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In semiconductor technology, the charge carriers 
density profile governs the devices’ properties. The so-
called space charge zone is of fundamental importance 
in diodes, transistors or solar cells, and its control 
at the microscopic scale is a prerequisite to reach the 
desired properties. In graphene, a semi-metal hosting 
massless Dirac fermions [1], the density profile of a 
p–n junction plays a really peculiar role. Provided that 
electronic transport is ballistic, the ratio between the 
junction width and the Fermi wavelength governs 
the transmission and refraction properties of charge 
carriers. In particular, the relativistic Dirac fermions 
experience Klein tunneling when impinging perpend-
icularly on a p–n interface [2], which ensures them 
a perfect unitary transmission independent of the 
potential barrier height [3]. Additionally, a diverging 
flow of Dirac fermions is refocused at a p–n interface, 
similarly to photons entering a negative refraction 

index medium [4, 5], an effect denoted as Veselago 
lensing [6].

These exotic properties of graphene Dirac fermi-
ons led to a plethora of electron-optics proposals and 
realizations, such as electronic optical fibers [7–10], 
lenses [11–17] and their advanced design to create 
highly focused electron beams [18], and even the com-
bination of different optical elements to create a scan-
ning Dirac fermions microscope [19]. Aside guiding, 
the partial reflection encountered at p–n interfaces has 
been proposed in the early days of graphene to create 
Fabry–Pérot interferometers with graphene n–p–n 
junctions [20]. These interferences have since then 
been observed in monolayer [21–27] as well as mul-
tilayer graphene [28, 29]. In view of potential applica-
tions, complex n–p–n junction geometries that fully 
take advantage of these Fabry–Pérot interferences have 
already proven useful to build otherwise inaccessible 
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Abstract
With the advent of high mobility encapsulated graphene devices, new electronic components ruled 
by Dirac fermions optics have been envisioned and realized. The main building blocks of electron-
optics devices are gate-defined p–n junctions, which guide, transmit and refract graphene charge 
carriers, just like prisms and lenses in optics. The reflection and transmission are governed by the 
p–n junction smoothness, a parameter difficult to tune in conventional devices. Here we create p–n 
junctions in graphene, using the polarized tip of a scanning gate microscope, yielding Fabry–Pérot 
interference fringes in the device resistance. We control the p–n junctions smoothness using the tip-
to-graphene distance, and show increased interference contrast using smoother potential barriers. 
Extensive tight-binding simulations reveal that smooth potential barriers induce a pronounced 
quasi-confinement of Dirac fermions below the tip, yielding enhanced interference contrast. On 
the opposite, sharp barriers are excellent Dirac fermions transmitters and lead to poorly contrasted 
interferences. Our work emphasizes the importance of junction smoothness for relativistic electron 
optics devices engineering.
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graphene devices, such as reflectors [30, 31] and even 
transistors [32].

A Fabry–Pérot interferometer consists in two mir-
rors facing each other, and the transmission probabili-
ties of these mirrors govern the interference fringes 
contrast. In graphene, the mirrors are materialized 
by two p–n junctions, and their transmission proper-
ties could in principle be tuned by controlling the p–n 
junctions width. However, p–n junctions in graphene 
are most often created by means of metallic or graph-
ite gates, whose distance to the graphene plane is by 
essence fixed, so that the p–n junction width is fixed by 
the sample geometry. Here we use the polarized tip of 
a Scanning Gate Microscope (SGM) to induce a n–p–n 
junction, and take advantage of the SGM flexibility 
to control and characterize the p–n junctions width, 
independently of the potential barriers height.

Scanning gate microscopy (SGM) consists in scan-
ning an electrically polarized metallic tip, acting as a 
local gate above a device’s surface, and mapping out 
tip-induced device’s conductance changes [33]. Ini-
tially developed to investigate transport in III–V semi-
conductor heterostructures [34–37], SGM brought 
spatially-resolved insights into transport phenomena 
occurring in graphene devices, through experiments, 
simulations and their combination [38–48]. Recently, 
we demonstrated the viability of SGM to study ballistic 
transport in clean encapsulated graphene devices, and 
reported optical-like behavior of Dirac fermions using 
the tip-induced potential as a Veselago lens [49].

