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ABSTRACT: Graphene grown by chemical vapor deposition
(CVD) is the most promising material for industrial-scale
applications based on graphene monolayers. It also holds
promise for spintronics; despite being polycrystalline, spin
transport in CVD graphene has been measured over lengths
up to 30 μm, which is on par with the best measurements
made in single-crystal graphene. These results suggest that
grain boundaries (GBs) in CVD graphene, while impeding
charge transport, may have little effect on spin transport.
However, to date very little is known about the true impact of
disordered networks of GBs on spin relaxation. Here, by using
first-principles simulations, we derive an effective tight-binding model of graphene GBs in the presence of spin−orbit coupling
(SOC), which we then use to evaluate spin transport in realistic morphologies of polycrystalline graphene. The spin diffusion
length is found to be independent of the grain size, and it is determined only by the strength of the substrate-induced SOC. This
result is consistent with the D’yakonov−Perel’ mechanism of spin relaxation in the diffusive regime, but we find that it also
holds in the presence of quantum interference. These results clarify the role played by GBs and demonstrate that the average
grain size does not dictate the upper limit for spin transport in CVD-grown graphene, a result of fundamental importance for
optimizing large-scale graphene-based spintronic devices.
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The growth of graphene via chemical vapor deposition
(CVD) is the most promising approach for realizing

industrial-scale applications of this material.1,2 One drawback
of CVD-grown graphene is that it tends to be polycrystalline,
with misoriented single-crystal domains separated by grain
boundaries (GBs) consisting of arrays of five-, seven-, and
occasionally eight-member carbon rings. In some specific cases
the GBs can be characterized by a given periodicity, but more
generally they tend to be complex meandering arrangements of
these nonhexagonal rings.3,4 Charge transport and scanning
tunneling measurements have revealed that graphene GBs
serve as a significant source of charge scattering, leading to
enhanced resistance5,6 and localization effects.5,7,8 Only when
the graphene grains become larger than 1−10 μm do the GBs
cease to dominate the charge transport in CVD graphene.9

Graphene also has clear advantages for spintronic
applications, owing to its low intrinsic spin−orbit coupling
(SOC).10−12 Combined with its high electron mobility, this
can lead to spin diffusion lengths as long as 30 μm in clean
exfoliated graphene-based devices (with mobility up to several
10 000 cm2/(V s)).13 Intriguingly, spin diffusion lengths as
long as 10 μm and spin currents measurable over channel
lengths of 30 μm have also been reported in disordered CVD
graphene with much lower charge mobility.14,15 These
measurements can be explained in two different ways: either
none or very few GBs were present in the measured devices or
GBs in CVD graphene, while impeding charge transport, have

little effect on spin transport and relaxation. Although the
former hypothesis remains plausible, the lack of a theoretical
foundation concerning spin transport in the presence of
disordered networks of GBs leaves the second hypothesis open
as a possibility, which could have profound consequences for
the optimization of graphene-based spintronic devices.
Here we use numerical simulations to study the impact of

GBs on spin transport in polycrystalline graphene. We first
develop an effective tight-binding (TB) model of polycrystal-
line graphene in the presence of intrinsic and substrate-induced
SOC, which is derived from extensive first-principles
calculations. The model is based on simulations of a variety
of carbon-based haeckelites and is found to be general and
transferable to the complex morphologies of graphene GBs.
We then use this model to perform spin transport simulations
in realistic models of polycrystalline graphene, using an
efficient linear-scaling methodology that gives direct access to
spin relaxation and propagation. Our simulations reveal that
the spin diffusion length in polycrystalline graphene is
independent of grain size and depends only on the strength
of the substrate-induced SOC. This result is fully consistent
with the D’yakonov−Perel’ mechanism of spin relaxation in the
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diffusive regime, but here it is also shown to be robust to the
contributions of quantum interference induced by disorder.
These findings indicate that in the presence of SOC the
graphene GBs serve as scatterers of charge, but they do not
play a direct role in spin relaxation. In other words, our results
suggest that grain size is not a limiting factor for spin transport
in CVD-grown graphene, a result of genuine relevance for the
future optimization of graphene-based spin devices and
architectures in the context of memory or spin logic
technologies.
We first develop an effective TB model for the description of

