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Elastic properties and hardness values of V2AlC and Cr2AlC single crystals
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Herein we report on a subset of the elastic constants, ci j , and hardness values of V2AlC and Cr2AlC single
crystals by means of microindentation/nanoindentation techniques. Density functional theory (DFT) is also used
to calculate the elastic constants. The c33 and c11 values determined using a Berkovich tip and those calculated
by DFT are all found to fall in the relatively narrow range of 320–350 GPa. These results confirm once again
that many of MAX phases are relatively elastically isotropic, especially when compared to many other known
layered solids such as graphite and mica. Similarly, the hardness values, obtained using Vickers, Berkovich, and
a 5 µm spherical tip on the two orthogonal Cr2AlC surfaces, are quite comparable and average 9.0 ± 1 GPa. In all
cases, the hardness values are at most 20% higher when the basal planes are loaded along [0001] than when they
are loaded edge-on. The Cr2AlC surfaces record an average microyielding stress of 2.7 ± 0.3 GPa, while the
less defective V2AlC crystals linearly sustain stresses of the order of 20 GPa, after which, in approximately
60% of the cases, pop-ins, some of which are substantial, are recorded. Postindentation scanning electron
microscope micrographs clearly evidence the plastic anisotropy of these crystals. Large pileups near the indent
edges and delamination cracks after loading along the [0001] and [101̄0] directions, respectively, are consistent
with deformation by ripplocations and ripplocation boundaries, as are the fully and spontaneously recoverable
hysteresis stress-strain loops.

DOI: 10.1103/PhysRevMaterials.4.083605

I. INTRODUCTION

Layered solids/composites, defined herein as systems in
which the deformation, at least initially, is confined to two
dimensions, are ubiquitous in nature. Such systems range over
ten orders of magnitude or more in scale: from subnanometer
graphene layers to wood, laminated composites, and paper-
board at the centimeter scale to geologic formations in the
kilometer range. One important commonality between these
layered systems, be they wood, laminated composites, decks
of cards, etc., or crystalline layered solids such as graphite
[1], mica [2], and the MAX phases [3,4], is the formation
of kink bands when the basal planes are loaded edge-on in
compression.

The Mn+1AXn (MAX) phases are layered, hexagonal (space
group P63/mmc), early transition metal carbides and nitrides,
where n = 1, 2, 3, or 4, M is an early transition metal,
A is an A-group element (mostly groups 13 and 14), and
X is C, N, and/or B. In these phases, MX carbide/nitride
layers are interleaved with pure “A” layers, which is why
they are sometimes referred to as thermodynamically stable
nanolaminates [5]. Currently, more than 150 MAX phases
are known to exist [3]. As a class, the MAX phases, in
general, are machinable, good thermal and electrical conduc-
tors, damage tolerant, and thermal shock resistant. Some of
them, such as Ti2AlC, are also stiff, oxidation resistant, and
relatively light (approximately 4–5 g cm–3) [6], with relatively
low coefficients of thermal expansions [3,5]. More than two
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decades ago, Ti3SiC2, the first member of the MAX family,
was successfully synthesized in fully dense polycrystalline
form by Barsoum and El-Raghy [7]. Since then, there have
been numerous studies on their distinctive properties [4].

Characterizing the elastic and mechanical properties of
solids and their anisotropies is important from both tech-
nological and scientific points of view. Despite the fact
that the bonding in the MAX phases is a combination of
metallic/covalent and the density of states at the Fermi level is
substantial [5], when indented the MAX phases do not result
in a metallurgical indentation [8]. Instead, they deform like
much more brittle layered solids such as mica and graphite
[8]. When indented normal to the basal planes, large pileups
around the indenter are typically formed [8]. When the basal
planes are indented edge-on, on the other hand, delamination
cracks appear [8]. These characteristics, observed herein as
well, stem from two factors. The first is that nonbasal disloca-
tions have never been implicated in the deformation of these
phases. This stems from the fact that their c/a ratios range
from 4 to 7, which in turn renders the energy cost of nonbasal
dislocations prohibitively expensive. The second factor is that
the main deformation micromechanism is not basal disloca-
tions, as has long been assumed, but rather ripplocations [8].
We have recently shown in a number of papers that atomic
planes buckle like any other layered systems, whether they
are decks of cards, thin steel sheets, or geological formations
[8–10].

Depending on the elastic anisotropy of the layered system,
the buckling can be localized or delocalized [11]. The latter is
the preferred mode when elastic anisotropy is high, in solids
such as graphite and mica or layers of paper, steel sheets,
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playing cards, etc. [9]. In this case, at a critical stress, the
system buckles into standing waves whose wavelength de-
pends on the flexural stiffness and the thickness and number
of individual sheets or atomic layers [9]. The crests of these
standing waves define ripplocation boundaries (RBs), which
are fully or near fully reversible/recoverable [8–10]. The
driving force for the reversibility is the elastic energy stored in
the curvatures of the RBs, as well as the elastic energy in the
material surrounding the RBs. If the applied load is too high,
the RBs naturally convert to the ubiquitous kink boundaries
(KBs), which cease to be reversible.

When the elastic properties are more isotropic, like in the
MAX phases, the systems tend to buckle locally, resulting in
either the aforementioned delamination cracks or large pileups
at the edges of the indents [8]. Interestingly, in systems for
which 〈c + a〉 dislocations are possible, one obtains a metal-
lurgical indentation, where the pileup is small and cracks are
not observed [8]. In other words, delamination cracks or large
pileups are the unmistakable signatures of deformation by
ripplocations for the simple reason that they are not possible
in a basal dislocation framework.