In the present paper, we show that the transmission 
probabilities of the p–n junctions can be controlled 
by tuning the SGM tip-to-sample distance. Analyzing 
our experimental findings in the light of tight-binding 
simulations, we show that the interferences contrast 
results from the Dirac fermions confinement effi-
ciency, which is governed by the smoothness of the p–n 
interfaces.

The studied sample is based on graphene encapsu-
lated between two 20 nm-thick hBN layers, in which a 
250 nm-wide constriction is defined by etching [50]. 
The hBN/graphene/hBN stack lies on top of a highly 
doped Si substrate covered by a 300 nm SiO2 insulat-
ing layer. This device is thermally anchored to the 
mixing chamber of a dilution refrigerator, in front 
of a cryogenic scanning probe microscope [51]. The 
device conductance G, or resistance R, is measured in 
4-contacts configuration, by driving a 1 nA current 
at a frequency of 77,7 Hz, and recording the voltage 
between two opposite contacts using standard lock-in 
technique (as sketched in figure 1(a)). All the data pre-
sented here are recorded at a temperature of 100 mK, 
but global features were found almost independent 
of temperature up to 1 K, and even a temperature of 
4 K did not noticeably change the observed behavior. 
Most of the data presented here were recorded during 
a single cooldown (except figures 1(e) and (f)), but 
this sample showed qualitatively similar behavior for 
7 cooldowns.

The biased SGM tip locally changes the carrier den-
sity n, leading to a Lorentzian evolution of n, centered 
at the tip position. When placing the tip at the center of 
the constriction, a n–p–n or p–n–p configuration can 
be reached, depending on the tip voltage Vtip and back-
gate voltage Vbg . This is illustrated in figure 1(c) show-
ing resistance as a function of Vbg  and Vtip for a tip-to 
graphene distance dtip  =  70 nm, The n–p–n region, 
located at the lower left part of figure 1(c), is decorated 
with a complex pattern of interleaved fringes, result-
ing from different types of interference phenomena. In 
the investigated geometry, one can indeed anticipate 
that, beside the tip-induced n–p–n or p–n–p junction, 
other confinements play a role and contribute to inter-
ferences in the map shown in figure 1(c), such as the 
constriction defined by etching. Fortunately, increas-
ing the tip-graphene distance to dtip  =  200 nm yields a 
clearer picture, shown in figure 1(d), with a much sim-
pler fringe pattern (most of them essentially parallel to 
the n–p–n/n-n’-n limit). The visibility of the pattern is 
also enhanced by their stronger contrast, when com-
pared to the pattern in figure 1(c). In figure 1(b), we plot 
two profiles of resistance versus Vbg , for dtip  =  70 nm 
(red curve) and dtip  =  200 nm (blue curve) where Vtip 
is adapted to reach comparable tip-induced density 
change (respectively  −13 V and  −35 V). From this 
figure, the contrast of the oscillations appears clearly 
higher for a larger dtip, and a detailed discussion of the 
origin of this contrast enhancement is one of the main 
focus of this paper.

It shall first be clarified that these oscillations cor-
respond indeed to Fabry–Pérot interferences aris-
ing inside the tip-induced n–p–n region. Figures 1(e) 
and (f) (recorded during a different cooldown) illus-
trate the sensitivity of these interference fringes to a 
perpend icular magnetic field. Figure 1(e) presents 
the interference pattern recorded by placing the tip 
above the constriction center (dtip  =  100 nm). The 
map in figure 1(e) displays the derivative of G versus 
Vbg  to highlight the interference fringes, that appear 
similar to the ones observed in figures 1(c) and (d). 
Figure 1(f) shows that they have completely disap-
peared at a perpendicular magnetic field of 800 mT. 
From their characteristic decay field, one can infer that 
these fringes can be associated with a characteristic 
length, corresponding to a few hundreds nanometer-
long cavity, compatible with the cavity formed in the 
tip induced n–p–n region, as sketched in the inset of 
figure 1(b) (see supplementary data for additional 
data and a more detailed discussion (stacks.iop.org/
TDM/7/025037/mmedia)). In addition, an accurate 
determination of the tip-induced potential and an 
analytical calculation yielding the expected resonances 
positions in this potential profile agree well with the 
observed oscillations evolution, as detailed below. All 
these considerations provide strong evidence that the 
oscillations correspond to Fabry–Pérot oscillation in 
the tip-induced n–p–n region. In the remainder of this 
paper, we will discuss these interference fringes (figures 
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1(c)–(e)) and show that their visibility depends on the 
smoothness of the p–n junction, controlled by dtip.