itinerant electrons in polycrystalline graphene, which is derived
from fitting to first-principles simulations. The model includes
the impact of electrostatic barriers and atomic disorder present
at GBs, and explicitly accounts for both intrinsic and extrinsic
SOC. The first-principles simulations were carried out with the
all-electron FP-LAPW method as implemented in the Elk code
(http://elk.sourceforge.net/). The self-consistent calculations
with SOC have been carried out within the LDA
approximation with a muffin tin radius of 1.316 Bohr for
carbon atoms and an APW cutoff of 5.32 Bohr−1. A 33 × 33 k-
point mesh was used to sample the first Brillouin zone of
pristine graphene, and equivalent k-point densities were used
for the supercell calculations.
The starting point of our one-orbital TB model is the now

well-known functional form of the second-nearest-neighbor
hopping Hamiltonian of graphene. The Hamiltonian can be
conveniently decomposed into a kinetic operator and a SOC
operator,

̂ = ̂ + ̂
kin SOC (1)
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where cîσ
† (cîσ) is the creation (annihilation) operator for the pz

orbital with spin σ at lattice site i, s is the spin Pauli matrix, E is
the external electric field, dij is the unit vector pointing from
site j to i and νij is +1 (−1) for clockwise (counterclockwise)
hopping paths from site j to i. Single (double) brackets stand
for summation over the nearest (second-nearest) neighboring
lattice sites. In our model, we assume an exponential
dependence of the t1 and t2 hopping parameters with respect
to the intersite distance,

= =β β− − − −t t e t t eando r a o r b
1 1

( )
2 2

( )1 2 (4)

Here, a (b) is the equilibrium distance between the first
(second) nearest atomic sites in graphene at equilibrium (a =
1.42 Å, = =b a3 2.46 Å). The third term is the intrinsic
SOC operator, which connects second nearest neighbor sites,
and the last term is the extrinsic (Rashba) SOC operator,
which arises from an external perpendicular electric field E.16

This electric field can be directly applied via a gate voltage, or
it can be an effective field that arises from placing graphene on
a substrate. The Rashba term connects nearest neighbor sites
and linearly depends on the strength of the perpendicular
electric field. The hopping integrals t1 and t2, as well as the

parameters β1 and β2 ruling their distance dependence, were
fitted together with the SOC parameters λI and λR with respect
to first-principles band structure calculations of graphene at
equilibrium and under isotropic strains up to 20%. As our focus
is on the transport properties of low-energy itinerant electrons,
the fitting has been limited to the [ − 1,1] eV energy window
around the Fermi level. The optimized parameters are given in
Table 1. The radial dependence of the hopping integral is

shown in Figure 1a. The perfect agreement of the model with
reference band structure calculations is illustrated in Figure 1,
parts b and c.
To account for the crystallographic disorder introduced by

dislocations at GBs, the TB model is enriched by introducing
topology-dependent renormalization factors. Within a simple
ball-and-stick model, any sp2 lattice can be mapped to a tiling
of the plane by polygons, where each site is the shared apex of
three polygons. In our case, it can be three hexagons as in
graphene, or any combination of pentagons, hexagons and
heptagons due to the presence of disclinations in the lattice.
For the purpose of our model, we denote i as the geometric
environment of a given site i. i can be any set of three
elements out of the ensemble of considered carbon polygons

= { }5, 6, 7 . Similarly, ij are defined as the local environ-
ment of a pair of neighboring sites i and j. If the sites are first
nearest neighbors, the vector joining i and j is the shared edge
of two polygons and ij can be any combination of two
elements of the ensemble . If the sites are second nearest
neighbors, the vector joining the sites is inscribed within a
polygon and ij is reduced to a single element of . Finally, an
extra term is added to the on-site energy of the Hamiltonian,
which describes the local redistribution of charge around
pentagon and heptagon carbon rings,