As just noted, when layers are loaded edge-on in com-
pression, at some critical load, they will form KBs. However,
we have shown that before KBs form, there is a kinking
nonlinear elastic regime characterized by fully, or near fully,
recoverable stress-strain loops upon load cycling [10]. The
friction between the layers can result in substantial energy
dissipation during each cycle. The aforementioned RBs are
responsible for this reversible response.

We have also shown over the years that repeat nanoin-
dentation (NI) in the same location, especially with spherical
tips, is quite a powerful method to probe the fundamental
mechanics of how crystals, especially layered ones, deform
[10]. The power of this approach is demonstrated herein as
well. Further, while it is not possible to convert Berkovich
load-displacement curves to stress-strain ones, it is possible
to do so with spherical indenters. There have been a number
of techniques to carry out this transformation; herein we use
one we developed and are familiar with [12]. In brief, the
elastic constants are extracted from stiffness S vs contact radii
a curves on single crystals (see the Appendix and Fig. 7
[13,14]).

The purpose of this work is to report on the c33 and
c11 values, as determined by NI, viz., cNI

33 of V2AlC and
Cr2AlC single crystals and cNI

11 of the latter, and compare
these results with density functional theory (DFT) values.
The elastic constants were determined using both a Berkovich
and a 5 µm-radius, R, diamond tip. We also measured the
Vickers microhardness values of the (0001) planes of V2AlC
and Cr2AlC single crystals. These microhardness values were
then compared to those obtained with the 5 µm-radius tip
and the Berkovich indenter. When the latter was used, the
Young’s moduli and hardness values were calculated using the
Oliver-Pharr method [15].

II. EXPERIMENTAL DETAILS

Material processing and characterization

The V2AlC and Cr2AlC single crystals were grown by
a flux growth method [16,17]. Typical slow-cooling ramps

extended from 1650 °C to 1100 °C for Cr2AlC and from
1700 °C to 1200 °C for V2AlC. Growth takes place in alumina
crucibles, and C incorporation is controlled by dipping a
predetermined height of a rotating graphite rod in the solution
at the highest temperature for 0.5 or 2 h for Cr2AlC and
V2AlC, respectively. After the high-temperature step, aimed
at dissolving all elements, the temperature is slowly decreased
(over days) in order to enhance Ostwald ripening and decrease
the number of small crystals in the solution. In the case
of V2AlC, growth is stopped at a temperature high enough
so as to avoid an unwanted peritectic transformation of the
grown crystals [17]. Crystals are extracted from the flux
by Hydrochloric acid etching. The high-temperature solution
growth parameters and the choice of the appropriate liquid
composition are thoroughly described in Refs. [16,17]. Their
single-crystal character is routinely assessed by measuring
Laue x-ray-diffraction patterns measured in transmission.

The samples thicknesses were 53 and 580 µm for the
V2AlC and Cr2AlC crystals, respectively. The Cr2AlC single
crystals were either mounted face-on on aluminum pucks,
using a glue (Crystalbond, Ted Pella, Inc., Redding, CA),
or embedded edge-on in epoxy (VersoCit-2, Struers Inc.,
Cleveland, OH). The same procedure was used for the V2AlC
crystal, except these samples were too thin for us to measure
their edge-on properties. All samples were then polished to
a mirror finish before the NI tests and Vickers hardness
measurements were carried out.

The NI experiments were conducted at room temperature
with a nanoindenter (XP system, MTS Corp., Oak Ridge,
TN) equipped with a continuous stiffness measurement at-
tachment. A hemispherical diamond tip with a radius R of
5 µm was used in addition to a Berkovich tip. The two tips
were calibrated on a standard amorphous silica calibration
sample before all tests. The same parameters were used for all
of the NI tests, viz., 0.05 s–1 strain rate, 2 nm/s unloading rate,
2 nm harmonic displacement target, a frequency of 45 Hz, and
a maximum allowable drift rate of 0.05 nm/s.

Typically, the values of the load P and total displacement
into the surface ht were collected. Concomitantly, the har-
monic contact stiffness S values were also recorded. In a
typical NI test, the tip was loaded normal, or parallel, to the
basal planes, in a load control mode, up to a given maximum
load, held at the maximum load, and then fully retracted
(Fig. 1). Multiple locations were indented and their results
were averaged.

In this work, the elastic constants, as determined from NI,
cNI

33 and cNI
11 , were calculated from the slope of the S vs a curves

[Figs. 2(a) and 2(b)] obtained from the Berkovich and spheri-
cal tips. The results for both tips are listed in Table I. For the
5 µm spherical tip, the slope was calculated up to a maximum
R ≈ 1600 nm. Beyond this value, the calculated values were
slightly lower and thus no longer valid. Moreover, for the
spherical tip, stress-strain curves were first determined and
then the slopes of the linear elastic regime were calculated.
These slopes represent the reduced moduli E. Equations (A4)
and (A5) were then used to obtain the elastic constants.

In another set of experiments, with a 5 µm spherical tip, the
load was initially applied, on a selected location, to the max-
imum load, retracted gradually to 1 mN, and then reloaded to
the predetermined maximum load. These load-displacement
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FIG. 1. Load vs displacement curves for the V2AlC and Cr2AlC (0001) and Cr2AlC (101̄0) surfaces and fused silica obtained when using
(a) a Berkovich and (b) a 5 µm-radius spherical indenter.

data (not shown) were converted into NI stress σNI vs a/R
plots (see Fig. 3) using procedures described previously [12]
and summarized in the Appendix. Typically, the indenter is
loaded to a maximum load, unloaded, and reloaded in the
same location ten or so times.

