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Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity
to Anderson localization
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An efficient computational methodology is used to explore charge transport properties in chemically modified
(and randomly disordered) graphene-based materials. The Hamiltonians of various complex forms of graphene
are constructed using tight-binding models enriched by first-principles calculations. These atomistic models are
further implemented into a real-space order-N Kubo-Greenwood approach, giving access to the main transport
length scales (mean free paths, localization lengths) as a function of defect density and charge carrier energy.
An extensive investigation is performed for epoxide impurities with specific discussions on both the existence
of a minimum semiclassical conductivity and a crossover between weak to strong localization regime. The 2D
generalization of the Thouless relationship linking transport length scales is here illustrated based on a realistic
disorder model.
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I. INTRODUCTION

Ever since graphene was experimentally synthesized in
2004,1 interest in its promising conduction properties has
increased considerably.2–4 Owing to its two-dimensionality
and reported large charge mobility, monolayer graphene has
been initially envisioned as a genuine candidate to replace
silicon in nanoelectronics.4–6 But despite its realistic potential
in high-frequency device applications,7,8 the absence of a
substantial band-gap hinders its use for replacing silicon
MOSFET devices in logic applications.9

Various solutions have already been proposed to overcome
this hurdle, such as opening a wide band gap, using quantum
confinement in ribbons,10–12 or using chemical oxidation or hy-
drogenation to break the symmetry of the graphene lattice.13–22

Both of these methods have, however, been demonstrated to
be far too invasive,9,23,24 generating a large quantity of defects
and damaging the otherwise Dirac-like properties of electronic
excitations. Other more seducing proposals include the use of
a laser field in the midinfrared range, which can induce tunable
band gaps,25 electric-field assisted gap opening in bilayers,26

or chemical doping, which in certain conditions allow us to
engineer controlled mobility gaps as large as 1 eV.27,28

In all cases, the precise understanding of the impact of
disorder on electronic and (charge, spin, and phonon) transport
properties of graphene appears of paramount importance.
Disorder in graphene exhibits many different flavors from
structural defects to adsorbed impurities, reconstructed edges,
or long-range Coulomb scatterers trapped in the graphene
substrate (oxide layer). To date, the detailed relationship
between microscopic complexity of disorder features and the
onset of graphene-unique transport properties remains elusive.
This is particularly debated in relation with the so-called
Klein tunneling mechanism29 and the weak antilocalization
phenomenon, which are both manifestations of pseudospin
effects.30–34

Disorder first comes as a source of elastic scattering,
which limits the mean free path in a way that strongly
depends on the disorder potential characteristics. The energy
dependence of the mean free path and associated semiclassical
transport quantities such as the Drude conductivity and
the charge mobility can be indeed connected to the short-
or long-range nature of the scattering potential.35 Beyond
the occurrence of a diffusive regime, quantum interferences
contribute significantly to the transport features at suffi-
ciently low temperatures. In addition to the conventional
weak localization phenomenon,36,37 crossovers from weak
localization to weak antilocalization have been predicted
and experimentally observed.30–32,34,38–44 Pseudospin-related
quantum interferences are, however, maintained provided
disorder does not break all underlying symmetries. This
is not the case in the presence of chemical defects that
damage the sp2 lattice symmetry. Such stronger disturbances
of graphene structure maximize localization effects, eventually
turning the material to a two-dimensional insulator (Anderson
localization). If Anderson localization has been highly debated
and controversial for long-range disorder,45–52 its relevance
for strongly damaged graphene is now well documented
both theoretically and experimentally.53–56 A recent theoretical
study has, however, related the existence of a robust metallic
state in presence of local magnetic ordering for partly hydro-
genated graphene,57,58 pinpointing possible subtleties between
correlated impurity distribution and transport features.