∑ ∑̃ = ̂ ϵ ̂ ϵ = Δϵσ σ
†

∈{ }

c c with
i

i i i i
m

m
loc
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This term is crucial for the description of the resonance peaks
introduced by GBs in the low-energy electronic spectrum. It
also enables a geometry-dependent electrostatic alignment of
the GBs with respect to the graphene grains. Note that without
loss of generality we can impose the constraint Δϵ6 = 0, which
conveniently defines the reference energy as the charge
neutrality point of pristine graphene.
To account for the local variation of aromaticity and energy-

momentum dispersion relation in the presence of GBs, the
kinetic operator is also renormalized,
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⟨ ⟩

†

⟨⟨ ⟩⟩

†c t c c t c
i j

i ij j
i j

i ij jkin
,

1
,

2
(6)

with

Table 1. Tight-Binding Parameters for Pristine Graphene
Obtained from Fits to First-Principles Calculations, As
Illustrated in Figure 1a−c

t1
o (eV) β1 t2

o (eV) β2 λI (μeV)

λR
μ( )eV

V / nm

−2.414 1.847 −0.168 3.077 13.437 3.383

Nano Letters Letter

DOI: 10.1021/acs.nanolett.9b03112
Nano Lett. 2019, 19, 7418−7426

7419

http://elk.sourceforge.net/
http://dx.doi.org/10.1021/acs.nanolett.9b03112


∏

∏

= · + Δ

= · + Δ

ϵ{ }

ϵ{ }

t t t

t t t

(1 ),

(1 ).

ij
m

m

ij
m

m

1 1 1

2 2 2

ij

ij (7)

We impose Δt16 = Δt26 = 0 in order to preserve the energy-
momentum dispersion relation of pristine graphene. The full
Hamiltonian of our model now reads

̃ = ̃ + ̃ + ̃
loc kin SOC (8)

The additional parameters of our topological model, {Δϵ5,
Δϵ7, Δt15, Δt17, Δt25, Δt27}, have been fitted against a set of first-
principles band structures corresponding to periodic carbon
sp2 systems containing five-, six-, and seven-membered rings.
The structures used for the fitting of our model, known as
haeckelites,17 are illustrated in Figure 1f−j. These haeckelite
structures have been created via the incorporation of
disclinations into 2 × 2 and 3 × 3 graphene supercells. The
considered geometries have been fully relaxed with respect to
both atomic and cell degrees of freedom. The topological
parameters obtained by fitting the low-energy band structures
are given in Table 2.
We note that the renormalization of the nearest neighbor

hopping integral is very weak. This directly reflects the sp2

character of the fitting set, and additional benchmarks revealed

that these renormalization factors contribute only marginally to
the improved description of sp2 carbon structures. The main
contribution to the success of the model comes from the
geometry-dependent renormalization of the onsite energies.
Parts d and e of Figure 1 illustrate the improved description of
itinerant electrons due to the renormalization. While Δϵ5 and
Δϵ7 improve the description of the low-energy bands of the
haeckelite structures, as shown in Figure 1d, they are also
instrumental in obtaining a qualitative and quantitative
description of the spin splitting induced by SOC in the
presence of a transverse electric field, as shown in Figure 1e.
While this model has been developed based on simulations

of haeckelite structures, it must also be transferrable and
applicable to the variety of GB structures that can be present in
polycrystalline graphene. We therefore test our model on two
prototypical GBs, associated with the (2,1)|(1,2) and (5,0)|
(3,3) interfaces. These correspond to a conducting type I GB
and a type II GB with a transport gap, respectively, as classified

Figure 1. One-orbital topological TB model. Gold curves and dots correspond to first-principles results, blue curves are obtained within our
topological TB model, and dashed green curves are obtained within the pristine TB model of graphene before topological renormalization. (a)
Radial dependence of the hopping integrals considered in our one-orbital TB model. The green (purple) curve corresponds to the hopping
between first (second) nearest neighbor lattice sites. (b) Low-energy band structure of graphene at equilibrium (left panel) and under 20%
isotropic strain (right panel). (c) Band structure of graphene around the tip of the Dirac cones in the presence of SOC. The left panel shows the
case with only intrinsic SOC, while the next three panels are for increasing transversal electric field (E = 1, 2.5, and 4.1 V/nm from left to right). (d)
Low-energy band structure of the H5,6,7 periodic haeckelite structure. (e) Spin splitting of the two metallic bands of the H5,6,7 periodic haeckelite
structure under a transverse electric field of 4V/nm. (f−j) Ball-and-stick representation of the five haeckelite structures included in our fitting set.
Colors have been added to represent the tiling of the plane by pentagons (red), hexagons (orange) and heptagons (blue). According to the
literature,17 the structure represented in part f is named H5,6,7.