Turning to the hardness measurements, NI hardness values
were calculated with a Berkovich indenter using Oliver and
Pharr’s method [15]. Hardness vs indentation depth plots
(shown in Fig. 4) were also generated for the 5 µm spherical
tip, using an approach that was previously reported [14]. At
0.49 N, the maximum indentation force was kept relatively
low to match the thinness of the samples used herein.

Vickers microhardness measurements were also performed
on each crystal orientation when possible. The average
lengths of the two orthogonal diagonals were determined from

scanning electron microscope, SEM (XL30, FEI Corporation,
Hillsboro, OR) micrographs and converted to hardness values.
Both sets of results are listed in Table II.

III. COMPUTATIONAL DETAILS

The elastic constants of the V2AlC and Cr2AlC phases
were computed ab initio using DFT [19,20] as implemented
in the Vienna ab initio simulation package (VASP) [21–23].
The exchange-correlation functional was approximated using
the generalized gradient approximation as proposed by the
Perdew-Burke-Ernzerhof (PBE) scheme [24]. Projector aug-
mented wave pseudopotentials were used [25,26]. Configura-
tions of C 2s22p2, Al3s23p1, Cr3d54s1, and V3d44s1 were
treated as valence electrons. A plane-wave kinetic energy

FIG. 2. Stiffness vs contact radii for V2AlC and Cr2AlC (0001) and Cr2AlC (101̄0) and fused silica surfaces obtained using (a) a Berkovich,
and (b) a 5 µm-radius spherical indenter. (c) Dependence of elastic constants on total indentation depths of a Berkovich diamond tip for V2AlC
and Cr2AlC (0001), Cr2AlC (101̄0), and fused silica surfaces.

083605-3



HUSSEIN O. BADR et al. PHYSICAL REVIEW MATERIALS 4, 083605 (2020)

TABLE I. Summary of elastic constant and modulus values in GPa obtained herein and in previous work. Numbers in parentheses denote
the total number of indents performed to obtain the average and standard deviations listed.

Elastic constants/Moduli Method/Tip V2AlC (GPa) Cr2AlC (GPa)

This Work
c11 Berkovich 317 ± 10 (28)
c33 Berkovich 342 ± 17 (19) 320 ± 9 (18)
c11 DFT 328a 347a

c33 DFT 320a 332a

EH DFT 314 ± 2 322 ± 11

Previous Work
E Berkovich 322 ± 45 [32] 298 ± 21 [33]

Ultrasonic 283 [34] 285 [34]
Ultrasonic 277 [35] 245 [35]

DFT 306; 308; 319 [36], 358; 347; 332 [36]
DFT 308 [37] 358 [37]
DFT 316 [38]

c33 DFT 333 [38]
c33 DFT 319, 328, 314 [36] 369; 382; 382 [36]
c11 DFT 339, 338, 346 [36] 365; 396; 384 [36]
c11 DFT 345 [38]

aSee Table III.

cutoff of 520 eV was used and the first Brillouin zone was
sampled with a 12 × 12 × 4 Monkhorst-Pack k-point grid
[27]. A Gaussian smearing of 0.2 eV was used to accelerate
the convergence. For both systems, but especially for Cr2AlC
[28], lattice parameter optimization led to an underestimation
of the real values and consequently to an overestimation
of the bonding strengths and elastic constants. The lattice
parameters were therefore fixed to the experimental values
reported in [29] and measured from our samples, and the
atomic positions were optimized until the largest force was
smaller than 0.1 meV/Å. Both sets of results are listed in
Table III.

Additionally, the single-crystal elastic tensor of each sys-
tem was determined by applying a set of homogeneous finite
deformations and calculating the associated resulting stress,
as implemented in the VASP code [21–23]. For hexagonal
symmetry, there are five independent elastic constants ci j , viz.,
c11, c12, c13, c33, and c44 [30]. Table III lists the ci j values
computed at zero pressure and absolute temperature for both
V2AlC and Cr2AlC. In both cases, c11 > c33.

For hexagonal crystals, the Voigt bulk BV and shear Gv

moduli (upper bound) can be obtained, respectively, assuming
[30]

BV = 1
9 [2(c11 + c12) + 4c13 + c33],

GV = 1
15 (2c11 + c33 − c12 − 2c13) + 1

5

[
2c44 + 1

2 (c11 − c12)
]
.

The Reuss bulk BR and shear moduli GR (lower bound) are
given, respectively, by [30]

BR = (c11 + c12)c33 − 2c2
13

c11 + c12 + 2c44 − 4c13
,

GR = 5

2

(
c2c44c66

3BV c44c66 + c2(c44 + c66)

)
,

where c66 is obtained assuming 1
2 (c11 − c12) and c = (c11 +

c12) c33 − 2c2
13. The arithmetic averages of Voigt and Reuss

moduli are known as the Hill moduli, given by [31]

BH = BV + BR

2
, GH = GV + GR

2
.

Using the calculated values of BH and GH , the average
Young’s modulus E and the Poisson ratio v can be obtained,
respectively, assuming [31]

EH = 9BH GH

3BH + GH
, ν = 3BH − 2GH

2(3BH + GH )
.

Starting with the DFT calculated ci j values, the values of BH ,
etc., were calculated and the results are listed in Table III
together with those previously reported.