As a first step, one needs to precisely evaluate the 
tip-induced potential. This is done by scanning the tip 
along the red dashed line figure 2(c) while varying Vbg , 
at fixed Vtip and tip-to-graphene distance dtip (i.e. the 
same procedure described in [49]). The resulting con-
ductance map shown in figure 2(a) exhibits a resist-
ance maximum that follows a Lorentzian shape, as the 
tip crosses the center of the constriction. This shape is 
directly related to the shape of the tip-induced poten-
tial, as it corresponds to the tip-induced change in the 
energy of the charge neutrality point at the location of 
the constriction, which governs the device resistance. 
Repeating this experiment for several values of dtip, 
and adapting Vtip to keep a constant maximum den-
sity change below the tip ∆nmax, we can fit the differ-
ent density profiles under the tip influence, provided 
that the Vbg -axis is properly scaled to a density using 
the backgate lever-arm parameter (see supplementary 
data).

Considering the tip as a point charge, the 
expected tip-induced density change would write: 

∆n(x) = ∆nmax/(1 + x2/Z2
tip), where x is the hori-

zontal distance to the tip center, and Ztip is the effec-
tive tip-to-graphene distance, i.e. Ztip  =  dtip  +  a, a 
being the tip radius (a  =  50 nm). We define Rtip as 

the half-width at half-maximum (HWHM) of this 
density profile, that is in this expression given by the 
effective tip height Ztip. Note that this textbook model 
underestimates the long-range tail of the tip-induced 
density change (see supplementary data). Accurately 
modeling the tip-induced potential yields a com-
plex electrostatic problem [52–54], which is beyond 
the scope of the present paper. In turn, we model 
∆n with the following phenomenological equation: 

∆n(x) = ∆nmax/(
√

1 + 3x2/Z2
tip), where we assume 

that the HWHM Rtip is given by Ztip and is therefore 
known in the experiment, the only free parameter 
being ∆nmax. Figure 2(b) shows estimates of tip-
induced density changes, for different couples of Vtip 
and dtip leading to the same ∆nmax (see supplementary 
data and movie for details).

To study the influence of this potential extension 
on the Fabry–Pérot oscillations, we place the polar-
ized tip on top of the constriction center (point C in 
figure 2(c)), and record the resistance as a function of 
Vbg , for different tip-to-graphene distance dtip. As dtip 
is increased, we decrease Vtip (towards more negative 
values) to keep a constant value of ∆nmax, and vary 
only the smoothness of the p–n junctions through Rtip. 
The resulting resistance map is plotted in figure 2(d) 
and constitutes the main result of this study, together 
with its detailed theoretical analysis. Figures 2(e) and 

Figure 1. Fabry–Pérot interference: (a) Scheme of the experiment: a biased AFM tip is placed above an encapsulated graphene 
constriction, creating a n–p–n or p–n–p junction. (b) Constriction resistance R(Vbg) for a tip-to-graphene distance dtip  =  70 nm 
(red curve, Vtip = −13 V); and dtip  =  200 nm (blue curve, Vtip = −35 V). In both cases the tip is placed above the constriction 
center. (c) Resistance as a function of Vtip and Vbg , for dtip  =  70 nm, the tip being placed at the constriction center.(d) Resistance as a 
function of Vtip and Vbg , for dtip  =  200 nm. (e) Derivative of conductance versus Vtip and Vbg , recorded during a different cooldown 
and with a different tip, and dtip  =  100 nm. (f) Same configuration and cooldown as in (e), at a perpendicular magnetic field of 800 
mT.

2D Mater. 7 (2020) 025037
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(f) show the device resistance as a function of Vbg , for 
two extreme values of Rtip in figure 2(d). These two 
plots highlight two main features already visible in fig-
ure 2(d), i.e.:

 (i)  The maximum value of the resistance 
increases with increasing Rtip as well as the 
density for which this maximum is reached.

