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Institute of Condensed Matter and Nanosciences, Universite ́ catholique de Louvain, Chemin des et́oiles 8, 1348 Louvain-la-neuve,
Belgium

CONSPECTUS: Graphene-related nanostructures stand out as exceptional
materials due to both their wide range of properties and their expanse of interest
in both applied and fundamental research. They are good examples of nanoscale
materials for which the properties do not necessarily replicate those of the bulk.
For the description and the understanding of their properties, it is clear that a
general quantum-mechanical approach is mandatory. The remarkable result of
density functional theory (DFT) is that the quantum-mechanical description of
materials at the ground state is made amenable to simulations at a relatively low
computational cost.
The knowledge of materials has undergone a revolution after the introduction of
DFT as an unrivaled instrument for the investigation of materials properties
through computer experiments. Their deeper understanding comes from a variety
of tools developed from concepts intrinsically present in DFT, notably the total
energy and the charge density. Such tools allow the prediction of a diverse set of physicochemical properties relevant for material
scientists.
This Account lays out an example-driven tour through the achievements of ground-state DFT applied to the description of
graphene-related nanostructures and to the deep understanding of their outstanding properties. After a brief introduction to
DFT, the survey starts with the determination of the most basic properties that can be obtained from DFT, that is, band
structures, lattice parameters, and spin ground state. Next follows an exploration of how total energies of different systems can
give information about relative stability, formation energies, and reaction paths. Exploiting the derivatives of the energy with
respect to displacements leads the way toward the extraction of vibrational and mechanical properties. In addition, a close
examination of the charge density gives information about charge transfer mechanisms, which can be linked to chemical
reactivity. The ground state density and Hamiltonian finally connect to the concepts behind transport phenomena, which drive
much of the application-oriented research on graphene and graphene-related nanostructures. In each section, a selection of cases
that are of current importance are used to illustrate the use and relevance of DFT-based techniques. In summary, this Account
presents an introductory landscape of the possibilities of ground-state DFT for the study of graphene-related nanostructures. The
prospect is rich, and the use of DFT for the study of graphene-related nanostructures will continue to be fruitful for the
advancement of these and other materials.

1. THE DENSITY FUNCTIONAL THEORY (DFT)
FRAMEWORK

The nonrelativistic quantum state of matter is established once
the wave functions that solve the many-body Schrödinger
equation are found. However, the problem as stated directly
from the Schrödinger equation is too complex to be
numerically solved when the system contains more than a
few atoms. A first simplification comes from the Born−
Oppenheimer approximation.1 The electron and nuclei
dynamics are decoupled by taking advantage of the large
masses of nuclei. In order to deal with the electronic system,
Hohenberg and Kohn (HK) introduced a formulation where
the electron density distribution, instead of the many-body
wave function, plays the central role.2,3 They envisioned a
variational expression for the energy as a functional of the
density that is to be minimized to find the quantum ground-
state of the system. Eventually, Kohn and Sham (KS) proposed
a practical scheme to evaluate the density functional. In this

formulation, the many-body nature of the problem is
encapsulated in an exchange-correlation (XC) potential,
which is at the heart of both the successes and failures of
DFT.4 Useful review papers are found in refs 3, 5, and 6. The
ground-state many-body wave function is built upon non-
interacting electronic eigenstates, called Kohn−Sham orbitals,
evolving in a self-consistent field derived from the XC potential.
It is noteworthy that if the XC functional that is used were
exact, then DFT would perfectly describe the quantum nature
of matter. Over the years, DFT has been extended to the study
of response functions and many-body problems by means of
frameworks such as density functional perturbation theory
(DFPT), time-dependent density functional theory, or the GW
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approximation.7−10 Nonetheless, simple approximations for the
XC functional yield remarkably good results that allow one to
describe many relevant properties of materials.
Various basis sets are used to expand the KS wave functions.

Plane-waves (PWs) are a common choice. Indeed, PWs
naturally account for the periodicity of crystals11 and naturally
suit the description of nearly free electrons. In addition, they
form an orthogonal basis set whose completeness can be
systematically increased by adding PWs of higher kinetic
energy. In contrast, PWs can become computationally
expensive for the description of low dimensional or highly
inhomogeneous systems. An alternative comes from linear
combination of atomic orbitals (LCAO). LCAO appears as a
natural method to describe the binding of atoms in crystals or
molecules. Its main caveat is the lack of a systematic procedure
to improve the accuracy of the representation, which may
induce a lack of transferability.