IV. RESULTS

A. Load-displacement curves

Figure 1(a) shows typical NI load-displacement curves
obtained using a Berkovich tip, loaded to a maximum load of
150 mN, for the V2AlC (0001), Cr2AlC (0001), and Cr2AlC
(101̄0) surfaces. For the fused silica (SiO2) surface the max-
imum force was 120 mN. The corresponding curves for the
spherical indenter are shown in Fig. 1(b). The SiO2 surface
was used for calibrating the indenter (discussed below). From
these results the following points are salient: A cascade of
small, discontinuous, and uneven pop-ins is observed in both
the Berkovich [Fig. 1(a)] and spherical tips for the Cr2AlC
(0001) and (101̄0) surfaces [Fig. 1(b)]. The same behavior
was observed for the (0001) V2AlC surface [Fig. 1(a)]. No-
tably, but not surprisingly, these are totally absent for the
SiO2 results. In some locations for the (0001) V2AlC surface
massive pop-ins were observed [dotted line in Fig. 1(b)].
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FIG. 3. Plot of NI stress vs a/R curves for (a) the V2AlC (0001) surface and (b) same as (a) but focusing on two locations where two quite
different pop-ins were recorded. Results for silica are plotted for comparison. Also shown are plots for the (c) (101̄0) and (d) (0001) Cr2AlC
surfaces, (e) two Cr2AlC surfaces during first cycle, and (f) same as (e) but showing all 12 cycles. In (a), (c), and (d) the curves are shifted
horizontally for the sake of clarity.

These results also imply that the order of the stiffness
values of the surfaces examined, from high to low, is: (0001)
V2AlC > (0001) Cr2AlC > (101̄0) Cr2AlC > SiO2.

B. Stiffness vs contact radius curves

When S is plotted vs a over the entire range, for the
V2AlC and Cr2AlC (0001) and Cr2AlC (101̄0) indented sur-
faces, using the Berkovich [Fig. 2(a)] and 5 µm spherical
tips [Fig. 2(b)], a linear relationship is obtained as expected
from Eq. (A3). Herein we assume that the moduli obtained
for the (0001) and (101̄0) crystal orientations are equal to
cNI

33 and cNI
11 , respectively. The latter are listed in Table I.

The reproducibility of the curves in the various locations is
noteworthy.

Figure 2(c) plots typical values of the elastic constants as
a function of total displacement ht . After an initial relatively

large drop in moduli, the results plateau at ht ≈ 200 nm.
Unfortunately, for the MAX phases, the plateau is not level
but slopes downward with increasing ht . This renders deter-
mination of the true value of the elastic constants problematic.
However, a perusal of the results shown in Figs. 2(a) and 2(b)
indicates that past a contact radius of 750 nm, the results
become noisier. It is for this reason that Table I reports the
moduli at a = 750 nm.

As noted above the Young’s modulus of standard fused
silica was obtained first, following the same aforementioned
methods of measurement and calculation, for 12 different
locations, to be 76 ± 1 and 68 ± 1.5 GPa for the Berkovich
and 5 µm spherical indenter tips, respectively. It follows that
both tips estimate the established modulus of 72 GPa [12],
within a narrow range of 6%. In other words, in our setup, the
Berkovich and spherical indenters are 6% higher and lower
than the true value, correspondingly.
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FIG. 4. Hardness vs displacement for V2AlC and Cr2AlC (0001) and Cr2AlC (101̄0) surfaces obtained using (a) a Berkovich and (b) a
5 µm-radius spherical indenter. (c) Same as (a) but with only three isolated curves, one per each system. (d) Hardness values obtained when
loading Cr2AlC crystals along [0001] and edge-on with Berkovich, Vickers, and spherical indenters. Also plotted are the Berkovich results of
Kooi et al. on Ti3SiC2 [18].

C. Stress vs strain curves

When results such as the ones shown in Fig. 1(b) are
converted to NI stress vs a/R plots (Fig. 3), the shapes of the
curves and the information they relay are altered considerably.
Typical results for the (0001) V2AlC surfaces are shown in
Figs. 3(a) and 3(b). Those for the two Cr2AlC surfaces are
plotted in Figs. 3(c)–3(f). These results reveal the following:

TABLE II. Summary of hardness values in GPa obtained herein
and in previous work. The hardness values are obtained at a total
indentation depth of 800 nm for the Berkovich and 500 nm for the
spherical indenters. Numbers in parentheses denote the total number
of indents performed to obtain the average and standard deviations
reported.

V2AlC Cr2AlC
Method Orientation (GPa) (GPa)

This work
Berkovich (0001) 8.8 ± 0.3 (19) 9.7 ± 0.3 (18)
Berkovich (101̄0) 8.4 ± 0.4 (28)
Vickers (0001) 9.3 ± 0.8 (3) 8.3 ± 0.8 (3)
Vickers (101̄0) 6.6 ± 0.5 (3)
spherical (0001) 7.8 ± 0.5 (3) 9.9 ± 0.4 (18)
spherical (101̄0) 8.5 ± 0.4 (28)

Previous work
Berkovich thin film 11.5 ± 1.7 [32] 13 ± 2 [33]
Vickers polycrystal 1.9–2.9 [34] 3.5 [40]

(i) The response of the V2AlC (0001) surfaces [Fig. 3(a)]
is stochastic in nature. In some locations large pop-ins were
observed, while in others there were no pop-ins despite the
fact that the applied stress was of the order of 20 GPa. In
one location, the pop-in stress was 16 GPa [Fig. 3(b)]. When
the applied load was reduced to 90 mN, rather than 120 mN,

TABLE III. Computed lattice parameters, elastic constants, and
moduli in GPa of V2AlC and Cr2AlC single crystals. For the sake of
comparison, we averaged previous theoretical results from Ref. [4] .