The main objective of this paper is to illustrate how an
insulating regime can be tuned by intrusive functionalization
of a graphene sheet caused by oxygen atoms bound in the
epoxy position. Epoxide defects are, for instance, incorporated
on graphene after ozone treatment.59 These epoxy impurities
have a drastically different impact on resonant energy peaks
in the vicinity of the Dirac point when compared to single
impurities.60
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To address this objective, the oxygen in epoxy position is
studied by means of accurate ab initio techniques. This model
allows us, on the one hand, to prove that the oxygen epoxy
bonding lies in between a pure sp3-like covalent bond and
an ionic bond, and on the other hand, to supply a suitable
tight-binding (TB) model for further studies in very large
scale systems. Using this TB model, the Kubo-Greenwood
formalism is implemented in real space to obtain meaningful
transport length scales and conduction properties. Several
quantities, such as the mean free path, the semi-classical
conductivity, and the localization length, are analyzed in
depth. The ongoing debate concerning long- and short-range
scattering behavior is also briefly commented on in light of
our results. The crossover to the strongly localized regime is
then investigated. Finally, conventional scaling laws are tested
on our model in this localization regime.

II. EPOXY DEFECTS

Cheianov et al. (Ref. 61) demonstrated the tendency of
epoxy-bound adatoms to form spatially correlated states. The
interaction between epoxy groups is mediated by the conduc-
tion electrons, similar to the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction, which correlates magnetic impurities.62

These ordered states only exist for low impurity densities and
disappear at a critical temperature Tc. For high concentrations
of epoxy groups due to oxidation63 of graphene, Li et al.
(Ref. 64) argue that two epoxy groups attaching on the opposite
ends of a carbon hexagon create more open rings, inducing
cracks along neighboring rings. Similarly, more recently,
Fabris et al. (Ref. 65) present a mechanism giving rise to
more complex crack propagation. However, crack propagation
has, up to our knowledge, only been reported under strong
reduction and oxidation treatments. Furthermore, an aqueous
environment seems to be mandatory. Xiang et al. (Ref. 66) also
report on these unzipped chains caused by epoxy groups, thus
inducing lower-energy conformations. Their study is, however,
limited to concentrations above 25% of epoxy density.

The model investigated in the present paper takes advantage
of this literature while limiting its complexity to avoid any
loss of generality for the simulations of different moderate
concentrations (epoxy density ranging from 0.01 to 5%).
Consequently, epoxy groups are assumed to be randomly
distributed over the graphene sheet and the model prohibits
the destructive presence of two oxygen atoms on the same
hexagon. This simplified model could well describe the
functionalization of graphene due to ozone treatment59 and
comparison53 with experimental results67 backs this up.

III. NUMERICAL TECHNIQUES

The first part of this section presents ab initio calculations
performed to predict the structural properties of epoxy-bound
oxygen. Likewise, it handles how the TB parameters were
extracted from these calculations. The second part of the
section sets out the foundations of the Kubo-Greenwood
formalism developed in a TB framework.

A. From ab initio to tight-binding models

The density functional theory (DFT) calculations are
conducted using the SIESTA code,68–70 within the local
density approximation (LDA) on the exchange-correlation
functional in the Ceperley-Alder71 form parametrized by
Perdew and Zunger.72 Core electrons are included using
Troullier-Martins73 pseudopotentials. Double ζ plus polariza-
tion orbitals are used to define the basis set.

Figure 1(a) illustrates the oxygen atom in epoxy position
after ab initio geometry optimization. In order to investigate
the chemical bonding of oxygen on graphene, the charge
density difference is calculated. Plotting such a charge density
difference allows for a visual understanding on how the
electronic clouds associated with the orbitals are altered by
chemical bonding. Figures 1(b) and 1(c) illustrate this charge
density difference ρdiff defined as follows:

ρdiff = ρ tot − ρO − ρgraph, (1)

where ρ0 and ρgraph represent the charge densities of free-
standing oxygen and graphene, respectively. ρ tot is the charge
density of the total system in its bound state.

In Fig. 1(b), the charge accumulation in red and the charge
depletion in blue indicate a covalent bonding between the
carbon and the oxygen atoms. Oxygen is known to exhibit
an acceptor behavior (attracts electrons on the s and py

orbitals). Its py orbital does not participate in the bonding as
the electronic cloud around the oxygen keeps its conventional
p-orbital form.