2. ELECTRONIC STATES AND BAND STRUCTURES

In crystal structures, electrons move in a periodically repeating
potential, and thus the KS orbitals are Bloch waves. The
electronic structures of these systems are characterized by the
band structure, which summarizes the energy dependence on
momenta, k, that is, solving the KS equations at different k
along a convenient high symmetry path. The eigenvalues of the
problem are interpreted as the energy bands and the
eigenfunctions as the KS wave functions. The density of states
is the integration of all possible momenta and represents the
available states per unit of volume at a given energy. The band
structure of graphene is illustrated in Figure 1a, which is
calculated using either PWs (solid black) or LCAOs (dashed
red lines). The validity of the use of local density (LDA) and
generalized gradient (GGA) functionals for carbon is evidenced
when compared with the many body band structure (GW
approximation). There is a set of bands associated with nearly
free electron states that are not present in the LCAO band
structure. LCAO fails to account for those bands since nearly
free electrons extend in the vacuum and are difficult to
understand in terms of C atomic orbitals.12

3. LATTICE PARAMETERS AND GEOMETRY
OPTIMIZATION

Within the Born−Oppenheimer framework, whether a simple
relaxation or a full ionic trajectory is under consideration, the
nuclei coordinates are propagated according to the forces
computed in the ground-state electronic configuration. The
ionic forces are straightforwardly computed by means of the
Hellmann−Feynman theorem.14,15

The equilibrium lattice parameters of a crystalline system are
those that minimize its total energy. The accuracy of these
calculations depends on the XC used.16 While local and
semilocal XC functionals usually provide an accurate
description of covalent and ionic chemical bonds, they usually
fail to reproduce nonlocal dispersive interactions, for example,
van der Waals (vdW), which are important in weakly bonded
materials such as sp2 carbon materials. These discrepancies are
illustrated in Figure 1b, where all curves have been referenced
to the ground state energy (EGS) for comparison. The relevant
comparison is with respect to the depth of potential well and
the exfoliation energy, Exfol, defined as the difference of total
energy between the bound graphite system and the isolated
layers (i.e., ETot when the interlayer distance tends to infinity).

We have compared LDA,17 with different flavors of GGA
(PBE18 and PBEsol19) and vdW functionals (DSRLL,20

KBM,21 and LLMKL22). The experimental value for the
layer−layer distance in graphite is ca. 3.37 Å,23 and the
exfoliation energy has been reported from thermal desorption
measurements to be 60 meV/atom.24 Note that GGAs predict
very small or no binding at all. LDA functionals describe
surprisingly well the binding of graphite, even though there are
no terms to account for vdW interactions. However, LDA
cannot be considered as a reliable approximation for other
systems, such as graphene on metals, which are of considerable
importance.25,26

4. SPIN POLARIZATION AND SPIN−ORBIT COUPLING
The original Hohenberg−Kohn−Sham theory did not include
explicitly the spin of the electrons.2,4 However, the general-
ization was quickly achieved.27,28 In this case, it suffices to
construct spin-dependent effective potentials, as well as
equations for the spin-resolved (or spinor for the case of
non-collinear spin) KS orbitals.27

The ground-state of ideal sp2 carbon nanostructures is
nonmagnetic. However, the idea of having magnetic states in
such a light element has attracted the interest of theoreticians

Figure 1. (a) Electronic band structure of graphene calculated using a
plane-wave basis set (black lines) and a localized basis set (dashed red
lines). The many-body GW results represented by blue dots are
adapted from ref 13. (b) Comparison between different functionals for
the calculation of the interlayer distance (d) and the exfoliation energy
(Exfol = ETot(d → ∞) − EGS) of graphite.
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and experimentalists, with its own amount of controversy. The
observed magnetic properties in graphitic materials are often
attributed to the presence of impurities, defects, or
boundaries.29 Besides the relatively obvious magnetic impur-
ities,30 other lighter elements have been shown to induce spin
polarization in graphene.31 Computations of isolated vacancies
have also shown spin-polarized states.31 At the edges of a strip
or nanoribbon (NR) of graphene, magnetic states have been
predicted to appear if the edge shape is zigzag. The particular
magnetic orientation is ferromagnetic along the edges and
antiferromagnetic between the edges.32 Similar edge states can
occur at grain boundaries.33,34

