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la NEC-SX4 du Centre Suisse pour le Calcul Scientifique (CSCS) de Manno,
et ce même après mon retour en Belgique. Je voudrais également le remercier
pour sa présence dans ce jury et ces conseils précieux pour la rédaction de
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Introduction

SiO2, also referred to as silicon dioxide or silica, is one of the most abundant
material on earth. It exists all around the world in amorphous or glassy
phases as well as in a variety of crystalline polymorphs. The crystalline
forms of SiO2 occur mostly as quartz (Fig. 0.1), sand, and flint, but also in
igneous, metamorphic and sedimentary rocks. Moreover, the earth’s mantle
is composed predominantly of silica. The amorphous silica can be found
in nature as well: in the skeletons of radiolaria, diatoms, and sponges, for
instance. Most glasses are primarily amorphous SiO2, with other substances
in small quantities imparting characteristic properties and color.

SiO2 is also produced industrially, and plays a critical role in nowadays
technology. For instance, silica and silicon are the heart and soul of the semi-
conductor industry which has given us the myriad of electronic devices that
have become so much part of our lives. In fact, the quality and properties
of thermal SiO2, as compared with those of the oxides that form on other
semiconductors, are largely responsible for the dominance of Si in semicon-
ductor technology. The cost-effectiveness of this silicon based technology
completes the ingredient list that made it become one of the most spectacu-
lar industrial successes of all times. Even today there are no tangible signs of
decline of this technology and its potential is expected to remain unmatched
for at least another decade. Similarly, the success of glass technology can
be attributed to the high transmission of optical wavelengths in fibers and
their low production cost. The rapidity of information transfers, which has
become crucial in modern society, requires the massive installation of op-
tical fiber networks, making of glass manufacturing a highly competitive
industrial field.

Because of its use in technology and its abundance in nature, silica has
been the object of extensive studies and research in many areas of sci-
ence: physics, chemistry, crystallography, geology, geophysics, mineralogy
and others. In all these areas, important contributions to the understanding
of the microscopic structure and dynamics of silica have been made through
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8 INTRODUCTION

Figure 0.1: Quartz crystal.

molecular dynamics computer simulations. Indeed, these techniques, which
have been developed in the last four decades, permit detailed analysis at the
atomic scale.

The methods for atomic simulation that have been used in the framework
of the study of silica fall into two categories: classical interatomic potential
methods, which do not include the explicit treatment of the electrons, and
direct quantum simulations. However, so far most investigations relied on
empirical classical potentials, while first-principles approaches were limited
to the crystalline forms of SiO2. Indeed, the elevated computational cost of
these schemes has prevented their application to non-periodic silica systems
(amorphous phases, surfaces, and interfaces). Although classical approaches
have provided an adequate description of structural properties, their accu-
racy in treating properties in which the electronic structure plays a more
subtle role is limited. Therefore, despite the numerous investigations on the
topic, a series of problems in these systems remain to be understood.

In the present work, we used a first-principles approach to study two
peculiar aspects of silica: its interface with silicon and its surface.

The first-principles approach used through out this study is the Car-
Parrinello method. It is based on the molecular dynamics technique and thus
involves solving the equations of motion for a system of interacting atoms.
Each atom moves according to the force on it caused by all the other atoms.
In the Car-Parrinello scheme, these forces are determined directly from the
electronic structure of the system independently of any empirical parameter
by means of the Density Functional Theory, and are thus very accurate
over a wide range of bonding situations. This method has been applied
successfully to a large number of systems, providing detailed information on
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electronic as well as structural properties.
The SiO2 interface with silicon is particularly relevant in the framework

of very large scale integration (VLSI) of metal-oxide-semiconductor field ef-
fect transistors (MOSFET’s). Indeed, given the small size of the devices
(currently less than 100 Å) and the trend towards further miniaturization,
the understanding of the microscopical structure of the interface has become
critical to improve the performances. In this regard, the incorporation of
a low concentration of N atoms near the Si(001)-SiO2 interface (which is
the technologically relevant SiO2 interface with silicon) has recently drawn
considerable attention. It appears as one of the most promising ways to
match industrial programs requiring high-quality ultrathin gate dielectrics
for VLSI. While the electrical properties are essentially as good as for con-
ventional oxides, silicon nitrided oxides suppress the dopant diffusion across
the oxide-silicon interface, and are therefore particularly suited for thin SiO2

gates. The ultimate goal is to incorporate the nitrogen-rich layer at any cho-
sen position within the dielectric, and this relies on a good understanding
of the bonding chemistry of the N atoms. Core-level photoelectron spec-
troscopy has been one of the principal experimental tools for the investiga-
tion of the interface. When applied to the N 1s core-level, this technique
is sensitive to the concentration of N atoms and can provide distribution
profiles when resolved as a function of take-off angle or used in conjunction
with chemical etching. These profiles depend on the growth process, but an
accumulation of N atoms is often observed at the interface. The N 1s pho-
toemission spectra also provide information on the bonding environment of
the incorporated N atoms. The experimental spectra show a broad princi-
pal peak approximately at the same energy as in bulk Si3N4, suggesting the
occurrence of N-Si3 configurations. However, the asymmetric shape of this
peak as well as its anomalous shift with oxide thickness are still poorly un-
derstood. The presence of a second, well separated, peak is also debated at
this stage, together with possible N bonding configurations involving oxygen
atoms.

We study the incorporation of nitrogen at the Si(001)-SiO2 interface us-
ing a first-principle approach for the calculation of core-level shifts. This
scheme allows to take core-hole relaxation effects into account despite the
use of pseudopotentials. The calculated N 1s shifts for a series of small
molecules are found to be in good agreement with the corresponding experi-
mental data, demonstrating the validity of this computational method. The
approach that is used in this study is the following. We first discriminate
between the possible nitrogen bonding configurations by comparing the cal-
culated N 1s core-level shifts for a set of carefully chosen molecules with



10 INTRODUCTION

the available experimental informations about the interface. With all the
pre-selected bonding configurations, we generate several model interfaces by
varying the distance of the incorporated N atoms from the interface plane
and by relaxing the atomic positions within First-Principles Molecular Dy-
namics. The N 1s and Si 2p core-level shifts are calculated for the different
models and compared with experimental data, allowing for the following con-
clusions. First, our models give a good representation of the local structure
for the various nitrogen-bonding configurations. Second, adopting the single
first-neighbor configuration N–Si3, we can explain the shift with oxide thick-
ness of the principal XPS line and the appearance of two components, which
are the main features of the N 1s experimental spectra. Our interpretation
relies on core-hole relaxation and second nearest neighbor effects. These
combine to give larger binding energies in the oxide than at the interface,
in accord with experimental observations. On one side, core-hole relaxation
affects N 1s shifts differently depending on the distance of the N atoms to
the screening Si substrate. On the other side, a second nearest neighbor
environment rich in Si and N atoms as at the interface induces opposite
shifts compared to an O rich environment as found in the oxide. Third,
our investigation of other configurations, in which the N atom is bonded to
O atoms, tends to rule out their existence at the interface. Indeed, the N
1s shifts for N–Si2O configurations are found at ∆=1.5 eV, in a region of
the spectrum where generally no peaks are observed in experiments. On
the contrary, for N–Si2H configurations, the calculated shifts are right in
the range of experimental data (∆=0.4 eV). However, we believe that these
configurations appear only in a very limited amount in nitrided interface,
due to the high concentration of hydrogen that would be required. Finally,
the calculated Si 2p core-level shifts are found to be in good agreement with
experiments and other theoretical studies. We propose that both Si-O and
Si-N bonds contribute to the suboxide peaks, contrarily to what is generally
believed.

The surface of SiO2 plays an important role in a number of technolog-
ical applications. Obvious examples include adsorption, surface diffusion,
nucleation, cluster growth, and thin film growth in areas such as catalysis,
microelectronics, coatings, and sensor devices. Amongst the different SiO2

surfaces, the (0001) α-quartz surface can be considered as a model surface
for the different crystallographic forms of SiO2. Besides, its study can also
be profitable for the understanding of amorphous silica surface. Unfortu-
nately, whereas the bulk structure of quartz has been widely studied, the
experimental data on the structure of this surface are rather scarce. To
our knowledge, there are to date only few studies dedicated to experimen-
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tal determination of the crystallographic structure of the (0001) α-quartz
surface.

We investigate this surface using Car-Parrinello Molecular Dynamics.
We start our study with two different initial configurations: the cleaved
surface with non-bridging oxygens at the top and a 2 × 1 reconstruction
with 2-membered rings. We obtain two other reconstructions by performing
constant-temperature molecular dynamics simulations: the valence alterna-
tion pair surface, and the dense surface. The former presents an intimate
pair of over- and under-coordinated oxygen atoms near the surface with
3-membered rings. The latter, which is the most stable of all investigated
structure, presents an interesting densification of the two uppermost layers of
SiO2 tetrahedral units, with the formation of 3-membered and 6-membered
rings that do not exist in bulk α-quartz. Contrarily to valence alternation
pairs, whose existence in amorphous SiO2 is well-know, the structure of the
dense surface is newly proposed in this study and we suggest experiments
to confirm this prediction.

Another important topic in regard to the SiO2 surface lies in its in-
teractions with water. These play an important role in microelectronics
(wafer-bonding techniques), catalytic support, optical wave guides, and sol-
gel processing. At the atomic level, the dynamics of the hydrolysis of siloxane
bonds:

≡Si–O–Si≡ + H2O ↔ ≡Si–OH · · · HO–Si≡

and non-bridging oxygens:

=Si–O + H2O → =Si–(OH)2

still lack of clarity.

We try to bring some light on the hydration/dehydration mechanism
using First-Principles Molecular Dynamics. Unfortunately, at the moment
of writing, many calculations are still in progress so that we present only
a limited number of results. The simulation of the dehydration of the wet
quartz surface implies large energy barriers (about 3 eV/surface unit cell
at least) which are too high in regard to the time scale accessible to our
simulation. So, we turn to the simulation of the hydration of both dry
and partially hydroxylated surfaces. Our approach to the problem consists
in throwing water molecules on various quartz surface using Car-Parrinello
Molecular Dynamics. On one hand, the study confirms the hydrophobic
behavior of siloxane bonds. Indeed, for the dense surface, we see that the
water molecules rebound whatever their kinetic energies. On the other hand,
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under-coordinated silicon atoms (such as those with non-bridging oxygens)
are shown to be very reactive, the hydrolisis reaction being facilitated by
adjacent silanol groups (that can be found on top of partially hydroxylated
surfaces). We suggest that at the atomic level the formation of hydrogen-
bond chains plays an important role in the hydration mechanism.

This work is organized as follows. In Chapter 1, we provide a theoret-
ical description of the First-Principles Molecular Dynamics technique used
in this study. In Chapter 2, we investigate the incorporation of nitrogen at
the Si(001)-SiO2 interface. The first-principles calculation of N 1s and Si
2p core-level shifts at this interface allows the unambiguous interpretation
of photoemission results, providing microscopic information concerning the
bonding structure of N at this interface. In chapter 3, we study the (0001)
α-quartz surface, as model surface for other crystalline forms of SiO2. We
consider both the dry surface, as obtained in vacuum conditions, and the
wet surface, as formed in normal ambient. The calculations provide infor-
mations on the structure of both crystalline and amorphous SiO2 surfaces.
Moreover, the models that are generated can be used in further studies.
Finally, the simulations allow to gain insight on the mechanisms of hydra-
tion/dehydration at the microscopic level.



Chapter 1

First-principles molecular
dynamics

1.1 Introduction

In recent years, considerable progress has been achieved in the scale and
scope of Molecular Dynamics (MD) simulations with interatomic potentials
derived from First Principles (FP). There is no doubt that much of this
progress must be attributed to the original approach proposed by Car and
Parrinello (1985), to the study of electronic and thermodynamic properties of
condensed matter systems. This technique combines the MD scheme (see for
instance Ciccotti and Hoover 1986) for the computation of statistical prop-
erties of classical systems, with the FP treatment of interatomic forces due
to the quantum electronic system, as derived from Density Functional The-
ory (DFT). Originally developed in the solid state community, this scheme
is having an ever-increasing impact on chemistry and even biochemistry.

MD is a well-established methodology which allows to determine the
time evolution of any physical system for which quantum effects are not
relevant. Based on Newton mechanics, such a calculation requires the si-
multaneous solution of a very large number of differential equations. This
is obviously impossible analytically, and iterative techniques had to be de-
veloped to solve these equations numerically. Computer simulation has thus
become an invaluable tool to gain insight into system microscopic behav-
ior. The application range of Molecular Dynamics encompasses statistical
mechanics, solid state physics, materials science, chemistry and biology.

In the course of the development of MD, simulations became increasingly
dependent on the availability of realistic interaction potentials. In principle,

13
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explicit knowledge of the electronic ground state at each atomic position is
required, in order to have a correct description of the interatomic forces. In
classical MD simulations, however no attempt is made to solve this com-
plex many-body problem, and interactions between atoms are modeled with
empirical or semi-empirical potentials.

DFT deals with the ground-state of a quantum-mechanical many-body
system of electrons. In principle, it can provide the exact charge density
and forces on atoms, for a chosen ionic configuration. In practice or within
tractable approximations, it has been shown to give very accurate ener-
gies and atomic forces for many systems of interest in material science.
Thus, there is a well-established way to calculate forces from a fundamen-
tal electronic theory, in an ab initio manner. However until mid-eighties,
DFT energies and forces have been considered prohibitively complex, from
a computational point of view, for direct applications to statistical mechan-
ics simulations which usually require the study of a number of atoms ranging
from several tens up to a few thousands, evolving through configurations.

The unified approach to DFT and MD has made it possible to use forces
derived within first-principles in MD simulations. This has been accom-
plished by devising a way to generate at the same time ionic trajectories
and the corresponding electronic ground state, and developing efficient tech-
niques for the solution of the Schrödinger equation for the single-particle
orbitals.

After this brief introduction, the body of this Chapter is organized as
follows. In section 1.2, we introduce the Molecular Dynamics technique to
study the evolution of a system of interacting particles. The corresponding
equations of motion are developed and algorithms for their practical imple-
mentation are discussed. Modified equations of motion are proposed to find
the energy minimum of the systems and also to perform dynamics under
thermodynamic constraints (constant temperature, volume or pressure). In
section 1.3, we outline how an interatomic potential can be derived from
First Principles. On this purpose, we briefly describe Density Functional
Theory and introduce the most commonly used methods to solve the self-
consistent equations that derive from this scheme. In section 1.4, we present
the Car-Parrinello method to perform First-Principles Molecular Dynamics
(FP-MD). We analyze the reasons and conditions which make it a practi-
cal approach for MD simulations. In section 1.5, we discuss the practical
implementation of FP-MD scheme. We introduce different energy function-
als to describe electron-electron interactions (more specifically exchange and
correlation energies) starting from the Local Density Approximation (LDA)
and then going beyond it. We outline how the use of periodic cells and a
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plane-wave basis set simplify the problem in the framework of Bloch’s theo-
rem by transferring it from the real to the reciprocal space. We discuss how
the electron-ion interactions can be modeled by the frozen-core approxima-
tion and the use of pseudopotentials, and present the various forms (local,
non-local, semi-local or separable) and the most widely used types (norm-
conserving and ultrasoft) for the latter. At the end of the section, we briefly
discuss the ion-ion interactions.

1.2 Molecular Dynamics

Newton mechanics allows in principle to predict the evolution of any inter-
acting-particles system as far as quantum effects are negligible. However,
such calculation requires the simultaneous solution of a huge number of
differential equations even for a tiny fragment of matter: an obviously im-
possible task for traditional analytic techniques. Early computers allowed
for the first time in history to approach these typical problems by brute
force, at least for systems with hundred to thousand degrees of freedom:
Molecular Dynamics was born.

The first MD calculations were mainly concerned with statistical me-
chanics: their goal was to evaluate the average values of physical quantities
of complex systems. Alder and Wainwright (1957) studied the motion of
100 hard spheres with equal speed and different velocities. They were able
to prove that momentum distribution for such a system converges rapidly
to equilibrium.

The first attempt to investigate materials dates to the early work by
Gibson et al. (1960): MD was used to investigate the dynamics of radiation
damage. Their system was based on a short-range repulsive interatomic
potential, plus a constant inward force responsible for the cohesion of the
crystal. A single atom was endowed with a high kinetic energy, and the
effect on the crystal was studied. Simulation was used as a very powerful
microscope, in the paper several “photographs” of the atomic trajectories
are illustrated: for the first time a window over the microscopic world was
open. Through that window many researcher looked and still look, to gain
qualitative insight on microscopic processes besides quantitative evaluation
of thermodynamic properties.

Rahman (1964) initiated the study of systems with continuous poten-
tials: he used 864 particles in periodic boundary conditions to simulate
liquid argon. It was probably surprising to find that few particles (a very
small collection, if compared with Avogadro number) can reproduce ther-
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modynamic properties of real systems. It is exactly this fortunate fact which
makes computer simulation of condensed matter possible. Since then many
researchers followed the route opened by these vanguards, and many reports
based on these techniques have been published.

In this section, we introduce the Lagrange, Newton and Hamilton equa-
tions of motion (EOM) describing the evolution of a system of interacting
particles, and that are actually used in classical Molecular Dynamics. The
Verlet (1967) algorithm is presented for the practical implementation of the
EOM, and compared to other existing schemes. The equations of motion are
then modified to provide schemes to find the energy minimum of the systems
leading to steepest descent (SD) and the damped dynamics (DD). Finally,
we discuss how thermodynamic constraints can be imposed in MD by means
of Nosé-Hoover thermostat (constant temperature), and Parrinello-Rahman
method (constant pressure).

1.2.1 The equations of motion

The molecular dynamics technique solves the classical equations of mo-
tion (EOM) of N particles interacting through a potential V . The Euler-
Lagrange equations of motion are of the form:

d

dt

(

∂L
∂ṘI

)

− ∂L
∂RI

= 0 (1.1)

where the classical lagrangian L is defined in terms of the kinetic K and
potential V :

L = K − V . (1.2)

The normal definitions of K and V give:

L =
1

2

N
∑

i=1

MIṘ
2
I − V({RI}) (1.3)

where MI and RI are the mass and the position of the ith particle and
the interaction potential is a function of the positions of the particles:
V = V({RI}). By inserting Eq. (1.3) in the Euler-Lagrange EOM given
by Eq. (1.1), one obtains the Newton equations of motion of the system:

MIR̈I = FI (1.4)
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where FI is the force acting on the ith particle. These 3N equations of
motion are coupled since FI depends on the positions of all the particles in
the system through the gradient of the potential:

FI = −∂V({RI})
∂RI

. (1.5)

The hamiltonian, H = K+V , is a conserved variable of the motion. The
conservation of H is a useful test of accuracy of the numerical algorithm
used to solve the EOM. By introducing the momenta pI conjugate to RI ,
the Hamilton equations of motion can also be derived:

ṘI =
∂H
∂pI

=
pI
MI

(1.6)

ṗI = − ∂H
∂RI

= −∂V({RI})
∂RI

. (1.7)

and the hamiltonian of the system is written:

H =
N
∑

i=1

p2
I

2MI
+ V({RI}). (1.8)

1.2.2 Algorithms for molecular dynamics

In its most straightforward realization, molecular dynamics is a very simple
technique. Given an initial configuration {RI} of N particles at time t and
their interaction potential, the resulting forces FI acting on each atom are
calculated. Newton equations of motion are then solved numerically for a
small time interval ∆t under the assumption of constant force, to obtain the
system configuration at time t + ∆t. In the limit ∆t → 0 the solution is
exact. The procedure can be repeated indefinitely, and the evolution of the
system can therefore be followed.

A simple discretization of the corresponding equations of motion, first
used by Verlet (Verlet 1967), is obtained by expanding in Taylor series the
position at time t+∆t and t−∆t:

RI(t+∆t) = RI(t) + ṘI(t)∆t+
1

2
R̈I(t)∆t

2 +O
(

∆t3
)

(1.9)

RI(t−∆t) = RI(t)− ṘI(t)∆t+
1

2
R̈I(t)∆t

2 −O
(

∆t3
)

. (1.10)



18 CHAPTER 1. FIRST-PRINCIPLES MOLECULAR DYNAMICS

By summing the two terms and rearranging, one gets

RI(t+∆t) = 2RI(t)−RI(t−∆t) + R̈I(t)∆t
2 +O

(

∆t4
)

(1.11)

and by subtracting:

ṘI(t) =
RI(t+∆t)−RI(t−∆t)

2∆t
+O

(

∆t3
)

. (1.12)

Therefore, given the coordinates RI at time t and at time t − ∆t, it is
possible to calculate the configuration at time t+∆t, and the velocities at
time t.

A number of simple modifications to the basic Verlet scheme such as
the ‘leap-frog’ and ‘velocity-Verlet’ algorithms have been suggested to try
to improve the method of handling the velocities (Allen and Tildesley 1987).
There also exists another type of algorithms to solve the EOM: the Gear
predictor-corrector algorithms (Gear 1966). Basically, a significant number
of time derivatives of the particles positions are stored at a particular step.
Taylor series expansions are then used to advance each derivative forward
from time t to t + ∆t, producing a series of predicted positions and their
derivatives. The predicted positions can then be used to calculate the forces
at t +∆t and, through Eq. (1.4), the ‘correct’ acceleration. The difference
between the correct and predicted accelerations is used with a set of Gear
constants to correct all of the predicted derivatives of the motion. The
Gear coefficients are chosen to optimize the stability and the accuracy of
the trajectories.

The Verlet-like algorithms are simpler than the Gear algorithms, and
a fifth-order predictor-corrector scheme requires at least three times more
memory than the Verlet algorithm. More importantly, the Gear algorithms
become rapidly unstable and inaccurate with increasing time step whereas
the root-mean-square fluctuations in H is almost a linear function of ∆t2

for the Verlet algorithm. Nowadays, the Verlet-like algorithms are the most
widely used. Whichever algorithms is used, it can be assumed that the prob-
lem of solving Newton equations can be resolved in a more or less straight-
forward manner and that long trajectories can be generated in this way, i.e.
that the positions and velocities are known as a function of time.

However, even in the most powerful computer the amount of computa-
tional power available is limited and the number of particles that can be
simulated is finite (at most a few million particles at the time of writing),
as is the length of the trajectories (up to a nanosecond). One standard
way of alleviating the finite size problem is to eliminate surface effects by
imposing periodic boundary conditions (PBC), i.e. a finite-size simulation
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box is repeated to fill the whole space. This of course fixes an upper limit to
the length scale that can be simulated. In general, only phenomena with a
characteristic length of 10-50 Å can be reproduced. There are, however, no
good techniques to extend the time scale limitation and although important
progress has been made in recent years, the short time scale restriction is
one of the most severe limitations of MD.

1.2.3 Modified equations of motion

Molecular dynamics can also be used to find local minima in the potential
energy by slightly modifying the Newton EOM.

The simplest scheme consists in replacing Eq. (1.4) by first-order EOM:

MIṘI = −∂V({RI})
∂RI

. (1.13)

This technique is called steepest descent (SD), since the particles follow the
steepest-descent direction at each time step. Although each iteration of SD
algorithm moves the particles towards the minimum of the potential energy,
there is no guarantee that this minimum will be reached in a finite number
of iterations. In many cases, a very large number of SD steps is needed
to get close to the minimum of E. This is especially the case when this
minimum lies in a long narrow valley. The rate of convergence of the SD
method is limited by the fact that, after the particles have moved along a
given gradient direction, a subsequent displacement along the new gradient
reintroduces errors proportional to the previous gradient. The conjugate-
gradient (CG) scheme provides an efficient method to solve this problem.
By using informations obtained from all the sampling points along the path
followed by the particles, the new direction (called conjugate gradient) is
generated so that each movement of the particles is independent of the
previous ones in terms of minimization of the energy potential.

An alternative scheme consists in adding a dissipative term (damping
factor) to the equations of motion:

MIR̈I = −∂V({RI})
∂RI

− γMIṘI . (1.14)

This damped dynamics (DD) algorithm is quite efficient, it will be com-
mented more deeply in the case of electrons dynamics.
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1.2.4 Thermodynamic constraints

Molecular dynamics equations of motion, generated by Eq. (1.4), correspond
to constant-NV E conditions (constant number of particles, volume, and
total energy). In statistical mechanics, this is referred to the microcanon-
ical ensemble. The EOM can also be modified in order to produce either
constant-NV T (canonical ensemble), or constant-NPT (isobaric-isothermal
ensemble) conditions.

From statistical mechanics we know that to produce a new ensemble one
has simply to couple weakly the system of interest with a suitable reservoir.
The way this is achieved theoretically, however, is not applicable to molecu-
lar dynamics simulation. The reservoir is usually a virtually infinite system
with many more degrees of freedom than the system of interest, and the cou-
pling is done through surfaces, becoming infinitely small in the thermody-
namic limit. In simulation we really do not want to spend time integrating
non-interesting degrees of freedom, and periodic boundary conditions are
usually employed just to get rid of unwanted surfaces when studying bulk
samples.

The key idea, proposed by Andersen (1980) is that MD reservoirs can be
represented by only one or a few degrees of freedom, and the coupling can
be applied uniformly to all particles. This is done by inventing new equa-
tions of motion for the extended system, composed of the system of interest
plus the required reservoirs. These equations are derived by a lagrangian,
or in Hamilton’s canonical form, only in a virtual system of coordinates
and become non-canonical when expressed in term of the real variables of
the system of interest. The particular form of these equations is chosen in
such a way that the microcanonical equilibrium distribution produced by
a constant-energy trajectory of the extended system reduces to the desired
distribution when the coordinates and momenta of the system of interest
are considered, that is after integration over the extra reservoir variables.

We shall focus our attention on the method proposed by Nosé and Hoover
for the constant-temperature molecular dynamics, and on the so-called An-
dersen and Parrinello-Rahman method for constant-pressure molecular dy-
namics.

Nosé-Hoover thermostat

The constant-temperature molecular dynamics method was first proposed
by Nosé (1984), and later clarified by Hoover (1985) and Nosé himself (1986).
The interested reader can refer to his latest review article for a more detailed
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and fully comprehensive treatment (Nosé 1991). In this approach, the ther-
mal reservoir is described by a single degree of freedom, which however does
not have a simple physical meaning (Braǹka and Parrinello 1986), and the
coupling contains a scaling term which applies uniformly to all particle ve-
locities and is in fact a scaling on simulation time. We will first concentrate
on Hoover’s approach which is simpler since it does not require the use of
virtual variables and scaling concepts.

The temperature of the system can be obtained by using the energy
equipartition theorem:

T =
1

3NkB

N
∑

i=1

MIṘ
2
I . (1.15)

It can be seen that it is directly related to the velocities and thus it can
simply be adjusted to a fixed external temperature Text by introducing a
variable damping in the Newton equation of motion:

MIR̈I = −∂V({RI})
∂RI

− χ̇MIṘI . (1.16)

The thermodynamic friction coefficient which appears in this equation in
turn evolves in time according to the following equation:

WT χ̈ =

N
∑

i=1

MIṘ
2
I − 3NkBText (1.17)

where WT is the inertia factor associated to this coefficient. It can easily
be understood that the system of particles behaves like if there were a ther-
mostat. Indeed, the driving force for the damping factor dynamics is the
difference between the effective temperature of the system T (Eq. (1.15))
and the imposed external temperature Text. When the temperature of the
system is bigger than Text, the friction is increased and thus the velocities
tend to be reduced inducing a diminution of T , and conversely.

The corresponding Hamilton equations of motion are obtained by intro-
ducing a momentum πχ conjugate to χ, in addition to those associated to
the particles positions:

ṘI =
pI
MI

(1.18)

ṗI = −∂V({RI})
∂RI

− πχ
WT

pI (1.19)
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χ̇ =
πχ
WT

(1.20)

π̇χ =
N
∑

i=1

p2
I

MI
− 3NkBText. (1.21)

Assuming ergodicity of the system, it can be shown (Hoover 1985, Nosé 1991)
that this set of equations samples the canonical ensemble in the large-N
limit, but may present troubles for small or stiff systems. The proof uses
the conservation of probability in the phase space (generalized Liouville
equation) to show that the distribution:

ρ({RI}, {pI}, χ, πχ) ∝ exp

( HT

kBText

)

(1.22)

is stationary.
The hamiltonian HT associated to these EOM can be written:

HT =
N
∑

i=1

p2
I

2MI
+ V({RI}) +

π2χ
2WT

+ 3NkBTextχ. (1.23)

In this formulation, first proposed by Hoover (1985), the hamiltonian is a
constant of motion but it is not canonical. Indeed, Eqs. (1.18-1.21) have
additional force terms with respect to the canonical equations deriving from
this hamiltonian.

By contrast, the Nosé formulation (1984) leads to a canonical Hamilto-
nian and associated canonical equations of motion. This is done by intro-
ducing a scaled time τ which is related to the real one through a virtual
variable ξ in the following way:

dτ = ξdt. (1.24)

This scaling also applies uniformly to all particles velocities since these imply
time derivatives. The Nosé hamiltonian is written:

H′
T =

N
∑

i=1

p′
I
2

2MIξ2
+ V({R′

I}) +
π2ξ

2WT
+ 3NkBText ln ξ. (1.25)

It is a constant of motion dH′
T /dτ = 0, and it is canonical in the virtual

variables R′
I , p

′
I , ξ and πξ. These are related to the real variables by the

following transformation:

R′
I = RI (1.26)
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p′
I = ξpI (1.27)

ξ = expχ (1.28)

πξ = πχ. (1.29)

It can be shown this is not a canonical transformation, this is the reason
why in Hoover formulation the hamiltonian is no longer canonical.