Table 2. Tight-Binding Parameters Describing the
Renormalization of Charge Doping and Energy Dispersion
at Graphene GBs, Obtained from First-Principles
Simulations of Carbon Haeckelite Structures, As Illustrated
in Figure 1d−j

Δϵ5 (eV) Δϵ7 (eV) Δt15 Δt17 Δt25 Δt27

0.4988 −0.497 0.0005 0.0414 −0.04 −0.4095
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by Yazyev.18 The optimized geometries as well as the
computed band structures and the spin splitting of the low-
energy bands are shown in Figure 2. As the computational cells
are larger in these cases, we turned to numerical atomic
orbitals (NAOs) to compute the reference band structures.
The self-consistent calculations have been performed with

the OpenMX package,19−21 relying on a double-ζ polarized

basis set for the expansion of the eigenstates. The first Brillouin
zones of the (2,1)|(1,2) and (5,0)|(3,3) GBs were sampled
with k-point grids of 16 × 3 and 8 × 3, respectively. As shown
in Figure 2, the topological model enables an accurate
description of the electronic structure of the two prototypical
GBs. Additionally, the renormalization is crucial for obtaining a
qualitative and a quantitative description of the SOC-induced

Figure 2. Electronic structure of prototypical periodic GBs. Ball-and-stick representations of the (2,1)|(1,2) and (5,0)|(3,3) GBs are shown in
panels a and d, respectively. Colors have been added to visualize the pentagons (red) and heptagons (blue). Yellow and green are used to depict the
hexagonal carbon rings of the two separate graphene domains. (b) Low-energy band structure of the (2,1)|(1,2) GB. (c) Spin splitting of the two
metallic bands of the (2,1)|(1,2) GB under a transverse electric field of 4 V/nm, with linear (upper panel) and logarithmic (lower panel) vertical
axis scale. Panels e and f are the same as panels b and c for the (5,0)|(3,3) GB. Gold curves are first-principles results, blue curves are the
renormalized TB model, and dashed green curves are the TB model of pristine graphene without renormalization due to GBs.
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spin splitting of the low-energy bands, as the TB model of
pristine graphene (eq 1) underestimates this splitting by orders
of magnitude (see the dashed green curves in Figure 2c,f).
Finally, we note that our model does not capture the effect of
vacancies or imperfect bonding configurations, both of which
may be present in CVD-grown graphene. However, these
account for only ∼0.1% of the atoms in our MD-generated
polycrystalline samples, and thus we do not expect them to
have a significant impact on our results. Furthermore, progress
in fabrication techniques now allows for very clean large-area
polycrystalline graphene that is free from cracks and other
strong lattice imperfections.2

With an accurate TB model in hand, we now turn to
simulations of charge and spin transport in polycrystalline
graphene. The polycrystalline samples have been created via
molecular dynamics simulations that mimic the CVD growth
process.22,23 We use three samples that were previously used in
ref 23, with average grain diameters of 14.8, 20.9, and 29.7 nm.
For this study we have also created two additional samples
with average grain diameters of 14.9 and 21 nm. The 20.9 nm
sample is shown in Figure 3a, where the magenta regions are
the pristine graphene grains and the black areas depict the
nonhexagonal rings in the structure. The inset is a zoom-in of
one graphene GB, showing a disordered array of pentagons
and heptagons between two misoriented grains.
To study charge and spin transport in the polycrystalline

samples, we employ a real-space wave packet propagation
method that has been used to study charge and spin transport
in a wide variety of disordered systems.24−26 At time t = 0, we
define

∑ψ| ⟩ = | ⟩ξ

=N
n(0)