V2AlC (GPa) Cr2AlC (GPa)

Computed
data PBEa PBEb Literaturec PBEa PBEb Literaturec

a = b(Å) 2.907 2.912 2.914 2.841 2.860 2.848
c (Å) 13.122 13.140 13.110 12.686 12.820 12.680
V (Å3) 96.041 96.469 96.408 88.699 90.814 89.070
c11 332 328 341 369 347 359
c12 77 74 78 87 77 75
c13 105 102 118 108 91 99
c33 326 320 320 360 332 389
c44 152 150 151 143 129 138
BH 174 170 186 189 172 204
GH 132 131 133 138 130 139
EH 316 312 319 333 311 333
V 0.20 0.19 0.2 0.21 0.20 0.21

aThis work, relaxed cell.
bThis work, but starting with experimental lattice parameters.
cAverage of previous theoretical results listed in Ref. [4].

083605-6



ELASTIC PROPERTIES AND HARDNESS VALUES … PHYSICAL REVIEW MATERIALS 4, 083605 (2020)

FIG. 5. Typical SEM micrographs of indentation marks made by
a Berkovich (left column) and a 5 µm spherical tip (right column)
on (a) and (b) V2AlC (0001) surfaces. Inset shows the indentation
mark observed when no pop-ins were registered. Also shown are
plots on (c) and (d) (0001) and (e) and (f) (101̄0) Cr2AlC surfaces.
The maximum load in (a) and (b) was 150 mN, (c) and (d), 100 mN,
and (e) and (f) 120 mN.

pop-ins were only observed in 3 out of 14 locations as
compared to 4 of 7 locations at the higher load.

(ii) Little deformation prior to the pop-in was observed.
After the pop-ins, the maximum stresses that were sustained
by the surfaces were of the order of 7 GPa [Fig. 3(a)].
As discussed below, this maximum stress is equated to the
hardness.

(iii) The extent of the pop-ins also correlates to the pop-in
stresses. When the pop-in stress was approximately 20 GPa,
the pop-in extended to an a/R of 0.5 [Fig. 3(b)]. When the
pop-in stress was 16 GPa, the extent of the pop-in was closer
to 0.4 [Fig. 3(b)]. As importantly, in the absence of pop-ins,
the indentation marks were considerably smaller in extent
and depth [see inset in Fig. 5(b)].

(iv) The response of the (101̄0) and (0001) Cr2AlC sur-
faces, shown in Figs. 3(c) and 3(d), respectively, were dif-
ferent in that the maximum sustained stresses were less than
20 GPa. The averages of the maximum stresses for the (101̄0)
and (0001) surfaces were 7.0 ± 0.3 and 8.2 ± 0.3 GPa, respec-
tively. The reproducibility between the various locations, for
the most part, is also quite good.

(v) Figure 3(e) shows that for both Cr2AlC surfaces an
initial linear response is followed by a change in slope at a
critical or microyielding stress, denoted by σc. The values of
σc are 3.0 ± 0.3 and 2.4 ± 0.2 GPa, for the (101̄0) and (0001)
surfaces, respectively.

(vi) The moduli obtained from the slopes of the linear parts
of the stress vs a/R curves are significantly smaller than those
obtained from the Berkovich tip.

Like other kinking nonlinear elastic (KNE) solids [39],
fully, and spontaneously, reversible stress-strain hysteresis
loops are obtained by cyclically indenting both Cr2AlC sur-
faces. All 12 loops are shown in Fig. 3(f). The energy dis-
sipated per unit volume per cycle Wd is significantly greater
for the (101̄0) Cr2AlC surface than its (0001) counterpart.
Furthermore, after the pop-ins, the (0001) surface is harder
than its (101̄0) counterpart. At low loads, the former is less
stiff however.

D. Hardness measurements

The Berkovich, HBr , and Vickers hardness, HV , results
for all the crystal orientations tested are listed in Table II.
Profiles of HBr vs NI displacement are shown in Figs. 4(a)
and 4(b). Note that the (101̄0) V2AlC surface was too narrow
for us to measure its hardness. As noted above, the hardness
values determined by the spherical indenter were taken to
equal the average maximum stresses of the loops shown in
Figs. 3(c) and 3(d) for the (0001) and (101̄0) Cr2AlC surfaces,
respectively. For the V2AlC (0001) surface, the hardness was
taken as the average of the maxima of the cycles after the
pop-ins shown in Fig. 3(a).

E. Scanning electron microscope micrographs

Typical postindentation SEM micrographs of the (0001)
V2AlC, (0001) Cr2AlC, and (101̄0) Cr2AlC surfaces, using
the Berkovich and spherical tips, are shown in Fig. 5. Those
for the Vickers indentations are shown in Fig. 6. A perusal of
these micrographs establishes the following. (i) For the (0001)
surfaces [Figs. 5(a)–5(d), 6(a), and 6(c)] there is considerable
pileup of material around the edges of the indentation marks.
(ii) The shapes of the mounds, especially those created by the
spherical indenter, is a function of composition. For the (0001)
Cr2AlC surfaces, the width of the rim is approximately 1 µm
[Fig. 5(d)]. For the corresponding V2AlC surface [Fig. 5(b)]
the width of the rim is closer to 5 µm. In other words, the
extent of deformation in the lateral direction is roughly 5 times
higher for the (0001) V2AlC surface compared to Cr2AlC.
(iii) Cracks appear on the V2AlC, but not the Cr2AlC, sur-
faces. (iv) For the (101̄0) Cr2AlC surfaces [Figs. 5(e), 5(f),
and 6(b)] no pileup or mounding is observed at the edges
of the indentation mark. Instead, delamination cracks are
observed.

F. Computational results

Table III lists the lattice parameters and elastic constants
and moduli, calculated herein. Also listed are the averages
of the results found in the literature. For the most part, the
agreement is satisfactory.