Andersen method

When considering constant-pressure molecular dynamics, two cases must
be distinguished: solid systems (cell periodically to fill all the space) and
molecular systems. The treatment of the latter will not be developed here.
Note however that the key point lies in the application of the coupling of
the volume fluctuations to the molecular center of mass rather than to each
individual atomic positions (Melchionna et al. 1993).

In the case of solid systems, the restriction that the MD cell be kept
constant in volume and in shape severely restricts the applicability of the
method to problems involving structure transformations, in which these pa-
rameters play an essential role. In order to overcome this difficulty, Andersen
(1980) proposed a method so as to allow for changes in volume of the MD cell
containing a system of particles under external hydrostatic pressure Pext.

The pressure of the system can be obtained by using the virial theorem:

P =
1

3V

N
∑

I=1

(

MIṘ
2
I −

∂V({RI})
∂RI

·RI

)

. (1.30)

The volume, considered as an additional dynamical variable, evolves as a
function of the difference between the imposed external pressure Pext and
the internal pressure, according to the following equation:

WP V̈ =
1

3V

N
∑

I=1

(

MIṘ
2
I −

∂V({RI})
∂RI

·RI

)

− Pext (1.31)

where WP is the inertia factor associated to V .

The Newton equation of motion of the particles is then:

MIR̈I = −∂V({RI})
∂RI

+
1

3V

(

V̈ − 2

3

V̇

V

)

MIRI . (1.32)
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The corresponding Hamilton equations of motion are obtained by intro-
ducing a momentum πV conjugate to V , in addition to those associated to
the particles positions:

ṘI =
pI
MI

+
V̇

3V
RI (1.33)

ṗI = −∂V({RI})
∂RI

− V̇

3V
pI (1.34)

V̇ =
πV
WP

(1.35)

π̇V =
1

3V

N
∑

I=1

(

MIṘ
2
I −

∂V({RI})
∂RI

·RI

)

− Pext. (1.36)

Assuming ergodicity of the system, it can be shown (Andersen 1980) that
this set of equations samples the isobaric-isoshape ensemble to an accu-
racy of O(N−2) when calculating ensemble averages of intensive parameters
(O(N−1) for extensive parameters).

The hamiltonian HP associated to these EOM can be written:

Hp =
N
∑

i=1

p2
I

2MI
+ V({RI}) +

π2V
2WP

+ PextV. (1.37)

In this formulation, the hamiltonian is a constant of motion but it is not
canonical.

By introducing the virtual variables R′
I , p

′
I , V

′ and π′V , related to the
real variables by the following transformation:

R′
I = V −1/3RI (1.38)

p′
I = V 1/3pI (1.39)

V ′ = V (1.40)

π′V = πV (1.41)

the hamiltonian, that can be written:

H′
P =

N
∑

i=1

p′
I
2

2MIV 2/3
+ V({V 1/3R′

I}) +
π2ξ

2WP
+ PextV

′ (1.42)

becomes canonical in the virtual variables. Besides, it remains a constant of
motion dH′

P /dt = 0.



1.2. MOLECULAR DYNAMICS 25

Parrinello-Rahman method

Shortly after, Parrinello and Rhaman (1980) extended the method proposed
by Andersen (1980) to allow the simulation cell to change also its shape. In
this scheme, the volume variable is replaced by the 3 × 3 matrix variable h
whose columns are, in order, the components of the three lattice vectors a1,
a2 and a3. The volume is simply given by:

V = deth = a1 · (a2 ∧ a3) (1.43)

where a1, a2 and a3, in that order, are assumed to be a right-handed triad.
The positions of the particles {Ri} are written in terms of h and of their
relative coordinates {Si}:

Ri = hSi = Si,1a1 + Si,2a2 + Si,3a3. (1.44)

The whole h matrix evolves so that the pressure of the system adapts to
the imposed external pressure Pext:

WP ḧ = [σ − Pextδ]h
−1 deth (1.45)

where WP is the inertia factor associated to the dynamics of h and σ is the
stress tensor which is obtained from the stress theorem:

σ =
1

deth

N
∑

I=1

(

MI

(

hṠI

)(

hṠI

)T
− ∂V({hSI})

∂SI
· STI

)

. (1.46)

Note that the pressure of system can be evaluated from the stress tensor σ:

P =
1

3
Trσ. (1.47)

The Newton equation of motion of the particles expressed in terms of
the relative coordinates {SI} are written:

MI S̈I = −g−1∂V({hSI})
∂SI

−MIg
−1ġSI (1.48)

where g is the metric tensor defined by g = hTh. These can also be written
in terms of the real positions {RI}:

MIR̈I = −∂V({RI})
∂RI

+MI ḧh
−1RI

+MI

[

ḣh−1 −
(

ḣh−1
)T
]

(

ṘI − ḣh−1RI

)

(1.49)
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The corresponding Hamilton equations of motion are obtained by intro-
ducing momenta πh conjugate to h, in addition to those associated to the
particles positions {RI}:

ṘI =
pI
MI

+ ḣh−1RI (1.50)

ṗI = −∂V({RI})
∂RI

−
(

ḣh−1
)T

pI (1.51)

ḣ =
πh
WP

(1.52)

π̇h = [σ − Pextδ]h
−1 deth. (1.53)

Assuming ergodicity of the system, it can be shown that this set of equations
samples the isobaric-isothermal ensemble. Indeed, in the large-N limit, the
kinetic energy associated to the variables describing the cell is small com-
pared to that of the system of N particles.

The hamiltonian HP associated to these EOM can be written:

Hp =
N
∑

i=1

p2
I

2MI
+ V({RI}) +

πh
2

2WP
+ Pext deth. (1.54)

In this formulation, the hamiltonian is a constant of motion but it is not
canonical.

By introducing the virtual variables R′
I , p

′
I , h

′ and π′
h
, related to the

real variables by the following transformation:

R′
I = SI = h−1RI (1.55)

p′
I = hpI (1.56)

h′ = hT (1.57)

π′h = πh (1.58)

the hamiltonian, that can be written:

H′
P =

N
∑

i=1

p′
I
Tg−1p′

I

2MI
+ V({hR′

I}) +
πh

2

2WP
+ Pext deth

′ (1.59)

becomes canonical. Besides, it remains a constant of motion dH′
P /dt = 0.
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Parrinello and Rhaman (1981) further extended the method to include
external stress. However several authors have pointed out some shortcom-
ings of the original method.

First, it has found (Nosé and Klein 1983) that only six of the nine vari-
ables of the matrix h have an interesting meaning, when the three degrees
of freedom describing the overall rotation of the MD box are extracted out.
In order to avoid this spurious rotation, which would simply confuse the
analysis of the trajectories of the system, two options have been considered
both of which reduce the number of extra variables to six (geometrical con-
straints). In one case (Nosé and Klein 1983) the matrix h is kept symmetric
by disregarding the asymmetric contributions in the equations of motion,
and in the other one (Ferrario and Ryckaert 1985) the variables are reduced
to six by fixing the MD box orientation with respect to a laboratory frame,
and specifically by choosing a1 parallel to the x-axis and a2 to lie in the xy
plane. This choice results in an upper triangular matrix h. More recently, an
alternative method to get rid of the rotation of the MD cell was proposed by
Lill and Broughton (1994) which consists in symmetrizing the infinitesimal
strain at each time step (dynamical constraint).

Second, Wentzcovitch (1991) showed that Parrinello-Rahman equations
of motion are not invariant with respect to the interchange between equiv-
alent cells, referred to as modular transformations and defined by h′ = Mh
with detM = 1). A method was also suggested to avoid this problem where
the shape of the cell is described in terms of the strain tensor ǫ and a refer-
ence structure: h = ǫh0.

Finally, Cleveland (1988) pointed out that the consistency between the
condition of mechanical equilibrium and the virial theorem is only verified
in the large-N limit for the Parrinello-Rahman dynamics. Souza and Mar-
tins (1997) proposed the metric tensor g as variable to use in molecular
dynamics simulations with variable-cell shape. They showed this choice is
very convenient since the new equations of motion have several properties
that were not present in early expressions, namely, absence of rigid rotation
and invariance with respect to modular transformations. This scheme also
solves the problem of consistency raised by Cleveland. Moreover, the gen-
eralization to anisotropic stress leads to much simpler equations than in the
original formulation.

To summarize, we have presented the classical Molecular Dynamics tech-
nique to describe the evolution of a system of interacting particles. The
underlying equations of motion have been introduced, and Verlet (1967) al-
gorithm has been discussed with respect to other schemes for solving New-
ton equations numerically. Changes have been brought to the equations of
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motion providing methods to locate the energy minimum of the systems
namely steepest descent (SD) and damped dynamics (DD). Finally, we have
formulated how MD simulations can be performed under thermodynamic
constraints such as constant temperature (Nosé-Hoover thermostat), or con-
stant pressure (Andersen and Parrinello-Rahman methods).

1.3 First-principles Interatomic potential

In conventional molecular dynamics simulations, the interactions between
atoms are modeled with empirical potentials. Although many systems have
successfully been investigated with model potentials, it is difficult to find
empirical interactions which work for different states of matter and for a
wide class of materials. In complex cases, such as those involving covalent
bonds, there is no general agreement about such basic question as whether
or not the interactions need to encompass 2-, 3-, 4- or higher n-body terms.
Furthermore, the empirical molecular dynamics approach suffers from an
important conceptual limitation: the correlation between local atomic struc-
ture, e.g. bonding properties, and atomic dynamics is missing, as well as
the effect of the atomic dynamics on the electronic properties. A more ac-
curate approach would be to derive the interatomic potential directly from
first principles, i.e. from explicit knowledge of the electronic ground state
at each atomic position.

In this section, we report the basic assumptions underlying the achieve-
ment of an interatomic potential from First Principles, and emphasize the
conditions that make it really useful in actual MD simulations. The Den-
sity Functional Theory, which meets all these requirements, is presented
along the lines of Hohenberg and Kohn (1964) for the energy functional and
Kohn and Sham (1965) for single-particles orbital formulation. Finally, we
deal with the resolution of the self-consistent equations that derive from
this scheme by means of steepest descent, conjugate gradients or damped
dynamics.

1.3.1 Conditions and assumptions

The derivation of interatomic forces from first principles relies upon two ba-
sic assumptions. We suppose that ions can be regarded as classical particles.
Furthermore, we restrict ourselves to systems for which separation between
the classical motion of the ions and the quantum motion of electrons can be
achieved, i.e. systems satisfying the so-called Born-Oppenheimer approxi-
mation. This “adiabatic principle” is in general satisfied for semiconductors
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and insulators, where the electronic excitation spectrum has a gap between
the ground and the first excited state much larger than the energy associated
with the ionic motion. The issue of the validity of the BO approximation for
metals is much more subtle (Chester 1961). However it is generally believed
that it holds also in this case provided that the plasma frequency is much
larger than the ionic thermal energies.

For systems for which the BO approximation holds, the interaction po-
tential among the ions, V ({RI}) can be derived ab initio:

V({RI}) = 〈Ψ0|H({RI}) |Ψ0〉 . (1.60)

Here H({RI}) is the hamiltonian of the system at fixed ionic positions {RI}
(which includes the contribution due to the interactions amongst ions) and
Ψ0 = Ψ0({RI}) the corresponding instantaneous ground state. For any
configuration {RI}, the Schrödinger equation has to be solved to get Ψ0

then the forces on the ions can be evaluated by the use of the Hellman-
Feynman theorem:

∂V({RI})
∂RI

=

〈

Ψ0

∣

∣

∣

∣

∂H({RI})
∂RI

∣

∣

∣

∣

Ψ0

〉

. (1.61)

There are two basic requirements to be fulfilled in order that the use
of Eqs. (1.60) and (1.61) in MD simulations is meaningful and practical.
An accurate theory for the many-body hamiltonian H({RI}) is needed,
capable of yielding with the same accuracy the ground state Ψ0({RI}) for
different ionic configurations. Indeed, rather different atomic arrangements
are sampled during a MD simulation. Furthermore, the theory should lead
to a computational scheme which is affordable in practice, with modern
computer capabilities.

A viable framework is offered by the Density Functional Theory proposed
by Hohenberg and Kohn (1964) which provides an accurate and practical
mean of calculating V ({RI}). It scales acceptably as the function of the
system size (O(N3) where N is the number of electrons or less with newly
developed techniques (Mauri et al. 1993, Ordejón et al. 1993, Li et al. 1993,
Daw 1993) and has proved accurate for the description of many properties
of both clusters and bulk systems.

1.3.2 Density Functional Theory

Density-functional theory calculations are based on the theorems introduced
by Hohenberg and Kohn (1964) and on an independent-particle orbital for-
mulation provided by Kohn and Sham (1965).
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Hohenberg and Kohn proved that the total energy of an electron gas
(even in the presence of a static external potential) is a unique functional of
the electron density. The minimum value of the total-energy functional is the
ground-state energy of the system, and the density that yields this minimum
value is the exact single-particle ground-state density. Kohn and Sham then
showed how it is possible, formally, to replace the many-electron problem
by an exactly equivalent set of self-consistent one-electron equations. The
central assertion used in establishing this single-particle orbital scheme is
that, for any interacting system of electrons, we assume that there exists
an auxiliary system of non-interacting particles such that the exact ground-
state density of the interacting system equals the ground-state density of the
auxiliary non-interacting system. For more details about density-functional
theory see von Barth (1984), Dreizler and da Providencia (1985), Jones and
Gunnarsson (1989), Kryachko and Ludena (1990).

The Kohn-Sham energy functional

The Kohn-Sham total-energy functional for a set of Ne electronic states ψi
can be written

Etot[{RI}, {ψi}] =
Ne
∑

i

〈ψi| −
1

2
∇2 |ψi〉+

∫

Vion(r)n(r)dr

+

∫

1

2

n(r)n(r′)

|r− r′| drdr′ + EXC [n(r)] + Eion[{RI}] (1.62)

where Vion(r) is the static total electron-ion potential, and n(r) is the elec-
tronic density given by

n(r) =

Ne
∑

i

|ψi(r)|2 . (1.63)

Eq. (1.62) formally defines the exchange and correlation energy functional
EXC [n(r)]. Etot has been split into five contributions: the kinetic energy
of the corresponding noninteracting system, the interaction energy with the
external potential Eel−ion, the classical electrostatic energy for the electrons
EH , the exchange-correlation energy EXC which contains all the remaining
quantum interactions between the electrons, and the Coulomb energy Eion
associated with interactions among the ions at positions {RI}.

Only the minimum value of the Kohn-Sham energy functional has a
physical meaning. It is equal to the ground-state energy of the system of
electrons with the ions in positions RI.
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However, in its present form, the Kohn-Sham formulation is not useful
for practical computations, since the functional EXC , which includes all the
intricacies of the many-body electronic problem, is not known explicitly.
The most widely used approximations for the exchange-correlation energy
functional will be described in section 1.5.1.

Kohn-Sham equations

It is necessary to determine the set of wavefunctions ψi that minimize the
Kohn-Sham energy functional. These are given by the self-consistent solu-
tions to the Kohn-Sham equations (Kohn and Sham 1965):

[

−1

2
∇2 + VKS(r)

]

ψi(r) = ǫiψi(r) (1.64)

where ψi is the wave function of electronic state i, ǫi is the Kohn-Sham
eigenvalue, and VKS is the Kohn-Sham potential. The latter is defined by:

VKS(r) = Vion(r) + VH(r) + VXC(r) (1.65)

where VH is the Hartree potential of the electrons given by

VH(r) =

∫

n(r′)

|r− r′|dr
′ (1.66)

and, the exchange-correlation potential, VXC , is given formally by the func-
tional derivative

VXC(r) =
δEXC [n(r)]

δn(r)
(1.67)

The Kohn-Sham equations represent a mapping of the interacting many-
electron system onto a system of non-interacting electrons moving in an
effective potential due to all the other electrons. If the exchange correlation
functional were known exactly, then taking the functional derivative with
respect to the density would produce an exchange-correlation potential that
included the effects of exchange and correlation exactly.

The Kohn-Sham equations must be solved self-consistently so that the
occupied electronic states generate a charge density that produces the elec-
tronic potential that was used to construct the equations.
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1.3.3 Solution of the Kohn-Sham equations

In conventional DFT electronic structure calculations for solids and mol-
ecules, the KS self-consistent equations are solved as follows. An initial
value for the electronic density n(r) is guessed: for example it is taken to
be the superposition of atomic charge densities. The KS potential is then
calculated for this density, and the KS equation is solved by diagonalization
of the KS Hamiltonian matrix HKS : this is set up according to a chosen
basis set for the expansion of ψi. From the eigenvectors of HKS a new n(r)
is calculated, this output is mixed with the input in an adequate fashion to
provide a new starting density, and the whole process is repeated till self
consistency. Since the cost of standard diagonalization grows as O(M3),
where M is the number of basis functions used to expand the Kohn-Sham
orbitals, this procedure becomes very costly for large systems and one is
forced to use iterative techniques (Haydock 1972, Davidson 1975, Wood
and Zunger 1985) to find the lowest occupied levels, instead of a direct
diagonalization of HKS .

The KS equations can be solved in a different fashion using the varia-
tional principle that holds for the energy functional. Its minimum can be
directly searched with respect to the single-particle orbitals ψi. Minimiza-
tion can be achieved by introducing a fictitious dynamics in the space of
electronic degrees of freedom ψi’s. The simplest dynamics that one can con-
ceive is provided by steepest descent (SD), and can be formulated in terms
of first-order equations in the fictitious variable t:

µψ̇i = − δE

δψ∗
i

(1.68)

Here the dot indicates time derivative, the functional derivative is δE
δψ∗

i
=

HKSψi and HKS depends nonlinearly on the ψi. The parameter µ is a
fictitious electronic mass. It is used to tune the speed of the electronic
dynamics and does not describe any other physical property. When the
ions are held fixed, this mass can be included in the definition of the time
step and it is irrelevant. However, as we shall see, the ions are allowed to
move, the ratio between µ and the physical ionic masses is important since it
defines the relative speed of the ionic and of the fictitious electronic motion.

When solving Eq. (1.68) numerically, orthonormality constraints must
be explicitly imposed and the fictitious dynamics becomes:

µψ̇i = − δE

δψ∗
i

+
∑

j

Λijψj (1.69)
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where the sum extends over the N occupied states. In practice, after an
unconstrained step is performed, the predicted ψi are corrected by an appro-
priate orthonormalization procedure which gives the coefficients Λij . Once
the system has reached the minimum, ψ̇i = 0, and thus HKSψi =

∑

j Λijψj ,
so by diagonalization of the constraint matrix Λ one recovers the KS equa-
tions. The unitary transform which diagonalizes Λ can be used to obtain
the KS eigenstates and eigenvalues. Experience has shown that, at fixed
nuclear configuration, E has only one minimum, and therefore the SD pro-
cedure leads to the absolute minimum. Note that in this dynamical way
one achieves the objective of self-consistently minimizing E without ever
performing explicit diagonalization. The efficiency of the SD scheme is con-
trolled by the number of steps that are necessary to achieve convergence.
This can be quite large, especially in metallic situations. Various attempts
to improve the SD approach have been made.

Teter et al. (1989) obtained a very tractable scheme by adapting the well-
known method of conjugate gradient (CG) minimization, and introducing
an interesting preconditioning of the gradients. Moreover, they showed that
by working band-by-band for the updating and the orthornormalization of
the ψi the convergences is further improved with respect to solving for all
the bands simultaneously.

Tassone et al. (1994) proposed an alternative second-order dynamics with
a damping term:

µψ̈i = − δE

δψ∗
i

− γµψ̇i +
∑

j

Λijψj (1.70)

They showed the rate of convergence of this damped dynamics (DD) is much
faster than that of SD dynamics provided the damping factor γ is adjusted
during the dynamics. Indeed, it is convenient to use steepest descent in
the first steps of the minimization when the highest frequency components
dominate the deviation of the energy from the minimum. Subsequently,
when only the slowest frequencies are left, damped dynamics becomes much
more convenient, especially in those case of extremely slow convergence rate
(e.g. metals). They also developed a preconditioning of the dynamics to
improve the numerical efficiency of all the fictitious dynamical methods pre-
viously introduced. This is achieved by replacing the constant fictitious
mass parameter µ in Eqs. (1.68), (1.69), and (1.70) with an arbitrary posi-
tive definite operator µ̂. The resulting increased arbitrariness in the choice
of µ̂ is then exploited to compress the highest components of the spectrum
of the fictitious electron dynamics. Recalling that these are due basically to
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the high energy unoccupied states which are free-particle-like, they choose
an operator µ̂ which is diagonal in q space with eigenvalues µ(q) given by

µ(q) = µ0 if 1
2q

2 < Ep,

µ(q) = µ0
q2

2Ep
if 1

2q
2 > Ep.

(1.71)

Below a certain cutoff energy Ep, it is worth considering a constant mass µ0,
because the low energy eigenstates have a relevant potential energy contribu-
tion and are not free-particle-like. The preconditioning cutoff Ep therefore
represents the threshold above which the states are dominated by the kinetic
energy.

As already mentioned, the basic step of iterative schemes such as SD,
CG or DD consists in evaluating the action of HKS on the ψi, followed
by the orthonormalization of the single-particle orbitals. If the ψi are ex-
panded in plane waves (with M plane waves for each of the N electronic
states), the computation for all the states of HKSψi by matrix-vector multi-
plication requires, in principle, NM2 floating point operation, whereas the
orthonormalization requires N2M . Car and Parrinello (1985) out that when
using local pseudopotentials HKSψi can be conveniently calculated in real
space by means of fast Fourier transform (FFT) techniques and requires
O(NM logM) operations. As apparent, in these iterative scheme the large
number M (usually M ≫ N) enters only via M logM in the number of
operations, and this gives a significant improvement over standard diago-
nalization techniques where M enters as M3. An additional advantage of
SD, CG and DD iterative techniques is that the matrix HKS is never ex-
plicitly required, thus permitting a significant save in memory. The storage
scales as N2. Of course, for sufficiently large systems, the orthogonaliza-
tion workload, growing like N2M dominates, and the numerical cost of the
algorithm still grows as the cube of the system size.

New schemes based on an orbital picture and on new energy functionals,
which is proven to have the KS ground-state energy as its absolute minimum
value, have been recently developed (Mauri et al. 1993, Ordejón et al. 1993,
Li et al. 1993, Daw 1993). The crucial feature of these functionals is that
their minimization implies neither explicit orthogonalization of the orbitals
nor inversion of the overlap matrix. The use of this approach within a
localized orbital formulation leads straightforwardly to the so called O(N)
methods whose workload grows linearly with the system size.

In summary, we have outlined the basic assumptions underlying the
derivation of interatomic forces from First Principles. We have empha-
sized that to be really useful for MD simulations, conditions of accuracy
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and tractability should be met. We have presented the Density Functional
Theory to solve the many-electron problem providing an effective mean to
obtain accurate interatomic potentials. The Hohenberg-Kohn for the en-
ergy functional has been introduced, as well as the Kohn-Sham formulation
of the many-body problem in terms of single-particles orbitals. Finally, we
have presented the most widely used methods to solve the KS self-consistent
equations namely steepest descent, conjugate gradients or damped dynam-
ics.

1.4 First-principles Molecular Dynamics

1.4.1 Introduction

In principle, any of the methods described in the previous section can be used
to solve the KS equations and then derive ab initio the interaction potential
amongst the ions V({RI}), at each atomic configuration {RI}. One could
then perform ab initio MD simulations by following three separate steps, at
each MD move: (i) solve self-consistently the KS equations for a given ionic
configuration {RI}; (ii) compute forces acting on ions (FI), according to the
Hellman-Feynman theorem (FI = −∇RI

V); (iii) solve Newton equations of
motions: MIR̈I = −∇RI

V).
An alternative methodology was proposed some years ago by Car and

Parrinello (Car and Parrinello 1985), in which the electrons and the ions are
treated on the same footing. In this scheme, the ionic trajectories and the
corresponding electronic ground state are generated at the same time, with-
out repeating the full self-consistent procedure to solve the KS equations at
each MD step. This approach, together with global optimization techniques
will be discussed in detail in the next section.

Before doing so, it is useful to see how to generalize the minimization
procedure of the energy functional E with respect to the electronic degrees
of freedom to include ionic degrees of freedom. This idea of simultaneously
relaxing both ions and electrons was first discussed by Bendt and Zunger
(1983). Within SD, this is easily done by considering the two following sets
of equations:

µψ̇i = − δE

δψ∗
i

+
∑

j

Λijψj (1.68)

MIṘI = − ∂E

∂RI
(1.71)
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where the masses µ and MI have been introduced in order to account for
the difference in time scales associated with the two sets of parameters {ψi}
and {RI}. Eqs. (1.69) and (1.69) define mass weighted SD trajectory on
the E surface that moves downhill from the starting point to a nearby local
minimum. By varying the ψi at fixed ionic positions, a single minimum on
the E surface is found, which coincides with a point of the BO potential
energy surface V defined by

V({RI}) = min
{ψi}

E[{ψi}, {RI}]. (1.72)

As a consequence, the local minima of the E surface are also local minima
of the V surface. Eqs. (1.69) and (1.69) can be used to optimize com-
plex atomic structures, by relaxing simultaneously electronic and nuclear
degrees of freedom. In conventional gradient methods this is accomplished
by following a trajectory on the V surface, which means that perfect elec-
tronic self-consistency is required for any nuclear configuration. By using
Eqs. (1.69) and (1.69) one follows instead a trajectory on the fictitious E
surface, and the optimal relative relaxation rate for electrons and ions can
be achieved by adjusting the respective mass parameters. The scheme may
be generalized to include additional degrees of freedom like the volume or
the shape of the unit cell.

The scheme just presented has a severe limitation, allowing only for local
and not global optimizations. Indeed, it is well known that the potential
energy surface V can have several minima. To deal with this problem one
needs a global optimization method. We show in the next section that a
satisfactory methodology to the global optimization problem1 is based on
statistical mechanics, and it is intimately connected to the calculation of
finite-temperature properties and the possibility of performing DFT-based
MD simulations.

1.4.2 The Car-Parrinello method

The key-point in the FP-MD method proposed by Car and Parrinello (1985)
is the definition of a fictitious dynamical system, associated with the physical
system, whose potential energy surface E is an appropriate functional of
both ionic and electronic degrees of freedom; the fictitious system is devised
in such a way that the trajectories generated by its dynamics reproduce very
closely those of the physical system with potential energy surface V . The

1The global optimization problem is NP -complete, and thus “the solution” is not
available
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classical lagrangian of the physical system is given by the sum of the ionic
kinetic energy and the ionic potential energy with reversed sign (Eq. (1.3)).
The generalized lagrangian of the fictitious system is defined as:

L =
∑

i

µi

∫

∣

∣

∣
ψ̇i(r)

∣

∣

∣
dr+

1

2

N
∑

i=1

MIṘ
2
I − E[{ψi}, {RI}]

+
∑

ij

Λij

(
∫

ψ∗
i (r)ψj(r)dr− δij

)

(1.73)

L does not depend explicitly on time, and is a functional of two sets of
classical degrees of freedom, the ψi and the RI , which depend on time.
The parameter µ, expressed in units (mass)×(length)2, plays the role of
a generalized mass for the electronic degrees of freedom; how to choose
this parameter remains to be specified. For simplicity we have consider a
unique µ for the ψi, independent from the electronic state, even though
this is by no means necessary. The first and second term in Eq. (1.73)
are the kinetic energy of the electronic and ionic degrees of freedom, Ke

and KI , respectively. E is the potential energy of the coupled electron-
ion fictitious system. The lagrangian multipliers Λij are used to impose
orthonormality conditions on the ψi; in the language of classical mechanics,
they are just simple holonomic constraints, that is they are expressible as
f(ψ) = 0 where the function f does not depend explicitly on time and
therefore the constraints do not do any work. The Euler equations associated
with the lagrangian of Eq. (1.73) are:

µψ̈i = − δE

δψ∗
i

+
∑

j

Λijψj (1.74)

MIR̈I = − ∂E

∂RI
(1.75)

At first sight there is no relation between the ionic dynamics generated from
Eq. (1.75) and that obtained from the correct equation of motion (EOM)
for the nuclei, derived from the lagrangian of Eq. (1.3):

MIR̈I = −∂V({RI})
∂RI

. (1.76)

Indeed, in general the nuclear trajectories generated by Eq. (1.75) and those
obtained from Eq. (1.76) do not coincide, unless E[{ψi}, {RI}] is at the in-
stantaneous minimum. However, the parameter µ and the initial conditions
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{ψi}0, {ψ̇i}0 can be chosen in such a way that the time-scale for the elec-
tronic degrees of freedom is much shorter than that of the nuclei. In this
case nuclear trajectories, initially lying on the BO surface, will deviate from
it only after times that are significantly longer than the MD time step and,
in some cases, even longer than the MD observation time. In other words,
if µ and {ψi}0, {ψ̇i}0 are chosen so that the two sets of classical degrees of
freedom, ions and electrons, are only weakly coupled, the transfer of energy
between them is small enough, to allow the electrons to follow adiabatically
the ionic motion, remaining close to the BO surface. In such a metastable
situation, meaningful temporal averages can be computed. This dynamics,
which we call classical adiabatic dynamics, is meant to reproduce in a com-
putationally effective way what indeed occurs in real life, that is electrons
following adiabatically the ionic motion. The role of Eq. (1.74) is that of
keeping the electrons on the BO surface, without solving self-consistently
the KS equations at each step, but for the initial configuration.