1
e

n

N
i

1

n

(9)

where ξn ∈ [0,2π) is a random phase associated with each
atomic site |n⟩ in the polycrystalline sample, |n⟩ is an N × 1
vector with a 1 at row n and zeros elsewhere, and N is the total
number of atoms in the sample. This random phase state is
then spin-polarized along the z-axis according to
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where N is the N × N identity matrix. We let this wave packet
evolve in time and we calculate its mean square displacement
ΔX2(EF, t) and its out-of-plane spin polarization sz(EF, t) as a
function of Fermi energy and time,
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where |ψ↑
X(t)⟩ = [X̂, Û(t)] | ψ↑(0)⟩, X̂ is the position operator,

̂ = − ̃ ℏU t t( ) exp( / ) is the time evolution operator, |ψ↑(t)⟩ =
Û(t) | ψ↑(0)⟩, and σz is the Pauli matrix for spin along the z-
axis. The time evolution operator and the energy projection
operator δ − ̃E( )F are both expanded in a numerically
efficient way using Chebyshev polynomials. From the mean
square displacement, we calculate the diffusion coefficient D,

the electrical conductivity σ, and the momentum relaxation
time τp,

= ΔD E t
t
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2
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d
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where ρ ψ δ ψ= ⟨ | − ̃ | ⟩↑ ↑E E( ) 2 (0) ( ) (0)F F is the density of
states, vF is the Fermi velocity of graphene, and

= { }D E D E t( ) max ( , )
t

max F F .

We simulated charge and spin transport in the five different
polycrystalline samples mentioned above, using both the

Figure 3. (a) Structure of the polycrystalline graphene sample with
20.9 nm average grain diameter. The inset shows a zoom-in of one of
the graphene GBs. (b) Time-dependent conductivity for a Rashba
SOC strength λR|E| = 100 μeV at EF = 0.2 eV, corresponding to a
carrier density of n ≈ 5 × 1012 cm−2. The inset shows the conductivity
as a function of propagation length. The blue solid line is the
numerical result, and the red dashed line is obtained from weak
localization theory. (c) Corresponding out-of-plane spin polarization.
The solid line is the numerical result, and the dashed line is the
expected decay assuming DP spin relaxation in the diffusive regime of
transport.
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pristine graphene TB model of eq 1 and the renormalized GB
model of eq 8, for Rashba SOC strengths of λR|E| = 12.5, 25,
50, and 100 μeV and 1 meV. The values in the lower μeV
range are typical of those seen in graphene on SiO2 or hBN
substrates,27 while the range [100 μeV, 1 meV] corresponds to
what is seen when graphene is placed in contact with a
transition metal dichalcogenide or a topological insulator.28,29

Typical results are shown in parts b and c of Figure 3 for the
20.9 nm sample with the full GB model, λR|E| = 100 μeV, and
EF = 0.2 eV, corresponding to a carrier density of n ≈ 5 × 1012

cm−2. Figure 3b shows the electrical conductivity σ as a
function of time. At short times σ increases linearly, indicative
of the ballistic regime of transport, and saturates to a maximum
value as scattering off the GBs forces transport into the
diffusive regime. At longer times, quantum interference leads
to localized behavior, as indicated by the decay of σ with time.
In the inset, we plot σ as a function of the propagation length

≡ ΔL X2 2 . The blue solid line shows the numerical results
and the red dashed line is the decay expected from weak
localization (WL) theory,30 σ(L) = σsc − (G0/π) ln (L/le),
where σ σ= { }tmax ( )

t
sc is the semiclassical conductivity, G0 =

2e2/h is the quantum of conductance, and le = τpvF is the mean
free path. The reasonable agreement of WL theory to the
numerical results, without any fitting parameters, indicates that
at longer times the charge transport in the polycrystalline
samples is in the weakly localized regime. This trend appears to
break down for L > 200 nm, which could be due to periodicity
effects, as the size of the periodic polycrystalline sample is 180
× 180 nm.
The solid line in Figure 3c shows that the out-of-plane spin

polarization sz decays with time, indicating spin relaxation
induced by scattering off the graphene GBs. The dashed line
shows the expected decay assuming the D’yakonov−Perel’
(DP) mechanism,31 which is typically the dominant mecha-
nism of spin relaxation in two-dimensional electron systems
with Rashba SOC.32 This decay is given by sz(t) = exp(− t/τs),
where τs = 1/(ΩR