V. DISCUSSION

A. Elastic moduli

For the most part, due to the presence of defects (see
next section), the moduli obtained from the spherical indenter
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FIG. 6. Typical SEM micrographs of indentation marks made by a Vickers microindenter at a load of 0.49 N on (a) Cr2AlC (0001),
(b) Cr2AlC (101̄0), and (c) V2AlC (0001) surfaces.

were lower; by an average of 25% and 30%, for the Cr2AlC
crystals than the ones obtained from the Berkovich tip or those
calculated by DFT, respectively. Consequently, we will only
compare the latter two. In that respect, the agreement has
to be considered quite good, the largest difference being of
the order of 15%. There are some important discrepancies,
however, that need to be pointed out. For instance, theory
predicts c11 > c33, while experimentally we find the opposite.
The reasons for this state of affairs are unclear at this time and
more work is needed to reconcile the differences.

Importantly, all the ci j values obtained herein are close
to each other, which confirms once again that the MAX
phases are elastically relatively isotropic especially compared
to other known layered solids such as graphite and mica.
For example, c33 and c11 of Ti3SiC2 have been theoreti-
cally predicted [41] and experimentally measured [42] to be
almost equal. When our results for V2AlC are compared
with previously reported experimental data of Young’s moduli
(E = 322 GPa) by Sigumonrong et al. [32] and to a previ-
ously computed c33 values, 321 GPa on average [37,43], the
agreement is good. The same is true for the Cr2AlC surfaces
(Table I) [33,35]. Overall, based on the entries in Table I, it is
obvious that the measured and calculated elastic constants fall
in the relatively narrow range of 317–347 GPa, with the DFT
values being mostly on the higher side.

B. Effect of defects

Previously, we have shown that when the pop-in stresses
were high, of the order of c44/n, where n < 10, as is the case
herein for V2AlC [Fig. 3(a)], this implied that our crystals
were quite defect-free to begin with [45]. When the pop-
in stresses are of the order of c44/n, with n < 10, one is
approaching a bond’s theoretical limits. We [2] and others
[44] have also previously shown that the distribution of pop-in
stresses is stochastic in nature and can be described by Weibull
statistics. The results for V2AlC are fully consistent with
this notion. The fact that the slopes of the linear regimes in
Fig. 3(b) yield an elastic constant of 290 ± 14 GPa, which is
slightly lower than the value predicted by DFT, implies that
our crystals were defect-free, at least at the volumes probed
by the indenters. Interestingly, the moduli determined by the
Berkovich tip are less sensitive to defects because of its shape.

We note in passing that the c44/n where n < 10 criterion
for deformation of perfect crystals is shear based [45]. Here
the failure criterion will most likely be buckling of the basal
planes. It follows that an alternative buckling criterion needs
to be developed. Nevertheless, the criterion in a perfect solid

will most likely be such that n will also be of the order of 10
or less.

The maximum load sustained by either of the Cr2AlC
surfaces, on the other hand, was at best half of those sustained
by the V2AlC surfaces. This strongly points to the fact that
the Cr2AlC crystals were significantly more defective. This
conclusion is bolstered by the NI stress vs a/R plots for
Cr2AlC [Figs. 3(c) and 3(d)], where large pop-ins are notably
absent. Instead, a large number of small pop-ins are observed.

Furthermore, when the initial slopes of the NI stress vs a/R
plots are converted to elastic moduli the values obtained are
significantly lower than the ci j values listed in Table III. In the
same way that microyielding, viz., the bowing of dislocation
lines when some metals are loaded, results in moduli that are
lower than those expected from, say, Young’s moduli obtained
from ultrasound measurements, the initial linear slopes shown
in Figs. 3(e) and 3(f) are most probably due to the to-and-fro
motion of preexist ing ripplocations. In this case, σc coincides
with the nucleation of new ripplocations in the presence of
preexisting ones. Indenting thin steel sheets edge-on, we have
shown that the nucleation stresses for BRs are greatly reduced
when the latter are present [9]. In other words, ripplocations
are potent nucleation sites for new ones.

It is the lack of such defects in the V2AlC samples that
allows them to sustain stresses up to 20 GPa [Fig. 3(a)]. After
the pop-ins, the σc is of the order of 7 GPa [Fig. 3(b)]. Recall
that σc is the stress needed to nucleate ripplocations in the
presence of preexisting ones. For the Cr2AlC surfaces, σc is of
the order of 3 GPa and the presence of preexisting defects is
what prevents the stresses to rise above the maximum values-
equated to the hardness- shown in Figs. 3(c)–3(f).

C. Fully and spontaneously reversible loops

Over the past few years, we made the case that the
hallmarks of deformation by ripplocations and ripplocation
boundaries are the large pileup of material around indenta-
tions edges when the basal planes are loaded along [0001]
and delamination cracks when they are loaded edge-on as ob-
served here (see Figs. 5 and 6). Another signature is the gen-
eration of fully reversible stress-strain curves when the same
locations are repeatedly loaded. The generation of the lat-
ter is clear in Fig. 3(f) when the Cr2AlC basal planes are
loaded edge-on. When the load is applied along [0001], fully
reversible loops are also observed, but Wd is smaller and
the loops are stiffer [Fig. 3(f)]. In a ripplocation framework
these differences can be understood as follows. When the
basal planes are loaded edge-on, layer buckling is natural and
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the entire applied load is used to buckle the layers. When
the load is applied along [0001], on the other hand, the
situation is different in that now only the projection of the
applied stress normal to the indentation direction, i.e., along
the basal planes, can result in buckling. That projected stress,
by definition, has to be smaller than the applied one. Another
possible reason for this state of affairs is the fact that after
large pop-ins a new microstructure develops under the NI that
is more polycrystalline in nature with quite small domains and
multiple micro- and nanocracks [10]. The basal planes in the
latter are less prone to buckle, which would also explain the
stiffening of the loops and the lower values of Wd .