We note that thermodynamic constraints can also be imposed like in the
case of classical molecular dynamics. Constant-pressure FPMD has been
introduced recently by Bernasconi et al. (1995) in which the shape of the
MD cell is allowed to vary along the lines of Parrinello-Rahman method.
Its is thus possible to study crystal structure transformations from first-
principles (Focher et al. 1995, Scandolo et al. 1995). Constant-temperature
FPMD are a bit more particular since two different Nosé-Hoover thermostats
can be applied, one to the ionic and the other to the electronic degrees of
freedom. The role of these thermostats is to maintain the ions at the desired
temperature while at the same time keeping the electrons “cold”, namely
very close to the ground state. This opportunity has been exploited to
avoid transfer of energy between electrons and ions in metals (Blöchl and
Parrinello 1992).

To summarize, we have presented first-principles molecular dynamics
as proposed by Car and Parrinello (1985). In this approach, the system
of electrons and ions that evolve according to the BO approximation is
regarded as a two-component system with two different energy scales. While
ions move at the preassigned temperature, the electrons that have to follow
adiabatically, remaining in the instantaneous ground state, are essentially at
zero temperature. With this in mind, the BO system which has a quantum
mechanical component, namely the electrons, is mapped into a system in
which ions and electrons are treated classically.
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1.5 Practical implementation

The FP-MD scheme just described was originally based on a pseudopoten-
tial description of the interaction between ionic cores and valence electrons,
in conjunction with plane-wave (PW) basis sets and the Local Density Ap-
proximation (LDA) for the exchange-correlation energy functional (Car and
Parrinello 1985). To date, the method has been mostly applied in its orig-
inal version, for reasons of computational efficiency, however, a variety of
modifications have also been tested.

The choice of LDA to describe exchange-correlation effects in the elec-
tronic system is quite simple to implement in the framework of pseudopo-
tential-plane-wave formalism, since the EXC is a functional of the density.
Though it is a really drastic approximation, the method works surprisingly
well for many physical properties. However, the LDA has some deficiencies
and some functionals have been proposed to try to solve them. These new
approximations to EXC have been successfully introduced in CP scheme
(White and Bird 1994).

The choice of PW expansions for the single-particle orbitals has several
advantages. It permits the use of FFT techniques which are computationally
very efficient; PW’s do not depend on atomic positions and therefore forces
acting on atoms can be easily computed via a straightforward application
of the Hellman-Feynman theorem. PW’s are free of basis-set superposi-
tion errors and allow computation of the total energy of different atomic
arrangements with the same accuracy. This is particularly relevant in MD
simulations, where rather different atomic configurations are explored. Fi-
nally the convergence of PW calculations can be controlled in a very simple
manner, since it depends only upon the number of Fourier components in-
cluded in the expansion of the ψi. The disadvantage of PW expansions is the
very large number (M) of basis functions needed to represent the electronic
orbitals, compared, for example, to basis sets of gaussian or atomic-like or-
bitals. PW basis sets call, of course, for the use of pseudopotentials, since
the number of PW’s needed to describe localized core states is too large and
cannot be afforded from a computational point of view. Other basis sets
have also been tested in the framework of CP method. For instance, an
all-electron formulation within an augmented plane-waves scheme has been
used by Blöchl (1994).

The rest of this section is organized as follows. In section 1.5.1, we con-
centrate first on the electron-electron interactions, introducing the physical
origin of exchange and correlation. We describe various approximations to
the EXC functional starting from LDA and going beyond emphasizing their
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advantages and inconveniences. In section 1.5.2, we explain how the reso-
lution of the problem can be simplified by the use of periodic cells and a
plane-wave basis set in the framework of Bloch’s theorem, and present the re-
ciprocal space formulation of the Schrödinger equation. In section 1.5.3, we
discuss the modeling of electron-ion interactions with the frozen-core approx-
imation and the use of pseudopotentials. We illustrate the various possible
forms for the latter (local, non-local, semi-local or separable) and introduce
Kleinman-Bylander procedure. We outline the differences between the two
most widely used types of pseudopotentials, namely norm-conserving and
ultrasoft. Finally, in section 1.5.4, we briefly present the Ewald summation
technique for the calculation of ion-ion interaction energy.

1.5.1 Electron-electron interaction

Exchange-correlation energy

Before addressing the issue of the approximations most widely used for the
exchange-correlation energy functional, we will try to introduce briefly the
physical origin of this contribution to the total energy. On this purpose,
we move back to the many-body problem and introduce the Hartree and
Hartree-Fock approximations.

In many-electron systems, the most difficult problem is posed by the
need to take account of the effects of the electron-electron interaction. For-
tunately, a good insight in the properties of such systems can already be ob-
tained from the study of effective non-interacting particles models. In these
models, the interacting electron problem is replaced by a non-interacting
system of particles in which the external field is replaced by an effective ex-
ternal field which incorporates to some extent the interparticle interactions.

When the fictitious electrons are non-interacting, the different variables
can be separated in the many-body wavefunction, that basically takes the
form of a “Hartree product”:

ΨH (r1, r2, . . . , rNe) = ψ1 (r1) · ψ2 (r2) · . . . · ψNe (rNe) (1.77)

In this case, the electron-electron interaction energy Eel reduces to the clas-
sical electrostatic energy (Coulomb energy) between the electrons, which is
called the Hartree energy EH .

This simple model can be improved by taking into account the antisym-
metric character of the many-body wavefunction under exchange of any two
electrons because the electrons are fermions. The resulting wavefunction



1.5. PRACTICAL IMPLEMENTATION 41

can be written in terms of a “Slater determinant”:

ΨS (r1, r2, ..., rNe) = (1/
√
N !)

× det











ψ1(r1) ψ1(r2) · · · ψ1(rNe)
ψ2(r1) ψ2(r2) · · · ψ2(rNe)

...
...

. . .
...

ψNe(r1) ψNe(r2) · · · ψNe(rNe)











(1.78)

More generally, the wavefunction should also include a dependence on the
spin of the electrons. This is obtained by a simple product of two Slater
determinants (one for spin-up electrons and one for spin-down electrons).

The antisymmetry of the wavefunction produces a spatial separation
between electrons that have the same spin and thus reduces the Coulomb
energy of the electronic system. The reduction in the electron-electron in-
teraction energy due to the antisymmetry of the wavefunction is called the
exchange energy EX . This is generally referred to as the Hartree-Fock ap-
proximation.

The real many-body wavefunction has extra dimensionalities with re-
spect to a Slater determinant, so that the electron-electron interaction en-
ergy can be further reduced below its Hartree-Fock value, if electrons that
have opposite spins are also spatially separated. The difference between
the electron-electron interaction energy in the many-body case and in the
Hartree-Fock approximation is called the correlation energy EC .

We now turn to Kohn-Sham single-orbital formulation in which electron-
electron energy is written as a functional of the density:

Eel[n(r)] = EH [n(r)] + EXC [n(r)] (1.79)

where the problem remains of approximating the exchange-correlation en-
ergy functional in order to obtain a useful scheme for practical computations.
It should be noted that the exchange-correlation energy of the Kohn-Sham
formalism is not equivalent to that of the many-electron system. The differ-
ence originates in a transfer of part of the many-body kinetic energy to the
exchange-correlation term within KS formulation. (Levy and Perdew 1985).

The Hohenberg-Kohn theorem provides some motivation for using a
function of the electron density to describe the exchange-correlation energy.
That is what is done in the local-density approximation (LDA) and in some
scheme going beyond LDA.
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Local-density approximation

The simplest method of describing the exchange-correlation energy of an
electronic system is to use the local-density approximation (LDA) proposed
by Kohn and Sham (1965). Due to its simplicity and effectiveness, this
approximation is almost universally used in total-energy pseudopotential
calculations.

The exchange-correlation energy functional can be written:

EXC [n(r)] =

∫

ǫXC(r)n(r)dr (1.80)

that is an integral of the exchange-correlation energy per electron at a point r
times the local density of particles n(r). In the local-density approximation,
it is assumed that ǫXC(r) only depends on the local density n(r) and is equal
to the exchange-correlation energy per electron in a homogeneous electron
gas that has the same density as the electron gas at point r:

ǫLDAXC (r) = ǫhomXC [n(r)]. (1.81)

The exchange-correlation energy functional is thus purely local.

The exchange part can be obtained analytically using Hartree-Fock tech-
nique:

ǫLDAX (r) =
α

rs
(1.82)

where α = −3
4

3
2π

2/3
and the local Seitz radius rs = rs(r) is defined by:

rs =

(

3

4πn(r)

)1/3

. (1.83)

It is the radius of the sphere that would contain exactly one electron in the
homogeneous electron gas of density n(r).

The correlation part is derived by interpolating homogeneous electron-
gas data obtained by quantumMonte-Carlo calculations (Ceperley and Alder
1980). Several parameterizations exist for this functional. Throughout the
present study, we have mainly used that of Perdew and Zunger (1981) that
is written:

ǫLDAC (r) =











α1

1+α2r
1/2
s +α3rs

if rs > 1

β1 + β2 ln rs + β3rs + β4rs ln rs if rs < 1

(1.84)
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where α1 = −0.1423, α2 = 1.9529, α3 = 0.3334, β1 = −0.0480, β2 = 0.0311,
β3 = −0.0116, and β4 = 0.0020. We will also introduce the parameterization
proposed by Perdew and Wang (1992) (that will be needed in the framework
of generalized gradient approximation):

ǫLDAC (r) = −2a(1 + α1rs)

× ln

[

1 +
1

2a(β1r
1/2
s + β2rs + β3r

3/2
s + β4r2s)

]

(1.85)

where a = 0.0310907, α1 = 0.21370, β1 = 7.5957, β2 = 3.5876, β3 = 1.6382,
and β4 = 0.49294.

The local-density approximation ignores corrections to the exchange-
correlation energy at a point r due to nearby inhomogeneities in the electron
density. Considering the inexact nature of this approximation, it is remark-
able that calculations performed using the LDA have been so successful.
This can be partially attributed to the fact that the exchange-correlation
hole in the local-density approximation fulfills the sum rule according which
this hole should integrate to -1 (Harris and Jones 1974, Gunnarsson and
Lundqvist 1976, Langreth and Perdew 1977).

Note that an extension to spin-polarized systems has also been proposed
(Gunnarsson and Lundqvist 1976). In this approximation, referred to as the
local-spin-density LSD approximation, the exchange-correlation energy per
electron is a functional of the local “up” and “down” electron spin densities
n↑(r) and n↓(r).

Beyond the LDA

During the last 20 years, a variety of recipes have been proposed to improve
local-density approximation. We refer to the abundant literature for a sys-
tematic discussion and to Appendix A where a brief description of the most
commonly used approximations is proposed.

In the present study, when hydrogen bonds had to be simulated (see
Chapter 3), we used the functionals proposed by Perdew and Wang (1991),
that fall into the class of generalized gradient approximations (GGA) for
which ǫXC(r) is expressed in terms of the density n and its gradient.

The exchange part is written:

ǫPW
′91

X (r) = ǫLDAX (r)

(

1 + a1s sinh
−1(a2s) + (a3 + a4e

−100s2)

1 + a1s sinh
−1(a2s) + a5s4

)

(1.86)
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where a1 = 0.19645, a2 = 7.7956, a3 = 0.2743, a4 = −0.1508, a5 = 0.004.
The scaled density gradient s = s(r) is defined by:

s =
|∇n|
2kFn

(1.87)

where the local Fermi wave vector kF = kF (r) is

kF = (3π2n)1/3. (1.88)

The correlation part is written:

ǫPW
′91

C (r) = ǫLDAC (r) +H(n, s, t) (1.89)

where t = t(r) is another scaled density gradient defined by:

t =
|∇n|
2ksn

(1.90)

with the local screening wave vector ks = ks(r) written as:

ks = (4kF /π)
1/2. (1.91)

The correction factor to the LDA correlation functional is given by:

H =
β2

2α
ln

(

1 +
2α

β

t2 +At4

1 +At2 +A2t4

)

+Cc0[Cc(n)− Cc1]t
2e−100s2 (1.92)

where

A =
2α

β
[e−2αǫLDA

C (r)/β2 − 1]−1 (1.93)

and α = 0.09, β = 0.0667263212, Cc0 = 15.7559, Cc1 = 0.003521. The
function Cc(n) is defined by:

Cc(n) = C1 +
C2 + C3rs + C4r

2
s

1 + C5rs + C6r2s + C7r3s
, (1.94)

with C1 = 0.001667, C2 = 0.002568, C3 = 0.023266, C4 = 7.389 × 10−6,
C5 = 8.723, C6 = 0.472, C7 = 7.389 × 10−2. The combination of these two
functionals to obtain ǫXC(r) is referred to as PW’91 approximation.

Although experience in GGA is not as consolidated as that for LDA,
the emerging picture is that in general GGA is an improvement over LDA,
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especially for bonding energies (Johnson et al. 1993) and the description of
hydrogen bonds (Sprik 1991, Sim et al. 1992).

Note that the GGA energy density is a smoothly varying function of
the electron charge density n and of |∇n(r)|/n(r), and present no compu-
tational problems. The corresponding exchange-correlation potential, how-
ever, involves the gradient of a function with cusps, and presents extreme
convergence difficulties in plane-wave calculations. White and Bird (1994)
introduced a method which deals efficiently with these problems.

In summary, we have demonstrated the physical origin of the splitting
of the electron-electron interaction energy into Hartree, exchange and cor-
relation energies. We have described various approximations to the EXC
functional, starting from the Local Density Approximation which, due to
its simplicity and effectiveness, is almost universally used in total-energy
pseudopotential calculations. Then, we have emphasized its limitations and
introduced new recipes that have been proposed to go beyond LDA. We have
stressed that the Generalized Gradient Approximation is an improvement
over LDA, especially for bonding energies and the description of hydrogen
bonds.

1.5.2 Periodic cells and Plane waves

In the framework of DFT, it was demonstrated that certain observables of
the many-body problem can be mapped into equivalent observables in an
effective single-particle problem. However, there still remains the formidable
task of handling an infinite number of non-interacting electrons moving in
the static potential of an infinite number of nuclei or ions. Two difficulties
must be overcome: a wavefunction must be calculated for each of the infinite
number of electrons in the system, and, since each electronic wavefunction
extends over the entire solid, the basis set required to expand each wave
function is infinite. Both problems can be surmounted by performing calcu-
lations on periodic systems and applying Bloch’s theorem to the electronic
wavefunctions. This naturally leads to the use of plane-wave basis sets and
to k-point sampling techniques.

Supercell approximation

In simulations of bulk systems, techniques have been developed to take ad-
vantage of the translational symmetry of the corresponding hamiltonian to
reduce the complexity of the problem (see Bloch’s theorem, hereafter). To
this end, the systems are represented by a MD box which is periodically



46 CHAPTER 1. FIRST-PRINCIPLES MOLECULAR DYNAMICS

repeated to infinity.

This is a natural choice for perfect crystals, but this is no more the case
for aperiodic configurations of atoms such as disordered systems, systems
with a point-defect, surfaces or even molecules. The supercell approximation
allows one to adopt periodic boundary conditions (PBC) even in these latter
cases.

One simply constructs a large unit-cell (called supercell) containing the
configuration in question and repeats it periodically throughout the space.
By studying the properties of the system for larger and larger supercells,
one can gauge the importance of the induced periodicity and systematically
filter it out.

For disordered systems, such as amorphous solids or liquids, the supercell
is chosen to be large enough so that the imposed periodicity does not affect
the dynamical properties of the system.

For systems with a point-defect, the supercell contains the defect sur-
rounded by a region of bulk crystal. It is essential to include enough bulk
solid in the supercell to prevent the defects in neighboring cells from inter-
acting. The independence of defects in neighboring cells can be checked by
increasing the volume of the supercell until the computed defect energy has
converged. It can then be assumed that defects in neighboring unit cells no
longer interact.

For surfaces, the supercell contains a crystal slab and a vacuum region.
To ensure that the results of the calculation accurately represent an isolated
surface, the vacuum regions must be wide enough so that faces of adjacent
crystal slabs do not interact across the vacuum region, and the crystal slab
must be thick enough so that the two surfaces of each crystal slab do not
interact through the bulk crystal. Typically, the vacuum region should be
at least 5 Å and the slab should be 10-12 Å thick.

Finally, for molecules, again the supercell needs to be large enough so
that the interactions between the molecules are negligible. In general, a
10-12 Å cube (depending on the size of the molecule) is sufficient.

Therefore, the techniques developed in electronic structure calculations
within DFT, which take advantage of the translational symmetry of the
hamiltonian, can also be used for DFT-MD simulations for mostly all ‘real’
systems.

Bloch’s theorem

Bloch’s theorem (see Ashcroft and Mermin 1976) states that in a periodic
system each electronic wave function can be written as the product of a
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wavelike part and a cell-periodic part:

ψi,k(r) = eik·rui,k(r) (1.95)

where k is a wave vector of the BZ and i is the band index.
The cell-periodic part of the wave function can be expanded using a

basis set consisting of a discrete set of plane waves whose wavevectors are
reciprocal lattice vectors of the crystal:

ui,k(r) =
∑

G

ci,k(G)eiG·r (1.96)

where G are the reciprocal lattice vectors. Therefore each electronic wave
function can be written as a sum of plane waves:

ψi,k(r) =
∑

G

ci,k(G)ei(k+G)·r (1.97)

where ci,k(G) are the Fourier components (FC) of the single-particle wave-
function, which are treated as time-dependent degrees of freedom in the MD
calculation.

Plane-wave basis sets

Using Bloch’s theorem, the electronic wave functions at each k point can
be expanded in terms of a discrete plane-wave basis set (Eq. (1.97)). In
principle, an infinite plane-wave basis set is required to expand the electronic
wave functions in Eq. (1.97). However, the coefficients ci,k(G) for the plane
waves with small kinetic energy 1

2 |k+G|2 are typically more important
than those with large kinetic energy. Thus the plane-wave basis set can be
truncated to include only plane waves that have kinetic energies less than
some particular cutoff energy Ecut. If a continuum of plane-wave basis states
were required to expand each electronic wave function, the basis set would
be infinitely large no matter how small the cutoff energy. Application of
the Bloch theorem allows the electronic wave functions to be expanded in
terms of a discrete set of plane waves. Introduction of an energy cutoff to
the discrete plane-wave basis set produces a finite basis set.

The truncation of the plane-wave basis set at a finite cutoff energy will
lead to an error in the computed total energy. However, it is possible to
reduce the magnitude of the error systematically by increasing the value
of Ecut. The latter depends on the specific system and in particular upon
the choice of the pseudopotential for the description of the core-valence
interaction (see section 1.5.3). For a given pseudopotential, in principle,
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the cutoff energy should be increased until the calculated total energy has
converged. The choice of Ecut determines the accuracy of the calculation.

One of the difficulties associated with the use of plane wave basis sets is

that the number of basis states, that will be noted 2 N
d
PW (the subscript “d”

stands for “discontinuous”), changes discontinuously with cutoff energy, as
illustrated in Fig. 1.1. In general these discontinuities will occur at different
cutoffs for different k points. In addition, at a fixed-energy cutoff, a change
in the size or shape of the unit cell will cause discontinuous variations of
the number of plane waves in the basis set, so that the total energy and the
stress curves obtained from calculations at constant Ecut are ragged.

Froyen and Cohen (1986) proposed a method to handle this problem for
stress calculations. It consists in adding a correcting factor, called Pulay
stress by analogy with the Pulay force (Pulay 1969), which approximately
accounts for the difference between the number of plane waves used in the
calculation and the fictitious number of states in the basis set if it were
obtained by a continuous distribution in the reciprocal space N

c
PW :

N
c
PW =

(

V

8π3

)

4

3
π
(

(2Ecut)
1/2
)3

=
V

6π2
(2Ecut)

3/2 (1.98)

where the subscript “c” stands for “continuous”.
Francis and Payne (1990) introduced a correction to the energy by in-

tegrating the Pulay stress expression of Froyen and Cohen. However, we
showed (Rignanese et al. 1995) that the latter definition of the Pulay stress
was inaccurate and proposed a more rigorous technique for both total energy
and stress calculations which applies also in the case of anisotropic deforma-
tions. This scheme relies on the interpolation of the energy as a function of
the number of plane waves Etot

[

NPW

]

and on a scaling hypothesis that al-
lows us to perform this interpolation for a unique reference configuration h0

(where h0 describes the cell shape cfr. section 1.2, the volume of the cell be-
ing simply V0 = deth0). For any configuration h1 with volume V1 = deth1,
the correction to the total energy is given by:

∆E = Etot

[

V0
V1
N
c
PW

]

− Etot

[

V0
V1
N
d
PW

]

(1.99)

whereas the correction to the stress tensor is:

∆σαβ = δαβ
V0

V1
2N

d
PW

∂Etot
[

NPW

]

∂NPW

∣

∣

∣

∣

∣ NPW=
V0
V1
N

d
PW

. (1.100)

2Since the number of plane waves varies with the electronic wavevector k, when we
note NPW we refer to its average on the special k-point set.
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Figure 1.1: Number of plane waves N
d
PW in a basis set defined by

1
2 |k+G|2 < Ecut in a 2D case. The upper graph illustrates how these

k-points are enclosed in a circle of radius (2Ecut)
1/2. The lower graph illus-

trates the stair-like evolution of N
d
PW as a function of Ecut.
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When performing Parrinello-Rahman (variable cell-shape) molecular dy-
namics within the framework of DFT, these discontinuities constitute a seri-
ous source of nuisance. Bernasconi et al. (1995) proposed a modified kinetic
term for the energy functional that allows to work as close as possible to the
constant Ecut, while avoiding non-physical discontinuities. These scheme
has proved very successful (Focher et al. 1995, Scandolo et al. 1995).

k-point sampling

The computation of the electronic density n(r), then of the electronic po-
tential vKS(r) and of the total energy Etot in principle requires an integral
over the whole BZ. This would necessitate the knowledge of the electronic
wavefunctions at k points in the entire Brillouin zone. However, the elec-
tronic wave functions at k points that are very close together will be almost
identical. Hence it is possible to represent the electronic wavefunctions over
a region of k space by the wavefunctions at a single k point. With this av-
eraging operation, the electronic density can be written as a weighted sum
over only a finite number of k points, instead of being a integral over the
whole BZ:

n(r) =
∑

k

wk

Ne
∑

i

|ψi,k(r)|2 (1.101)

with
∑

k
wk = 1.

Chadi and Cohen (1973), Monkhorst and Pack (1976), and Evarestov
and Smirnov (1983) have devised methods for obtaining special sets of k
points in the Brillouin zone which give good average of the wavefunctions.

The magnitude of any error in the total energy due to inadequacy of the
k-point sampling can always be reduced by using a denser set of k points.
The computed total energy will converge as the density of k points increases.

Note that the number of k points needed can be further decreased by
taking into account symmetry considerations. This is an important source
of computational saving in BZ sampling with special points. However, a
general lattice distortion breaks the point symmetry of the lattice, and in
this case BZ sampling with special points is not much help.

In general, the computation of finite-temperature properties of crystals
and the simulation of disordered systems is most appropriately performed
with large supercells and the use of the Γ point to sample the BZ. Indeed,
there is a computational advantage in the use of the Γ point: at k = (0, 0, 0),
one can choose the single-particle orbitals ψi(r) to be real, since the phase
factor of the wavefunction is arbitrary. Thus, for each reciprocal lattice
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vector G, the Fourier components ci(G) of the orbitals satisfy the symmetry
relation:

ci(−G) = c∗i (G). (1.102)

One can take advantage of this property to reduce the independent FC (e.g.
the basis set) by a factor of two, substantially reducing the computational
cost of a MD simulation.

When plane waves are used as a basis set for the electronic wavefunctions,
the Kohn-Sham equations assume a particularly simple form. Substitution
of Eq. (1.97) into Eq. (1.64 and integration over r gives the secular equation:

∑

G′

[

(k+G)2

2
δG,G′ + VKS(G−G′)

]

ci,k(G) = ǫi,kci,k(G
′) (1.103)

where

VKS(G−G′) = Vion(G−G′) + VH(G−G′) + VXC(G−G′). (1.104)

In this form, the kinetic energy is diagonal, and the various potentials are
described in terms of their Fourier transforms. Note that special care must
be taken for the G = 0 component of the Hartree and ionic potential to
avoid electrostatic divergences (see for instance Gonze 1993-1994). Similar
divergences appear at the energy level for the Hartree term, Eel−ion and
Eion (see section 1.5.4).

To summarize, we have discussed the use of periodic cells and plane-
wave basis sets to expand the wavefunctions by introducing Bloch’s theorem
in the frame work of DFT. We have presented some difficulties associated
with the use of plane waves and the solutions that have been brought. We
have introduced the special k-points technique to sample the Brillouin zone,
allowing for the problem to be reformulated in the reciprocal space and
leading to simpler equations.

1.5.3 Electron-ion interactions

Two major inconveniences are associated with the use of plane waves for ex-
panding the electronic wavefunctions. First, an extremely large plane-wave
basis set is required to describe correctly the all-electron wavefunctions. In-
deed, these include tightly bound core orbitals, which are localized in the
core region, implying plane-wave components up to quite large wave vectors.
Second, a very large number of plane waves are needed to follow the rapid
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oscillations of the valence wavefunctions in the core region. These oscilla-
tions maintain the orthogonality with the core wavefunctions, as required
by the exclusion principle.

We now briefly explain how the first problem may be avoided within the
frozen-core approximation and how the second can be limited by the use
of pseudopotentials. We present the various possible forms for the latter
(local, non-local, semi-local or separable) and introduce Kleinman-Bylander
procedure to transform any semi-local pseudopotential into a separable form.
We compare the norm-conserving and ultrasoft pseudopotentials and show
how they modify Kohn-Sham formalism.

Frozen-core approximation

The frozen-core approximation is based on the following observations. It is
well known that most physical and chemical properties of solids are much
more dependent on the valence electrons than on the core electrons. On the
other hand, as the core electrons do not directly participate to the chemical
bonding, one expects that they are only slightly affected by modifications
of the atomic environment. It may therefore reasonably approximated that
the configuration of the core electrons within the solid is equivalent to that
of the isolated atoms. In terms of the density, the frozen-core approximation
corresponds to assume that:

n(r) = natomcore (r) + nval(r) (1.105)

Within this approximation, the problem of treating the core electrons is
considered as being solved (i.e. it has been solved at the atomic level), while
the study restricts to the investigation of the behavior of the valence elec-
trons within the ionic potential, partly screened by the core electrons. Note
that the separation between valence and core states is not strict, like the one
usually considered in undergraduate chemistry lectures, since electrons from
deep energy levels can always be treated as valence electrons. In practice,
the number of valence states changes according to the environment or to the
degree of approximation allowed, even for the same atomic species.

Pseudopotential approximation

The pseudopotential approximation allows the valence wavefunctions to be
expanded using a much smaller number of plane-wave basis states. Basically,
it consists in a mathematical transformation by which the ionic potential
Vion screened by the core electrons is replaced by a weaker pseudopotential
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Vps that acts on a set of pseudo-wavefunctions rather than the true valence
wavefunctions, and leading to the same eigenenergy in the Schrödinger equa-
tion. Ideally, the pseudopotential is constructed so that the effect of the core
states on the valence states is effectively reproduced and in such way that
the pseudo-wavefunctions have no radial nodes in the core region (defined
by a cut-off radius rcut). Outside the core region, the pseudopotential must
reduce to the ionic potential, in order for the wavefunction and the pseudo-
wavefunction to be identical:

Vps(r) = Vion(r) for r > rcut (1.106)

and

ψps(r) = ψ(r) for r > rcut (1.107)

with the following spherical boundary conditions:

ψps(r) = ψ(r) for r = rcut (1.108)

and

dψps(r)

dr
=

dψ(r)

dr
for r = rcut (1.109)

In order to be inserted in Schrödinger equations and give real eigenvalues,
pseudopotentials should be linear, hermitian, operators. The most general
form of such operators acts upon wavefunctions as follows:

〈r|Vps |ψ〉 =
∫

vps(r, r
′)ψ(r′)dr′ (1.110)

where vps(r, r
′) is the kernel of operator Vps.

As we want pseudopotentials to replace atomic potentials, these opera-
tors should also be invariant under rotations. It is possible to show that this
condition leads to the following development:

Vps =
∑

l,m

|Yl,m〉Vl 〈Yl,m| (1.111)

where |Yl,m〉 are the spherical harmonics and Vl is the pseudopotential op-
erator for angular momentum l. Thus, the operator Vps decomposes the
wavefunction into spherical harmonics, the relevant pseudopotential opera-
tor Vl is then applied to each of these. In terms of the kernel, Eq. (1.111)
can be rewritten:

vps(r, r
′) =

∑

l,m

Y ∗
l,m(θ, φ)vl(r, r

′)Yl,m(θ
′, φ′) (1.112)
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In this expression, there is one kernel for each angular momentum channel,
and these kernels depend on the radial distances r and r′. These conditions
define the non-local potentials.

By contrast, the simplest form for a pseudopotential is called local pseu-
dopotential. In this case, the kernel is a function only of the distance from
the nucleus (meaning also that there is no angular momentum dependency):

vps(r, r
′) = vLOC(r)δ(r − r′), (1.113)

and thus, the corresponding operator, noted VLOC(r), acts on the wavefunc-
tion as follows:

〈r|VLOC(r) |ψ〉 = vLOC(r)ψ(r). (1.114)

It is quite an interesting form for the simplicity of the calculations. Unfortu-
nately, in general, such a pseudopotential cannot reproduce accurately the
properties of the all-electron wavefunction. However, it should be noted that
the original ionic potential is a local potential. Thus, the pseudopotential
is also local outside the cutoff radius sphere. Indeed, above this limit, the
pseudopotential must reduce to the original potential, as already mentioned
above.

