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Of relevance
for understanding
financial networks, and
the brain dynamics
and for network medicine
determining
the controllability of networks
Is a central theoretical problem

of network theory




Driver nodes
The driver nodes of a network
are the nodes that,
when stimulated by an external signal,
can drive
the dynamical state of a network
to any desired state.
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The importance of hubs for
the dynamics on complex
networks

Hubs and scale-free networks are essential 0
for determining the
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— The stability of the ferromagnetic
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Which are the
key structural properties
of networks
that determine
their controllability?

The low In-degree and Out-degree nodes
(hubs are irrelevant for determining the number of
driver nodes)

G. Menichetti, L.Dall’Asta and G. Bianconi
PRL 113, 078701 (2014)



Our framework:
Structural Controllability

The pivotal paper by Liu et al. Nature (2011) has shown that the
structural controllability of networks can be mapped to the
directed matching problem on these networks (that can be solved
efficiently by Statistical Mechanics methods) and has open a new
field in network theory.
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Controllability of complex networks

Yang-Yu Liu"?, Jean-Jacques Slotine®* & Albert-Laszl6 Barabasi'*>®

The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them.
Although controltheory offers mathematical tools for steering engineered and natural systems towards adesired state, a
framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the
controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent
control that can guide the system’s entire dynamics. We apply these tools to several real networks, finding that the
number of driver nodes is determined mainly by the network’s degree distribution. We show that sparse
inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that
dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in
both model and real systems the driver nodes tend to avoid the high-degree nodes.

Accordingto control theory, a dynamical system is controllable if, witha  of traffic that passes through a node i in a communication network®*
suitable choice of inputs, it can be driven from any initial state to any  or transcription factor concentration in a gene regulatory network®.
desired final state within finite time'~. This definition agrees with our ~The N X N matrix A describes the system’s wiring diagram and the
intuitive notion of control, capturing an ability to guide a system’s interaction strength between the components, for example the traffic



Controllability of a star

network
* If we stimulate the hub

% % % node all the low in-degree

nodes get the same signal

% we cannot explore any
dynamical state of the
network.
* The driver nodes of the
% network are 8!



The dynamical system

« Given a graph G=(V,E) of N nodes we consider the linear
dynamical system

d x(t)
dt

=AX+Bu

 |n which

— X(t) is a vector of elements xi(t) with i=1,2,...N and represents the
dynamical state of the network,

— Ais an asymmetric N x N matrix describing directed weighted
interactions between the nodes,

— Bisa NxM matrix describing the interaction between the nodes and
M signals

— The vector u of elements u_(t) with a=1,2,...M describes the MSN
external signals.



Kalman’s condition

« Given any realization of the matrices A and B, the
dynamical system is controllable if it satisfy the Kalman’s

controllability condition, i.e. the NxMN matrix

C =(B,AB,A’B,...A""'B)
is full rank, i.e. rank(C) =N

The notion of exact controllability is computationally

very demanding and often can turn out to be unusable
since the entries of the nonzero matrix of A and B are not
perfectly known it is then useful to introduce the notion of

structural controllability.



Structural Controllability

* A system is structural controllable if, for
every choice of the non-zero elements of
the matrices A and B, except for a variety
of zero Lebesgue measure in parameter
space, C is full rank.



Minimum Input Theorem

Liu et al. Nature (2011) stated the
Minimum Input Theorem.

According to this theorem, the
minimum set of driver nodes that
guarantees the full structural
controllability of a network is the set of
unmatched nodes in a maximum
matching of the same directed network.



The maximum directed
matching problem

A matching M of a directed graph
IS the set of directed edges
without common start and end vertices,
and it is maximum
when it contains
the maximum number of edges.



Statistical mechanics of the
Maximum Matching Problem

* The variables s;=0,7 for every edge (i,j) define the
matching and need to satisfy the following constraints

* The maximum matching is the matching that minimize
the energy equal to twice the number of unmatched
nodes i.e. driver nodes of the network




The statistical mechanics
solution

« The Belief Propagation solution on a network in which
the local tree-like assumption is valid, is given in terms of
the messages sent along the links either in the same
direction . ; or in the opposite direction #,_. , of the links

and can take three values, 1,-1,0 indicating respectively

hi%j = hie]’ =1 Match me

hiej = hiej = -1 Do not match me

hiej - hiej =0 Do what you want



Belief Propagation equations

The messages need to satisfy the following
Belief Propagation (BP) equations




First result:
Sufficient condition for
full controllability

For any sparse network
without a finite clustering coefficient,
(where the locally tree-like approximation is valid),
if the minimum in-degree
and the minimum out-degree of the network
are both greater than 2,
the network is fully controllable.



Sketch of the derivation

Given the BP equation we observe that the solution in which all the
messages are zero correspond to a zero energy, i.e. full
controllability.

From the BP equation it is easy to see that if all nodes have in-
degree and out-degree greater than one this configuration of the
messages if a BP solution

The solution is also stable if all the in-degree and out-degree are
greater than 2.



Second result:
Necessary and sufficient condition for full
controllability on a random network with given
degree distribution

« Arandom network with given degree distribution is fully
controllable iff

Pout/in(l) _ Pout/in (2) _ 0

(k)

2(k(k ~1))

(k) s

P2 < 2(k(k 1))

P"(2) <

n out

i.e. its minimum in and out-degree are 2
and the nodes with
in/out degree 2 are less than a threshold.



Number of driver nodes as a function of
the density of low in-degree and out-
degree nodes changes smoothly
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Phase diagram
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Phase diagram for a modified
Poisson distribution
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Comparison of the theoretical
results with the BP and
Hopcroft-Karp algorithms

Hopcroft-Karp
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Improving the controllability
of networks by adding links
to low Iin-degree and
low out-degree nodes
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Improving the controllability
of networks by adding links
to low Iin-degree and
low out-degree nodes
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Conclusions

The controllability of a network is a fundamental problem with
wide applications ranging from network medicine, to the
characterization of the brain dynamics, and the evaluation of
risk in financial markets.

Here we have shown that

a) the structural controllability of networks is
determined exclusively by the low in-degree and low
out-degree nodes,

i.e nodes with in/out degree equal or less than 2.

b) all the networks with minimum in-degree and
minimum out-degree nodes both greater than 2 are
always fully controllable

c) if a network is not fully controllable, it is
possible to improve its controllability by adding links
to low in/out degree nodes



