

A GENERAL AND FLEXIBLE FRAMEWORK FOR STUDYING DYNAMICS ON COMPLEX NETWORKS

PETER FENNELL, DAVIDE CELLAI, JAMES P. GLEESON University of Limerick, Ireland

Dynamics & Networks

AME Framework

binary-state multi-state

Examples

Extensions

OUTLINE

DYNAMICS AND NETWORKS

Specific Details

• Continuous-time Markov processes

$$-X_t^i \in \{0,1,\ldots,n\}$$

– rates

Specific Details

• Continuous-time Markov processes

$$-X_t^i \in \{0,1,\ldots,n\}$$

– rates

- Configuration model networks
 - infinitely large
 - $-p_k$
 - tree-like

• Deterministic equations

APPROXIMATE MASTER EQUATION

 Consider nearest-neighbour network motifs

 Consider nearest-neighbour network motifs

- variables $i_{k,m}$, $s_{k,m}$
 - Fraction of k-degree nodes in the network which
 - are infected (resp. susceptible) and
 - have *m* infected neighbours

 Consider nearest-neighbour network motifs

- variables $i_{k,m}$, $s_{k,m}$
 - Fraction of k-degree nodes in the network which
 - are infected (resp. susceptible) and
 - have *m* infected neighbours

• Ex. 🔅 contributes to $s_{4,2}$ class

• Nodes dynamically change state...

*ex SIS:
$$F_{k,m} = \lambda m, R_{k,m} = \mu$$

• Nodes dynamically change state...

...and so variables $i_{k,m}$ and $s_{k,m}$ evolve over time

$$\frac{d}{dt}s_{k,m} = -F_{k,m}s_{k,m} + R_{k,m}i_{k,m}$$

$$-\beta^{s}(k-m)s_{k,m} + \beta^{s}(k-(m-1))s_{k,m} - \gamma^{s}ms_{k,m} + \gamma^{s}(m+1)s_{k,m+1}$$

$$\frac{d}{dt}i_{k,m} = -R_{k,m}i_{k,m} + F_{k,m}s_{k,m}$$

$$-\beta^{i}(k-m)i_{k,m} + \beta^{i}(k-(m-1))i_{k,m} - \gamma^{i}mi_{k,m} + \gamma^{i}(m+1)i_{k,m+1}$$

Macroscopic Variable

$$\overline{\rho} = \left\langle \sum_{m=0}^{k} i_{k,m} \right\rangle_{k}$$

RESULTS

BINARY STATE DYNAMICS

High Accuracy

High Accuracy

Majority voter model dynamics

High Accuracy

Threshold model dynamics

High Accuracy

Analysis

MOTIVATION

MULTI STATE DYNAMICS

G.H. Fredrickson and H.C. Andersen, PRL (1984)

• Nodes are spin-up (+1) or spin-down (-1)

G.H. Fredrickson and H.C. Andersen, PRL (1984)

- Nodes are spin-up (+1) or spin-down (-1)
- Node can flip (change state) only if f or more of its neighbours are spin-down
 - spin-down nodes flip at rate 1
 - spin-up nodes flip at rate $e^{-1/T}$

• $\phi(t)$

— Fraction of unflipped nodes at time \boldsymbol{t}

• $\Phi = \lim_{t \to \infty} \phi(t)$

G.H. Fredrickson and H.C. Andersen, PRL (1984)

• $\phi(t)$

- Fraction of unflipped nodes at time t

• $\Phi = \lim_{t \to \infty} \phi(t)$

 $\Phi = 0$ $\Phi > 0$ Liquid Glass

G.H. Fredrickson and H.C. Andersen, PRL (1984)

- Spin
 - -1 or +1

- Spin
 - -1 or +1

• Doesn't work

- Spin
 - -1 or +1

- Doesn't work
 - Binary approach fails to capture glass transition

 $\Phi \equiv 0$

- Spin
 - -1 or +1

- Doesn't work
 - Binary approach fails to capture glass transition
 - Need to account for dynamical correlations between flipped and un-flipped nodes

4-state AME

- Spin
 - -1 or +1
- Flipping history
 - unchanged (u) or changed (c)

4-state AME

- Spin
 - -1 or +1
- Flipping history
 - unchanged (u) or changed (c)

MULTI STATE DYNAMICS

FORMALISM

$$\vec{x}_{k,m} = \begin{pmatrix} S_{k,m} \\ i_{k,m} \end{pmatrix}$$

 $\vec{x}_{a_1,a_2,\dots,a_n} = \begin{pmatrix} x_{a_1,a_2,\dots,a_n}^1 \\ x_{a_1,a_2,\dots,a_n}^2 \\ \dots \\ x_{a_1,a_2,\dots,a_n}^n \end{pmatrix}$

$$\frac{d}{dt}\boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} = -\boldsymbol{R}_{a_{1},a_{2},a_{3},...,a_{n}} * \boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} + \left(\boldsymbol{F}_{a_{1},a_{2},a_{3},...,a_{n}}^{T}\right) * \boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} \\ -\sum_{l=1}^{n}\sum_{m\neq l}a_{l}*\boldsymbol{\beta}(l,m)*\boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} + \sum_{l=1}^{n}\sum_{m\neq l}(a_{l}+1)*\boldsymbol{\beta}(l,m)*\boldsymbol{x}_{a_{1},...,a_{l}+1,...,a_{m}-1,...,a_{n}}$$