For most elements of the periodic table, it is a good approximation to
assume that vl(r, r

′) = vl̄(r)δ(r− r′) for l ≥ l̄, where l̄ can be one of the few
lowest value (s, p, and sometimes d). Indeed, high angular momentum wave
functions have vanishing presence probability within the cut-off radius, due
to the centrifugal potential. This latter observation is an interesting starting
point to build a more satisfactory form for the pseudopotential:

vps(r, r
′) = vLOC(r)δ(r − r′)

+
l̄−1
∑

l=0

∑

m

Y ∗
l,m(θ, φ)vNL,l(r, r

′)Yl,m(θ
′, φ′) (1.115)

where vNL,l(r, r
′) = vl(r, r

′)−vLOC(r)δ(r−r′) is a short-ranged kernel. The
first term on the right hand side vLOC(r) = vl̄(r) is called the local part of
the pseudopotential, whereas the second term is referred to as the non-local
part. The corresponding operator is thus:

Vps = VLOC(r) + VNL = VLOC(r) +
∑

l,m

|Yl,m〉VNL,l 〈Yl,m| (1.116)

This forms is much more practical for computations than Eq. (1.111) how-
ever further simplifications are introduced in actual calculations for the non-
local part of the pseudopotential.
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It should be mentioned the Kohn-Sham energy functional is now:

Etot[{RI}, {ψi}] =
Ne
∑

i

〈ψi| −
1

2
∇2 +

∑

I

VNL,I |ψi〉

+

∫

∑

I

VLOC,I(r)n(r)dr+

∫

1

2

n(r)n(r′)

|r− r′| drdr′

+Eres + EXC [n(r)] + Eion[{RI}] (1.117)

where Eres is a correction to account for the deviation from the purely
Coulombic behavior of the local part of the pseudopotentials (see for example
Gonze 1993-1994):

Eres =
1

V

(

∑

J

ZJ

)

∑

I

∫
[

VLOC,I(r) +
ZI
|r|

]

dr. (1.118)

Note also that the Fourier transform of Kohn-Sham potential is now non-
local in Eq. (1.103) and hence it is written:

VKS(k+G,k+G′) = VH(G−G′) + VXC(G−G′)

+VLOC(G−G′) + VNL(k+G,k+G′). (1.119)

The most widely widely used pseudopotentials belong to two different
classes. There are the semi-local potentials, in which each of the VNL,l is
diagonal in r:

vNL,l(r, r
′) = vSL,l(r)δ(r − r′) (1.120)

and the separable potentials, in which the kernels are a simple product

vNL,l(r, r
′) = ξ∗l (r)flξl(r

′) (1.121)

Semi-local pseudopotential are easily visualized, but separable pseudopoten-
tials are definitely more powerful for numerical techniques.

Kleinman and Bylander (1982) introduced a procedure to transform any
semi-local pseudopotential into a separable form:

ξl(r) = vSL,l(r)Rl(r) (1.122)

and

fl =

∫

vSL,l(r)R
2
l (r)4πr

2dr (1.123)
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where Rl(r) is the radial part of the atomic reference pseudo-wavefunction
for which the pseudopotential was calculated. Hence the operator corre-
sponding to the non-local part of the pseudopotential is written:

V KB
NL =

∑

l,m

|VSL,l(r)Φl,m(r)〉 〈Φl,m(r)VSL,l(r)|
〈Φl,m(r)|VSL,l(r) |Φl,m(r)〉

(1.124)

where Φl,m(r) = Yl,m(θ, φ)Rl(r).
Note that separable pseudopotentials have to be handled with some cau-

tion, since in some cases they can give rise to undesired spurious solutions
(called ghost states) at energies lower than the ground state energy. The
appearance of these ghost states has been traced back to the choice of the
local pseudopotential (Gonze et al. 1990, Gonze et al. 1991).

Norm-conserving pseudopotentials

Along the sixties and seventies, pseudopotentials have been widely used,
though in a quite empirical manner, providing a great number of remark-
able results in solid-state physics (Philips and Kleinman 1959, Abarenkov
and Heine 1965, Cohen and Bergstresser 1966, Cohen and Heine 1970). How-
ever, at the end of the seventies, the pseudopotential concept was formalized
mathematically and cautiously defined as a transformation of the frozen-core
Hamiltonian. This lead to a new generation of pseudopotentials being es-
sentially exact in a wide energy range, and capable of mimicking the original
potential in a large variety of atomic environments, a property referred to
transferability.

The key concept making this step possible is norm conservation brought
in condensed matter physics by Hamann, Schlüter and Chiang (1979). The
underlying idea is the crucial role of the density in total-energy calculations.
Indeed, the energy of the electronic system can be written as a functional
of the electron density. If that energy is to be desired accurately, it is
necessary that outside the core region the pseudo-wavefunctions and real
wavefunctions be identical, not just in their spatial dependences but also in
their absolute magnitudes, so that the two wavefunctions generate identical
charge densities. It is possible to show that if the pseudopotential is adjusted
to ensure that the integrals of the squared amplitudes of the real and the
pseudo-wavefunctions inside the core regions are identical, the equality of
the wavefunction and pseudo-wavefunction is guaranteed outside the core
region.

∫

r<rc

|ψps(r)|2 dr =

∫

r<rc

|ψ(r)|2 dr (1.125)
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This condition that defines the norm-conservation guarantees that the norm
of the pseudo-wavefunctions and real wavefunctions are identical outside as
well inside the core region.

The spherical boundary conditions Eqs. (1.108) and (1.109) can be re-
formulated in terms of the logarithmic derivative:

D(ǫ, r) = Dps(ǫ, r) for r = rcut (1.126)

where by definition:

D(ǫ, r) =
r

ψ(ǫ, r)

∂ψ(ǫ, r)

∂r
=
∂ lnψ(ǫ, r)

∂ ln r
(1.127)

Hamann, Schlüter and Chiang (1979) showed that norm-conservation con-
dition (Eq. (1.125)) implies the equality between the first-order energy de-
pendence of the logarithmic derivatives:

dD(ǫ, r)

dǫ
=

dDps(ǫ, r)

dǫ
for r = rcut. (1.128)

Based on this considerations, Bachelet, Hamann, and Schlüter (1982) pro-
posed a simple analytical form of norm conserving pseudo-potentials (PP’s).
This kind of PP was used in the present study for Si and H atoms to inves-
tigate the Si(001)/SiO2 interface. Note that in their original formulation,
these PP’s are semi-local but they can easily be transformed into a separable
form using Kleinman-Bylander scheme.

After the success of norm-conserving pseudopotential in many applica-
tions, the transferability has often been associated with the correct variation
of logarithmic derivatives of the pseudo-wavefunction with energy. Thus,
many attempts to improve norm-conserving pseudopotentials have centered
around the logarithmic derivatives of the atomic and pseudo-atomic wave-
functions in order to improve the energy range over which they match.
A method for the construction of pseudopotentials that corrects even the
higher-order energy dependence of the logarithmic derivative (known as
extended-norm-conserving condition) has been established by Shirley et al.

(1989).

Concentration on the logarithmic derivatives has also led to methods
generating soft pseudopotentials whose wavefunctions require a minimum
number of plane waves which facilitates the convergence to the solution
(Rappe et al. 1990, Troullier and Martins 1991). In the present study, we
used Troullier-Martins PP’s for Si, O, and H atoms to investigate SiO2

surface.
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A major contribution to transferability in pseudopotentials came from
Louie, Froyen and Cohen (Louie et al. 1982), who realized that the deletion
of the electron density of the core states removed by the pseudopotential
construction gave a non-linear error in the exchange-correlation potential
in the LDA. By restoring the core density ncore, they were able to show
that atoms would respond correctly over a wider range of conditions (core
correction).

An additional condition for transferability (chemical hardness conser-

vation) has also been recently proposed by Teter (1993). The requirement
that the total energies of atom and pseudo-atom match to second order with
arbitrary changes in the valence-state occupancy yields major decreases in
the errors made using pseudopotentials.

The typical method for generating a pseudopotential for an atom pro-
ceeds as follows. All-electron calculations are performed for an isolated
atom in its ground state and some excited states, using a given form for
the exchange-correlation density functional. This provides valence electron
eigenvalues and valence electron wavefunctions for the atom. A parametrized
form for the pseudopotential is chosen. The parameters are then adjusted, so
that a pseudoatom calculation using the same form for exchange-correlation
as in the all-electron atom gives both pseudowave functions that match the
valence wavefunctions outside some cutoff radius rcut, pseudo-eigenvalues
that are equal to the valence eigenvalues. The pseudopotential obtained in
this fashion is then used, without further modification, for any environment
of the atom. The electronic density in any new environment of the atom is
then determined using both the pseudopotential obtained in this way and
the same form of exchange-correlation functional as employed in the con-
struction of the pseudopotential. Finally, it should be noted that pseudopo-
tentials are constructed with rcut ranging typically from one to two times
the value of the core radius. Note also that the easiest approach to increase
the pseudopotential transferability is to simply decrease the cutoff radius
rcut used to generate the pseudopotential and the pseudo-wavefunctions,
thereby reducing the difference between the all-electron and pseudopoten-
tial results. However, there are practical limits on how far we can decrease
rcut, for example it must be larger than the outermost node of the all-electron
wavefunction if we insist on having nodeless pseudo-wavefunctions.

Ultrasoft pseudopotentials

A more radical approach has been suggested by Vanderbilt (1990), which
involves to relax the norm-conserving condition on the pseudo-wavefunction.
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The associated pseudopotentials are termed ultrasoft. The rationale behind
this technique is that in most cases a high cutoff energy is required for the
plane-wave basis-set only when there are tightly bound orbitals that have a
substantial fraction of their weight inside the core region of the atom. In the
framework of norm-conserving pseudopotentials, the cutoff energy cannot
be substantially be reduced in this case because there must be planewave
components up to a large enough wave vector to allow the majority of the
weight of the wavefunction to be kept within the core. On the contrary, in
the context of ultrasoft pseudopotentials, the pseudo-wavefunctions are not
required to have the same charge as the all-electron wavefunctions, and can
therefore be designed to be as smooth as possible in the core region, so that
the cut-off energy for the planewave basis set is reduced considerably. All
that is required is to rebuild the correct electron density to account for the
part of the charge which is not described by the pseudo wavefunctions ψi.
This is done by augmenting the pseudo-density with appropriate functions
(noted QInm(r)) localized in the core region and defined as follows:

n(r) =
∑

i



ψ∗
i (r)ψi(r) +

∑

nm,I

QInm
〈

ψi|βIn
〉 〈

βIm|ψi
〉



 (1.129)

where the functions βIn are strictly localized in the core region and are also
used to define the non-local pseudopotential:

VNL =
∑

nm,I

D0
nm

∣

∣βIn
〉 〈

βIm
∣

∣ (1.130)

The functions βIn and QInm are related to the atomic functions βn and Qnm
by

βIn(r) = βn(r−RI), (1.131)

QInm(r) = Qnm(r−RI). (1.132)

The Qnm(r) are constructed in the atomic pseudization procedure in such
a way that, at the reference energies, the electron density of the pseudo-
wavefunctions as defined by Eq. (1.129) be the same as the all-electron den-
sity. The functions βn and Qnm and the parameters D0

nm are obtained from
first principles in the ultrasoft pseudopotential scheme, and characterize the
atomic species. Here, for simplicity, we consider a single atomic species.
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Technically, the possibility of separating the description of the wave-
functions from that of the electron density is acquired by making use of a
generalized orthonormality condition for the wave functions:

〈ψi|S |ψj〉 = δij , (1.133)

where the operator S is defined by

S = 1 +
∑

nm,I

qnm
∣

∣βIn
〉 〈

βIm
∣

∣ (1.134)

Here qnm =
∫

Qnm(r)dr. It can easily be checked that the condition given
by Eq. (1.133) is consistent with the definition of the electron density (see
Eq. (1.129)) leading to

∫

n(r)dr = Ne (1.135)

where Ne is the number of valence electrons.
In Vanderbilt’s ultrasoft pseudopotential scheme the total energy is given

by the same expression as in the norm-conserving case, where the non-local
contribution to the pseudopotential is now VNL, of Eq. (1.130). However,
the functional derivative entering Eq. (1.74) is modified, with respect to
the norm-conserving scheme, since δn(r)/δψ∗

i (r
′) is not simply given by

ψi(r)δ(r− r′), but is:

δn(r)

δψ∗
i (r

′)
= ψi(r)δ(r− r′) +

∑

nm,I

QInm
〈

βIm|ψi
〉

βIn(r
′), (1.136)

This leads to

δE

δψ∗
i

=



−∇2 +
∑

nm,I

DI
nm

∣

∣βIn
〉 〈

βIm
∣

∣+ VKS



ψi = ǫiSψi (1.137)

where ǫi are the eigenvalues of the hamiltonian defined by the terms between
squared brackets, VKS is given by Eq. (1.65) in which Vion is the local part
of the pseudopotential, and

DI
mn = D0

mn +

∫

VKS(r)Q
I
mn(r)dr. (1.138)

Note, that D0
mn are just parameters, whereas the DI

nm depend through VKS
on the wavefunctions and have to be updated in the self-consistent proce-
dure.
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In norm-conserving pseudopotential schemes the energy cutoff Ecn re-
quired to describe the electron density is four times the energy cutoff Ecut
of the wave functions. The simple relationship Ecn = 4·Ecut does not always
hold in the ultrasoft pseudopotential scheme, because of the augmentation
functions Qnm entering the expression of the electron density Eq. (1.129). It
is therefore appropriate to introduce two independent energy cutoffs. The
soft part of the electron density, i.e. the first term on the right hand side of
Eq. (1.129) can again be described with a cutoff which is four times Ecut.
In contrast, the part of Eq. (1.129) which depends on the augmentation
functions Qnm requires a much higher cutoff, Ecn. The cutoff Ecn can be
reduced by smoothing the Qnm. An inner core region (determined by an
inner radius which is smaller than the cutoff radius of the core region) is
defined in which the Qnm are modified in such a way that all the electro-
static properties outside the inner core region are preserved. In general, the
smoothing of the Qnm allows the use of a cutoff Ecn which is approximately
equal to 4 · Ecut. Hence, the calculation can be carried out similarly to the
norm-conserving case. For some elements, such as transition metals, the
Qnm require Ecn > 4 · Ecut, even after smoothing. In this case the problem
of having a large number of plane waves can still be overcome by recognizing
that the Qnm are localized in real space.

In the ultrasoft pseudopotential scheme, the inclusion of orthonormality
constraints in the lagrangian Eq. (1.73) has to be generalized and the last
term entering Eq. (1.74) becomes:

∑

ij

Λij(〈ψi|S |ψj〉 − δij) (1.139)

The Euler equations associated with the lagrangian of Eq. (1.73) including
the constraints of Eq. (1.139) are:

µψ̈i = − δE

δψ∗
i

+
∑

j

ΛijSψj (1.140)

MIR̈I = − ∂E

∂RI

∑

ij

Λij

〈

ψi

∣

∣

∣

∣

∂S

∂RI

∣

∣

∣

∣

ψj

〉

(1.141)

It should be noted that a contribution to the ionic forces from the or-
thonormality constraints (Eq. (1.133)) appears because the operator S de-
pends on the ionic positions through the functions βIn (Eq. (1.131)). The
expression for the ionic forces can however easily be obtained (Laasonen,
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Pasquarello, Car, Lee and Vanderbilt 1993), though it produces some com-
plications for the practical implementation. This contribution of orthogo-
nality constraints to the ionic forces is absent in the case of norm-conserving
schemes.

The main feature of Vanderbilt’s ultrasoft pseudopotential scheme is to
reduce the required plane-wave cutoff for the valence wavefunctions. This
is achieved by allowing the pseudo-wavefunction to be as soft as possible
outside the core region, which is determined by a given cutoff radius rcut.
The larger the cutoff radius, the lower the energy cutoff for the plane waves.
The upper physical limit for the cutoff radius is given by half a characteristic
bond length rbond. It turns out that for large cutoff radii, rcut ≃ rbond, it
is necessary to use more than one reference energy for every angular mo-
mentum channel in order to have pseudopotentials which are as accurate
as conventional norm-conserving pseudopotentials. Therefore, besides the
complication of having a generalized eigenvalue problem (Eq. (1.137)) and
wavefunction dependent DI

nm (Eq. (1.138)), the number of βn functions has
generally to be doubled, increasing the related computational cost corre-
spondingly. In spite of these complications, the number of required plane
waves is so reduced with respect to the norm-conserving case that the present
scheme is still advantageous compared to conventional methods for a variety
of systems.

Vanderbilt PP’s were used in this study for N and O atoms to investigate
Si(001)/SiO2 interface.

In summary, the replacement of the true ionic potential by a weaker pseu-
dopotential has a number of advantages. In addition to the reduction of the
number of plane-wave basis states needed to expand the electronic wave-
functions, the pseudopotential approximation removes the core electrons,
leading to fewer electronic wavefunction calculations and to the disappear-
ance of the rapid oscillations of the valence wavefunctions in the cores of the
atoms.

More importantly, the total energy of the valence electron system is typ-
ically a thousand times smaller than the energy of the all-electron system.
The differences between the electronic energies of different ionic configura-
tions appear almost entirely in the energy of the valence electrons, so that
the accuracy required to determine these differences in a pseudopotential
calculation is much smaller than in an all-electron calculation. However the
total energy of the system is no longer meaningful, only differences are.
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1.5.4 Ion-ion interactions

Besides of electron-electron and electron-ion interaction energies (see sec-
tions 1.5.1 and 1.5.3, respectively), the total energy of the system also in-
cludes the contribution of the ion-ion repulsion Eion(RI) for a given config-
uration of the nuclei:

Eion({RI}) =
∑

1≤I<J≤Np

ZIZJ
|RI −RJ |

=
1

2

Np
∑

I 6=J

ZIZJ
|RI −RJ |

(1.142)

where the factor 1
2 accounts for double counting of pairs of ions.

As long-ranged in both real and reciprocal spaces, the Coulomb energy
of the ionic system using is not easily computed using summation.

Ewald (Ewald 1917a, Ewald 1917b, Ewald 1921) developed a rapidly
convergent method for performing the Coulomb summations over periodic
lattices. Ewald’s summation is based on the following identity :

EEwald =
∑

l

1

|l− τ | =
1√
π

∑

l

∫ ∞

η

e−|l−τ |2ρ

√
ρ

dρ

+
π

V

∑

G

∫ η

0
e
−

|G|2

4ρ e−iG·τ 1

ρ2
dρ (1.143)

where l are the real-lattice vectors, G are reciprocal-lattice vectors, τ is
a real-space vector. The identity holds for all positive value of η and is
invariant in η.

Such identity provides a method for rewriting the lattice summation for
the Coulomb energy due to the interaction between an ion positioned at
τ1 in the unit cell and an array of atoms positioned at the set of points
τ2 + l. Indeed, it suffices to take τ = τ1 − τ2 in Eq. (1.143). At first sight,
the infinite Coulomb summation on the left-hand side of this equation is
replaced by two infinite summations, one over real-lattice vectors and the
other over reciprocal-lattice vectors. However, for an appropriate value of η,
the two summations become rapidly convergent in their respective spaces.
These two summations can then be computed with only a few respective
lattice vectors if η is adjusted to optimize the convergence of the separate
sums over G’s and l’s.

It should be noted that a divergence occurs in the reciprocal-lattice sum-
mation for G = 0. This has to be related to similar problems in Eel and
Eel−ion. As there is no Coulomb potential at G = 0 in a charge neutral sys-
tem, there cannot be any contribution to the total energy from this G = 0
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component of the Coulomb potential (Ihm et al. 1979). In fact, these con-
tributions to the total energy from the electron-electron, electron-ion and
ion-ion interactions cancel exactly, so that, in practice, the G = 0 contribu-
tion can be omitted in each of these three terms.

Finally, to obtain the correct ionic energy two terms must be added to
the Ewald summation from which the G = 0 term has been removed (Yin
and Cohen 1982):

Eion({RI}) =
1

2

∑

I,J

ZIZJ















∑

l

l6=0 if I=J

erfc(
√
η |l− τI + τJ |)

|l− τI + τJ |
− π

ηV

−2

√

η

π
δIJ +

4π

V

∑

G 6=0

1

|G|2 e
−

|G|2

4η cos[G · (τJ − τI)]











(1.144)

where ZI , ZJ and τI , τJ are the respective valences and locations of the ions
I and J in the unit cell, and erfc(x) =

∫∞
x e−y

2

dy is the complementary error
function. The ionic interaction of a nuclei with its own charge is omitted by
imposing l 6= 0 in the real-space summation when I = J .

This completes the development of the different contributions to the total
energy of the system.

1.6 Conclusion

In this chapter, we have presented First-Principles Molecular Dynamic meth-
odology which, by combining Density Functional Theory and Molecular
Dynamics technique, made it possible to use forces derived within first-
principles in MD simulations. Originally developed in the solid state com-
munity by Car and Parrinello (1985), this scheme rapidly crossed the frontier
of chemistry and even biochemistry.

Section 1.2 has been dedicated to the classical Molecular Dynamics, that
had been developed to study the evolution of a system of interacting parti-
cles. We have presented the corresponding equations of motion discussing
the Verlet algorithms for their practical implementation. First-order (steep-
est descent) and damped dynamics equations of motion have been proposed
providing a technique to find the energy minimum of the system. The impo-
sition of thermodynamic constraints (constant temperature or pressure) has
also been discussed by means of Nosé-Hoover thermostats and Parrinello-
Rahman method. We have also emphasized the need to have a more and
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more accurate description of the interatomic potential, which naturally lead
to First-Principles technique.

In section 1.3, we have demonstrated the usefulness of DFT to deal
with the ground-state of a quantum-mechanical system of electrons, by ob-
taining a single-orbital picture (Kohn-Sham formalism) of the many-body
problem. We have also commented the most widely used methods to solve
the self-consistent Kohn-Sham equations to derive finally a First-Principles
interatomic potential.

In section 1.4, we have presented the Car-Parrinello method to perform
First-Principles Molecular Dynamics (FP-MD), which is the origin of nu-
merous achievements in the field. We have analyzed the key concepts that
make it a really practical approach for MD simulations.

Finally section 1.5 was dedicated the practical implementation of FP-
MD scheme. Different energy functionals have been proposed to describe
the exchange-correlation part of electron-electron interactions energy, which
is not known exactly in the framework of DFT. We have started from the
Local Density Approximation (LDA) and then introduced several schemes
(GGA, SIC, ...) going beyond it. We have demonstrated the advantages
of using plane-wave basis sets to expand the wavefunctions in the case
of periodic cells. We have introduced the reciprocal-space formulation of
Kohn-Sham equations which is particularly suited for practical computa-
tions. We have discussed how the electron-ion interactions can be modeled
by the frozen-core approximation and the use of pseudopotentials, reducing
the plane waves in the basis set. We have distinguished local, non-local,
semi-local and separable forms for the pseudopotentials, outlining their re-
spective advantages. We have introduced the norm-conservation condition
in the context of the transferability of the PP’s and illustrated how this
requirement could be relaxed in the case of ultrasoft pseudopotentials. In
the end, we have briefly discussed the ion-ion interactions to complete the
description of total energy components.
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Chapter 2

The nitrided Si(001)-SiO2
interface

2.1 Introduction

Thermally grown silicon dioxide films have many obvious applications in
silicon devices and technology, including gate dielectrics of metal-oxide-
semiconductor field effect transistors (MOSFET’s). In the framework of
very large scale integration (VLSI), the relevant scale for these devices has
been decreasing continuously and is currently smaller than 100 Å. Because
of this trend, the understanding of the structural properties of the Si(001)-
SiO2 interface at a microscopic level has acquired an enhanced technological
importance.

Many experimental techniques (Pantelides 1978, Helms and Deal 1988,
Helms and Deal 1993) have been used to investigate the detailed atomic
structure of this interface. However, various difficulties have to be faced
among which the problem of accessing a buried interface, the amorphous
nature of the SiO2 component and the dependence on sample preparation
techniques. All these factors make it really difficult to obtain a complete
description of the structural properties at the Si(001)-SiO2 interface.

Among the large variety of experimental methods of investigation of
this interface, X-ray photoemission spectroscopy (XPS) on Si 2p core-levels
stands out as one of the most successful tools (Grunthaner et al. 1987,
Himpsel et al. 1988, Lu et al. 1993). By complementing these studies with
a theoretical approach that allows to calculated core-level shifts based on
first-principles, a quite satisfactory picture of the microscopic structure at
the interface is reached (Pasquarello et al. 1995, Pasquarello et al. 1996).

67
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Despite of these invaluable advances in the knowledge of the atomic
details of the Si(001)-SiO2 interface, there remain several technological and
reliability problems with silicon dioxide in the deep submicron regime. It is
known, for instance, that very thin SiO2 films are not sufficiently good masks
against impurity diffusion. Moreover, the growth of high quality very thin
layer of SiO2 is rather difficult due to the defect density, integrity and yield
problems. It is also known that high energy radiation can generate high
density of interface states in the oxides, resulting in degradation of device
performance. Many efforts have been made to overcome these difficulties.

In this framework, the incorporation of a low concentration of N atoms
near the Si(001)-SiO2 interface has recently drawn considerable attention
(Hao et al. 1995, Kang et al. 1994, Carr and Buhrman 1993, Yao et al.

1994, Green et al. 1994). It appears as one of the most promising ways to
match industrial programs requiring high-quality ultrathin gate dielectrics
for VLSI. Indeed, silicon nitrided oxides (SiOxNy) exhibit several advantages
over conventional oxides. Carr and Buhrman (1993) showed that the inclu-
sion of nitrogen reduces interface state generation. Also, higher dielectric
breakdown values have been reported (Hao et al. 1995, Kang et al. 1994) for
these oxynitrides compared to silicon oxide. Moreover, the device obtained
with these new gate dielectrics display improved I-V and C-V characteris-
tics (Yao et al. 1994) and increased resistance to ionizing radiation (Chang
et al. 1984). It was suggested that these improvements are due to a strain
relaxation at the interface. Indeed, it is known that there is a large mismatch
in the Si atomic density across the interface from 2.2 × 1022 atoms/cm−3 in
the SiO2 to 5 × 1022 atoms/cm−3 in bulk Si. As the Si density in Si3N4 is
4 × 1022 atoms/cm−3, between that of bulk Si and SiO2, the incorporation
of nitrogen creates a buffer Si3N4-like layer which reduces the mismatch-
induced strain at the Si(001)-SiO2 interface. Finally, the most interesting
feature of oxynitrides is that they show an augmented resistance to boron
diffusion from doped-polysilicon gates (Green et al. 1994).

X-ray photoemission spectroscopy on N 1s core-levels has widely been
applied to silicon nitrided oxides (Carr and Buhrman 1993, Bhat, Ahn,
Kwong, Arendt and White 1994, Hegde et al. 1995, Lu et al. 1995, Suther-
land et al. 1995, Kaluri and Hess 1996, Kamath et al. 1997). This technique
is sensitive to the concentration of N atoms and can provide distribution
profiles when resolved as a function of take-off angle or used in conjunc-
tion with chemical etching. These profiles depend on the growth process.
In fact, quite a large variety of preparation techniques have been used for
nitrogen incorporation in gate oxides: furnace (Kang et al. 1994, Carr and
Buhrman 1993, Hegde et al. 1995, Hussey et al. 1996), rapid thermal pro-
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cessing (Carr and Buhrman 1993, Yao et al. 1994, Green et al. 1994, Ting
et al. 1991, Lu et al. 1995, Bhat, Yoon, Kim and Kwong 1994), and down-
stream plasma (Saito 1996, Chen et al. 1995). Various oxidation agent have
also been tested: nitrous oxide N2O (Carr and Buhrman 1993, Bhat, Yoon,
Kim and Kwong 1994, Lu et al. 1995, Saito 1996), nitric oxide NO (Yao
et al. 1994, Hegde et al. 1995), ammonia NH3 (Bhat, Ahn, Kwong, Arendt
and White 1994), or mixtures of N2 and O2 (Kang et al. 1994, Saito 1996).
There are some differences in the nitrogen distribution resulting from the
combination of a given preparation technique and a given oxidation species,
but an accumulation of N atoms is often observed at the interface (Carr
and Buhrman 1993, Green et al. 1994, Bhat, Ahn, Kwong, Arendt and
White 1994, Hegde et al. 1995, Lu et al. 1995, Sutherland et al. 1995, Kaluri
and Hess 1996, Lu et al. 1996, Kamath et al. 1997).

XPS N 1s spectra also provide information on the bonding environment
of the incorporated N atoms. The experimental spectra (Fig. 2.1) show a
broad principal peak (FWHM=∼1.5 eV), approximately at the same energy
as in bulk Si3N4 (397.0 eV), which appears to shift to larger binding energies
for samples of increasing oxide thickness (Carr and Buhrman 1993, Lu et al.

1995, Sutherland et al. 1995, Kaluri and Hess 1996, Kamath et al. 1997).
Such shifts are generally observed at Si(001)-SiO2 interfaces for Si 2p and
O 1s levels, and are attributed to core-hole relaxation or charging effects
(Pasquarello et al. 1995). However, the N 1s shift with oxide thickness
(Fig. 2.2) is found to shift by 0.4 eV more than other oxide peaks (Carr and
Buhrman 1993). This fact together with the asymmetric shape of the XPS
peak led to the assumption that two different components contributed to
this peak and that the N atoms at the interface and in the oxide would have
different bonding properties (Carr and Buhrman 1993, Hegde et al. 1995, Lu
et al. 1995, Kaluri and Hess 1996).

