4 a.u. to be com-
pared with Sm ∼ 7 × 10−4 a.u.) but at the same time its frequency is about twice larger
(ωm ∼ 430 cm−1 to be compared with ωm ∼ 230 cm−1) for the former. As a result, its
contribution to the dielectric constant is only 1.7 times larger.

It is difficult to observe a systematic trend when comparing hafnia, zirconia, and titania.
However, we note that for most of the modes the oscillator strengths and the mode-effective
charges essentially increase from HfO2 to ZrO2 and from ZrO2 to TiO2 (as a counterexam-
ple, the B1u(2) mode in the O-II phase presents just the opposite trend). This can be related
to the behavior of the Born effective charges Z∗

κ,αα′ and the eigendisplacements Um(κα),
the two quantities that appear in the definitions of Sm,αβ and Z∗

m,α given in Eqs. [2] and [4].
On the one hand, as discussed in the third section, the Born effective charges show globally
the following trend: Z∗(HfO2) ≤ Z∗(ZrO2) ≤ Z∗(TiO2). On the other hand, the displace-
ments of Hf atoms are smaller than those of Zr atoms, which in turn are smaller than those
of Ti atoms, simply because the mass increases from Ti to Hf (as discussed in the fourth
section). If one now considers the contributions to the static dielectric constant reported in
Table VI, it appears that ∆ε(HfO2) ≤ ∆ε(ZrO2) ≤ ∆ε(TiO2) for almost all of the modes.

Conclusion

Using density-functional theory, we have investigated the structural, electronic, dy-
namical, and dielectric properties of the O-I and O-II phases of HfO2, ZrO2 and TiO2. The
parameters of the relaxed atomic structures are found to be in very good agreement with
previous theoretical studies (when available).

The Born effective charge tensors have been calculated showing an important anisotropy.
For some directions, these effective charges are found to be larger than the nominal ionic
charge, indicating a mixed covalent-ionic bonding between M=(Hf, Zr, Ti) and O atoms.
We have also discussed the effective charges focusing on the changes between the systems
containing hafnium, zirconium, and titanium.

The phonon frequencies at the center of the Brillouin zone have been computed. Dif-
ferences between the vibrational frequencies of Hf, Zr, and Ti compounds have been ratio-
nalized in terms of changes in the structural parameters, difference in mass between Hf, Zr,
and Ti, and variations in the interatomic force constants.

The electronic and static dielectric permittivity constants have been computed, and a
detailed analysis of the contributions of individual vibrational modes has been performed,
including the computation of mode-effective charges and oscillator strengths.
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