In Fig. 1(c), the accumulation of electrons is rendered
in red and green and the depletion in blue. The typical π

orbitals of sp2 graphene are broken by the epoxy bonds.
Indeed, this bonding causes a charge depletion (blue region)
in the π electron cloud located above and under the σ bond
associated with the underlying carbon atoms. The latter σ

bond thus encounters a slight charge accumulation (green
region). Additionally, the electronic charge transfer calculated
with a Hirshfeld74,75 (Voronoi75,76) integration adds up to
−0.256 |e| (−0.266 |e|) of charge transfer toward the oxygen

FIG. 1. (Color online) An oxygen atom in epoxy position on a
5 × 5 cell (a). 3D (b) and 2D (c) charge density difference as defined
in the text. Charge accumulation in red/green and charge depletion in
blue. Isovalues of 0.006 and −0.006 |e|/Å

3
for the 3D charge density

difference.
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FIG. 2. (Color online) Ab initio COHP analysis of the orbitals
participating in the bonding of the oxygen atom in epoxy position
with its neighboring carbon atoms. Region of interest between −1
and 1 eV with respect to the Fermi level. Positive and negative values
indicate bonding and antibonding interactions, respectively.

(red and green region close to the oxygen atom), which
indicates that the bonding is also slightly ionic. These two
integration techniques yield better results than the frequently
used Mulliken integration, since they are basis independent.77

The oxygen bound in epoxy position is found to perturb
graphene but not in a purely sp3-hybridization way as in the
hydrogenation case.

A crystal orbital Hamilton population (COHP) study78,79

partitions the band structure energy in terms of orbital pair
contributions. Positive density values represent the bonding
states, while negative values describe antibonding states when
plotting the conventional -COHP. Figure 2 presents a COHP
study on the orbitals participating in the bonding between the
oxygen atom in epoxy position and its neighboring carbon
atom. In the following analysis, conclusions are drawn for
the region of interest for transport properties [−1 to 1 eV]
only; given bonds may have different bonding or antibonding
behaviors away from the Fermi energy.

One first notes that the contributions of the s (a) and pz

(c) orbital of oxygen bonding with a neighboring carbon
are analog. Both these orbitals have a dominant antibonding
contribution with the px and s orbital of carbon at the
right of the Fermi energy. The COHP study between both
first neighboring carbon atoms [Fig. 2(a), inset] shows that
these two orbitals of carbon, also responsible for the σ bond
hybridization, strongly bind at the same energies (E ∼ 0.5
and 1.2 eV), with analog contributions, typical for the σ -like
hybridization between carbon atoms. These four orbitals (Opz

,
Os , Cpx

, and Cs) thus form a hybridized electronic cloud
with bonding contributions between the two carbon atoms and
antibonding contributions between oxygen and carbon. This
result is in agreement with the charge density rearrangement
observed in Fig. 1. The electronic charge depletion of the π

orbitals observed in Fig. 1 can be rationalized with a COHP
study for a larger energy window (not shown here). The π

electrons are partly drawn into the σ bond between the carbon
atoms. The remaining pz electrons of carbon [blue lines in (a),

(b), and (c)] interact mainly with the px , pz, and s orbitals
of oxygen. Finally, the py orbital of oxygen does not interact
with carbon in this energy window.

Consequently, a TB model with first-neighbor interactions,
including both px and hybridized s/pz orbitals of oxygen with
the pz and s/px orbitals of carbon, should be sufficient to
accurately model the effect of epoxy groups on graphene. The
combined contributions of the three orbitals of carbon binding
with oxygen is renormalized to only one orbital in a π -like
model. The matrix elements of the TB Hamiltonian are given
by

Hij =
∑
ij

γij a
†
i aj +

∑
i

εia
†
i ai . (2)

At first, a
√

3 × √
3R30◦ supercell with one epoxy atom was

simulated using DFT to extract a band structure with limited
folding of the Brillouin zone (not shown here). The bands
near the Fermi energy are nicely fitted using the following TB
parameters [nomenclature, see Fig. 3(c)]: εx = −2.5 eV, εz =
−1.0 eV, ε1 = 1.5 eV, γx = 1.8γ0, γz = −1.5γ0, and γ1 =
0.0 eV with γ0 = −2.6 eV.