The component arising from the interfacial region has invariably been
assigned to N atoms bonded to three Si atoms (N–Si3) because of its prox-
imity to the bulk Si3N4 line. On the other hand the oxide component,
which is shifted by ∆=0.85 eV to larger binding energies (Lu et al. 1995),
has given rise to conflicting interpretations (Carr and Buhrman 1993, Hegde
et al. 1995, Lu et al. 1995, Kaluri and Hess 1996), which all rely on a chemical
change in the first-neighbor shell of the N atoms. Whereas the occurrence
of N–Si3 configurations is generally accepted, the underlying reasons for the
shift with oxide thickness and the asymmetric shape of the N 1s XPS line
are still poorly understood.

The presence of a second, well separated, XPS peak is also debated at
this stage. Some XPS spectra (as illustrated in main part of Fig. 2.1) show
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Figure 2.1: N 1s XPS spectrum obtained by Lu et al. (1995). The dotted
and dashed lines are curve-fitted peaks corresponding to binding energies of
396.97 eV and 387.82 eV, respectively. The solid line is the sum of these two
peaks. Inset, N 1s XPS spectrum obtained by Bhat, Ahn, Kwong, Arendt
and White (1994). The dotted and dashed lines are curve-fitted peaks cor-
responding to binding energies of 397.6 eV and 399.9 eV, respectively. The
solid line is the sum of these two peaks.
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Figure 2.2: Separation of the N 1s and O 1s peaks from the Si 2p peak as a
function of the oxide thickness, as obtained by Carr and Buhrman (1993).
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no evidence for any other peak in a range of ±3 eV from the N–Si3 peak
(Lu et al. 1995, Sutherland et al. 1995), whereas in other experiments (such
as the one represented in the inset of Fig. 2.1) show a second distinct peak
is observed at ∆=2.2 eV (Bhat, Ahn, Kwong, Arendt and White 1994) or
∆=3.0 eV (Hegde et al. 1995), and attributed to N–Si2O configurations.
Therefore, the identification of N bonding configurations involving oxygen
atoms remains uncertain.

The purpose of our study is to characterize N atoms incorporated at
the Si(001)-SiO2 interface by establishing a correspondence between their
bonding environment and the N 1s core-level shifts measured in photoe-
mission experiments. The remainder of the chapter is organized as follows.
In section 2.2, we introduce the different approximations that are currently
used to calculate the core-level shifts. We propose two methods that have
already been used successfully in the framework of Density Functional The-
ory, and that allow to determine the initial-state shifts and the full-shifts
respectively. Before considering the Si(001)-SiO2 interface, we assess the
status of these theoretical methods by computing of N 1s core-level shifts
for small molecules and by comparing the results with experimental data.
It is found that it is crucial to include core-hole relaxation effects to obtain
a good agreement with experiment. In section 2.3, we first try to gain in-
sight on the possible nitrogen bonding configurations at the interface, by
computing the N 1s core-level shifts for a series of selected molecules and
comparing with experimental data. With the configurations that fit the ex-
periments, we generate different nitrided interface models by introducing N
atoms in various locations with respect to the interface plane. The interface
models are relaxed within first principles, and the quality of resulting local
structure is analyzed. The N 1s and Si 2p core-level shifts are computed
and discussed with respect to experimental photoemission spectra.

As a conclusion, we propose an explanation of the features of N 1s ex-
perimental spectra (namely, the shift with oxide thickness of the principal
XPS line and of the appearance of two components) in terms of the single
first-neighbor configuration N-Si3. Indeed, we show that the combination
of core-hole relaxation and second nearest neighbor effects leads to larger
binding energies in the oxide than at the interface, in accord with experi-
mental observations. On one hand, core-hole relaxation affects N 1s shifts
differently depending on the distance of the N atoms to the screening Si
substrate. On the other hand, a second nearest neighbor environment rich
in Si and N atoms as at the interface induces opposite shifts compared to
an O rich environment as found in the oxide. For what concerns other pos-
sible bonding environments, our results essentially rule out the existence
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of N–Si2O configurations at the interface, since the calculated N 1s shifts
(∆=1.5 eV) is found in a region of the spectrum where generally no peaks
are observed in experiments. On the contrary, N–Si2H configurations can
not be excluded since the calculated shift (∆=0.4 eV) falls right in the range
of experimental data. However, we suggest that these appear only in a very
small amount in nitrided interface, since these configurations require higher
hydrogen concentrations than those actually found in experiments. Ulti-
mately, based on the calculated Si 2p core-level shifts, we propose a new
interpretation of the suboxide experimental peaks in terms of both Si-O and
Si-N bonds.

2.2 Core-level shifts calculation

X-ray photoemission spectroscopy is routinely used as an experimental tool
to investigate unknown microscopic structures at surfaces and interfaces.
This technique allows to determine the binding energy of some core states
of given atoms (C 1s, O 1s, N 1s, or Si 2p for instance) by measuring the
kinetic energy of photoexcited electrons. Hence, it acts as a probe which is
mainly sensitive to the local potential, providing a invaluable, though indi-
rect, measure of the chemical environment or oxidation state of the studied
atoms. Furthermore, XPS is sensitive to the concentration of the atoms un-
der analysis and can provide distribution profiles when resolved as a function
of take-off angle or used in conjunction with chemical etching.

The interpretation of photoemission spectra in terms of the local bonding
configuration is most often straightforward, and comparison with molecular
equivalents or simple charge-transfer models reveal sufficient to extract the
relevant structural information. However, in some situations, the relaxation
of core electrons around the hole left by the photoexcited electrons affects
sizeably the value of binding energy with respect to these simple pictures.
This phenomenon is referred to as core-hole relaxation effects. Furthermore,
at surfaces and interfaces, the bonding environments may differ significantly
(second nearest-neighbors effects, dielectric effects) from those in molecular
analogs, rendering quantitative predictions of core-level shifts as deduced
from molecular counterparts or simple models quite difficult. Because of
these reasons, it is crucial to obtain a reliable theoretical framework allowing
to identify unambiguously the experimental features.

In this section, we introduce the various approximations that are gener-
ally used to calculate the core-level shifts. We retain two methods that have
already been used successfully in the framework of Density Functional The-
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ory. Before studying the Si(001)-SiO2 interface, these techniques are applied
to the calculation of N 1s core-level shifts for small molecules. Comparing
the results with experiments, we describe the merits of these methods and
point out their limitations.

2.2.1 Theoretical approach

In order to obtain a tool for the interpretation of unidentified XPS spectral
features, theoretical schemes have been developed to calculate as accurately
as possible the core-level shifts. The major problem lies in describing cor-
rectly the escape of the photoexcited core electrons. Indeed, this is a dy-
namical process implying the relaxation of the other core electrons and to a
lower extent the geometrical relation of the surrounding atoms. Thus, vari-
ous approximations have to be introduced to allow practical computations.

For what concerns geometrical relaxation, two views can be adopted.
The sudden (or vertical) approximation assumes that the molecular struc-
ture is the same in the initial and final states. On the contrary, the adiabatic
approximation postulates that the atoms adiabatically adapt to the pho-
toexcitation. Fortunately, it has been observed that there are no significant
differences between computed adiabatic and vertical shifts.

On the electronic relaxation level, the crudest model of the photoexci-
tation assumes that the other core electrons are not affected. Within this
simple picture, in which core-hole relaxation effects are not taken into ac-
count, the binding energy is simply related to the corresponding core-level
eigenvalue. The results obtained in this way are referred to as initial-state
shifts.

In the early attempts, due to quantum chemists (Cederbaum et al. 1978,
Barth et al. 1980, Moncrieff et al. 1983), the core-level binding energy was
obtained as an energy difference between the ground state energy E0 and
the core-hole final-state energy E+ of the system.

Eb = E0 − E+ (2.1)

thus including core-hole relaxation effects. However, this scheme which ne-
cessitates to perform an all-electron calculation had soon to face size limi-
tations inherent to quantum chemical approaches such as configuration in-
teractions method. These computations quickly become impossible as the
number of atoms increases.

In a recent paper, Pedocchi et al. (1993) suggested that density func-
tional theory could help to get over this restriction. Using an all-electron
Gaussian-orbital approach these authors calculated C 1 shifts within DFT
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for a series of molecules, and obtained good agreement with experiment. A
step forward was taken by the use of DFT in conjunction with pseudopoten-
tials (Pehlke and Scheffler 1993). In principle, all-electron calculations are
more desirable since they describe explicitly the core-valence interactions
and core-hole relaxation effects. However, pseudopotential calculations are
much easier to perform for large systems such as surfaces and interfaces.

In the pseudopotential approach, only valence electrons are taken into
account directly in the calculation, core-valence interactions being accounted
for through the use of the PP’s. And new difficulties arise in the computation
of core-level shifts due to the fact that the core electrons are not considered
explicitly. The solution proposed by Pehlke and Scheffler (1993) consists in
performing two separate calculations. In a first step the electronic ground
state is determined. Then the PP of the studied atom is replaced by another
PP which simulates the presence of a screened hole in its core, assuming that
the molecular structure is the same in the initial and final states. Moreover,
the use of pseudopotentials only allows to determine relative shift in the
binding energy ∆ with respect to a reference configuration by means of a
double difference:

∆ = [E0 − E+]− [Eref0 − Eref+ ]. (2.2)

Blase et al. (1994) argued that if the core-hole relaxation effects were
similar for both the studied and reference configurations, these would cancel
in ∆ and thus could be neglected in the calculation. So that relative shifts
could be obtained more directly and easily in first-order perturbation theory,
by evaluating the expectation value of the local self-consistent potential on
the atomic core-state orbitals ψ0:

∆ =
〈

ψ0 |VKS |ψ0
〉

−
〈

ψ0
∣

∣

∣
V ref
KS

∣

∣

∣
ψ0
〉

. (2.3)

More recently, Rohlfing et al. (1997) exploited the same argument to com-
pute core-level shifts from quasiparticle energies within GW approximation.
However, this scheme implies the explicit treatment of the required core
states as valences states in the pseudopotential. Fortunately, as the sensi-
tivity of core levels of a particular atom to core states of neighboring atoms
is extremely small, the use of the so-modified PP can be restricted to only
those atoms whose core-state energies are to be calculated. It should be
mentioned that this method, as well as that of Blase et al., achieved only
limited success, and from our own experience we can say that most generally
core-hole relaxation effects should be taken into account.
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2.2.2 Small molecules

The use of density functional theory for the calculation of core-level shifts
in molecules proved successful in the case of C 1s (Pedocchi et al. 1993) and
Si 2p (Pasquarello et al. 1996) levels. In order to investigate the accuracy of
this approach in the case of N 1s core levels, we considered a set of molecules
containing N atoms in various bonding configurations.1 The molecules which
we considered in this study are listed in Tables 2.1 and 2.2.

All the results were obtained within the local density approximation to
DFT. Only valence electrons are explicitly considered using pseudopotentials
to account for core-valence interactions. A normconserving PP is employed
for Si and Cl atoms (Bachelet et al. 1982), whereas the H, O, C, and N
atoms are described by ultrasoft PP’s (Vanderbilt 1990). The exchange and
correlation energy was evaluated in the local density approximation (Perdew
and Zunger 1981). The N 1s core-level shifts were calculated both within
the initial-state approximation (Eq. 2.3) and including core-hole relaxation
(Eq. 2.2).

Energy minimization were performed with Car-Parrinello molecular dy-
namics. The convergence was accelerated making use of a preconditioned
damped dynamics technique (Tassone et al. 1994). A detailed descrip-
tion of the technical implementation can be found elsewhere (Pasquarello
et al. 1992, Laasonen, Pasquarello, Car, Lee and Vanderbilt 1993). In order
to obtain good structural properties, the wave functions and the augmented
electron density were expanded on plane-wave bases defined by cutoffs of
25 and 150 Ry, respectively. In the calculations of the core shifts, it was
necessary to increase the cutoff for the wave functions to 30 Ry to reach
convergence. The Brillouin zone was sampled using the Γ-point.

The atomic coordinates of the molecules under consideration were re-
laxed using a periodically repeated cubic cell with a side L=24 bohr. For
this cell size, the effects of interactions between neighboring cells (see sec-
tion 1.5.2) on the ground state can be safely neglected. Structural param-
eters obtained at the end of these relaxation processes are given in Ta-
ble 2.1, together with the corresponding experimental values (Hellwege and
Hellwege 1976, Hellwege and Hellwege 1987, Kuchitsu 1992, Kuchitsu 1995).
The molecular structure is overall very well reproduced in our calculations.

1Unfortunately, we were not able to find in the literature measured N 1s shifts for
molecules containing N-Si bonds.
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Table 2.1: Bond lengths (in Å) and bond angles (in ◦) as obtained in the
present work compared to experiment (Hellwege and Hellwege 1976, Hell-
wege and Hellwege 1987, Kuchitsu 1992, Kuchitsu 1995)

Molecule Parameter Present Theory Experiment

NH3 d(N-H) 1.036 1.012
∠(H-N-H) 108.0 106.7

NH2CH3 d(N-C) 1.438 1.471
d(N-H) 1.031 1.010
d(C-H) 1.112 1.099
∠(H-N-H) 108.8 107.1
∠(H-C-N) 112.2 110.3
∠(H-C-H) 106.6 108.0

NH(CH3)2 d(N-C) 1.427 1.462
d(N-H) 1.028 1.019
d(C-Hs) 1.113 1.084
d(C-H′) 1.116 1.098
d(C-H′′) 1.116 1.098
∠(C-N-C) 118.2 112.2
∠(Hs-C-H’) 107.1 109.0
∠(Hs-C-H”) 106.6 109.0
∠(H’-C-H”) 106.4 107.2
∠(H-N-C) 113.7 108.9
∠(N-C-Hs) 113.8 109.7
∠(N-C-H’) 110.3 108.2
∠(N-C-H”) 112.3 113.8

N(CH3)3 d(N-C) 1.430 1.451
d(C-Hs) 1.115 1.109
d(C-Ha) 1.115 1.088
∠(C-N-C) 114.9 110.9
∠(N-C-Hs) 114.4 111.7
∠(N-C-Ha) 110.7 110.1
∠(Hs-C-Ha) 106.8 108.1
∠(Ha-C-H’a) 107.0 108.6

NH2COH d(N-C) 1.344 1.352
d(N-H’) 1.033 1.002
d(N-H”) 1.030 1.002
d(C-O) 1.231 1.219
d(C-H) 1.126 1.098
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∠(H’-N-H”) 119.7 121.6
∠(H’-N-C) 119.0 118.5
∠(H”-N-C) 121.3 120.0
∠(N-C-O) 124.7 124.7
∠(N-C-H) 113.0 112.7
∠(O-C-H) 122.3 122.5

NO2 d(N-O) 1.212 1.193
∠(O-N-O) 133.1 134.1

N2O d(N-N) 1.142 1.128
d(N-O) 1.201 1.184

ClNO d(N-O) 1.167 1.139
d(N-Cl) 1.949 1.975
∠(O-N-Cl) 113.6 113.3

Subsequently, for each relaxed structure, initial-state and full shifts were
calculated. The initial-state shifts were obtained by calculating the expec-
tation value of the local self-consistent potential in Fourier space. Full shifts
were obtained by performing a separate calculation as described above in the
presence of a negative background assuring charge neutrality. In order to
eliminate the effect of the use of this back ground, and of periodic boundary
conditions, we calculated the shifts for varying cell size: L=20, 22 and 24
bohr. Making use of the procedure proposed by Makov and Payne (1995),
the shift were extrapolated to infinite cell size:

∆(L) = ∆+
cst

L3
+O(L−5) (2.4)

where ∆ is the desired shift. In our calculation, the values obtained in this
way differed at most by a few tenth of an eV from the values obtained with
the largest cell-size.

We report calculated initial-state and full shifts shifts together with the
experimental values (Jolly et al. 1984) in Table 2.2. The agreement with
experimental values is noticeably improved when final states are accounted
for. Thus, it appears crucial to consider core-hole relaxation effects. Overall,
the agreement between experiment and theory is very good with values
differing by less than 0.3 eV for a broad range of shifts.

In summary, we have described the underlying approximations that allow
to compute core-level shifts in the framework of Density Functional Theory.
The initial-state shifts are obtained by the expectation value of the local
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Table 2.2: Comparison of calculated N 1s initial-state ∆init and full ∆full

shifts with experiment ∆expt for a series of molecules. The shifts (expressed
in eV) are given with respect to NH3. Experimental data are taken from
Jolly et al. (1984).

Molecule ∆init(eV) ∆full(eV) ∆expt(eV)

NH3 0.00 0.00 0.0
NH2CH3 -0.06 -0.57 -0.5
NH(CH3)2 0.08 -0.58 -0.7
N(CH3)3 0.33 -0.61 -0.8
NH2COH 1.73 1.13 0.8
NO2 6.91 7.24 7.3
N2O (N∗NO) 3.46 3.30 3.1

(NN∗O) 6.77 7.08 7.0
ClNO 6.53 5.68 5.8

self-consistent potential on the atomic core-state. We have also illustrated
how core-hole relaxation effects can be taken into account despite the use
of pseudopotentials, by performing two separate calculations. These two
techniques have been successfully applied to the calculation of N 1s core-
level shifts of small molecules. It was found that it is crucial to include
core-hole relaxation effects to obtain a good agreement with experiment.

2.3 Core-level shifts at the Si(001)-SiO2 nitrided
interface

Now that we have obtained a reliable method to calculate N 1s core-level
shift, we turn to the problem of interpreting XPS experimental features for
the Si(001)-SiO2 interface. So, in this section, we first compute the N 1s
core-level shifts for a series of selected molecules that include N-Si, N-O or
N-H bonds. Comparison with experimental data for the interface allows to
reject some configurations for the incorporated nitrogen atoms. With the
retained configurations, we generate various nitrided interface models by
varying also the nitrogen locations with respect to the interface plane. After
atomic relaxation, we analyze the quality of the resulting representation of
the local structure. We compute the N 1s core-level shifts for all these
models, and provide an explanation of photoemission spectra. The Si 2p
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core-level shifts are also investigated.

2.3.1 Auxiliary test molecules

Before addressing the actual interface models and to gain insight on the
possible structure of incorporated N atoms, we compute the N 1s core-level
shifts for a set of test molecules in which N atoms are bonded either to Si
atoms only, or to Si and O atoms, or to Si and H atoms.

The N 1s core-level of N(SiH3)3, where the N atom is bonded to three
Si atoms as in Si3N4, is taken as reference. By inserting O atoms in n (for
n=1,2,3) of the N-Si bonds, we generated molecules containing N atoms with
different combinations of Si and O nearest neighbors: (H3SiO)nN(SiH3)3−n.
And, by substituting H atoms to n (for n=1,2) of the SiH3 groups around
the N atom in N(SiH3)3, we created molecules with N–Si2H and N–SiH2

bonding configuration: HnN(SiH3)3−n.

After atomic relaxation we obtained N-Si bonds of 1.71±0.01 Å, N-O
bonds of 1.37±0.01 Å, and N-H bonds of 1.03±0.01 Å, within 1% from
experimental values (Hellwege and Hellwege 1976, Hellwege and Hellwege
1987, Kuchitsu 1992, Kuchitsu 1995).

Calculated shifts including core-hole relaxation are given in Table 2.3.
These shifts depend linearly on the number of O or H nearest neighbors,
with a shift to larger binding energies of approximately ∆=1.8 eV per N-O
bond and ∆=0.4 eV per N-H bond. The shift for N–O3 bonding configu-
rations is too large to account for the peaks observed at the Si(001)-SiO2

interface and will not be considered any longer. The N–Si2H and N–SiH2

bonding configurations imply a concentration of hydrogen at the interface
similar to that of nitrogen. This is not what is actually found in experi-
ments (Green et al. 1994, Lu et al. 1996, Tang et al. 1996). Thus, we only
investigated the N–Si2H configuration for its theoretical interest, while the
N–SiH2 configuration was not taken into account any more.

2.3.2 Structural model

We adopt as a starting point of our nitrided interface study one of the
Si(001)-SiO2 models generated by Pasquarello et al. (1995). The choice of
the host model is not critical, because the core-level shifts are affected by
the host model only to the extent that it determines the dielectric environ-
ment. This is confirmed by the small variations of the Si 2p shifts of a given
oxidation state in different models (Pasquarello et al. 1995).

In this model, the atomic structure is obtained by attaching tridymite
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Table 2.3: Relative N 1s shifts for a series of test-molecules. The shifts
(expressed in eV) are given with respect to N(SiH3)3.

Molecule N Configuration ∆(eV)

NH2SiH3 N–SiH2 0.74
NH(SiH3)2 N–Si2H 0.38
N(SiH3)3 N–Si3 0.00
(H3SiO)N(SiH3)2 N–Si2O 1.77
(H3SiO)2N(SiH3) N–SiO2 3.78
(H3SiO)3N N–O3 5.55

L 1

L 0

L -1

Figure 2.3: Model of the Si(001)-SiO2 interface before N incorporation (from
(Pasquarello et al. 1995)). Si and O atoms are represented in dark and pale
grey, respectively. A nomenclature is introduced to designate the layers in
which N is incorporated : L0 is the interface Si layer, L>0 are the Si-O
layers on the oxide side of the interface, and L<0 are the Si layers on the
bulk-silicon side of the interface.
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Figure 2.4: Model I for the nitrided Si(001)-SiO2 interface. The nitrogen
atom (in black) has been introduced substitutionally to a silicon located
right at the interface layer (L0) with a N–Si3 configuration. The residual
dangling bond is saturated by one hydrogen atom (in white).

(Wyckoff 1963) to bulk terminated Si(001). To describe this system we used
a periodically repeated orthorhombic cell containing a square interface unit√
8×

√
8 of side a=10.82 Å, based on the theoretical lattice constant of Si.

The c-axis of tridymite is aligned to the Si [110] direction, and the tridymite
[100] direction is taken parallel to the Si [11̄0] direction. In order to match
the two periodic structures, the tridymite is compressed by 12 % and 7
% along its [100] and [001] directions, respectively. In this geometry the
oxide is built up by alternating planes of O atoms and Si-O chains parallel
to the interface. The transition between the oxide and the Si substrate is
abrupt. The dangling bonds of every Si atom at the interface are saturated
by forming a bond to the oxide and by dimerization [see Fig. 2.3].

This structure does not present unsaturated dangling bonds, in accord
with the extremely low density of defect states measured at this interface.
The dimension of the cell in the direction orthogonal to the interface is
c=19.05 Å, containing 5 monolayers of SiO2 (6.4 Å) and 6 monolayers of Si
(7.7 Å). The extremities are saturated with H atoms.

We obtain eight nitrided interface structures by incorporating in vari-
ous ways a single N atom in this interface model. Because N atoms at the
interface do not deteriorate electrical properties such as interface defect den-
sity or oxide fixed charge (Chang et al. 1984, Carr and Buhrman 1993, Hao
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Figure 2.5: Model II for the nitrided Si(001)-SiO2 interface. The nitrogen
atom (in black) has been introduced substitutionally to a silicon located in
the bulk silicon (L−1) with a N–Si3 configuration. The residual dangling
bond is saturated by one hydrogen atom (in white).

et al. 1995, Kang et al. 1994), we only retain in our study neutral structural
models with threefold coordinated N atoms and without any unsaturated
dangling bond. To generate such models, we proceed as follows. For the
nitrogen bonding configurations involving Si and O atoms, the N atoms are
introduced substitutionally to Si atoms. Eventual dangling O atoms are
removed and residual dangling bonds are saturated by H atoms. Whereas,
when nitrogen is bonded to Si and H atoms, the N atoms are introduced in
place of O atoms, the remaining bond on the nitrogen atom being satisfied
by one H atom.

We generated three models with N–Si3 configurations at varying distance
from the interface plane. In model I and II (Figs. 2.4 and 2.5), N atoms
substitute Si atoms in the first [L0 in Fig. 2.3] and second Si layer (L−1) of
the substrate, respectively. In model III (Fig. 2.6), the N atom replaces a
Si atom in the oxide (L1). In this case, we also removed all the nearest O
atoms to recover a N–Si3 configuration.

Models IV and V (Figs. 2.7 and 2.8) contain N–Si2O configurations with
substitutions in layers L0 and L1. In model VI (Fig. 2.9), we investigated a
N–SiO2 configuration in the oxide (L1).

Finally, we also considered two models with N–Si2H configurations. In
model VII (Fig. 2.10), N atom substitutes an O atom located between the
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Figure 2.6: Model III for the nitrided Si(001)-SiO2 interface. The nitrogen
atom (in black) has been introduced substitutionally to a silicon located in
the oxide (L1) with a N–Si3 configuration. The residual dangling bond is
saturated by one hydrogen atom (in white).

Figure 2.7: Model IV for the nitrided Si(001)-SiO2 interface. The nitrogen
atom (in black) has been introduced substitutionally to a silicon located right
at the interface (L0) with a N–Si2O configuration. The residual dangling
bond is saturated by one hydrogen atom (in white).



CORE-LEVEL SHIFTS AT THE NITRIDED INTERFACE 85

Figure 2.8: Model V for the nitrided Si(001)-SiO2 interface. The nitrogen
atom (in black) has been introduced substitutionally to a silicon located in
the oxide (L1) with a N–Si2O configuration. The residual dangling bond is
saturated by one hydrogen atom (in white).
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Figure 2.9: Model VI for the nitrided Si(001)-SiO2 interface. The nitrogen
atom (in black) has been introduced substitutionally to a silicon located in
the oxide (L1) with a N–SiO2 configuration. The residual dangling bond is
saturated by one hydrogen atom (in white).
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Figure 2.10: Model VII for the nitrided Si(001)-SiO2 interface. The nitrogen
atom (in black) has been introduced substitutionally to a silicon located in
the oxide (L1) with a N–Si2H configuration.

interface layer (L0) and the first oxide layer (L1). In model VIII (Fig. 2.11),
the N atom replaces a O atom right in the first oxide layer (L1).

After the incorporation of the N atoms, all the oxide atoms as well as
the first three Si layers were fully relaxed. In Figs. 2.4-2.11, we illustrate
the relaxed structures for the 8 different models. Distributions of structural
parameters as found found at the end of the relaxation process for the various
models are given in Tables 2.4-2.6 in terms of minimum, mean, maximum
and standard deviation.

We first analyze the local structure around the incorporated N atom (see
Table 2.4). In the oxide (L1), when nitrogen is introduced substitutionally to
silicon (model III, V, and VI), the N-Si bond lengths are 1.74±0.02 Å in good
agreement with other calculations (Jing et al. 1994). The N-Si bond lengths
in the Si substrate (L0 and L−1, for model I, II, and IV) are found to be
slightly larger, 1.82±0.02 Å, which should be attributed to the local strain at
the interface. On the contrary, when nitrogen is introduced substitutionally
to oxygen (model VII and VIII), the N-Si bond lengths is compressed up to
1.66±0.01 Å when the Si atom is located in the oxide while it turns back
to 1.74 Å when the Si atom is in the substrate. We found N-O and N-H
bond lengths of 1.44±0.02 Å and 1.04±0.01 Å respectively. In the present
study it was necessary to use an enlarged interface unit with respect to the
work of Pasquarello et al. (1995) in order to minimize steric constraints due
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Figure 2.11: Model VIII for the nitrided Si(001)-SiO2 interface. The nitro-
gen atom (in black) has been introduced substitutionally to a oxygen located
in the oxide (L1) with a N–Si2H configuration.

Table 2.4: Lengths of the 3 bonds (N-X1, N-X2, N-X3) formed by the in-
corporated N atom in the various interface models. The bond lengths are
expressed in Å.

Model X1 X2 X3 d(N-X1) d(N-X2) d(N-X3)

I Si Si Si 1.82 1.81 1.81
II Si Si Si 1.83 1.83 1.84
III Si Si Si 1.73 1.73 1.74
IV Si Si O 1.82 1.81 1.44
V Si Si O 1.73 1.75 1.44
VI Si O O 1.76 1.42 1.42
VII Si Si H 1.67 1.73 1.05
VIII Si Si H 1.66 1.66 1.04
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Table 2.5: Bond length distribution in terms of minimum, mean, maximum
and standard deviation for the various models of interface. We distinguish
the bonds formed by Si atoms in the bulk silicon d(Si-Si) and in the oxide
d(Si-O). The bond lengths are expressed Å.

Model d(Si-Si) d(Si-O)
Min. Mean Max. σ Min. Mean Max. σ

I 2.24 2.35 2.46 0.04 1.57 1.61 1.65 0.02
II 2.24 2.34 2.44 0.04 1.57 1.60 1.65 0.02
III 2.28 2.34 2.45 0.03 1.58 1.61 1.65 0.02
IV 2.27 2.35 2.46 0.03 1.58 1.61 1.65 0.02
V 2.28 2.34 2.41 0.02 1.57 1.61 1.65 0.02
VI 2.27 2.34 2.44 0.03 1.59 1.61 1.66 0.02
VII 2.28 2.34 2.49 0.04 1.59 1.61 1.68 0.02
VIII 2.28 2.34 2.48 0.04 1.59 1.61 1.65 0.02

to the periodicity in the interface plane and to allow full local relaxation
around the incorporated N atom. For instance, when a smaller interface cell
was used, we found unrealistic large variations (±0.1 Å) in the N-Si bond
lengths for a given N–Si3 configuration.