 (ii)  The contrast of the Fabry–Pérot interference 
evolves in a different way for the lower energy 
modes observed at low Vbg  (they decrease 
in amplitude) and the higher energy ones, 
whose amplitude increases with Rtip.

In order to understand these observations, we analyze 
the problem with two different approaches. The 
first one is analytic: we use the potential landscape 
evaluated from figures 2(a) and (b), and follow the 
approach proposed in [55]. We consider the tip 
potential as varying only along x-axis, and evaluate the 
position of the expected resonances from the simple 
equal phase condition:

2

∫ Lp

−Lp

k(x)dx = 2pπ (1)

where Lp  is the position of zero charge density along 
x-axis which depends on the bulk density nbulk, p  is a 
positive integer, and k(x) is the position-dependent 

wave-vector evaluated from n(x) provided that 

k(x) =
√

πn(x). Figure 3(a) shows a typical tip-
induced density change and the position of the first 
resonant modes. In figure 3(b), we calculate the 
expected position of the 10 first resonant modes for 
a tip potential extension of 250 nm as a function of 
nbulk and ∆nmax, and report them as dashed lines on 
top of the experimental data of figure 1(d) (where we 
have used the backgate and tip lever-arm parameters 
to convert the Vtip and Vbg  axis into carrier densities). 
There is a good qualitative correspondence between the 
evolution of the different modes and the experimental 
fringes, reinforcing the interpretation of their origin as 
Fabry-Pérot resonances inside the tip-induced n–p–n 
region. Using n(x) measured for the different couples 
of dtip and Vtip, displayed in figure 2(b), we also plot in 
figure 3(c) the evolution of the first 15 modes in the 
(nbulk,Rtip) plane, and find that they fall nicely on top 
of the experimental data of figure 2(d), rescaling the 
vertical axis Vbg  to a density and the horizontal axes dtip 
and Vtip to the tip potential extension Rtip.

To go one step further in the understanding of the 
experimental fringes, we perform tight-binding simu-
lations, using a home-made recursive Green func-
tions code [56]. We study a simple graphene ribbon, 
to which we apply a potential of variable extension Lpot 
along transport direction, (see inset of figure 3(g)), 
with a smoothness governed by the exponent σ:

Figure 2. Controlling the junction smoothness: (a) Resistance as a function of tip position along the red dashed line in figure (c) 
(xtip  =  0 being the center of the constriction), and Vbg . dtip  =  70 nm, Vtip = −15 V. (b) Estimates of the tip-induced density change 
as a function of horizontal distance to the tip position (x), for different couples of dtip and Vtip, chosen to keep the maximum 
density change ∆nmax = 7, 5 × 1011cm−2 while changing the potential extension Rtip. (c) AFM image of the device. Red dashed line 
represents the line scan used to evaluate the tip potential in (a) and (b). (d) Resistance as a function of Vbg  and dtip (lower axis) and 
Vtip (upper axis). The tip is placed at the constriction center, both dtip and Vtip are varied to keep a constant ∆nmax  =  7, 5 × 1011cm−2 
while varying Rtip. (e) and (f): Resistance as a function of Vbg  for two different couples of dtip and Vtip, extracted from the colorplot in 
figure (d). (e) dtip  =  80 nm and Vtip = −18 V. (f) dtip  =  305 nm and Vtip = −67 V.

2D Mater. 7 (2020) 025037
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V(x) =
Vmax

1 + (x/Lpot)σ
. (2)

The ribbon width is fixed to 800 nm to avoid 
undesirable effects of transverse quantization (Fabry–
Pérot resonances are insensitive to the ribbon width). 
We first consider a Lorentzian potential with σ  =  2, 
and calculate the ribbon resistance as a function of 
bulk density nbulk (i.e. the charge carrier density in the 
p region) and potential extension Lpot, while keeping a 
fixed value of ∆nmax  =  7, 5 × 1011cm−2. The result is 
plotted in figure 3(d). First of all, the average resistance 
increases with the tip potential extension, which 
appears consistent with the experiment. This fact 
can be explained by Klein tunneling, which becomes 
less efficient and more angle selective with smoother 
junctions. It shall also be noted that the first resistance 
maximum (cyan dotted line on figure 3(d)) is not 
obtained for nbulk  =  −∆nmax  (green dotted line). This 
is clarified in figure 3(e), where we plot the local density 
of states (LDOS) in the graphene ribbon integrated 
over the transverse direction, as a function of nbulk, 
aside with the resistance as a function of bulk density 
(figure 3(g)), for a potential extension Lpot  =  75 nm. 
There is indeed a clear offset between the bulk density 
corresponding to the maximum of the tip-induced 
potential in figure 3(e) (indicated by a green dotted 
line) and the resistance maximum in figure 3(g) 
(indicated by a cyan dotted line). The resistance 
maximum is rather reached for a density nbulk yielding 
a minimum LDOS at the barrier center.