Relativistic effects in carbon nanostructures are, for most
purposes, negligible since carbon is a light atom. Low-energy
carriers in graphene have weak spin−orbit coupling (SOC).
The energy gap arising from the intrinsic SOC is estimated to
be about 25 μeV only, and large spin relaxation times of several
microseconds are predicted.35,36 Hence, graphene materials are
considered promising candidates for spintronic devices.37

However, there are some cases in which it is important to
consider the spin−orbit interaction. This is done by adding to
the KS equations a spin−orbit term of the generic form |l,s⟩L·
S⟨l,s|, where L and S are the angular and spin momentum
operators. SOC should be considered in graphene when the
layer is curved or under external fields (Rashba interac-
tion).38,39 Small amounts of adatoms have also been shown to
increase the spin−orbit interaction of graphene by several
orders of magnitude.40

5. FORMATION ENERGIES
The comparison of total energies can give us information about
the relative stability of different configurations. A problem of
interest is the edge termination of graphene nanoribbons
(NRs), because their electronic properties heavily depend on
the exact shape and passivation of the edges. Nanoribbons are
classified into zigzag (Z) and armchair (A) ribbons depending
on the shape of their edges. Depending on the edge passivation,
ZNRs may exhibit edge states not present in ANRs. These edge

states exhibit ferromagnetic ordering along the edge,32 which
has attracted much attention for spin-related applications. The
edge formation energy of hydrogen passivated nanoribbons,
given per edge length (a),
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describes the relative stability of the isolated systems at zero
temperature. However, the edge formation energies ξH2

do not
account for the environmental conditions present in most
experiments, notably the pressure and temperature during
synthesis and processing. The relative stability in realistic
conditions is ruled by the edge free energy.41 In the case of
hydrogen passivated nanoribbons, the chemical potential μH2

is
the main variable of interest. In the athermal limit, that is,
assuming that the temperature dependency of graphene and
nanoribbon free energies is negligible, the edge free energy can
be approximated as41,42
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Figure 2b sketches the dependency of the edge free energy
with respect to μH2

for a large set of reconstructions of the
zigzag and armchair edges. For comparison, one notes that in
ambient conditions (P = 1 bar and T = 300 K), the partial
pressure is about 5 × 10−7 bar, leading to a value of μH2

≃
−0.69 eV. The computed phase diagrams strongly contrast with
the widely spread idea that armchair shaped edges are globally
more stable. The most stable structures are depicted in Figure
2a. At 300 K, for standard and high hydrogen partial pressure
(PH2

> 5 × 10−10 bar), three edge configurations are particularly
relevant, namely, the Z211, A22, and Z(600)2222 patterns. The
most commonly studied A11 and Z1 edge structures appear to
be stable only at low and very low hydrogen concentrations
(PH2

< 5 × 10−10 bar).

Figure 2. (a) Schematic representation of the most stable edge reconstructions of armchair and zigzag nanoribbons. The length of the unit cell is
represented by a line segment. Carbon and hydrogen atoms are depicted, respectively, in black and red. (b) Phase diagrams, i.e. edge free energies as
a function of the H2 chemical potential. Blue and orange lines, respectively, depict the most stable armchair and zigzag reconstructions. Vertical lines
are used to delineate the stability windows. Gray lines represent all the considered configurations found as metastable.
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6. MINIMAL ENERGY PATH

The minimal energy path (MEP) between an initial and a final
is an information that can be directly inferred from the total
energies obtained from DFT calculations. Often, not only the
stable conformations and preferential anchoring positions of a
surface adatom, a cluster, or a molecule are a valuable
knowledge, but also their diffusion path through the material
and associated reaction rate. The direct approach consists of
computing from total energy calculations the complete

potential energy surface of a system, from which potential
barriers and hence the MEP can be deduced. This situation is
illustrated in Figure 3a−c for the simple case of a single
chlorine adatom deposited on a graphene layer.43 The stable
position is on top (T) of a carbon atom. In the hollow (H)
position, the Cl adatom is unstable, and the bridge (B) position
is a saddle point (Figure 3b). The energy barrier between the
stable T and the B (H) position is 13 meV (92 meV). The
barrier analysis allows one to determine along which path