We also analyze the effect of nitrogen incorporation on the structure of
the Si substrate and of the oxide. First, the Si-Si and Si-O bond distances
(see Table 2.5) are found to be rather constant, about 2.34 Å and 1.61 Å
respectively (less than 1 % difference with their experimental values in bulk
Si (Donohue 1974) and SiO2 (Levien et al. 1980)). A variation of about 5 %
appears near the region where the nitrogen has been incorporated, inducing
a strain of the perfect lattice.

Finally, in Table 2.6, we consider the angles formed by Si atoms and by
O atoms. The Si-Si-Si angles are found only in the substrate. The deviation
with respect to the tetrahedral angle is due to the presence of dimer at
the interface in the original model (Pasquarello et al. 1995). This effect is
augmented when the N atom is introduced in the substrate. The Si-Si-O
which is typical of the interface naturally deviates the most though still
acceptably from 109.4◦. The O-Si-O bond angle distribution is peaked at
the tetrahedral angle. In the oxide, most of the stress seems to be relieved
by the rather flat distribution of the Si-O-Si angle, which ranges from 120◦

and 170◦.

This analysis suggests that our relaxed models give a good representation
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Table 2.6: Bond angle distribution in terms of minimum, mean, maximum
and standard deviation for the various models of interface. We distinguish
the angles formed by Si atoms in the bulk silicon ∠(Si-Si-Si), at the interface
∠(Si-Si-O), and in the oxide ∠(O-Si-O); and the angles formed by O atoms
in the oxide ∠(Si-O-Si). The bond angles are expressed in ◦.

Model ∠(Si-Si-Si) ∠(Si-Si-O)
Min. Mean Max. σ Min. Mean Max. σ

I 85.0 108.8 127.2 5.8 105.0 111.2 116.9 3.1
II 88.9 109.2 130.6 6.2 105.0 110.0 117.3 3.5
III 91.0 109.0 126.9 5.6 100.5 111.5 133.0 8.0
IV 87.6 109.0 123.0 5.3 100.7 111.8 119.0 4.7
V 90.8 109.2 123.8 5.3 101.9 112.1 126.8 6.5
VI 91.6 109.0 123.3 5.2 105.6 111.6 124.0 4.4
VII 93.2 109.1 120.9 5.4 106.3 111.8 117.6 5.4
VIII 92.3 109.0 120.8 5.5 105.6 111.4 118.5 4.9

Model ∠(O-Si-O) ∠(Si-O-Si)
Min. Mean Max. σ Min. Mean Max. σ

I 99.9 109.4 116.0 3.1 127.5 141.1 159.9 8.0
II 102.9 109.5 116.1 2.7 131.2 139.0 158.1 6.0
III 100.2 109.2 118.2 3.7 125.0 140.4 167.3 10.8
IV 99.5 109.5 122.7 3.6 123.4 137.1 149.7 6.4
V 95.6 109.3 118.7 3.9 128.6 139.8 163.5 8.9
VI 99.9 109.5 117.7 3.0 128.2 141.6 173.4 8.8
VII 103.6 109.4 117.3 3.3 125.5 142.9 157.4 9.8
VIII 103.6 109.6 116.7 3.0 129.1 140.3 156.1 8.7
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of the local structure for the various nitrogen-bonding configurations.

2.3.3 N 1s core-level shifts at the interface

N 1s shifts for the eight models described above were calculated including
core-hole relaxation effects and are given in Fig. 2.12 as a function of the
relaxed position z of the N atom with respect to the interface plane. We
took as a reference the shift of the N–Si3 configuration in which the N atom
is located most deeply in the Si substrate (model II). The N 1s shifts in
the different models could be compared by aligning the bulk Si 2p line.
Note that although the N atoms in models I and II were incorporated in
different Si layers (L0 and L−1), their z position in the relaxed structure
turned out to be close, and so did the values of their core shifts. From
Fig. 2.12, it is evident that the shifts are strongly affected by first nearest
neighbors. The presence of an O nearest neighbor (models IV and V) yields
shifts to higher binding energies of ∆=1.5 eV with respect to corresponding
N–Si3 configurations. A second oxygen nearest neighbor (model VI) brings
this shift to ∆=3.5 eV. The N–Si2H configurations (model VII and VIII)
lead to a shift of ∆=0.4 eV from the reference. These results are in good
accord with the shifts obtained for the test molecules (Table 2.3). Such
a large separation between the shifts of N–Si3 and N–Si2O configurations
virtually rules out the possibility that both configurations contribute to the
principal XPS peak. According to our analysis a peak resulting from N–
Si2O configurations should lie at ∆=1.5 eV. A second peak was observed
at ∆=2.2 eV by Bhat, Ahn, Kwong, Arendt and White (1994). However,
since such a peak was not seen in subsequent experiments (Lu et al. 1995,
Sutherland et al. 1995, Kaluri and Hess 1996), we are inclined to assume
that N–Si2O configurations are unlikely at nitrided Si(001)-SiO2 interfaces.
On the contrary, the shifts obtained in the model with N–Si2H bonding
configuration fall right in the experimental range. Thus we cannot exclude
the presence of this configuration for N atoms incorporated at the interface.
However, if all the N atoms were bonded to one H atom, it would imply
a concentration of hydrogen at the interface of the same order of that of
nitrogen, which is not the case at all in experiments (Green et al. 1994, Lu
et al. 1996, Tang et al. 1996). In consequence, we can say that though the
N–Si2H configuration can be found when N is incorporated at the interface,
it should be considered to appear only occasionally. Hence, it is not sufficient
to explain the experimental features.

The N atoms incorporated in the oxide (layer L1) give core shifts which
are displaced by ∆≈0.4 eV with respect to N atoms in corresponding config-
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Figure 2.12: N 1s core-level shifts ∆ at Si(001)-SiO2 interfaces calculated
for N–Si3 (circle), N–Si2O (square), N–SiO2 (upward triangle), and N–Si2H
(downward triangle) configurations at different distances z from the inter-
face. Continuous line extrapolations result from classical electrostatics for
the case of a semi-infinite oxide.
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urations at the interface. This effect has the same size for N–Si3 and N–Si2O
configurations and is a consequence of the dependence of core-hole relaxation
on the distance to the screening Si substrate (Pasquarello et al. 1995).

This dependence on z can be easily extrapolated within a simple classical
model. We consider a system composed by three dielectrics, separated by
abrupt interfaces: a semi-infinite silicon substrate (for z < 0 and with a
dielectric constant ǫ1), an oxide slabe of thickness d (0 < z < d, ǫ2), and
the vacuum (z > d, ǫ3). We calculate the correction ∆ to the core-hole
relaxation energy due to the presence of dielectrics. In order to satisfy
Maxwell boundary conditions, an infinite series of image charges is required.
For an excitation at z in the oxide (0 < z < d) we obtain:

∆ =
1

2

e2

ǫ2

inf
∑

n=0

(ηξ)n
[

η

|2z − 2nd| +
ξ

|(2n+ 1)d− 2z| +
2ηξ

(2n+ 2)d

]

(2.5)

where e is the electronic charge and where

η =
ǫ2 − ǫ1
ǫ2 + ǫ1

and ξ =
ǫ2 − ǫ3
ǫ2 + ǫ3

. (2.6)

For an excitation at z in the silicon substrate (z < 0):

∆ =
1

2

e2

ǫ1

[

− η

|2z| + (1 + η)(1− η)
inf
∑

n=0

ηnξn+1

(2n+ 2)d− 2z

]

(2.7)

The energy ∆ contributes to the shifts as an additive correction provided
the sign convention is chosen in such a way that the shifts in the oxide
are positive with respect to those in the substrate. This simple model gen-
erally provides a good approximation at distances of a few bond lengths
(Pasquarello et al. 1995).

The result of this extrapolation in the oxide is shown in Fig. 2.12, where
we have used ǫ1=12, ǫ2=2.1 and ǫ3=1 to describe the Si-SiO2-vacuum sys-
tem. We took a value of d=50 Å for the oxide thickness. This approxima-
tion is justified since the shifts at the matching points, as calculated within
classical electrostatics, varied by less than 0.1 eV when the oxide-vacuum
interface was moved from its position in the model to large distances.

However, this dependence on distance to the interface only partially
explains the observation of two components of different spatial origin in the
principal XPS peak. Although this effect can account for a difference of 0.8
eV between shifts at the interface and shifts in the oxide, we expect that
averages over actual N concentration profiles will narrow the separation
between peaks resulting from the two contributions. It therefore appears
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difficult to interpret quantitatively the measured separation of ∆=0.85 eV
(Lu et al. 1995) in terms of core-hole relaxation alone. This standpoint is
further supported by the fact that as a function of oxide thickness the N
1s peak shifts to larger binding energies by 0.4 eV more than other oxide
peaks (Carr and Buhrman 1993). In the work of Carr and Buhrman (1993),
structural changes such as induced by strain could be ruled out and it was
suggested that this effect was due to a chemical change in N first nearest
neighbors. We here provide a different interpretation in terms of a change
in second nearest neighbors.

In order to investigate such effects, we turned again to test-molecules.
We considered the molecules N(SiH3)3−n(SiH2R)n, where R is taken to be
SiH3, OSiH3 or N(SiH3)2, and n=1,2,3. The central N always has the same
nearest neighbor configuration (N–Si3). Second nearest neighbor effects are
studied by varying R and n. Let’s focus first on the case n=1 corresponding
to a single modification in the shell of second nearest neighbors (Table 2.7).
Second nearest neighbor O and N atoms give small, but opposite shifts. This
effect scales approximately linearly with n in the case of multiple substitu-
tions. This analysis suggests that N 1s levels shift to lower binding energies
in an environment rich in Si and N atoms and to higher binding energies in
an O rich environment. Close to the interface one finds typical N concentra-
tions of one monolayer in a transition region of ∼15Å (Green et al. 1994, Lu
et al. 1996, Tang et al. 1996), corresponding to about one N second nearest
neighbor, which gives a shift of ∆=−0.07 eV. To estimate shifts in the ox-
ide, we considered a molecule, N(SiH3)2Si(OSiH3)3, in which one of the first
neighbor Si atoms forms a bond to three O atoms, and found ∆=0.12 eV.
Assuming linearity, we estimate ∆=0.36 eV for the case with nine second
nearest neighbor O atoms. According to this analysis, the resulting differ-
ence between interface and oxide shifts is 0.43 eV, in good agreement with
the measured shift of 0.4 eV (Carr and Buhrman 1993).

2.3.4 Si 2p core-level shifts at the interface

To complement this study, we also calculated Si 2p shifts including core-
hole relaxation effects for various silicon atoms in the models I and II (see
Table 2.8), which present both a N–Si3 configuration. In model I, nitro-
gen is located right at the interface (L0), whereas in model II, it has been
introduced in the second Si layer (L−1). The silicon atoms, for which core-
level shifts have been calculated, differ either by their location, or by their
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Table 2.7: Relative N 1s shifts ∆ for test-molecules generated from the
following formula: N(SiH3)3−n(SiH2R)n. The molecules all present the N–
Si3 configuration for the first nearest-neighbor shell, but they differing by
the second nearest neighbors of n of the three Si atoms around the N atom.
The radical R is selected in order for the second nearest neighbors to be Si,
O, or N. The shifts are expressed in eV with respect to the case where R is
SiH3 for each n. This corresponds to 3n Si second nearest neighbors.

R 2nd nn ∆(n=1) ∆(n=2) ∆(n=3)

SiH3 Si 0.00 0.00 0.00
OSiH3 O 0.06 0.13 0.19
N(SiH3)2 N -0.07 -0.15 -0.19

oxidation state2, or by their bonding configuration.

Many experimental results have been obtained using X-ray photoemis-
sion spectroscopy (XPS) to study Si 2p core-levels for the Si(001)-SiO2 both
before (Grunthaner et al. 1987, Himpsel et al. 1988, Lu et al. 1993) and af-
ter nitrogen incorporation (Bhat, Ahn, Kwong, Arendt and White 1994, Lu
et al. 1995, Sutherland et al. 1995, Kamath et al. 1997). The experiments
indicate the presence of a transition region from bulk silicon (Si0 peak
at ∆=0.0 eV) to bulk SiO2 (Si+4 peak at ∆=3.8 eV) with intermediate-
oxidation states of Si. These are revealed by various Si+x peaks in the XPS
spectrum, located at ∆=1.0, 1.8, and 2.6 eV for x=1, 2, and 3, respectively
(Lu et al. 1993, Lu et al. 1995).

However, different interpretations exist for these experimental features.
The most generally accepted picture attributes the various oxidation states
to Si atoms with a different number of nearest-neighbor O atoms. But, it is
also suggested (Holl and Mcfeely 1993) that second-nearest neighbor effects
might be important. By complementing the XPS studies with a theoretical
approach based on first-principles (Pasquarello et al. 1995, Pasquarello et al.

1996), it was possible to discriminate between the different interpretations
by computing the Si 2p for different models of interface before nitrogen
incorporation. Second-nearest neighbor effects turn out to be negligibly
small, so that the emerging picture is the attribution of the various peaks
to different bonding configurations.

Our results are in complete agreement with the work of Pasquarello and
co-workers, and confirm the ideas that had been brought in their studies.

2Unfortunately, no Si+3 oxidation state could be found in any of the models.
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Table 2.8: Relative Si 2p shifts ∆ for a series of Si atoms in model I and
II. The selected silicon atoms differ either by their location, or by their
oxidation state, or by their bonding configuration. The shifts are expressed
in eV with respect to a Si atom located deep in the substrate (L−3).

∆
Location Oxidation state Configuration Model I Model II

L2 Si+4 4 Si-O — 4.79

L1 Si+4 4 Si-O 4.49 —

L0 Si+2 1 Si-N, 2 Si-O, 1 Si-Si 2.03 2.15
Si+1 1 Si-O, 3 Si-Si 1.19 1.24

L−1 Si+1 1 Si-N, 3 Si-Si 0.92 —
Si0 4 Si-Si — 0.04

L−2 Si+1 1 Si-N, 3 Si-Si — 1.06
Si0 4 Si-Si 0.34 —

L−3 Si0 4 Si-Si 0.00 0.00
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The calculated shifts due to the presence of a Si-O bond overestimate ex-
perimental values by about 20%, but the overall trend is well reproduced.
We have also calculated shifts due to the presence of a Si-N bond. The same
kind of discrepancy is observed with experiments, for which a shift of ∆=0.7
eV is found (Larsson et al. 1992, Peden et al. 1993) compared to ∆=0.9 eV
in Table 2.8.

This supplementary informations gives us some insight on how to in-
terpret the Si 2p experimental spectrum obtained for oxynitrides. Indeed,
it was found that Si+1, Si+2 and Si+3 peaks have the same shifts before
and after nitrogen incorporation. This observation lead Lu et al. (1995) to
attribute the interface suboxide chemical peaks only to Si-O bonds. How-
ever, we find a difference between the shifts due to Si-N and Si-O bonds of
about ±0.2 eV, which makes it really difficult to discriminate them. Hence,
a contribution of Si-N bonds to the suboxide peaks cannot be excluded.

It should be mentioned that in our calculation we find that the shifts due
to Si-N are lower than those due to Si-O bonds. This is in agreement with
the simple picture deriving from the higher electronegativity of oxygen. The
substitution of O by N increases the electronic charge density on Si, resulting
in a shift of the Si 2p peak toward lower binding energies.

In this section, we have computed the N 1s core-level shifts for a series of
selected molecules presenting various nitrogen bonding configurations. By
comparison with experimental data for the interface, we were able to reject
N–O3 and N–SiH2 configurations. We generate eight interface models by
considering different bonding configurations and locations with respect to
the interface plane. By analyzing their structural properties, we have shown
that our relaxed models give a good representation of the local structure
for the various nitrogen-bonding configurations. By computing the N 1s
core-level shifts for these models and comparing with experimental data, we
were able to explain the unusually large shift with oxide thickness of the
principal peak in photoemission spectra in terms of a single first-neighbor
configuration in which the N atom is always bonded to three Si atoms, both
in the interfacial region and further in the oxide. Core-hole relaxation and
second nearest neighbor effects where showed to concur in yielding larger
binding energies in the oxide than at the interface. The calculations do not
support the occurrence of N-O bonds at nitrided Si(001)-SiO2 interfaces.
The Si 2p core-level shifts have also been calculated for selected interface
models showing good agreement with experiments and previous theoretical
studies. The results demonstrate that a contribution of Si-N bonds to the
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suboxide peaks cannot be excluded.

2.4 Discussion and Conclusions

In this chapter, we have studied the incorporation of nitrogen at the Si(001)-
SiO2 interface using a first-principle approach for the calculation of core-level
shifts. In section 2.2, we first addressed the problem of obtaining a reliable
theoretical framework for the calculation of core-level shifts. Various approx-
imations have been introduced that allow to compute core-level shifts within
Density Functional Theory. The initial-state shifts could be obtained by the
expectation value of the local self-consistent potential on the atomic core-
state. The core-hole relaxation effects could be taken into account despite
the use of pseudopotentials, by performing two separate calculations. We
have applied these two methods to the calculation of N 1s core-level shifts
of small molecules. By comparison with experimental data, we showed it is
necessary to include core-hole relaxation effects to obtain reasonable values.
In section 2.3, we turned to the incorporation of nitrogen at the Si(001)-SiO2

interface. The approach that was used in this study can be summarized as
follows. In a first step, we determined the possible nitrogen bonding con-
figurations. This was done by computing the N 1s core-level shifts for a
series of carefully chosen molecules and by examining the results against
available experimental informations about the interface. With all the pre-
selected bonding configurations, we produced several model interfaces by
varying the distance of the incorporated N atoms from the interface plane.
The atomic positions were relaxed using a first-principle approach and the
structural properties of the generated models were analyzed. The N 1s and
Si 2p core-level shifts calculated for the different models and compared with
experimental data. The conclusions that were drawn are reformulated here-
after. First, the structural analysis showed that our models give a good
representation of the local structure for the various nitrogen-bonding con-
figurations. Second, adopting the single first-neighbor configuration N–Si3,
we could explain the shift with oxide thickness of the principal XPS line
and the appearance of two components. Our interpretation relies on core-
hole relaxation and second nearest neighbor effects, which combine to give
larger binding energies in the oxide than at the interface, in accord with
experimental observations (Carr and Buhrman 1993, Hegde et al. 1995, Lu
et al. 1995, Kaluri and Hess 1996). Core-hole relaxation affects N 1s shifts
differently according to the distance of the N atoms to the screening Si sub-
strate. A second nearest neighbor environment rich in Si and N atoms as at
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the interface induces opposite shifts compared to an O rich environment as
found in the oxide. Third, our investigation of other configurations, in which
the N atom is bonded to O atoms, tends to rule out their existence at the
interface. Indeed, we found N 1s shifts for N–Si2O configurations at ∆=1.5
eV, in a region of the spectrum where generally no peaks are observed in ex-
periments. On the contrary, for N–Si2H configurations, the calculated shift
is right in the range of experimental data (∆=0.4 eV). However, the high
concentration of hydrogen that would be required for such configurations
lead us to suggest if these appeared in nitrided interface it would only be
in a very small amount. Finally, the calculated Si 2p core-level shifts are in
good agreement with experiments and other theoretical studies. Contrarily
to what is generally believed, we proposed that both Si-O and Si-N bonds
contribute to the suboxide peaks.
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Chapter 3

The SiO2 α-Quartz (0001)
Surface

3.1 Introduction

SiO2 plays an important role in many advanced technologies. For instance,
SiO2/Si interfaces are currently used in MOS (metal oxide-semiconductor)
electronic devices (Helms and Deal 1988). SiO2 is also used as substrate for
metallic magnetic multilayers and for oxide multilayer optical systems. In
the field of adhesion, the SiO2/polymer interface is an important concern
(Zhong et al. 1993). Whatever the interfaces built up, their properties are
expected to strongly depend on the initial SiO2 surface structure.

Amongst the different SiO2 surfaces, the (0001) α-quartz surface can
be considered as a model surface for the different crystallographic forms of
SiO2. Moreover, its study can also be profitable for the understanding of
amorphous silica surface. However, whereas the bulk structure of quartz
has been widely studied, the experimental data on the structure of this
surface are rather scarce. To our knowledge, there are up to now only
few studies devoted to experimental determination of the crystallographic
structure of the (0001) α-quartz surface. Several years ago, it has been
shown that a slight chemical etching in HF leads to the appearance of a
1 × 1 pattern (Janossy and Menyhard 1974). More recently, a reconstruction√
84 ×

√
84 with a rotation angle of 11◦ was observed as soon as the air

heating temperature was greater than 600◦C (Bart and Gautier 1994).

The main difficulty lies in the fact that the common surface analysis
techniques often employ the input of charged particles (ions, electrons) or
the analysis of outgoing charged particles (ions, electrons). Indeed, these

101
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changes in the local charge concentration make the study of insulator sur-
faces more difficult than for conductor surfaces. However, promising steps
have been achieved in this field in the last few years. For instance, recently,
the quartz surface has been studied using atomic force microscopy (AFM)
providing informations on its microscopic structure (Noge et al. 1997). How-
ever, the low contrast of the AFM pictures obtained at the atomic scale
hamper one to draw clear conclusions. Nevertheless, it can be expected that
in the forthcoming years most of the existing difficulties in the scanning
probe microscopies will be overcome.

In most experimental techniques, data are collected over fairly long times
(in comparison to atomic or molecular motion). Thus, a direct measure-
ment or observation of a particular event or structure is not allowed, and
these must be inferred from the data. By contrast, molecular dynamics
simulations permit detailed analysis of the atomic motion and the complex
microstructure that gives rise to the average properties. These techniques
have been widely used to study vitreous silica surfaces. However, to date, the
simulations have been based on semi-empirical potentials only to describe
atomic interactions (Garofalini 1983, Feuston and Garofalini 1988, Feuston
and Garofalini 1989, Garofalini 1990).

In the present work, we present an ab initio study of the (0001) α-
quartz surface. We consider different initial configurations, amongst which
the cleaved surface (with non-bridging oxygens at the top) and a 2 × 1
reconstruction (with 2-membered rings). After the atomic relaxation, the
stability of each configuration is studied by performing constant-temperature
molecular dynamics simulations, leading to different reconstructions. The
most stable of these presents an interesting densification of the two upper-
most layers of SiO2 tetrahedral units, with the formation of 3-membered
and 6-membered rings that do not exist in bulk α-quartz.

Another important topic in regard to the SiO2 surface lies in its in-
teractions with water. These play an important role in microelectronics
(wafer-bonding techniques), catalytic support, optical wave guides, and sol-
gel processing. It is generally believed that the hydroxylation of siloxane
(≡Si–O–Si≡) and of non-bridging oxygens (≡Si–O) causes the formation
of silanol species (≡Si–OH) at the surface (Iler 1979). Ab initio calcula-
tions have been performed to study the interaction between a single water
molecule and a silicic acid monomer (H4SiO4), a “simple” system involving
Si, O and H interactions (Heggie and Jones 1987). It was shown that a 4%
expansion of the Si-O bonds in siloxane was sufficient on energy grounds to
allow the hydrolysis reaction:
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≡Si–O–Si≡ + H2O → ≡Si–OH · · · HO–Si≡

to occur. This led to useful predictions for reaction sites and paths of water-
silica interactions.

Till now, such first-principles approaches which are computationally de-
manding have not been applied to study the complete silica surface in the
presence of water. However, molecular dynamics simulations have been
performed using three-body interaction potentials (Feuston and Garofalini
1990). In this study, we analyzed the hydroxylation of the dense α-quartz
surface obtained in dry conditions, as well as of partially hydroxylated sur-
faces. We also investigated the dehydration of the fully-hydrated and the
semi-hydrated quartz surface.

The present chapter is organized as follows. In section 3.2, we first
present the bulk structure of α-quartz and introduce different ways of vi-
sualizing it (network of tetrahedra, repetition of O-Si-O layers along the
(0001) direction). These facilitate a better understanding of the surface
structure. Then, we investigate different models for the (0001) α-quartz
structure. We consider two initial configurations, the cleaved surface and a
2 × 1 reconstruction with edge-sharing tetrahedra and obtain two stable re-
constructions by performing constant-temperature molecular dynamics sim-
ulations. The first, named the valence alternation pair surface, presents an
intimate pair of over- and under-coordinated oxygen atoms near the surface
with 3-membered rings. The second, called the dense surface, presents a
densification of the two uppermost layers of SiO2 tetrahedral units, with
3-membered and 6-membered rings. We analyze in details the structural
properties of our models and describe them in terms of tetrahedral units,
showing that within 5 Å from the surface the bulk structure is recovered.
Finally, we compute their respective total energy, and find that the dense
surface is most stable of all investigated structure. In section 3.3, we present
our results in regard with the interaction of the quartz surface with water.
We first consider the dehydration of the wet quartz surface. Unfortunately,
it is found that the time scale accessible to our simulation is too small in
regard to the large energy barriers (about 3 eV/surface unit cell at least)
that are involved. We also describe the dynamics resulting from throwing
water molecules on the dense surface, and on partially hydroxylated surfaces
in terms of the mechanism of hydrolysis of siloxane bonds or non-bridging
oxygens. Our study confirms the hydrophobic behavior of siloxane bonds.
Indeed, we find that the water molecules rebound on the dense surface what-
ever their kinetic energies. On the contrary, our simulations demonstrate the
high reactivity of under-coordinated silicons (especially those linked to the
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BO

Figure 3.1: Representation of two corner-sharing SiO4 tetrahedral units
(thick solid lines). The Si atoms (represented in dark grey) are located
at the center of the tetrahedra, while O atoms (in pale grey) constitute its
corners. The central O atom connects the two tetrahedra, it is referred to
as a bridging oxygen (BO). The other oxygens are attached to other silicons
which are not shown on the figure.

non-bridging oxygens) and the role of adjacent hydroxyl groups to facilitate
the hydrolysis reaction by the formation of hydrogen-bond chains.

3.2 The dry surface

3.2.1 The bulk structure of α-quartz

Before addressing the study of the SiO2 α-quartz surface, we introduce some
general considerations about its bulk structure.

The α-quartz or low quartz is the stable phase of SiO2 at ambient con-
ditions. This crystal possesses the P3121 space-group symmetry. It consists
of 4-coordinated silicon and 2-coordinated oxygens, which may be seen as a
network of SiO4 tetrahedra (with 1 Si atom at the center and 4 O atoms at
the corners as shown in Fig. 3.1) with all corners shared. The structure is
formed by double helical-chains of SiO4 tetrahedra that run parallel to the
(0001) direction and which are linked laterally one to the other (Fig. 3.2).

The oxygens joining two tetrahedra (as represented in Fig. 3.1) are called
bridging oxygens (BO’s). These create Si-O-Si bond angles which are all
equal to 143.73◦. On the contrary, the O-Si-O bond angles in the tetrahedra
present four distinct values (108.81◦, 108.93◦, 109.24◦, and 110.52◦) that are
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(a) (b)

(d)(c)

Figure 3.2: Representation of the α-quartz structure in terms of tetrahedral
units. (a) Top view (perpendicularly to the (0001) direction) and (b) side
view (along the (0001) direction) of the crystal. (c) Top view and (d) side
view of the tetrahedral double helix.
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O(-1D)

O(U)

O(D)

Si

O(+1U)

Figure 3.3: Representation of a SiO4 tetrahedral unit in terms of its location
with respect to a O-Si-O layer along the (0001) direction in α quartz. The
O-Si-O layer consists in a upper plane of O atoms (labeled O(U) where U
stands for up), a plane of Si atoms, and a lower plane of O atoms (O(D)
where D stands for down). We also represented the lower plane of oxygens
in the layer just above it (O(-1D)) and the upper plane of oxygens in the
layer just under it (O(+1U)). In the tetrahedra, the Si atom is bonded to
4 oxygens located in the oxygen planes labeled O(U), O(D), O(-1D) and
O(+1U), respectively.

very close to the ideal tetrahedral angle (Levien et al. 1980).

Silica glass and various low pressure crystalline polymorphs of SiO2 also
consist of network of SiO4 tetrahedra. The difference resides in the distri-
bution of the Si-O-Si bond angles which depends on the symmetry of the
crystal. For instance, in vitreous silica, it ranges from 120◦ to 180◦. This
broadening of the distribution with respect to α-quartz is due to the amor-
phous character.

The α-quartz structure can also be seen as being formed by repeated
O-Si-O layers along the (0001) direction as shown in Fig. 3.3. Each layer
consists in a plane of O atoms (O(U)), then a plane of Si atoms, and then
again a plane of O atoms (O(D)). Each Si atom is bonded to one atom of
the upper plane and to one atom of the lower plane, it is also linked to one
oxygen in the O-Si-O layer just under it (O(+1U)) and to one oxygen in the
layer just above it (O(-1D)). This representation is particularly interesting
for the study of the (0001) surface of α-quartz.
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3.2.2 The fracture of α-quartz

In this study, we are concerned with the detailed structure of SiO2 surface
as created by instantaneous fracture of bulk material. In principle, the
differences between this type of surface and the bulk material are dependent
upon the forming conditions. The final structures are due to the lack of
three-dimensional network at the surface, the increased mobility of surface
atoms (due to broken bonds), as well as the different thermal and chemical
(atmospheric) exposures of the uppermost atoms. For simplicity, we first
deal with surfaces obtained in perfect vacuum (in absence of water). This
should isolate the changes due primarily to the lack of network.

The fracture of bulk quartz perpendicularly to the (0001) direction, in
which we are more specifically interested, could produce two fundamen-
tal types of surface: one terminating with Si atoms, and a similar surface
with one oxygen attached to each silicon atom. However, since natural sil-
icon dioxide surfaces are generally thought to terminate by hydroxyl (OH)
groups (Hair 1967, Iler 1979), the oxygen-terminated surface is most likely
more representative of real materials. Hence, in the present work, we will
concentrate on this type of surface.