2τp) is the spin lifetime, ΩR = 2λR|E|/ℏ is the
spin precession frequency, and τp is determined numerically
from eq 15. At short times, the decay of sz follows the DP
relation, but at longer times, there is a clear slowing down of
spin relaxation. This coincides with the onset of localization,
the result being that one cannot define a unique spin lifetime in
this system.
To obtain a global picture of spin transport and relaxation in

polycrystalline graphene, in Figure 4 we plot all our simulation
results. Figure 4 shows the conductivity as a function of time,
where the dashed lines are for the pristine graphene TB model
of eq 1 and the solid lines are for the renormalized GB model
of eq 8. Comparing the solid and dashed lines reveals that the
redistribution of the charge around the GBs leads to enhanced
scattering, reducing τp by an average of ∼10%. Despite these
differences in scattering strength, localization is clearly present
in all cases. For each sample the six curves corresponding to
different values of λR|E| lie nearly on top of each other, as the
presence of SOC does not significantly affect the charge
transport.
Figure 4b shows the out-of-plane spin polarization sz as a

function of time. In this figure a few trends can be observed.
First, the rate of spin relaxation increases with Rashba SOC
strength and with grain size (and thus with τp), which is
qualitatively similar to the behavior expected from DP spin
relaxation. Second, the spin relaxation is faster for the pristine

graphene model compared to the full GB model. This is also
consistent with DP theory, as weaker scattering leads to faster
spin relaxation. However, as discussed above, the rate of spin
relaxation is not constant and in no case is it possible to
identify a unique spin lifetime in any of the simulated systems.
However, it is possible to define a unique spin transport

length in these polycrystalline graphene systems. The theory of
DP spin relaxation was developed for transport in the diffusive
regime, and in this regime the mean square displacement of
charge carriers grows linearly in time, ΔX2 = 2Dt. Using the
definition of τp in eq 15 and plugging both into the theory of
DP spin relaxation gives the spin polarization versus the
propagation length

i

k

jjjjjjj
i
k
jjjjj

y
{
zzzzz

y

{

zzzzzzz= −Δ ·
Ω

s L X
v

( ) expz
R

F

2
2

(16)

Figure 4. (a) Time-dependent conductivity for all simulations run in
this work. Each set of colors corresponds to increasing grain sizes of
14.8, 14.9, 20.9, 21, and 29.7 nm. The dashed lines are for the pristine
graphene TB model of eq 1 and solid lines are for the renormalized
GB model of eq 8. (b) Time-dependent spin polarization for all
simulations, where each color corresponds to increasing Rashba SOC
strength of λR|E| = 12.5, 25, 50, and 100 μeV and 1 meV. The dashed/
solid lines have the same meaning as in panel a. (c) Spin polarization
as a function of mean square displacement. Each color corresponds to
a different Rashba SOC strength. Open squares (crosses) are
numerical results for the pristine (renormalized GB) model of
graphene. Solid lines correspond to eq 16, and dashed lines include
the effect of Elliott−Yafet spin relaxation. The inset is a zoom to
better show the case of λR|E| = 1 meV.
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This expression indicates that the spin propagation is
independent of disorder. This is a well-known consequence
of DP spin relaxation and can be rationalized as follows.32 In
the diffusive regime of transport the spin diffusion length is
defined as τ≡L D . Because D ∝ τp and τs ∝ 1/τp, we have
a disorder-independent spin diffusion length Ls = vF/ΩR.
Our simulations are well-described by this scaling behavior,

as shown in Figure 4, where the spin polarization sz is plotted
as a function of the mean square displacement ΔX2. The
symbols are the numerical results, and one can see that they all
collapse into a single universal decay that depends only on the
strength of the Rashba SOC. The solid lines correspond to eq
16, indicating that in our simulations the spin relaxation is
dominated entirely by the DP mechanism, including for longer
times when weak localization is prevalent.
To summarize, we have used first-principles calculations to