Finally, to confirm the validity of the model, these TB
parameters are used to generate the band structure of a
5 × 5 supercell containing a single epoxy oxygen, which is
superimposed with its DFT counterpart [see Fig. 3(a)]. The
electronic path chosen to plot the band structure contains all

(c)

(d)

FIG. 3. (Color online) Electronic band structure of a 5 × 5
graphene supercell containing a single epoxy group. The DFT
(red-solid) and TB (blue-dashed) band structures (a) are described
along high-symmetry paths as described in the Brillouin zone (b).
Nomenclature of extracted TB parameters is illustrated in panel
(c). One possible orientation of the oxygen atom in epoxy position
is described herewith. The two other inequivalent orientations are
obtained by rotating the oxygen atom in epoxy position by 120◦

around the central carbon atom in (d).
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FIG. 4. (Color online) DFT STM image of empty states, i.e.,
local DOS for one oxygen atom in epoxy postion, integrated between
0 and 0.5 eV. Both sublattices are affected equally, preserving the
pseudospin symmetry in graphene.

inequivalent high-symmetry segments in the 2D Brillouin zone
of a 5 × 5 graphene supercell80 [see Fig. 3(b)]. Note the band
crossing at the Fermi energy is shifted away from the K2 point.
The localized flat band (visible around the � point) appearing
in the DFT band structure around −2.5 eV is missing in the
TB band structure. This originates from a strong interaction
between the py orbital of oxygen with the py orbital of carbon.
Both these orbitals are missing in the TB model. These band
structures were calculated for one orientation of the epoxy
group on graphene [see Fig. 3(d)]. For the two other possible
orientations of the epoxy oxygen, the crossings occur close to
K1 or K3 for symmetry reasons. In conclusion, our TB model
seems to be sufficient to accurately model random positions
and random orientations of impurities, as long as these epoxy
oxygens do not interact with each other, which is assumed
to be satisfied for the range of concentrations of impurities
considered here.

Finally, in Fig. 4, the twofold D2h symmetry in the
simulated STM image obtained by integrating the local DOS
(LDOS) proves the analogy with a double impurity defect, by
comparison with the LDOS in Fig. 2 of Ref. 60. The LDOS
of empty states is spatially integrated between 0 and 0.5 eV. A
similar pattern (not shown here) is obtained for hole carriers
by integration between 0 and −0.5 eV.

B. Kubo formalism

Transport properties for large mesoscopic-sized systems
can be simulated efficiently using an order-N method based on
the Kubo formalism.81–88 Assuming the electronic transport in
the system is isotropic for the in plane x and y directions, the
2D diffusion coefficient D(t) is obtained by

D(t) = Dx(t) + Dy(t) = 2Dx(t). (3)

Within this formalism, the diffusion coefficient Dx(t) in the
transport direction x is calculated at each time step using

Dx(t) = 	X2(t)

t
, (4)

where

	X2(E,t) = Tr[δ(E − Ĥ )|X̂(t) − X̂(0)|2]

Tr[δ(E − Ĥ )]
, (5)

where X̂(t) is the position operator in Heisenberg representa-
tion at time t:

X̂(t) = Û †(t)X̂(0)Û (t), (6)

and where Û (t) = e−iĤ t/h̄ is the time-evolution operator.
The trace, which is a sum over wavepackets initially

localized on each orbital of the system, is replaced by an
initial state with a random phase on each orbital of the system.
Taking the average of ten initial random phase states already
yields very satisfactory results on the smoothness of the curves.
This greatly reduces computation time. U (t) can be expanded
using Chebyshev polynomials to allow for the mandatory
order-N method to achieve reasonable computation time for
systems containing millions of orbitals. Both the numerator
and denominator in Eq. (5) are calculated using the Lanczos
recursion scheme thanks to continued fractions expansions.
The termination term is the one usually used for metals, which
considers that the oscillation of the recursion coefficients
is rapidly damped with the number of recursion steps. We
checked that for the recursion step n = 500 the damping is
sufficient, although a very small remnant oscillation caused by
the small energy gap at high is observed. This is quantitatively
correct at low energies and qualitatively sufficient at the
border of the energy spectrum where the energy gaps occur,
by comparison with other more sophisticated termination
methods.