The fracture of the crystal and the reconstruction of the resulting surface
may induce the presence of defects and distortions with respect to the perfect
tetrahedral picture of SiO2 given above. One particularly interesting defect
in this framework is an oxygen which is linked only to one silicon. This is
referred to as a non-bridging oxygen (NBO). It is known that both BO’s and
NBO’s exist at the surface although the surface NBO’s are usually hydrated
due to the presence of contaminant in real systems (Iler 1979). Another
kind of defects which might be present at SiO2 surface are the n-membered
rings where n is the number of Si atoms. Molecular dynamic simulations
with three-body interaction potentials showed that n-membered (with n=2,
3, 4) are formed at vitreous silica surfaces (Feuston and Garofalini 1989).

In this study, we use Car-Parrinello molecular dynamics to study various
models of the (0001) α-quartz surface. On this purpose, we build a tetrag-
onal unit cell by repeating O-Si-O layers along the (0001) direction. Doing
so, we meet the requirement of the charge neutrality in the unit cell and
avoid large dipole moments. The O-Si-O layers had previously been relaxed
in a cell simulating bulk quartz. The Si-O bond length was found to be
1.605±0.005 Å which is less than 1 % difference with experiments (Levien
et al. 1980). The Si-O-Si bond angle distribution was peaked around 139◦,
whereas the four values of O-Si-O angles are 108.1◦, 109.3◦, 109.4◦, and
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111.0◦ respectively1. All these values present less than 5% discrepancy with
experimental data (Levien et al. 1980).

Our systems contain a surface unit of sides a=9.62 Å and b=8.34 Å,
based on the theoretical equilibrium lattice constant of α-quartz (Keskar
and Chelikowsky 1992). The dimension of the cell in the direction orthog-
onal to the surface is c=15.88 Å, containing 6 monolayers of SiO2 (9.5 Å),
the bottom extremities being saturated with hydrogen atoms. Hence, our
systems contain 24 Si atoms, 44 O atoms and 8 H atoms.

The atomic positions are fully relaxed by using the Car-Parrinello meth-
od (Car and Parrinello 1985, Tassone et al. 1994), which provides the elec-
tronic structure as well as the forces that act on the ions. Only valence
electrons are explicitly considered by means of norm conserving pseudopo-
tentials (Troullier and Martins 1991) to account for the core-valence in-
teractions. The electronic wave functions are expanded into plane waves
with a kinetic energy cutoff of 50 rydbergs. Exchange and correlation are
included using Perdew and Zunger’s interpolation formulas (Perdew and
Zunger 1981). The Brillouin zone (BZ) is sampled using only the Γ-point
in all our calculations. In the minimization process, the atoms of the lowest
SiO2 monolayer are kept fixed. After the atomic relaxation, the stability of
each configuration is studied by performing constant-temperature molecular
dynamics simulations (Nosé 1991), leading to different reconstructions.

In Table 3.1, we have reported the maximal displacements of the atoms
after relaxation for the various models with respect to their positions in bulk
quartz. From these results, it can be stated that the size of the SiO2 slab
used in the simulations was large enough to simulate a semi-infinite solid,
since only limited strain occurred in the O-Si-O layers just above the fixed
one.

We now analyze the various models that were generated. We compare
their structural properties as well as their relative stability.

3.2.3 The cleaved surface

The most trivial model for the α-quartz (0001) surface is obtained simply by
stopping the repetition of O-Si-O layers along the (0001) direction. We will
refer to it as the cleaved surface. This 1 × 1 reconstruction of the surface is
characterized by one non-bridging oxygen and one 3-coordinated silicon per

1When we used the PW’91 approximation for the exchange-correlation energy func-
tional, we obtained d(Si-O)=1.625±0.005 Å, ∠(Si-O-Si)=135.5±0.1◦, and for the four
O-Si-O angle values 107.9◦, 108.4◦, 109.0◦, and 111.8◦ respectively
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Table 3.1: Maximal atomic displacements in the first and second O-Si-O
layers above the fixed one after complete relaxation in the simulation cell.
The results are presented for our 4 different models of the surface (cleaved,
dimer, valence alternation pair (VAP), and dense). They are expressed in
Å with respect to the positions of the atoms in bulk quartz.

O-Si-O layer
Surface 1st 2nd

Cleaved 0.02 0.03
Dimer 0.05 0.06
VAP 0.15 0.19
Dense 0.15 0.19

surface unit cell. A side view of the cleaved surface in terms of tetrahedral
units is given in Fig. 3.4.

After the atomic relaxation, the structural properties of the cleaved sur-
face have been analyzed (Fig. 3.5). The Si-O bond length for the NBO’s at
the surface is about 1.49 Å, that is 0.1 Å shorter than in bulk quartz. This
result is in good agreement with other theoretical results obtained with em-
pirical interaction potentials (Levine and Garofalini 1987). One of the back
bond Si-O is also slightly shortened to 1.57 Å. In the second O-Si-O layer
the bulk value is already recovered (Fig. 3.5(a)), indicating that the strain
due to the surface is very localized. This is confirmed by the bond angle
distribution for O-Si-O and Si-O-Si, as represented in Fig. 3.5(b) and (c).
The three O-Si-O angles involving the Si atoms located in the first O-Si-O
layer are respectively 126.8◦, 126.7◦, and 106.7◦ (where the two biggest val-
ues are obtained for O-Si-O angles with a NBO), indicating a quasi planar
configuration the SiO3 group.

3.2.4 The dimer surface

The second model for the α-quartz was based on the idea that a more
stable structure would be obtained if the non-bridging oxygens and the
3-coordinated silicons could be replaced by 2-coordinated oxygens and 4-
coordinated silicons respectively in order to recover tetrahedral units even
at the surface. A simple way to do that was to consider a 2 × 1 recon-
struction in which two surface silicons (3-coordinated in cleaved surface)
would share their non-bringing oxygens to form edge-sharing tetrahedra (2-
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Figure 3.4: Side view of the cleaved surface in terms of tetrahedral units. At
the surface, the oxygen atoms are non-bridging and the silicon atoms are 3-
coordinated. Triangles appear at the top of the figure in place of tetrahedra.
This representation is justified by the fact that the sum of the three O-Si-O
angles involving the Si atoms located in the first O-Si-O layer is very close
to 360◦.

membered rings). This reconstruction is illustrated in Fig. 3.6.

However, the atomic relaxation of this surface lead to a completely dif-
ferent structure. Indeed, the two oxygens that should have been shared by
two silicons seemed to prefer to form a dimer on one of the latter, leaving the
other silicon only two-fold coordinated. Moreover, this structure, to which
we refer as the dimer surface, was energetically unfavored by 6.8 eV/surface
unit cell with respect to the cleaved surface.

The structural properties of the dimer surface have been analyzed and
reproduced in Fig. 3.7. The Si-O bond length is modified at the surface,
but soon recovers the bulk value in deeper layers (Fig. 3.7(a)). The modi-
fications are due to the strange reconstruction. The two back bonds of the
2-coordinated Si are slightly longer 1.64±0.01 Å due to the increased elec-
tronegativity of the silicon. On the contrary, those of the Si with a dimer
are slightly shorter 1.56±0.01 Å, while for the same Si atoms the two bonds
with the O of the dimer are also a bit longer 1.62±0.01 Å. The distances
of the 2-coordinated Si with respect to the oxygens of the dimer are 2.35 Å
and 3.26 Å respectively. The O-O bond in the dimer is 1.59 Å. The O-Si-O
angles are also affected mostly at the surface (Fig. 3.7(b)). The one involv-
ing the two oxygen atoms of the dimer is 58.6◦, enforcing the fact that a
dimer is formed. The ones involving one of these two oxygens are 121.2◦ and
127.6◦ respectively. The remaining O-Si-O angle involving the Si with the
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Figure 3.5: Structural properties of the cleaved surface: (a) Si-O bond length
(in Å), (b) Si-O-Si bond angle (in ◦), and (c) O-Si-O bond angle (in ◦) dis-
tributions. The z axis is oriented along the (0001) direction (i.e. perpen-
dicularly to the surface) with the origin located at the height of the lower
plane of oxygens (which is fixed during atomic relaxation).



112 THE SiO2 α-QUARTZ (0001) SURFACE

(a) (b)

Figure 3.6: Representation of an hypothetical surface with 2-membered rings
in terms of tetrahedral units: (a) top view (perpendicularly to the (0001)
direction), and (b) side view. The edge-sharing tetrahedra (2-membered
rings) are located at the top.

dimer (thus, the one with the two back-bonding oxygens) is 110.7◦ which
is very close to the tetrahedral value. By contrast, the only O-Si-O angle
involving the two-coordinated Si is 98.3◦ far from this normal value. The
distortions of the O-Si-O angles are still perceptible in the second tetrahe-
dra layer but are attenuated in the successive ones. The deviations of the
Si-O-Si angles from their bulk value are also concentrated in the very first
layers (Fig. 3.7(c)) and are relatively small. Thus the tetrahedra to which
they belong is heavily distorted.

Finally, we analyzed the electronic density on the dimer, a contourplot
of which is represented in Fig. 3.8. The oxygen dimer clearly appears on
the picture as well an increased electronic density on the 2-coordinated sili-
con with respect to the other 4-coordinated silicons. The contour plot also
reveals the reason why the edge-sharing tetrahedra structure originally de-
signed was instable. Indeed, there is an oxygen located just above the dimer
(at the bottom of the figure) which repels it towards the outside.
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Figure 3.7: Structural properties of the dimer surface: (a) Si-O bond length
(in Å), (b) Si-O-Si bond angle (in ◦), and (c) O-Si-O bond angle (in ◦)
distributions. The z axis is oriented along the (0001) direction (i.e. perpen-
dicularly to the surface) with the origin located at the height of the lower
plane of oxygens (which is fixed during atomic relaxation).
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Figure 3.8: Contour plot of the electronic density on the oxygen-dimer at
the dimer surface. The contour is drawn in a plane passing through the
Si atom with the dimer, the 2-coordinated Si, and the lower oxygen of the
dimer. Note that the upper oxygen is almost co-planar with these atoms.
The x axis is defined by the 2 silicons. The origin of the x and y axis (defined
by orthogonality with x) is the 2-coordinated Si. As a guide for the eyes to
locate the atoms, we superimposed (in pale grey) to the contour plot a ball
and stick representation of the structure: the big circles are Si atoms while
the small ones are O atoms. The oxygen dimer clearly appears at the center
of the picture, while the electronic density is increased on the 2-coordinated
silicon with respect to 4-coordinated silicons. At the bottom of the figure,
there is another peak of density. It corresponds to an oxygen located just
above the dimer which repels it towards the outside. The contour interval
is 0.5 e−/Å3.
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(a) (b)

Figure 3.9: Representation of the valence-alternation-pair surface in terms
of tetrahedral units: (a) top view (perpendicularly to the (0001) direction),
and (b) side view. In the top view, the 3-membered rings appear neatly. In
the side view, the non-bridging oxygens are positioned at the top while the
3-coordinated O are situated in the middle.

3.2.5 The VAP surface

By heating the dimer surface up to 300K, we obtained a 2 × 1 reconstruction
more stable than the cleaved surface, which constitutes our third model.
In this structure all the Si atoms are 4-coordinated thus it can be com-
pletely described by tetrahedral units as in Fig. 3.9. However, the network
of tetrahedra is not perfect since there is a 1-coordinated oxygen and a 3-
coordinated oxygen per surface unit cell. These two defects are both located
on the same tetrahedra with the 1-coordinated O pointing towards the out-
side. The increase of stability can be attributed to the fact that the number
of Si-O bonds is unchanged with respect to an idealized fully coordinated
network. The representation of the surface structure in terms of tetrahedra
also reveals the existence of 3-membered rings in the two first layers.

This intimate pair of over- and under-coordinated oxygen atoms is re-
ferred to as a valence alternation pair (VAP). The VAP concept was first
introduced by Kastner et al. (1976) in the framework of the study of chalco-
genide glasses (e.g. As2Se3). A valence alternation pair was formed when
two chalcogen atoms, both two-fold coordinated in the ground state, rear-
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ranged instead into one positively charged 3-coordinated atom (noted C+
3 )

and one negatively charged 1-coordinated atom (C−
1 ). It was proposed that

the density of VAP’s in most glasses is relatively large since the creation
of such defect requires a relatively small energy. The existence of such de-
fects in amorphous SiO2 was first proposed by Lucovsky (1979) based on
the interpretation of infra-red and Raman spectra. Lucovsky (1980) also
discussed some qualitative differences between VAP’s in chalcogenide and
silica glass. These are however unrelevant for the present study. He esti-
mated the density of these defect pairs to be of the order of 1019 cm−3 which
is quite important.

The structural properties of the VAP surface have been analyzed and
reproduced in Fig. 3.10. The latter illustrates that the effect of the surface is
felt deeper than in the previous two models. The Si-O bondlength is affected
by the presence of the VAP’s and of the 3-membered rings (Fig. 3.10(a)).
The bond involving the NBO is equivalent to those found in the cleaved
surface, it has a length of 1.50 Å which is 0.1 Å shorter than in bulk quartz.
On the contrary, those involving the 3-coordinated O are longer: 1.70 Å,
1.73 Å, and 1.83 Å respectively. In the 3-membered rings, there are also
slight variations with respect to bulk quartz. The O-Si-O angles are the
most affected property with respect to the other models (Fig. 3.10(b)). This
means that the tetrahedral units are very distorted even in deeper layers.
By contrast, the Si-O-Si angle deviations are concentrated mostly in the
first layers (Fig. 3.10(c)). The biggest changes arise from the 3-coordinated
O, where the three Si-O-Si angles are 111.2◦, 118.3◦, and 120◦ respectively,
indicating that the oxygens are not co-planar with the Si atoms to which
they are bonded.

The stability of this reconstruction was tested by heating the surface up
to 3500 K for a few hundred fs. No further reconstruction was observed
indicating a relative stability of the structure.

3.2.6 The dense surface

The most stable reconstruction is obtained by heating the cleaved surface
up to 300K. During the molecular dynamics simulation, the uppermost O-
Si-O layer kind of merges with the second layer in a unique layer with the
formation of 3-membered and 6-membered rings (Fig. 3.11) that do not
exist in bulk α-quartz. This reconstruction presents only 4-coordinated Si
and 2-coordinated O with no dangling bonds.

The outermost O-Si-O layer is denser than those located in the bulk,
due to the merging of two layers of the original structure (Fig. 3.12). The



3.2. THE DRY SURFACE 117

1.50

1.55

1.60

1.65

1.70

1.75

1.80

95

100

105

110

115

120

125

130

0 2 4 6 8 10

115

120

125

130

135

140

145

150

S
i-O

-S
i a

ng
le

 (
°)

z (Å)

O
-S

i-O
 a

ng
le

 (
°)

S
i-O

 b
on

dl
en

gt
h 

(Å
)

(a)

(b)

(c)

Figure 3.10: Structural properties of the dimer surface: (a) Si-O bondlength
(in Å), (b) Si-O-Si bond angle (in ◦), and (c) O-Si-O bond angle (in ◦) dis-
tributions. The z axis is oriented along the (0001) direction (i.e. perpen-
dicularly to the surface) with the origin located at the height of the lower
plane of oxygens (which is fixed during atomic relaxation).
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Figure 3.11: Top view of the dense surface. Si and O atoms are represented
in dark and pale grey, respectively.
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uppermost atoms are still oxygens which are located in a plane, however
there are three times more atoms than in the original ones. Indeed, the two
planes of oxygens from the outermost layer in the cleaved surface (O(1U)
and (O1D) in Fig. 3.12) have merged with the upper plane of oxygens of
the second O-Si-O layer (O(2U)). The plane of Si atoms located just under
the surface is also denser, but in this case there is only twice the number of
atoms (Si(1+2)). The lower plane of oxygens of the second O-Si-O layer has
almost merged with the upper plane of oxygens of the third O-Si-O layer,
but this merging completely disappears in the deeper layer.

We have analyzed the structural properties of the dense surface, the
distribution of Si-O bond lengths, O-Si-O and Si-O-Si bond angles are pre-
sented in Fig. 3.13. As it can be seen from part (a) of this figure, the Si-O
bond length is very homogeneous with no real difference between the sur-
face and the bulk (d(Si-O)=1.59±0.01 Å). The bond angle distribution for
O-Si-O and especially Si-O-Si, which have been represented in Fig. 3.5(b)
and (c), are much more affected by the reconstruction. Part of this can
be explained by the presence of 6-membered and 3-membered rings whose
shape is reproduced in Figs. 3.14 and 3.15 respectively.

In Tables 3.2 and 3.3, we have reported all the bond lengths and bond
angles for these rings. In the 6-membered rings, it can be seen that the
O-Si-O angles are very close to the tetrahedral angle. This shows that quasi
perfect tetrahedra are formed at the surface. It is then interesting to analyze
the reconstruction in terms of SiO2 tetrahedral units (Fig. 3.16). Indeed, the
surface is formed by sharing-corner tetrahedra with 3 corners in the surface
plane and one directed towards the bulk. So that all the tetrahedra have the
same orientation, contrarily to what happens in the bulk where all sharing-
corner tetrahedra have opposite orientation. The Si-O-Si angles are close
to 120◦ reflecting the trigonal symmetry of the 6-membered ring. In the
3-membered rings, two O-Si-O angles that belong to the surface tetrahedra
are very close to 109.5◦. On the contrary, the O-Si-O angle with the Si
located in the second layer is slightly different from the tetrahedral angle.
This is due to the partial merging of the lower and upper planes of oxygens
of the second and third O-Si-O layers discussed above. In other words, the
origin of this distortion is due to the fact that the O atoms labeled 1 and 3 in
Fig. 3.15 are almost at the same height with respect to the fixed layer at the
bottom. It is also interesting to analyze the Si-Si-Si and O-O-O angles. In
the 6-membered rings, the Si-Si-Si angles are all very close to 120◦ indicating
an hexagonal shape. By contrast the O-O-O present two different values:
160◦ and 78◦. In fact, the O atoms form a slightly-distorted equilateral
triangle with 3 misaligned oxygens on each side. In the 3-membered rings,
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Cleaved Surface Dense Surface

Figure 3.12: Schematic view of the reconstruction of the cleaved surface (left
side of the graph) into the dense surface (right side of the graph). The planes
of Si and O atoms are represented in dark and pale grey, respectively. For
the cleaved surface, 3 O-Si-O layers have been represented and labeled from
1 to 3 starting from the surface. In each layer, the upper and lower planes of
oxygens have been distinguished: U(up) and D(down) respectively. For the
dense surface, the same number of atoms has been represented. However,
due to the densification, there are only 2 O-Si-O layers left. In each planes,
we have indicated the origin of the atoms by their label. For instance, the
upper O layer corresponds to the merging of the O(1U), O(1D), and O(2D)
planes.
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Figure 3.13: Structural properties of the dense surface: (a) Si-O bond length
(in Å), (b) Si-O-Si bond angle (in ◦), and (c) O-Si-O bond angle (in ◦) dis-
tributions. The z axis is oriented along the (0001) direction (i.e. perpen-
dicularly to the surface) with the origin located at the height of the lower
plane of oxygens (which is fixed during atomic relaxation). Note that in
part (a) the scale is not the same as in equivalent graphs presented for the
other models
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Figure 3.14: Ball and stick representation of a 6-membered ring present at
the surface of the dense model. Si and O atoms are represented in dark and
pale grey, respectively. The Si and O atoms have been labeled from 1 to 6
to allow to determine the bond lengths and bond angles in Table 3.2.
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Figure 3.15: Ball and stick representation of a 3-membered ring present at
the surface of the dense model. Si and O atoms are represented in dark and
pale grey, respectively. The Si and O atoms have been labeled from 1 to 3
to allow to determine the bond lengths and bond angles in Table 3.3.

both the Si-Si-Si and O-O-O angles are practically equal to 60◦ indicating
that Si and O form equilateral triangles. These two triangles are located in
two separated planes which are rotated by 60◦ with respect to each other.

Finally, we have also computed the electronic densities on the 6-mem-
bered and the 3-membered rings. The contour plots are reproduced in
Figs. 3.17 and 3.18, respectively. The views correspond to the geometry
presented in Figs. 3.14 and 3.15. Its interesting to superimpose two figures
to have a clear view of the location the atoms. In both case, we see that
the valence electrons concentrate on the O atoms, revealing the strong ionic
character of the Si-O bond. In the 6-membered ring, a quasi-perfect trigo-
nal symmetry appears (the slight deviations are due to the unrelaxed unit
cell dimensions) and the densification of the plane is evident. Note that
the two peaks at the top of the figure correspond to 2 oxygen atoms which
do not belong to the 3-membered ring. In fact, these belong to the same
6-membered ring than the upper O of the 3-membered ring.

The stability of the dense surface was tested by heating the surface up
to 3500 K for a few hundred fs. No further reconstruction was observed
indicating a relative stability of the structure.

1By surface unit cell, we mean the one used in the simulations, i.e. a rectangle with
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(a) (b)

Figure 3.16: Representation of the dense surface in terms of tetrahedral
units. (a) Top view (perpendicularly to the (0001) direction) showing a 6-
membered ring, and (b) side view illustrating a 3-membered ring. In the
6-membered ring, all the tetrahedra have the same orientation; one of their
faces is perpendicular to the (0001) direction.

Table 3.2: Bond lengths and bond angles (expressed in Å and ◦, respec-
tively) for the 6-membered rings present at the surface in model IV. The
numbering of the Si and O atoms refers to Fig. 3.14.

Si O Si O d(Si-O) d(O-Si) ∠(Si-O-Si) ∠(O-Si-O)

1 1 2 2 1.58 1.58 129.6 110.7
2 2 3 3 1.58 1.59 118.8 109.2
3 3 4 4 1.58 1.58 121.1 110.2
4 4 5 5 1.58 1.58 129.6 108.5
5 5 6 6 1.59 1.58 118.8 108.6
6 6 1 1 1.58 1.58 121.2 109.8
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Table 3.3: Bond lengths and bond angles (expressed in Å and ◦, respec-
tively) for the 3-membered rings present just above the surface in model
IV. The numbering of the Si and O atoms refers to Fig. 3.15.

Si O Si O d(Si-O) d(O-Si) ∠(Si-O-Si) ∠(O-Si-O)

1 1 2 2 1.60 1.60 128.2 109.0
2 2 3 3 1.59 1.58 118.8 109.3
3 3 1 1 1.60 1.59 132.8 104.9

Table 3.4: Relative total energies for the 4 different models: dimer, cleaved,
valence-alternation-pair (VAP), and dense surfaces (in ascending order of
stability). The energies are expressed in eV/surface unit cell1 with respect
to that of the dense surface.

Model Rel. Energy

Dimer 16.9
Cleaved 10.1
VAP 7.7
Dense 0.0
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Figure 3.17: Contour plot of the electronic density on a 6-membered ring
at the dense surface. The contour is drawn in a plane perpendicular to
the (0001) direction of the crystal and located at the average height of the
outermost O layer. The origin of the x and y axis (respectively, the (1000)
and (0100) directions of the crystal) is the average value of the positions of
the 6 oxygen atoms of the ring considered. The present view corresponds
to the geometry presented in Fig. 3.14, that has been superimposed (in pale
grey), as a guide for the eyes to locate the atoms. The contour interval is
0.5 e−/Å3.
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Figure 3.18: Contour plot of the electronic density on a 3-membered ring
at the dense surface. The contour is drawn in a plane passing through the
3 O of the ring considered. The x axis is defined by the 2 oxygens located
at the bottom. The origin of the x and y axis (defined by orthogonality
with x) is the average value of the positions of the oxygen atoms. The
present view corresponds to the geometry presented in Fig. 3.15, that has
been superimposed (in pale grey), as a guide for the eyes to locate the atoms.
The contour interval is 0.5 e−/Å3.
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To summarize, the relative total energies of the different models have
been reported in Table 3.4 where the reference was chosen to be the dense
surface. The dimer and dense surface are found to be the less and the
most stable reconstructions, respectively. It is important to note that the
VAP surface is more stable than the cleaved surface, probably due to the
4-fold coordination of all silicons. We would also like to emphasize that
contrarily to valence alternation pairs, whose existence in amorphous SiO2

had already been argued by Lucovsky (1979), the structure of the dense
surface is proposed for the first time in this study. This prediction still
needs to be confirmed, and we suggest hereafter some possible experiments.

First, with atomic force microscopy (AFM), it may be envisioned to
access the microscopic structure of the surface directly. This has recently
been tested by Noge et al. (1997). However, as already sketched in the in-
troduction of this chapter, there remain some difficulties to be solved before
being able to draw clear conclusions from this study. If these are overcome
in the forthcoming years, as it may be expected, this technique will allow
to control our prediction. Alternatively, X-ray diffraction performed under
grazing angles of incidence (Grey and Feidenhans’l 1988) could be used to
determine the surface crystallography that could then be compared to our
reconstruction. Similarly, if ToF-ISS (Time of Flight Ion Scattering Spec-
troscopy) experimental data were obtained, our model could be introduced
in the existing simulation codes to see if it reproduces the spectra. Finally,
X-ray photoelectron spectroscopy of Si 2p core levels (see Chapter 2) would
also provide a criterion to verify the validity of our prediction. Indeed, our
calculations show that the oxidation state of the silicon atoms at the dense
surface is identical to that of bulk SiO2 atoms (i.e. Si+4). Hence, the pres-
ence of other oxidations states (Si+x with x=1,2,3) in these spectra would
invalidate our model, since it would imply the existence of defects at the sur-
face. It should be noted that any other experiments that could reveal the
existence of dangling bonds (e.g. EPR) could be considered in this respect.

3.3 The wet surface

We now address some peculiar aspects of hydration and dehydration of the
(0001) α-quartz surface, by studying at the atomic scale the interactions of
this surface with water. Though most of the available experimental data
have been obtained for amorphous silica, it has been found that different

sides a=9.62 Å and b=8.34 Å. In fact, it is a 2 × 2 cell with respect to bulk quartz unit
cell.
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forms of silica appear to act alike in regard to the adsorption of water (Iler
1979). In fact, particles size or radius of curvature of the surface were shown
to be more important variables than differences between the amorphous and
ordinary crystalline states of silica.

When wetting the SiO2 surface, it is expected that silanol groups will
form at the most reactive (strained) defects: non-bridging oxygens, two-
membered rings, 3-coordinated Si (E′ center), and 3-coordinated. It was
calculated from first principles (Heggie and Jones 1987) that a 4% expansion
of the Si-O bonds in siloxane was sufficient on energy grounds to allow the
hydrolysis reaction:

≡Si–O–Si≡ + H2O → ≡Si–OH · · · HO–Si≡
to occur. On the contrary, for an hydrated surface, hydroxyl groups should
condense as the temperature is raised to form siloxane bonds while water
molecules are desorbed.

In the present work, we use Car-Parrinello molecular dynamics to study
the interactions the (0001) α-quartz surface with water. On this purpose,
we extend the tetragonal unit cell, previously used in the framework of the
investigation of the dry surface, in order to include 4 water molecules, which
can be either isolated or adsorbed at the surface. The surface unit cell is kept
exactly the same with its sides being a=9.62 Å and b=8.34 Å, respectively,
based on the theoretical equilibrium lattice constant of α-quartz (Keskar and
Chelikowsky 1992). The dimension of the cell in the direction orthogonal
to the surface is increased to c=21.17 Å. This allows for the H2O molecules
to be located more than 7 Å away from the surface (this is far enough to
suppress any interaction), while the α-quartz still consists in 6 monolayers of
SiO2 with its bottom extremities saturated with hydrogen atoms. Globally,
our systems contain 24 Si atoms, 48 O atoms and 16 H atoms. It should
also be mentioned that the sides of the surface unit cell are large enough to
allow for a separation of at least 4 Å between the water molecules. Thus, it
can also be consider that these do not interact one with each other.

The atomic positions are fully relaxed using the Car-Parrinello method
(Car and Parrinello 1985), which provides the electronic structure as well
as the forces that act on the ions. Only valence electrons are explicitly
considered by means of norm conserving pseudopotentials (Troullier and
Martins 1991) to account for the core-valence interactions. The electronic
wave functions are expanded into plane waves with a kinetic energy cut-
off of 50 rydbergs. Exchange and correlation are included using PW’91
approximation for the exchange-correlation energy functional (Perdew and
Wang 1991, Perdew 1991). Gradient corrections are needed for the accurate
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Table 3.5: Dehydration of a variety of types of silica surfaces measured by
the number of hydroxyl groups at the surface (OH nm−2) as a function of
the temperature (From Iler 1979).

Temperature (◦C) OH nm−2

100 4.5-6.2
300 2.5-4.2
500 1.5-3.1
700 1.2
900 0.7
1100 0.4

treatment of hydrogen bonds. The Brillouin zone (BZ) is sampled using
only the Γ-point in all our calculations. In the minimization process, the
atoms of the lowest SiO2 monolayer are kept fixed. For the dynamics, the
time step was taken to be 0.17 fs.

3.3.1 Dehydration of wet surfaces

At ordinary temperature and in normal ambient (not in vacuum), the amor-
phous SiO2 surface has a concentration of about 4.5 to 6.2 hydroxyl groups
(OH) per nm2. If we consider the (0001) α-quartz surface, each Si atom at
the surface should bear 2 OH to have its valence satisfied, giving about 10
OH nm−2. We have build a model corresponding to this picture (Fig. 3.19(a))
by simply saturating the Si atoms at the top of the cleaved surface with the
4 water molecules:

=Si–NBO + H2O → =Si–(OH)2

in our tetragonal unit cell. We will refer to this structure as the fully-hydrated
surface.