derive a tight-binding model for graphene that includes grain
boundaries in the presence of spin−orbit coupling. We found
that both the electronic and the spin properties of the GBs are
captured by accounting for the redistribution of charge around
the pentagons and heptagons that lie at the interface between
misoriented graphene grains. We then used this model to study
charge and spin transport in realistic models of polycrystalline
graphene. In the presence of Rashba and intrinsic SOC, we
found that spin relaxation is determined entirely by the
D’yakonov−Perel’ mechanism. Within this mechanism the spin
diffusion length is independent of disorder and depends only
on the strength of the Rashba SOC. Our numerical simulations
confirm this behavior, both in the diffusive and in the weakly
localized regimes of transport.
One interesting result of our simulations is that the disorder-

independence of the spin diffusion length extends to the
weakly localized regime of transport. This effect has been
studied analytically, and it was found that in the presence of
weak localization the diffusion coefficient and the spin
relaxation rate are both renormalized by the same factor,
meaning that τ≡L D remains constant.33 It has also been
suggested that the independence of Lb on disorder should
extend to the strongly localized or insulating regime of
transport.34 Our simulations are a direct confirmation of the
universality of Ls in the diffusive and weakly localized regimes,
but further numerical simulations with stronger disorder would
be needed to confirm this behavior in the insulating regime.
In addition to the DP mechanism, it has been predicted that

in the presence of Rashba SOC the out-of-plane spin can also
be relaxed by the Elliott−Yafet (EY) mechanism.35 In this
mechanism each scattering event has a finite probability to flip
the spin, and the spin lifetime is given by τs = (EF/(2λR|E|))

2τp.
The dashed lines in Figure 4 show the expected spin relaxation
in the presence of both DP and EY mechanisms assuming τp =
6.5 fs, corresponding to the average τp of the polycrystalline
samples. This clearly gives a faster spin relaxation than the
numerical results, indicating the EY spin relaxation is either
nonexistent in our simulations or much weaker than predicted.
In the original prediction of EY spin relaxation in graphene, the
quadratic scaling of τs with EF was a consequence of the Dirac-
like linear dispersion of the electrons. However, this linear
dispersion relation does not necessarily describe the transport
of electrons in graphene GBs, and thus the above expression
for EY spin relaxation may not be appropriate for polycrystal-
line graphene.

The most consequential result of this work is that in the
presence of Rashba and intrinsic SOC, the spin diffusion length
in polycrystalline graphene is independent of grain size, Ls =
vF/ΩR. This means that for a Rashba SOC strength of 50 μeV
(5 μeV), the spin diffusion length will be Ls ≈ 5 μm (50 μm)
whether the graphene grains are 10 nm or 10 μm in diameter.
Thus, for spintronics applications, single-domain graphene may
not be a necessity and focus can be placed on eliminating other
sources of spin relaxation, such as magnetic impurities.36 In
general, these results bode well for scalable CVD-grown
graphene as an efficient transporter of spins in future spintronic
applications.
Finally, we point out that this study only considers uniform

SOC, but other sources of spin relaxation could be present in
CVD graphene. For example, out-of-plane corrugation induces
local variations in SOC which can relax spin. Theoretical
studies of single-crystal graphene concluded that the impact of
corrugations is weak, with Ls > 100 μm.37 Meanwhile, a variety
of AFM studies were unable to identify any height variation
arising from graphene GBs,5,38−40 and if present it is limited to
<0.3 Å.41 It is unclear whether localized corrugations of this
height would contribute to spin relaxation in CVD graphene,
and this would therefore be an intriguing future direction of
research. Measurements of CVD graphene suggest that spin
relaxation at GBs is not very strong,14,15 but in the worst-case
scenario we would expect corrugations at the GBs to limit Ls to
the graphene grain size, Ls ∼ 10 μm. Beyond corrugations,
historically it is believed that spin transport in graphene has
been limited by paramagnetic impurities and contact-induced
dephasing. In early measurements these effects limited spin
lifetimes to hundreds of picoseconds and Ls ∼ 1 μm.42

Improvements in these areas now permit the measurement of
Ls > 10 μm, and as high as 30 μm in the best nonlocal
measurements to date.13 Altogether, the spin diffusion length
arising from DP spin relaxation is therefore on par with these
other sources of spin relaxation, and it may even be the
dominant mechanism in the highest-quality CVD samples
currently being produced.
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