Figures 3(f) and (h) present the same analysis for 
a larger potential extension. In this case, the bulk den-
sities corresponding to ∆nmax (in green) and to the 
minimum LDOS (in cyan) are closer to each other, but 
still do not match. The respective evolution of these 
two densities with the potential extension can be fol-
lowed figure 3(d), as the spacing between the green and 
cyan dotted lines, and is in good agreement with the 
evolution of the resistance maximum observed in the 
experiment, as visible in figures 2(d) and (c).

A second interesting feature well captured by this 
toy model is the evolution of the first resonant mode 
energy, visible as the first resistance minimum indi-
cated by purple dashed lines in figures 3(e)–(h), which 
follows roughly the same average evolution as the 
resistance maximum. This first Fabry–Pérot mode 
energy is reminiscent of the confinement energy due 
to the potential well created by the tip. In quantum 
mechanics, a famous textbook problem consists in 
finding the zero-point energy of a ‘particle-in-a-box’, 
i.e. trapped in an infinite square potential of length L. 
The zero-point energy in the latter case emerges as a 
consequence of Heisenberg uncertainty principle, and 
increases with decreasing L (as L−2 for massive parti-
cles and L−1 for massless Dirac fermions [57]). This 
distance of the first mode to the maximum of the tip 
potential is also clearly dependent on Rtip in the experi-
ment, as visible ine figures 2(d) and (c). It provides a 
nice illustration of this textbook problem, poorly 
explored in the case of Dirac fermions due to the inher-
ent difficulty to confine them.

Figure 3. Modeling the experiment: (a) Example of tip-induced density change, and corresponding resonant modes energies 
calculated from equation (1). (b) Position of the 10 first modes as a function of ∆nmax and nbulk, for Rtip  =  250 nm, calculated from 
equation (1) and superimposed with the experimental data of figure 1(d). (c) 1D analytical model of the position of Fabry–Pérot 
modes calculated from equation (1), with ∆nmax  =  7, 5 × 1015m−2. Dashed lines represent the bulk density corresponding to the 
15 first resonances as a function of the potential extension Rtip, superimposed with the experimental data of figure 2(d). (d) Tight-
binding model: simulated resistance as a function of the potential extension Lpot and bulk density nbulk, calculated for a graphene 
ribbon. (e) LDOS as a function of energy and x position along the ribbon, showing the different resonances due to FP interferences, 
for a potential extension Lpot  =  75 nm. Red line indicates the zero-density position. (f) Same calculation for Lpot  =  225 nm. (g) 
Calculated resistance as a function of nbulk for the same potential as in (e). Inset: schematics of the tight-binding system. (h) 
Calculated resistance as a function of nbulk for the same potential as in (f).

2D Mater. 7 (2020) 025037
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Discrepancies are however visible between results 
from this ideal ribbon model and experimental data. 
First of all, additional resonances are present in the 
experiment. They could result from the transverse 
quantization inherent to the narrow constriction, 
intentionally suppressed in the tight-binding model by 
simulating a wide ribbon. These additional resonances 
could also arise from disorder, and the finite distance 
between the contacts and the constriction, that could 
lead to other Fabry–Pérot cavities. Secondly, the high 
resistance at low bulk density in the model is not pre-
sent in the experiment. This can easily be understood 
as due to the experimentally measured finite resistance 
at the Dirac point, inherent to residual electron-hole 
puddles at low densities, whereas the tight-binding 
calcul ation in a homogeneous graphene ribbon pre-
dicts a much larger resistance of the bulk (and leads) 
close to the Dirac point. Both effects prevent the direct 
quantitative comparison of the interferences contrast 
in the experiment and the model presented in figure 3.