D. Hardness and its anisotropy

Figures 4(a) and 4(b) plot the NI hardness vs displacement
profiles of the three surfaces explored herein obtained with the
Berkovich and spherical indenters, respectively. The horizon-
tal dashed lines indicate that both indenters yield comparable
values. Based on these results, it is reasonable to conclude that
the hardness of the Cr2AlC (0001) surface is 9.7 ± 0.3 GPa.
Similarly, the hardness value of the Cr2AlC (101̄0) surface
levels off at 8.4 ± 0.4 GPa. These values are the ones reported
in Table II. We note is passing that the agreement between the
two sets of results is gratifying and is indirect evidence that
our conversion of the load-displacement results to NI stresses
vs a/R plots is reasonable and tethered to reality.

These values, however, have to be slightly tempered by
the fact that if looked at individually, the hardness vs dis-
placement profiles do not always reach a plateau. This is
best seen in Fig. 4(c), where we isolated three hardness vs
displacement curves, one for each of the surfaces tested.
When so isolated, it is obvious that after an initial drop in
hardness, the curves are not continuous but are stepped with
small steps, each approximately 0.8 GPa [see Figs. 4(a) and
4(c)]. These steplike drops correspond to a cascade of pop-in
events [Fig. 1(a)] and suggest that the nucleation of RBs and
their motion is not continuous, but rather occurs in sudden
successive drops. Oviously, such a response is fully consistent
with successive buckling.

For the most part, loading the V2AlC (0001) surface with
the spherical tip showed no pop-ins during first loading, i.e.,
no plastic deformation. However, upon reloading the maxi-
mum sustainable stress was 7.8 ± 0.5 GPa [Fig. 3(a)]. This
value is slightly lower than the other hardness measurements
listed in Table II, but is close enough that this maximum stress
can be taken as a measure of hardness.

Figure 4(d) depicts the hardness values obtained at maxi-
mum indentation depths, using the Berkovich, spherical and
Vickers indenters, on the (0001) and (101̄0) Cr2AlC surfaces
plotted on the x and y axes, respectively. The results of
Kooi et al. [18], who measured the hardness anisotropy in
Ti3SiC2, using a Berkovich tip, are also plotted. Note the
hardness values of Cr2AlC reported herein and those on
Ti3SiC2 are compared at the same indentation depth (ap-
proximately 800 nm). From these results it is reasonable to
conclude that the hardness values of the (0001) and (101̄0)
surfaces, of at least Cr2AlC and Ti3SiC2, are anisotropic,
with the former being approximately 20% harder. Note the
good agreement between the hardness values, measured on the

Cr2AlC surfaces, obtained using the Berkovich and spherical
tips. Additionally, the Vickers microhardness value is roughly
80% lower than the NI ones. Since our V2AlC samples
were too thin to measure the hardness of their (101̄0) sur-
faces, no conclusions concerning their anisotropy could be
reached.

The hardness anisotropy can be related to the microme-
chanics of deformation of these materials. We have previously
shown that the MAX phases deform, especially when the basal
planes are loaded edge-on, or parallel to [0001] as done here,
by the nucleation of, first, reversible RBs, which transform, at
higher stresses, into irreversible KBs [10]. Consequently, we
have shown that the stresses needed for the nucleation of RBs
when the basal planes are loaded edge-on is significantly, up to
a factor of 2, lower than when the load is applied along [0001]
[10]. Note that in a basal dislocation framework, there should
be little anisotropy since, in both orientations, the Schmidt
factors are quite low and comparable.

Our results may also shed some light on the large dis-
crepancy between hardness values measured on single crys-
tals/grains vs those measured on polycrystalline samples that
are usually significantly smaller. For example, consider a
typical Vickers indentation mark on the (101̄0) Cr2AlC crystal
[Fig. 6(b)]: The [0001] diagonal is 30% larger than that
parallel to the basal planes, which confirms once again the
plastic anisotropy of the MAX phases. Turning to the cor-
responding Vickers indentation mark on the (0001) V2AlC
surface [Fig. 6(c)], if the lengths of the larger diagonals
(approximately 21 µm) are used to calculate the hardness, a
value of approximately 2.1 ± 0.2 GPa is obtained, which co-
incidentally or not is in good agreement with the one reported
by Hu et al. [34] on polycrystalline V2AlC samples. However,
this value is considerably lower than the value measured
herein using the Berkovich tip, viz., 8.8 ± 0.3 GPa, on the
same surface. If instead the smaller inner diagonal length
(10 µm) is used, the resulting hardness, at 9.3 ± 0.8 GPa is
considerably closer to the Berkovich hardness and thus more
plausible. Hardness values of the same range obtained herein
have been previously reported for Cr2AlC [33] and V2AlC
[32] thin films. These results were explained on the basis of
hardening promoted by the nanosize of the grains.

In the absence of large pop-ins, there is much less buildup
of material near the indentation edges for the (0001) V2AlC
surface [see the inset of Fig. 5(b)]. There is thus little doubt
that the pop-ins result in considerable material redistribution.
One advantage of using spherical, rather than Berkovich,
indenters in probing KNE behavior is that in the former case,
considerable energy can be stored before the nucleation of the
BRs. That excess energy is what results in the redistribution
of material and/or delamination cracks. The higher the pop-
in stresses, the higher the energy stored, which manifests
itself in a larger postindentation penetration as clearly seen
in Fig. 3(b). The Berkovich tip, on the other hand, severs the
layers, which in turn results in much less elastic energy stored
during the entire process. It is for this reason that the extent of
pop-ins, if they occur at all, is significantly smaller when the
Berkovich tip is used. This is also probably why the Berkovich
tip is better at measuring the true elastic moduli of solids; there
is less stored energy that can skew the results and the shape of
the indents.
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Finally, a comparison of the indents made in the (0001)
V2AlC [Fig. 6(c)] and Cr2AlC [Fig. 6(a)] surfaces suggests
that the latter is more ductile in that no cracks are nucleated.
Another crucial difference is the extent of material pushed
to the indent edges. In Cr2AlC, a thin relatively narrow ring,
where the difference between the inner and outer diameters is
small, forms [see Figs. 5(d) and 6(a)]. In the V2AlC case, the
volcano-shape that forms extends over several micrometers.