$$\frac{d}{dt}\boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} = -\boldsymbol{R}_{a_{1},a_{2},a_{3},...,a_{n}} * \boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} + \left(\boldsymbol{F}_{a_{1},a_{2},a_{3},...,a_{n}}^{T}\right) * \boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} \\ -\sum_{l=1}^{n}\sum_{m\neq l}a_{l}*\boldsymbol{\beta}(l,m)*\boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} + \sum_{l=1}^{n}\sum_{m\neq l}(a_{l}+1)*\boldsymbol{\beta}(l,m)*\boldsymbol{x}_{a_{1},...,a_{l}+1,...,a_{m}-1,...,a_{n}}$$

$$\phi(t), \Phi$$

RESULTS

MULTI STATE DYNAMICS

P. Fennell, J.P. Gleeson and D. Cellai, PRE, to appear

Correctly predicts phase diagram

High Accuracy

M. Sellitto, G. Biroli, and C. Toninelli, EPL (2005)

P. Fennell, J.P. Gleeson and D. Cellai, PRE, to appear

$$\frac{d}{dt}\phi_{m_1,m_2,m_3,m_4}^- = -F(m_1 + m_3)\phi_{m_1,m_2,m_3,m_4}^- - m_3\lambda_{3\to 4}^{\phi^-}\phi_{m_1,m_2,m_3,m_4}^- - m_4\lambda_{4\to 3}^{\phi^-}\phi_{m_1,m_2,m_3,m_4}^- - m_3\lambda_{3\to 4}^{\phi^-}\phi_{m_1,m_2,m_3,m_4}^- - m_4\lambda_{4\to 3}^{\phi^-}\phi_{m_1,m_2,m_3,m_4}^- + (m_1 + 1)\lambda_{1\to 4}^{\phi^-}\phi_{m_1+1,m_2,m_3,m_4-1}^- + (m_2 + 1)\lambda_{2\to 3}^{\phi^-}\phi_{m_1,m_2+1,m_3-1,m_4}^- + (m_3 + 1)\lambda_{3\to 4}^{\phi^-}\phi_{m_1,m_2,m_3+1,m_4-1}^- + (m_4 + 1)\lambda_{4\to 3}^{\phi^-}\phi_{m_1,m_2,m_3-1,m_4+1}^-$$

Behaviour in Glassy state

Analysis

$$\begin{aligned} \frac{d}{dt}\phi_{m_1,m_2,m_3,m_4} &= 0\\ \frac{d}{dt}\psi_{m_1,m_2,m_3,m_4} \neq 0 \end{aligned}$$

Behaviour in Glassy state

Analysis

P. Fennell, J.P. Gleeson and D. Cellai, PRE, to appear

Dynamical Heterogeneity

Analysis

A. Lawlor et al., PRE (2005)

$$\frac{d}{dt}\boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} = -\boldsymbol{R}_{a_{1},a_{2},a_{3},...,a_{n}} * \boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} + \left(\boldsymbol{F}_{a_{1},a_{2},a_{3},...,a_{n}}^{T}\right) * \boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} \\ -\sum_{l=1}^{n}\sum_{m\neq l}a_{l}*\boldsymbol{\beta}(l,m)*\boldsymbol{x}_{a_{1},a_{2},a_{3},...,a_{n}} + \sum_{l=1}^{n}\sum_{m\neq l}(a_{l}+1)*\boldsymbol{\beta}(l,m)*\boldsymbol{x}_{a_{1},...,a_{l}+1,...,a_{m}-1,...,a_{n}}$$

FURTHER POSSIBILITIES

FURTHER POSSIBILITIES

• Non-Markovian dynamics

FURTHER POSSIBILITIES

• Non-Markovian dynamics

• Directed Networks

• Multiplex networks

Clustered Networks

Conclusions

- Deterministic approach to studying Stochastic processes
- AME, high-order approximation
 - beyond MF and PA
 - allows analysis
- Generalized to multi-state dynamics
 - FA model (novel insights)
 - Others (SIR etc.)

Mathematics Applications Consortium for Science & Industry

THANKS

peter.fennell@ul.ie

@fennell_p

J. P. Gleeson, Binary-State dynamics on Complex Networks: Pair Approximation and Beyond, PRX (2013)

P. Fennell, J.P. Gleeson, and D. Cellai, *Analytical approach to the dynamics of facilitated spin models on random networks*, PRE, to appear

Rate Functions

$$F_{k,m}, R_{k,m}$$

 Rates depend only on states of neighbours

Rate Functions

 $F_{k,m}, R_{k,m}$

 Rates depend only on states of neighbours

$$F_{k,m,a}, R_{k,m,a}$$

- Rates also depend on "age"
 - amount of time node has been in its current neighbourhood configuration