When the temperature is increased, the number of hydroxyl groups grad-
ually decreases at the surface as reported in Table 3.5. It is generally be-
lieved that hydroxyl groups condense to form siloxane bonds while a water
molecule is removed. If we consider our fully-hydroxylated surface, we can
assume the following dehydration mechanism:

=Si–(OH)2 + (OH)2–Si= → =Si(OH)–O–(OH)Si= + H2O
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corresponding to about 5 OH nm−2. The resulting model, depicted in
Fig. 3.19(b), will be referred to as the semi-hydrated surface. If dehydration
proceeds further, the two remaining OH groups could also condense so that
a 2-membered ring (edge-sharing tetrahedra) would form as illustrated in
Fig. 3.19(c).

As the energy barriers involved in the previously described processes
were not known precisely from experiments, we tried to model the dehydra-
tion mechanism of the fully-hydrated surface using Car-Parrinello molecular
dynamics with a Nosé thermostat to regulate the temperature. During this
simulation, we did not observe any condensation of hydroxyl groups in the
time scale accessible to our simulations (t ≈ 2 ps) even at quite high tem-
perature (T=1500 K). So, we analyzed the relative stability of the different
configurations illustrated in Fig. 3.19. It turned out that the fully-hydrated
surface is by 2.9 eV/surface unit cell more stable than the semi-hydrated
surface which in turn is energetically favored with respect to the surface
with 2-membered rings (∆ E ≈ 10 eV/surface unit cell). These barriers are
too large to allow the simulation of the reaction paths using direct molecular
dynamics. Using constrained path dynamics instead might help to overcome
this difficulty. However, in order to use such approaches, one must have an
idea of a reasonable reaction path.

To gain insight, we decided to study the hydration of the dry surface
which is in principle energetically favored. Indeed, the fully-hydrated surface
is by 4.6 and 14.1 eV/surface unit cell more stable than the dense surface
and the cleaved surface, respectively.

3.3.2 Hydration of the dense surface

It is generally believed that water molecules are adsorbed only on the hy-
droxylated silica surface and not on the siloxane surface which is essentially
hydrophobic. However, hydration must involve adsorption of water as a first
step, so that water is probably chemisorbed by opening up strained silox-
ane bonds initially and forming silanol groups, then it is adsorbed on the
latter rather than on the siloxane surface. Further hydration occurs only
on siloxane oxygen sites adjacent to a silanol site, so that the hydroxylated
areas grow in patches as hydration proceeds along the boundary between
the hydroxylated and siloxane regions.

We now present our simulations of the hydroxylation of the dense α-
quartz surface obtained in dry conditions. These consist in throwing a water
molecule on the dense surface, heated at 300 K beforehand, at different
velocities (i.e. with different kinetic energies). In order to do so, a constant
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(a)

(b)

(c)

Figure 3.19: Dehydration mechanism for the wet (0001) α-quartz surface.
The illustration starts with (a) the fully-hydrated surface. Then a water
molecule is removed after condensation of two hydroxyl groups to form a
siloxane bond leading to (b) the semi-hydrated surface. The mechanism
ends by (c) the formation of a 2-membered ring after further condensation
of the remaining hydroxyl group and desorption of water. Si, O, and H
atoms are represented in dark grey, pale grey, and white respectively.
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acceleration is given to the atoms of the molecule that is to be thrown. This
scheme is thus a second-order change in the molecular dynamics, whereas
imposing directly the velocity to the molecule would be a first-order change.
Hence, our procedure acts very softly on the dynamics.

We tested various velocities for the water molecule corresponding re-
spectively to kinetic energies of 0.1, 1, 10, 15, and 20 eV. But each time,
the H2O molecule rebounded on the surface. Hence, we decided to perform
static calculations to determine the potential barrier for the adsorption of
the molecule on the surface. The water molecule was put at various dis-
tances from the surface (as determined by the distance between its center of
mass and the upper plane of oxygens). The total energy was then calculated
with the oxygen of the molecule kept fixed while the hydrogens were allowed
to relax. The result of these calculations are reproduced in Fig. 3.20.

Another picture of this barrier can be obtained by plotting the minimal
distance from the surface, reached by the water molecule for various throw-
ing energies. Indeed, if we consider a purely elastic collision, the molecule
will rebound when the repulsive energy equals its kinetic energy. These
distances have also been reported in Fig. 3.20. In both the static and the
dynamic calculations, the data roughly exhibit an exponential behavior (see
interpolations on the figure). Moreover, there is a quite good agreement
between the two results given the fact that in the static calculations the hy-
drogens are allowed to fully relax for each distance and that in the dynamic
calculation we consider a purely elastic collision. The exponential behav-
ior suggests that there exists an minimal distance under which the water
molecule can not go.

This tends to confirm that surfaces formed by siloxane are essentially
hydrophobic (Iler 1979). Moreover, there is no contradiction with previous
ab initio calculations (Heggie and Jones 1987), since in the dense surface,
the Si-O bonds are not strained with respect to the bulk (see section 3.2.6).
And thus, the hydrolysis reaction of the siloxane is not energetically favored.
Indeed, we found that the dense surface in which we would have forced this
reaction to occur for a siloxane bond between two Si of the outer layer, is 4.69
eV/surface unit cell higher in energy. We will refer to this structure with 2
OH groups on the dense surface as the hydrated-siloxane dense surface.

The hydrophobic character of the dense surface is further confirmed by
the fact that by heating the hydrated-siloxane dense surface up to 300 K,
we observe the dehydration (i.e. the desorption of the water molecule) after
300 fs.
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Figure 3.20: Repulsive potential (E expressed in eV) for the absorption
of a water molecule on the dense surface as a function of the distance (z
in Å) of the center of mass with respect to upper plane of oxygens of the
structure. The reference energy is taken to be that of the dense surface
with the water molecule more than 7 Å away. We have represented by an
horizontal line at 4.69 eV, the energy of the structure that would be obtained
after the hydrolysis of a siloxane by the water molecule: ≡Si–O–Si≡ + H2O
→≡Si–OH · · · HO–Si≡. We have reported the energies determined by static
calculations (open circles) for various distances. We have also indicated the
minimal distance reached during the dynamic runs when the molecule was
thrown with a kinetic energy of 1, 10, 15, and 20 eV (filled squares). In both
cases, the data roughly present an exponential behavior as suggested by the
interpolations (dashed and solid lines for static and dynamic calculations,
respectively). Finally, we have drawn the probable asymptote for the barrier
which tends to indicate that the hydrolysis will never occur.
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3.3.3 Wetting of partially hydroxylated surfaces

Finally, we also simulated the hydroxylation of partially hydroxylated α-
quartz surfaces (i.e. obtained in ambient conditions), by throwing a water
molecule on these. More specifically, we considered a cleaved surface in
which two NBO’s had already been hydroxylated, giving approximately 5
OH nm−2. Hence, there remained two non-bridging oxygens in our unit cell.
The surface had been heated to 300 K beforehand, and the water molecule
was thrown with a kinetic energy of 1 eV.

The simulation revealed the hydrolysis of one of the non-bridging oxy-
gens:

=Si–NBO + H2O → =Si–(OH)2.

At the atomic level, the mechanism, illustrated in Fig. 3.21, is proposed
to be the following. First, the oxygen of the water molecule, OW , bonds
to the silicon with the NBO, so that silicon is 4-coordinated as depicted in
part (b) of Fig. 3.21. However, OW is 3-coordinated, while the NBO is still
1-coordinated. The excess hydrogen on OW does not go immediately on the
NBO. Instead, it creates an hydrogen bond with the oxygen of a neighboring
hydroxyl group. In turn, this oxygen is quasi 3-coordinated and hence one
of its hydrogen starts bonding with another adjacent hydroxyl. In fact, a
whole chain of hydrogen bonds is formed starting from OW and ending with
the NBO (due to periodic boundary conditions). After a few oscillations of
the hydrogen atoms from one oxygen to another, the protons finally settle
in such a way that the NBO has turned into an hydroxyl group as depicted
by the hydrolysis reaction above and shown in part (c) of Fig. 3.21..

It remains uncertain whether the formation of an hydrogen-bond chain
is the real physical mechanism for the transfer of the excess H from OW to
the NBO, or if this is due to the periodic boundary conditions. However,
the important result is that hydrolysis occur.

The remaining isolated water molecule has also been thrown on the sur-
face which had only one NBO left and 7.5 OH nm−2. This simulation also
ends with the hydrolysis of the silicon with the NBO and again the forma-
tion of hydrogen-bond chains is observed, confirming the role of adjacent
hydroxyl groups. The creation of these chains might be a interesting reac-
tion path to consider for the simulation of dehydration within constrained
path dynamics.

To complete the study, it would be interesting to make a similar com-
putation with the semi-hydrated surface to investigate what happens to its
siloxane bonds and see if the hydroxyl groups that are present at this surface
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(a)

(b)

(c)

Figure 3.21: Hydration mechanism for a partially hydroxylated surface. The
illustration starts with (a) a water molecule approaching the surface, which
presents a silicon with a non-bridging oxygen (at the center of the picture).
The oxygen of the water molecule bonds to the silicon with the NBO so
that the Si atom is 4-coordinated (b) and a chain of hydrogen bonds starts
forming from one hydroxyl to another (as indicated by the solid lines). After
a few oscillations of the hydrogen atoms from one oxygen to another (the
limit cases being (b) and (c)), the mechanism ends with (c) the central
=Si-NBO hydrolyzed into a =Si-(OH)2 group. Si, O, and H atoms are
represented in dark grey, pale grey, and white respectively.
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allow the hydrolysis of these bonds that were shown to be hydrophobic at
the dense surface. The simulation of the hydration of other surfaces such
as the VAP surface or the cleaved surface could provide information on the
hydration mechanism of amorphous surfaces.

To summarize, we have presented our preliminary results related to the
interaction of the quartz surface with water. We first investigated dehydra-
tion of wet surfaces. Unfortunately, our estimation of energy barriers that
are involved revealed that these are too high to try to follow the reaction
paths by direct molecular dynamics technique, suggesting that constrained
path dynamics should be used instead. In order to gain insight on the possi-
ble reaction paths, we turned to the study of hydration which is in principle
energetically favored. We performed molecular dynamics simulating the pro-
jection water molecules on various surface. Our study of the hydration of
the dense surface demonstrated the hydrophobic character of the siloxane
bonds. We explained that this is not in contradiction with previous ab initio

calculations demonstrating that a 4% expansion of the Si-O bonds in silox-
ane was sufficient on energy grounds to allow its hydrolysis. Indeed, in the
dense surface, the Si-O bonds are not strained with respect to the bulk (as
shown in the study of the dry surface), so that the hydrolysis reaction of the
siloxane is not energetically favored. On the contrary, when the surface was
partially hydroxylated, the hydrolysis of silicon atoms with non-bridging
oxygen was observed. The adjacent silanol groups play an important role in
the hydration mechanism, by the formation of hydrogen-bond chains. This
might be a possible reaction path to consider for the simulation of dehydra-
tion within constrained path dynamics.

3.4 Conclusion

In this chapter, we presented a first-principles study of the (0001) α-quartz
surface. We distinguished the surfaces obtained in vacuum (dry surface)
from those in ambient conditions which contain water (wet surface), which
both play an important role in many advanced technologies. The (0001)
α-quartz surface was chosen as a qualitative model for the different crystal-
lographic forms of SiO2, as well as amorphous silica.

In section 3.2, we proposed an analysis of the dry surface. Before ad-
dressing the study of the surface itself, we discussed briefly the structure
of the bulk. We showed how α-quartz may be considered as consisting of
corner-sharing tetrahedra in a trigonal network, or alternatively of repeated
O-Si-O layers along the (0001) direction. These views were presented in the
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scope of facilitating the ulterior description of the surface structure. The
study of the dry surface started with two different initial configurations: the
cleaved surface with non-bridging oxygens at the top and a 2 × 1 recon-
struction with 2-membered rings. Two other reconstructions were obtained
by performing constant-temperature molecular dynamics simulations: the
valence alternation pair surface, and the dense surface. The former presents
an intimate pair of over- and under-coordinated oxygen atoms near the sur-
face with 3-membered rings. The latter, which is the most stable of all
investigated structure, presents an interesting densification of the two up-
permost layers of SiO2 tetrahedral units, with the formation of 3-membered
and 6-membered rings that do not exist in bulk α-quartz. In all the models,
the analysis of the structural properties showed that the bulk structure is
recovered within 5 Å from the surface. Contrarily to valence alternation
pairs, whose existence in amorphous SiO2 is well-know, the structure of the
dense surface is proposed for the first time in this study and we suggested
experiments to confirm this prediction.

In section 3.3, we turned to the study of the wet surface. Unfortunately,
at the moment of writing, many calculations were still in progress so that
we presented only a limited number of results. The fundamental reaction
that we wanted to investigate is:

≡Si–O–Si≡ + H2O ↔ ≡Si–OH · · · HO–Si≡
which schematizes the hydration/dehydration mechanism. On one hand,
our molecular dynamics simulation of the dehydration of the wet quartz
surface did not give any significant result. Indeed, the time scale accessible
to our simulation was too small in regard to the large energy barriers (about
1.5 eV/surface unit cell at least) that are involved. On the other hand, the
hydration was simulated by throwing water molecules on various quartz
surface using Car-Parrinello molecular dynamics. For the dense surface, the
water molecules rebounded on the surface whatever their kinetic energies
showing the hydrophobic behavior of siloxane bonds. We explained that this
is not in contradiction with previous ab initio calculations which suggested
that a 4% expansion of the Si-O bonds in siloxane was sufficient on energy
grounds to allow its hydrolysis. For the partially hydroxylated surfaces, the
water molecules bonded to the under-coordinated silicons (those linked to
the non-bridging oxygens) and then dissociated the hydrolysis reaction:

=Si–NBO + H2O → =Si–(OH)2.

At the atomic level, the formation of hydrogen-bond chains was demon-
strated to play a key role in the reaction mechanism. Moreover, we proposed
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that this could be a good clue towards a reasonable reaction path that might
be considered for the simulation of dehydration within constrained path dy-
namics.
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Conclusion

Present-day computer technology has strongly modified the way in which
modern research is directed. First, at a rather simple level, computers have
considerably speeded up the march of scientific research, by allowing for
tasks, that would be almost infeasible otherwise, to be performed automati-
cally and much more faster. Second and more impressively, computers have
become real research instruments to investigate scientific topics. This is
mainly due to the advent of computer simulations, that is to say the abil-
ity to track on the computer the evolution of models describing with ever
greater accuracy the behavior of ever more complex systems. This is un-
precedented and has led to the birth of a new way of doing science, between
theory and experiment.

The results of the simulations are of great help in the study of problems in
physics and in chemistry, both on the experimental and theoretical grounds.
They allow the study of systems that would have been difficult or expensive
to work with in laboratory. However, the most rewarding outcome of these
simulations is by far the invaluable insight they provide into the way systems
behave at the microscopic level. In this regard a major role has been played
by classical Molecular Dynamics, which since the pioneering efforts of the
sixties has developed into a mature and active discipline. Another step
forward was achieved towards more realistic models with the development
of the First-Principles Molecular Dynamics in the late eighties, starting with
the work of Car and Parrinello. This has greatly improved the accuracy and
the predictive power of the simulations. That is what we tried to assess
in this thesis by applying this technique to the study of two non-periodic
systems: the SiO2 surface and its interface with silicon.

In the first chapter of this work, the theoretical basis of the Car-Parrinello
method have been presented. We first described the concepts underlying
the classical Molecular Dynamics technique. Then, we introduced Density
Functional Theory to deal with the ground-state of a quantum-mechanical
system of electrons, by obtaining a single-orbital picture (Kohn-Sham for-
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malism) of the many-body problem. We illustrated how by combining these
two approaches it is possible to use forces derived within first-principles in
MD simulations. Finally, we discussed the practical implementation of the
Car-Parrinello scheme.

In the second chapter, we have investigated the incorporation of nitrogen
at the Si(001)-SiO2 interface within the first-principles approach presented
in the first chapter. This problem is particularly relevant in the framework
of very large scale integration of MOS devices. Indeed, the incorporation
of a low concentration of N atoms near the interface appears as one of the
most promising ways to match industrial programs requiring high-quality
ultrathin gate dielectrics. Further improvement of the quality of electronic
devices critically relies on information regarding the situation of incorpo-
rated nitrogen atoms. X-ray photoelectron spectroscopy of N 1 core-level
has been one of the principal experimental tools of this purpose. Indeed, it
can provide information on both the distribution profiles and the bonding
environment of the incorporated N atoms, which depend on the growth pro-
cess. There is a general agreement concerning distribution profiles, which
often show an accumulation of N atoms at the interface. On the contrary,
the bonding configuration is still a debated issue. Therefore, we established
a correspondence between the bonding properties of these incorporated ni-
trogen atoms and the N 1s core-level shifts as measured in photoemission
experiments. Our study leads to an interpretation of N 1s photoemission
spectra, in which N atoms always form three bonds to silicon atoms, both
in the neighborhood of the interface and further in the oxide. It explains
the asymmetric shape of the principal peak in experimental data as well as
its anomalous shift with oxide thickness, which are the most misunderstood
experimental features. Core-hole relaxation and second nearest neighbor
effects were shown to combine to give larger binding energies in the oxide
than at the interface, in accord with experimental observations. Core-hole
relaxation influences N 1s shifts differently according to the distance of the
N atoms to the screening Si substrate. The second nearest neighbor envi-
ronment at the interface (mostly Si and N atoms) induces opposite shifts
compared to that in the oxide (rich in O atoms). Our calculations also tend
to rule out the existence of nitrogen bonds involving oxygen atoms at the
interface. Indeed, we obtained ∆=1.5 eV for N–Si2O configurations and
this does not correspond to any observed experimental peak. The existence
of nitrogen bonds involving hydrogen atoms is not excluded a priori, since
the calculated shifts (∆=0.4 eV) is perfectly compatible with the values ob-
tained in experiments. However, these require such a high concentration
of hydrogen with respect to nitrogen that if these appeared in nitrided in-
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terface it would only be in a very small amount. We complemented this
investigation by analyzing Si 2p core-level shifts at the interface. Our calcu-
lations brought us to suggest that, contrarily to what is generally believed,
both Si-O and Si-N bonds contribute to the suboxide peaks in the Si 2p
photoemission spectra.

In the third chapter, we studied the (0001) α-quartz surface using the
first-principles method developed in the first chapter. This surface was cho-
sen as a qualitative model for the different crystallographic forms of SiO2,
as well as amorphous silica. In our study, we considered both the surfaces
obtained in vacuum (dry surface) and those formed in ambient conditions
which contain water (wet surface). These surfaces play an important role in
many advanced technologies (adsorption, surface diffusion, nucleation, mi-
croelectronics, coatings, sensor devices, ...). To model the dry surface, we
considered two different initial configurations: the cleaved surface with non-
bridging oxygens at the top and a 2 × 1 reconstruction with 2-membered
rings. By performing constant-temperature molecular dynamics simulations,
we obtained two other reconstructions: the valence alternation pair surface,
and the dense surface. The former presents an intimate pair of over- and
under-coordinated oxygen atoms near the surface with 3-membered rings.
The latter, which is most stable of all investigated structure, presents an
interesting densification of the two uppermost layers of SiO2 tetrahedral
units, with the formation of 3-membered and 6-membered rings that do not
exist in bulk α-quartz. Contrarily to valence alternation pairs, whose ex-
istence in amorphous SiO2 is well-know, the structure of the dense surface
was proposed for the first time in this study and we suggested experiments
that might be done to confirm this prediction. The models that have been
generated can be used in further studies. In regard with the wet surface,
the hydration/dehydration mechanisms were investigated. No significant
conclusion could be drawn from the molecular dynamics simulation of the
dehydration of the wet quartz surface (heating at high temperature), proba-
bly due to the shortness of the accessible time scale with respect to the large
energy barriers involved. On the contrary, the simulations of the hydration
(throw of water molecules on various surface) demonstrated the hydropho-
bic behavior of siloxane bonds. We illustrated a possible mechanism for
the hydrolysis of non-bridging oxygens, based on the formation of hydrogen
chains with the adjacent hydroxyl groups.

In conclusion, the use of first-principles approaches in the context of
non-periodic SiO2 systems (such as its surface and its interface with silicon)
has proven to be very useful to investigate topics which are still unclear so
far. The application of such techniques to these systems was made possible
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by recent developments in the theoretical techniques as well as by advances
in computer architectures (massively parallel computers, shared-memory su-
percomputers) and performances. If these progresses keep going on, it should
be possible in a near future to simulate systems of more realistic size. In
a distant future, we can even expect that the short time scale restriction,
which is one of the most severe limitations of Molecular Dynamics, will be
overcome. This would open the way to study other important problems
in regard with SiO2 such as the diffusion of impurities (e.g. boron, fluo-
rine, or hydrogen), the early stages of oxidation of the silicon surface, the
amorphization process ...



Appendix A

Beyond the LDA

During the last two decades, a number of recipes have been introduced to
improve the local-density approximation. In this Appendix, we propose
a brief description of the most commonly used approximations, while we
refer to the abundant literature for a systematic discussion. We will men-
tion here the gradient expansion approximation (GEA); the average density
approximation (ADA) and the weighted density approximation (WDA) by
Gunnarsson, Lundqvist and collaborators; the generalized gradient approx-
imation (GGA) developed by Perdew, Langreth, Mehl; and, finally, the
self-interaction correction (SIC) of Perdew and Zunger.

The simplest possibility of adding some more information on the density
distribution is via the gradients of n(r) in the exchange-correlation energy
functional. In this gradient expansion approximation (GEA), the symmetry
and dimensional arguments determine the form of the first correction in a
Taylor-like functional expansion (Herman et al. 1969):

ǫGEAXC (r) = ǫLDAXC (r) + α
|∇n(r)|2
n(r)7/3

(A.1)

where α is a constant determined by the response function of the homoge-
neous electron gas.

Early computations by Lau and Kohn (1976) and Perdew et al. (1977),
however, made it clear that, far from providing an improvement, GEA was
in fact giving worse results than LDA. The analysis of this failure carried out
in terms of the size and the shape of the exchange-correlation hole evolved
towards the average density approximation (ADA) and the weighted density
approximation (WDA) (Gunnarsson et al. 1976, Gunnarsson et al. 1977,
Gunnarsson et al. 1979, Gunnarsson and Jones 1980). These functionals are
still under evaluation.
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Following a different line of investigation, Langreth, Perdew, Mehl and
co-workers concentrated on the Fourier-space analysis of the exchange-cor-
relation. They were able to show that LDA provides the exact limit of the
Fourier-components of EXC for large wave vectors, whereas the random-
phase approximation (RPA) gives the exact limit for small wave vectors
Langreth and Mehl (1981). Interpolating between these two limits, Langreth
and Mehl (1983) proposed the following expression for ǫXC(r) in terms of
the density n and its gradient:

ǫLMXC (r) = ǫLDAX (r) + ǫRPAC (r) + α
|∇n(r)|2
n(r)7/3

(

2e−F − 7

9

)

(A.2)

where F = b|∇n(r)|/n(r)7/6, b = (9π)1/6f , α = π/(16(3π2)4/3), and f =
0.15. This approximation and its successive refinements are referred to as
generalized gradient approximations (GGA’s):

ǫGGAXC (r) = ǫhomXC [n(r),∇n(r)] (A.3)

Though appealing the LM exchange-correlation has several drawbacks
(Perdew 1986, Langreth and Mehl 1984). To overcome these problems,
the exchange-correlation energy was split into its exchange and correlation
contribution. For the exchange part, Perdew and Wang (1986) proposed a
gradient expansion based on the analysis of the behavior of the exchange
hole in inhomogeneous systems:

ǫPW
′86

X (r) = ǫLDAX (r)

(

1 + 0.0864
s2

m
+ bs4 + cs6

)m

(A.4)

where m = 1/15, b = 14, c = 0.2, and a scaled density gradient s = s(r) has
been defined by:

s =
|∇n|
2kFn

(A.5)

where the local Fermi wave vector kF = kF (r) is

kF = (3π2n)1/3. (A.6)

For the correlation part, Perdew (1986) introduced an interpolation formula
based on the electron-gas results of Hu and Langreth (1986) and Rasolt and
Geldart (1976):

ǫPW
′86

C (r) = ǫLDAC (r) + e−ΦCc(n)
|∇n(r)|2
n(r)7/3

(A.7)
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where

Φ = 1.745f̃
Cc(inf)

Cc(n)

|∇n(r)|
n(r)7/6

, (A.8)

Cc(n) = C1 +
C2 + C3rs + C4r

2
s

1 + C5rs + C6r2s + C7r3s
, (A.9)

and f̃ = 0.11, C1 = 0.001667, C2 = 0.002568, C3 = 0.023266, C4 = 7.389×
10−6, C5 = 8.723, C6 = 0.472, C7 = 7.389×10−2. The combination of these
two functionals to obtain ǫXC(r) is referred to as PW’86 approximation.

This scheme was shown to provide good results for the exchange energy
of atoms. However, the satisfactory performance of the exchange energy is
partly due to the compensation of errors in different regions of the charge
distribution. Moreover, the PW’86 potential fails to reproduce the correct
−1/r behavior of the exchange potential far from the nucleus. Thus, on
semi-empirical grounds, Becke (1988) proposed the following interpolation
for the ǫX(r):

ǫBPX (r) = ǫLDAX (r)

(

1− β

21/3α

x2

1 + 6βx sinh−1(x)

)

(A.10)

where x = 2(6π2)1/3s = 21/3|∇n(r)|/n(r)4/3, α = (3/4)(3/π)1/3, and β =
0.0042. In general, this approximation is implemented with the Perdew
(1986) formula for the correlation, the combination being referred to as BP
approximation. This scheme has been shown to correct substantially a large
set of molecules (Ortiz and Ballone 1991) and solids (Ortiz 1992, Garcia
et al. 1992, Filippi, Singh and Umrigar 1994, Khein et al. 1995), and to
accurately predict bond lengths in weakly bonded systems (Lee et al. 1992,
Sim et al. 1992, Laasonen, Sprik, Parrinello and Car 1993, Dal Corso and
Resta 1994). However, calculations on covalent solids indicate a tendency of
the BP scheme to underestimate bulk moduli (Garcia et al. 1992, Dal Corso
et al. 1994, Filippi, Singh and Umrigar 1994, Khein et al. 1995).

Recently, new functionals (Perdew and Wang 1991, Perdew 1991) were
proposed for the exchange and correlation energy per particle functionals,
which share several properties with the exact functional. The exchange part
is written:

ǫPW
′91

X (r) = ǫLDAX (r)

(

1 + a1s sinh
−1(a2s) + (a3 + a4e

−100s2)

1 + a1s sinh
−1(a2s) + a5s4

)

(A.11)
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where a1 = 0.19645, a2 = 7.7956, a3 = 0.2743, a4 = −0.1508, a5 = 0.004.
The correlation part is written:

ǫPW
′91

C (r) = ǫLDAC (r) +H(n, s, t) (A.12)

where t = t(r) is a new scaled density gradient defined by:

t =
|∇n|
2ksn

(A.13)

with the local screening wave vector ks = ks(r) written as:

ks = (4kF /π)
1/2. (A.14)

The correction factor to the LDA correlation functional is given by:

H =
β2

2α
ln

(

1 +
2α

β

t2 +At4

1 +At2 +A2t4

)

+Cc0[Cc(n)− Cc1]t
2e−100s2 (A.15)

where

A =
2α

β
[e−2αǫLDA

C (r)/β2 − 1]−1 (A.16)

and α = 0.09, β = 0.0667263212, Cc0 = 15.7559, Cc1 = 0.003521. The
function Cc(n) is the same as for the PW’86 correlation functional. The
combination of these two functionals to obtain ǫXC(r) is referred to as PW’91
approximation.

Note that more recently, Perdew, Burke and Ernzerhof (1996) introduced
simpler functionals including improvement over PW’91 and in which all
parameters (other than those in ǫLDAXC (r)) are fundamental constants. The
exchange functional is written:

ǫPBEX (r) = ǫLDAX (r)

(

1 + κ− κ

1 + µs2/κ

)

(A.17)

where µ = 0.21951 and κ = 0.804. Whereas, the correlation functional is
written:

ǫPBEC (r) = ǫLDAC (r) +H(n, t) (A.18)

where

H = γ ln

(

1 +
β

γ
t2

1 +At2

1 +At2 +A2t4

)

(A.19)
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and

A =
β

γ
[e−ǫ

LDA
C (r)/γ − 1]−1 (A.20)

and β = 0.0667263212, γ = 0.031091.
There exists a variety of other generalized gradient approximations that

have been proposed in literature. The list presented here is of course not
exhaustive (see, for instance, Filippi, Umrigar and Taut (1994) for some
more approximate forms of the exchange-correlation functional).

Finally, other proposals, related to the Density Functional Theory, but
going beyond it, improve it by using directly functionals of the one-body
non-interacting orbitals instead of a functional of the density (playing upon
the fact that in any case the kinetic functional is evaluated through the use
of orbitals). In this class fall the so-called self-interaction corrected (SIC)
schemes (Perdew and Zunger 1981). One of these is the so-called optimized
effective potential (OEP) method which was discovered before the devel-
opment of DFT (Sharp and Horton 1953). In this scheme, the exchange
functional is exact since its is expressed in terms of the single-particle or-
bitals, only the correlation part needs to be approximated. The derivation
of the exchange-correlation potential is however somewhat complicated, it
is an integral equation hard to solve numerically.
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