Figure 3. (a) Energy barriers for a single Cl adatom moving along the high symmetry path of a hexagon (top (T), bridge (B), and hollow (H)
positions). The diffusion path with the lowest energy barrier (13 meV) is indicated by thick red dashed lines in the inset. (b) Corresponding energy
landscape. Dark (light) color represents the top (hollow) sites. (c) Potential energy contour plots (paraboloid) of Cl adatom around the T-site. The
jump frequencies of Cl atom ν for different directions are calculated from this paraboloid. (d) Illustration of the NEB method for finding MEP going
through an energy saddle point. Panels a, b, and c are courtesy of H. Şahin, reprinted with permission from ref 43. Copyright 2012 American
Chemical Society. Panel d is courtesy of D. Sheppard, reprinted with permission from ref 47. Copyright 2008 AIP Publishing.

Figure 4. Geometries and phonon band structures of two-face fluorinated (a, c) and chlorinated (b, d) graphene. In panels c and d, the phonon band
structures of pristine graphene (given as references) are depicted in orange. In panel d, the bands associated with the vibration modes of the two
weakly bonded layers of chlorine atoms are highlighted by green circles.
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chlorine adatoms mostly diffuse (inset of Figure 3a) and at
what rate (Figure 3c), which is quite high since diffusion
barriers are found to be very small.43 In most cases, the
complexity and number of degrees of freedom prevent the
calculation of the full potential energy surface. Therefore, a
more sophisticated approach such as the nudged elastic band
(NEB) method is required.44,45The NEB method iteratively
searches the MEP from a discretized number of images
obtained from a linear interpolation of the initial and final
geometries (from NEB line to MEP in Figure 3d). At each
iteration, the images are relaxed. To guarantee that all the
images relax to the same MEP, fictitious springs are added. The
MEP is found when the NEB forces (Fi

NEB), that is, the sum of
the perpendicular component of the true forces (Fi

⊥) and the
parallel compononent of the spring forces (Fi

S∥), have been
minimized. The NEB method has, for instance, been used to
investigate graphene growth and healing of defects.46

7. PHONON DISPERSION

Besides the geometry optimization, the vibrational eigenmodes
of a crystal can be determined from the first derivative of forces
with respect to ionic displacement, that is, second derivative of
energy (Hessian matrix). The phonon band structure can be
calculated using either the small displacement method (SDM)
or a linear response function (LRF) approach.8 Within the
SDM, also called the frozen phonon technique, atoms are
slightly displaced from their stable positions in each principal
direction. The induced forces on neighboring atoms are then
used to build the corresponding dynamical matrix whose
eigenvalues and eigenstates are the phonon frequencies and
vibration modes, respectively. In the other hand, the LRF
approach computes directly the second derivatives of the
energy based on linear response of the density as described
within the DFPT.
Phonon band structure provides information about the lattice

stability with respect to collective ionic displacements. This is
illustrated in Figure 4, which compares phonon dispersion
curves for the unit cell of pristine graphene and two-face
functionalized graphene. The phonon band structures of
fluorinated graphene, whose structure is depicted in Figure
4a, reveals only positive eigen-frequencies (blue curves in
Figure 4c). Hence, the crystal is found to be locally stable. In
contrast, imaginary phonon frequencies are calculated for the
chlorinated graphene structure depicted in Figure 4b. These
eigen-frequencies (plotted as negative values in Figure 4d)
attest to the unstable character of the simulated geometry. In
this case, the interactions between the densely packed chlorine
atoms, which are only weakly bonded to graphene, are
responsible for the phonon instability. The unstable phonons
correspond to vibrations of the chlorine layers, while the modes
associated with the carbon plane are very similar to the case of
pristine graphene. H. Şahin and S. Ciraci have reported a locally
stable buckled structure of two-face chlorinated graphene that is
free of phonon instabilities.43

Vibrational modes are also very useful to guide the
interpretation of vibrational spectroscopies, including neutron
scattering experiments as well as infrared and Raman
spectroscopies, which are particularly widely used for the
characterization of carbon nanostructures.48,49