From the diffusion coefficient, the mean free path �e(E) and
the semiclassical conductivity σsc(E) can be calculated using,
respectively:

�e(E) = Dmax(E)

2v(E)
(7)

and

σsc(E) = 1
4e2ρ(E)Dmax(E), (8)

where v(E) is the charge carrier velocity at energy E, Dmax

the maximum value of D(t), e the electronic charge, and ρ(E)
the DOS at energy E. The semiclassical Kubo-Greenwood
conductivity σsc can be compared to the Drude approximation
close to the Dirac point:

σD(E) = 4e2

h

k(E)�e(E)

2
, (9)

where E = h̄vF k with vF the Fermi velocity close to the Dirac
point (dcc ≈ 1.42 Å):

vF ≈ 3γ0dcc

2h̄
≈ 1 × 106 ms−1. (10)

The limitations of the Drude approximation have recently
been discussed and put into context in a review paper (Ref. 89)
and the limitations of the Born approximation in the Boltzmann
theory of conductivity have been analyzed in Ref. 90.

IV. RESULTS

To begin with, we discuss the effect of various oxygen
concentrations on the density of states (DOS) in comparison
with pristine graphene. Then, the results obtained for the
diffusion coefficient D(t) are analyzed. The other transport
quantities are calculated within the Kubo formalism as
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introduced in the previous paragraph. Particular attention is
given to the scaling behavior of the Kubo conductivity. All TB
calculations were performed on systems containing 2 560 000
carbon atoms, which corresponds approximately to systems of
300 by 200 nm.

A. DOS and energy shift

The evolution of the DOS, calculated from Tr[δ(E − Ĥ )],
with increasing impurity density is reported on Fig. 5.
Although DFT calculations on similar concentrations exhibit
a shift of the Fermi energy compared to the pristine case (not
shown here), no shifts are applied yet to point out the similarity
with other studies,91,92 covering the effect of ideal impurities
(i.e., the influence of the change of the on-site energy and
the hopping parameters, respectively ) on the DOS of pristine
graphene.

A shift of the minimum of the DOS is observed with
increasing impurity concentrations. Even though formally the
rigid band theorem cannot be used for atoms that do not
have the same valence (i.e., carbon and oxygen),93 the shift
is found to be linear with increasing concentrations (x) and
the second order corrections O(2) can thus be neglected [see
Fig. 6 (inset)]:

	εn = xU + O(2) + · · · (11)

where U is the local potential induced by the epoxy defect. A
linear fit of 	εn versus x implies a value of U equal to ∼ − 3.7
eV.

In addition, the Van Hove singularities (VHS) are smoothed
out and decreased in amplitude with increasing concen-
trations of epoxide groups, in agreement with previous
observations.81,91,92 Also, a small increase of the DOS ap-
pears at the minimum of the DOS with increasing impurity
concentration.

The bumps in densities of states on the left and on the right
of the minimum of DOS (Fig. 5, middle panel) correspond
to the resonant energies between the oxygen atoms in epoxy

Å

FIG. 5. (Color online) Main frame: DOS for various impurity
densities ranging from 0.05 to 4.42%. The minimum of DOS shifts
slightly with the addend concentration due to the changes in hopping
parameters and on-site energies in the TB model. Side panels: δ-like
peaks corresponding to impurity bands at lower (left) and higher
(right) energies.