To better understand the influence of the tip poten-
tial extension, we perform additional tight-binding 
simulations and vary the potential steepness by chang-
ing the decay exponent σ in equation (2). We first 
calculate the resistance of the ribbon as a function of 
bulk density and decay exponent, and plot the result 
in figure 4(a). For three different decay exponents 
(σ  =  2,6,20) we extract the resistance as a function 
of nbulk and plot the result in figure 4(b). These two 

 figures evidence that the potential smoothness is a 
key ingredient, that governs the Fabry–Pérot interfer-
ence contrast. Indeed, the relativistic nature of gra-
phene charge carriers makes sharp potential barriers 
highly transparent due to Klein tunneling. As a con-
sequence, the Fabry-Pérot resonances in the LDOS 
are rather large and overlap (see figure 4(c)), owing to 
their hybridization with the Dirac continuum of the 
bulk. This weak confinement yields poorly contrasted 
Fabry–Pérot oscillations in the total resistance (red 
curve figure 4(b)). In contrast, a smooth p–n junc-
tion (on the Fermi wavelength scale) is a poor Dirac 
fermions transmitter, so that two facing smooth p–n 
junctions can be used to confine Dirac fermions in a 
more efficient way. This can be seen figure 4(d), where 
the LDOS in the case of a smooth n–p–n junction is 
plotted, and exhibits well defined resonant modes, giv-
ing rise to pronounced Fabry–Pérot oscillations in the 
resistance (blue curve figure 4(b)).

The confinement of Dirac fermions in p–n nano-
islands and the resulting LDOS resonances have 
recently been explored in a set of beautiful scan-
ning tunneling microscopy experiments [58–61]. In 
this SGM experiment, with a fixed tip at the center 
of the constriction, we cannot reveal the rich inter-
nal LDOS structure of the tip-induced circular p–n 
island, including e.g. whispering gallery modes [59]. 
However, it allows to probe transport through such 
an island and reveals the strength of LDOS resonances 

Figure 4. Role of potential barriers smoothness: (a) Tight-binding simulation of the Fabry–Pérot interference fringes evolution: 
resistance of a ribbon as a function of nbulk and potential smoothness σ, with fixed ∆nmax  =  7, 5 × 1011cm−2 and extension 
Lpot  =  100 nm. (b) Profiles extracted from the dashed lines in figure (a), corresponding to different decay exponent σ from 
Lorentzian profile (blue, σ = 2) to abrupt step (red, σ = 20). (c) Calculated LDOS for σ = 20 corresponding to the red resistance 
curve in figure (b). (d) Calculated LDOS for σ = 2, corresponding to the blue resistance curve in figure (b).

2D Mater. 7 (2020) 025037
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through Fabry–Pérot oscillations in the device resist-
ance. Tight-binding simulations explicitly confirm 
that the interference contrast is related to the LDOS 
resonances strength, themselves governed by the p–n 
junction smoothness, which can be easily tuned in 
SGM, as demonstrated here.

In conclusion, we defined a n–p–n junction in a 
high mobility graphene sample using the polarized 
tip of a scanning gate microscope. Oscillating patterns 
are observed in transport through the n–p–n junction 
that can be attributed to Fabry–Pérot interferences. By 
simultaneously varying the tip-to-graphene distance 
and tip voltage, one can control and characterize the 
p–n junctions smoothness. In turn, this allowed to 
show that smoother p–n junctions induce a larger con-
trast of the interference fringes. Using tight-binding 
simulations, we studied the influence of the p–n junc-
tions smoothness on the LDOS resonances, resulting 
from the quasi-confinement of Dirac fermions within 
the tip-induced potential. These LDOS resonances 
amplitude can be explicitly linked to the visibility of 
the Fabry–Pérot oscillations. In the quest towards ever 
reduced graphene devices size, gates are often placed 
as close as possible to the graphene plane. The present 
study recalls that the gate dielectric thickness governs 
the p–n junction smoothness, which strongly influ-
ences the visibility of interferences. It then governs 
the efficiency of devices based on electron-optics con-
cepts. This underlines that these distances have to be 
cleverly adjusted in the conception of relativistic elec-
tron optics devices.
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