8. ELASTIC CONSTANT AND MODULI
After the calculation of forces and vibrational properties, it is
inevitable to wonder about the mechanical properties of
materials, especially for sp2 carbon derivatives, whose bond
has been suggested to render materials with the highest
strength. The calculation of the Young modulus, and of the
elastic constants involves the second derivative of the energy
with respect to strain. It is important to note that the definition
of the elastic moduli depends on the volume of the system,
which in the case of graphene nanostructures is not always
trivial. For instance, in the case of carbon nanotubes, there has
been some discrepancies on the definition of the volume of
either a solid or a hollow cylinder with different thick-
nesses.50−52 In order to be able to compare with graphene, the
convention is to take a hollow tube with a thickness equal to
the interlayer spacing in graphite.
The DFT calculated elastic constants are usually in good

agreement with experiment;53,54 however it should be
considered that the modes involving out of plane interactions
(i.e., C33 and C44) should be calculated incorporating vdW
corrections. Besides the good predictive ability that these tools
have brought for the elastic moduli of nanotubes,50,51 there has
been recent interest in studying the shear constant of graphene,
since it is involved in important aspects of its fabrication, such
as exfoliation.53,55 In this respect, recent comparisons reveal
that LDA and GGA can reproduce the experimentally
measured shear constant C44 for few layer graphene, as long
as the interlayer spacing used is obtained from calculations
accounting for vdW interactions.55

9. CHARGE TRANSFER
The electronic density computed from DFT can give
information about the nature of chemical bonds (electro-
negativity, covalency, ionicity) through the charge transfer
between atoms, that is, the way the electronic cloud is
rearranged when atoms bind with each other. However, it is not
trivial to assign electrons to a given atom of a material (or a
molecule) since charge density is a priori defined everywhere.
One of the most well-known and oldest methods is the
Mulliken population analysis.56,57 This method is not based on
the real-space representation of the electronic density but is
derived instead from the LCAO approach. The wave functions
are expanded on localized basis functions, ψα(r) = ∑μcμ

αϕμ(r),
where α is the band index and μ is the orbital index. The atomic
charge, which is the difference between the nuclear charge (Zi)
and the charge attributed to the atom i in the material, is
computed from the density matrix coefficients (ρμν =∑αnαcμ

αcν
α)

and the overlap matrix elements (Sμν = ⟨ϕμ|ϕν⟩) as

∑ ρ= −
μ ν

μν νμ
∈

Q Z Si i
i , (3)

The major drawback of this approach is the strong
dependency on the choice of the basis set possibly yielding
an unrealistic atomic charge.58 The other types of methods are
all based on real-space representation of the electronic density
(ρ(r)), such as the Hirshfeld method,58,59 the Bader
analysis,60,61 and the Voronoi deformation density
(VDD).58,62 These methods distinguish themselves by a
different spatial partitioning of ρ(r) around the atoms. In the
case of Bader analysis, the space partition is determined from
the topology of ρ(r) using its minima and its gradient. The
Hirshfeld and VDD methods are close to each other and utilize
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the deformation density, δρ(r), which is the difference between
the density of the whole system (ρ(r)) and the sum of
individual atomic densities (∑ρatom(r)). The atomic charge is
usually expressed as Qi = Zi − ∫ at.‑regionρ(r) dr.
The application of the concept of charge transfer in the

context of nanoscale carbon systems can be useful to predict,
for instance, the resulting amount of doping provided by a
given chemical functionalization. In Figure 5, the charge
transfer between graphene and different adatoms (O, Cl, or F)
is compared through the deformation density and atomic
charge values. The three considered adatoms attract electrons
(negative Qi), meaning that graphene is p-doped. However, the
efficiency of the p-doping can vary by a factor of 2 depending
on the chosen functionalizing adatom. The present results
confirm also that Hirshfeld and Voronoi methods give similar
values and that Mulliken charges tend to be overestimated with
the use of a double ζ polarized (DZP) basis set.