VI. CONCLUSION

Using microindentation/nanoindentation techniques, rela-
tively large single crystals of V2AlC and Cr2AlC were used
to estimate their elastic constants, hardness values, and shed
light on their elastic-to-plastic transitions and KNE behavior.
The values of cNI

33 and cNI
11 , determined using a Berkovich tip, at

a contact radius of 750 nm, and those calculated by DFT, were
all found to fall in the relatively narrow range of 320–350 GPa.
It follows that the values of c11 and c33 are weak functions of
chemistry and/or orientation, which confirms once more that
the MAX phases are relatively elastically isotropic.

Similarly, the hardness values, obtained using Berkovich,
5 µm spherical, and Vickers microindenters on the two
Cr2AlC surfaces were all comparable and fell in the narrow
range of 6.6 ± 0.5 to 9.9 ± 0.5 GPa. In all cases, the (0001)
surfaces were roughly 20% harder than when the basal planes
were loaded edge-on, viz., the (101̄0) surfaces. At 9.9 ± 0.4
GPa, the hardness of the (0001) Cr2AlC surface was the
highest reported herein. The thinness of the V2AlC samples
did not allow us to measure any of their edge-on properties.

The (0001) V2AlC surfaces were able to reproducibly
sustain elastic stresses of the order of 20 GPa, which was
not the case for either Cr2AlC surface. It follows that the
former were less defective than the latter. Roughly 60% of
indentations, however, resulted in pop-ins, beyond which the
maximum stresses sustainable drop to approximately 7 GPa.
In some cases, the pop-ins were of the order of 300 nm and
thus considerable. The pop-ins result in larger indentation
marks wherein large pileups of material around the edges of
the indentation marks resulted in volcano-shaped indentations
similar to ones observed in mica [2] and graphite [1]. These
pileups are absent in the absence of pop-ins. Repeated inden-
tations in the same location after the pop-ins resulted in little
energy dissipation.

Upon loading the (0001) and (101̄0) Cr2AlC surfaces, a
number of small pop-ins (approximately 20 nm) were ob-
served. The stresses at which these occur were all less than the
maximum stresses sustained by these surfaces, viz., 8.2 ± 0.3
and 7.0 ± 0.2 GPa, respectively. These values were compa-
rable to the values obtained by the Berkovich and Vickers
indenters on the same surfaces. Such good agreement between
three quite differently shaped and sized tips is noteworthy and
strongly suggests that our overall approach, and underlying
assumptions, are solid and valid.

The results obtained here are also consistent with the
nucleation and propagation of ripplocations and ripploca-
tion boundaries. This is manifested by the aforementioned
large buildup of material near the indentation mark edges
[Figs. 5(a)–5(d), especially Figs. 5(b) and 5(d)] and the delam-
ination cracks observed in Figs. 5(f) and 6(b). As we argued

several times, such cracks are irrefutable evidence for c-axis
strain due to buckling [10].

Finally, the fact that Wd is higher for the (101̄0) Cr2AlC
surfaces than the (0001) is also consistent with buckling for
the simple reason that is easier to buckle layers if they are
loaded edge-on than if they are loaded normal to them.
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APPENDIX: SPHERICAL NI DATA ANALYSIS

In a typical NI test, the load P and total displacement
into the surface htot values were obtained. Additionally, har-
monic contact stiffness S values were continuously provided,
since the nanoindenter is equipped with a continuous stiffness
measurement (CSM) option. The CSM technique measures S
continually over the entire range of loading by superimposing
a harmonic force on the nominally increasing load applied
during NI [15]. The model followed here stands generally on
the developments of the method first reported by Herbert et al.
[46].

Figure 7 depicts the main parameters: total displacement
ht , contact depth hc, contact radius a, and spherical tip radius
R, required for nanoindentation data analysis. The contact

FIG. 7. Schematic of the spherical indenter and associated terms
used in the text [12].
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depth is first calculated assuming

hc = ht −
(

3 P

4 S

)
. (A1)

Once hc is obtained, a is calculated assuming

a =
√

2Rhc − h2
c . (A2)

Then, by assuming an isotropic elastic solid, indented by a
spherical tip, the stiffness S is obtained by

S = 2E∗a, (A3)

where the reduced modulus E∗ is determined from the slope of
S vs a plots. Once E∗ is determined, the sought after Young’s

modulus Es is calculated from

1

E∗ = 1 − ν2
s

Es
+ 1 − ν2

i

Ei
, (A4)

where Es and νs are the specimen elastic modulus and its Pois-
son’s ratio and Ei and νi are the elastic modulus and Poisson’s
ratio of the diamond indenter assumed to be 1140 GPa and
0.07, respectively. Moreover, stress-strain plot can be derived
by assuming NI stress σNI = P

πa2 and NI strain εNI = a
R since

in the elastic regime

P

πa2
= 4

3π
E∗

(
a

R

)
. (A5)

Then the resulting slope of the linear elastic regime of the
NI stress-strain curve is proportional to the reduced modulus
E∗.
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