10. TUNNELING SPECTROSCOPIES AND
CONDUCTANCE

Nanoscale carbon systems have been intensively investigated as
potential components, either passive or active, in electronic
devices. At the relevant scales of these systems, semiclassical
transport models are no longer valid, and the quantum
mechanical wave nature of the electrons has to be taken into
consideration.
The theory of coherent quantum transport relies on

Landauer’s view of current as arising from the probability of
electrons to go from one end of the device (e.g., the left
contact) to the other (e.g., the right contact).63−65 In this
scheme, the central piece is the transmission function T(E), and
the current is given by

In this formulation, the device is spatially partitioned in three
regions: the source and drain leads, assumed to be periodic
semi-infinite, and the central region where all scattering
processes take place. The calculation of the transmission
function can be equally performed using standard scattering
theory or by means of Green’s function techniques.66,67

The quantum conductance of a pristine ANR (dotted line in
Figure 6a−e) exhibits plateaus associated with the quantized

conductance of each ballistic conduction channel. Perturba-
tions, such as topological defects, adatoms, or impurities,
introduce quasi-localized states that may scatter the carriers
incoming from the leads. Backscattering generally introduces
dips in the transmission function around the eigenenergies of
the quasi-localized states. The scattering profile of a given
perturbation strongly depends on its structural and chemical
characteristics as is illustrated in Figure 6a−f for the case of

Figure 5. Charge transfer between graphene and (a) oxygen, (b) chlorine, and (c) fluorine adatoms evaluated through the deformation density
(δρ(r)). The isosurfaces are drawn for an isovalue of ±0.004 e/Å3. Negative (positive) charge accumulation is displayed in green (blue). The atomic
charge transfers calculated with three different methods indicate that O, Cl, and F adatoms attract electrons, which renders graphene more or less p-
doped.

Figure 6. (a−e) Conductance as a function of energy for different
positions of an adatom relative to the edge as depicted in panel f. Blue
and red curves are associated with the two independent spin
orientations. (g, h) Representation of the quasi-localized states due
to the centered adatom, which are orthogonal to the low energy
transmission channel depicted in panel i. Blue and red colors are
associated with isosurfaces of opposite isovalues.
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carbon adatom in a nanoribbon. A special case arises when the
localized state (Figure 6g,h) is orthogonal to the incoming
states (see Figure 6i). In this configuration, the defect induced
localized state has no cross section with the transmission
eigenchannel. Hence, the carriers may still propagate
ballistically. This is the case when the adatom is centered on
the longitudinal axis of the ANR.41

The same Landauer methodology applies successfully to the
simulation of tunneling microscopies. In scanning-tunneling
microscopy/spectroscopy (STM/STS), a metallic tip is brought
close to the sample’s surface under low temperature and
pressure conditions. When the tip is close enough (a few
angstroms), the tunneling resistance drops and a current is
measurable. If the tip scans the surface and its height is adjusted
to maintain a constant current, information about the
topography of the surface is obtained. If the tip is held at a
constant position but the bias between the sample and the tip is
varied, information about the density of electronic states is
acquired. The tunneling current between a metallic tip and a
surface can be computed as in eq 4. The transfer matrix would
now represent the tunneling transmission from the electronic
states of the surface to the those of the tip. In the Tersoff and
Hamann approximation, the tip is considered as a perfect
metallic tip with a spherical orbital, such that the transfer matrix
and the electronic density of the tip are reduced to constants.68

Therefore, the current is proportional to the sample’s GS
electronic density integrated in a region of energy that is
correlated with the sample−tip bias in the experiment.
Figure 7 shows three examples of nitrogen incorporation in

the graphene plane. The simulated STM images of the single
substitution and the pyridinic triple substitution show the same
trigonal symmetry. Thus, depending on the experimental
conditions, the assignment of a particular defect can be far
from trivial (e.g., compare with Figure 2A of ref 69). In

contrast, the defect of Figure 7c is easier to identify with that of
Figure 4c of ref 70. Therefore, it has been stressed that an
unambiguous identification of defects should be carried out by
comparison of both STM and STS simulation and experi-
ment.71

11. CONCLUDING REMARKS

The catalog of physical properties accessible from DFT is
abundant, and many problems of materials science can be
tackled within such a framework. Beyond contributing to the
understanding of sp2 systems, simulations from first-principles
have also provided insight into the mechanical, chemical, and
electronic properties of carbon nanostructures. Hence, DFT
has been very important to the advancement of carbon science.
Yet, new properties of new forms of carbon continue to excite
the scientist’s curiosity and imagination. Therefore, the
landscape of possibilities that lies in front of sp2 carbon science
guarantees that the field will continue to use and profit from
DFT-aided experiments.
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(43) Şahin, H.; Ciraci, S. Chlorine adsorption on graphene:
Chlorographene. J. Phys. Chem. C 2012, 116, 24075−24083.
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