Δε

Å

FIG. 6. (Color online) Main frame: realignment of the minimum
of DOS and charge neutrality point (CNP: position obtained by DOS
integration) at 0 eV. Inset: linear increase of energy shift 	εn with
increasing concentrations of epoxy groups (x in %). Rigid band
theorem (see text) implies an impurity-induced potential of ∼−3.7
eV.

position and the graphene sheet,60 while the δ-like peaks in the
side panels at high energies correspond to flat impurity bands.
As discussed in Sec. III A, the localized state close to the left
VHS caused by the strong interaction between both py orbitals
of oxygen and carbon is missing in this simplified TB model.

Finally, oxygen in epoxy position triggers a shift of the
Fermi energy, which compensates for the shift of the minimum
of DOS discussed above (see Fig. 6). This Fermi energy
is obtained by integrating the TB DOS and counting the
number of electrons present in the system. In the next sections,
transport calculations will implicitly include this realignment
of minimum of DOS with the Fermi energy, thus locating the
charge neutrality point (CNP) at E = 0 eV.

Figure 7 illustrates projected densities of states (PDOS)
evidence that the bump on the right side of the Fermi level

Å

FIG. 7. (Color online) Projected densities of states. The px (pz)
orbital of oxygen mainly contributes on the left (right) side of the
Fermi energy. Negligible contributions are predicted for first-nearest
neighboring carbon atoms. Second-nearest carbon neighbors do
contribute to the resonant energy bump with oxygen.
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originates from the pz orbital and the one on the left from the px

orbital of oxygen, in agreement with the previous COHP DFT
study. Figure 7 also indicates that the first-nearest neighboring
carbon atoms do not contribute to the total DOS in contrast
to the second-nearest neighboring carbon atoms. The PDOS
suggest the oxygen atom attracts most of the electronic density
and, thus, weakens the density on the first-neighboring carbon.
Such analysis agrees with existing literature.94,95

B. Diffusion coefficient and transport regimes

The diffusion coefficient D(t) inherently contains all the
information needed to calculate transport properties [see
Eqs. (7) and (8)]. Its time evolution or dynamics also
clarifies the dominant transport regime at the considered time
scale (i.e., ballistic, diffusive, or localized). Figure 8 illustrates
the typical behaviors of the normalized diffusion coefficients,

Dnorm(t) = D(t)

Dmax
, (12)

for an energy E = 0.5 eV. As expected, the conduction in pure
graphene is simply ballistic. The smallest simulated impurity
concentration (i.e., 0.01%) does not reach its maximum for
the diffusion coefficient for the total elapsed time considered
here (∼3800 fs). The slope of D(t) gives access to a v2(E)
value still in close agreement with the theoretical (analytical)
value v2

F for energies E close to EF . For instance, at 0 eV and
for 0.01%, v(E) = 2.11 Åγ0/h̄, while vF = 2.13 Åγ0/h̄. For
intermediate densities (0.05 and 0.1%) Dnorm(t) evolve from
the ballistic regime to the diffusive regime for the simulated
times. At higher concentrations (0.49%) Dnorm(t) reach a
diffusive regime sharply, followed by a clear decrease with
time, signature of quantum interferences leading the charge
carrier localization.

Figure 9 presents diffusion coefficients Dnorm(t) of 1.77%
of impurities at different energies. Localization effects follow
an asymmetric behavior between electrons and holes. The
predominant resonant peak at the right of the charge neutrality
point (CNP) causes much stronger localization effects than the
weaker and more smeared-out peak at the left of the CNP (in
analogy with the PDOS in Fig. 7). Such asymmetry is of crucial
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FIG. 8. (Color online) Time evolution of diffusion coefficient
(normalized) at E = 0.5 eV for different impurity concentrations.
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FIG. 9. (Color online) Normalized diffusion coefficient versus
time for x = 1.77% at different energies.

importance to synthesize possible electronic devices made of
functionalized graphene, requiring an efficient switch between
a conducting and an insulating behavior.27,28 Localization
effects are more significant around 0.75 eV. One finally notes
the peculiar behavior of the diffusion coefficient exactly at
the CNP. Numerically, this point is more problematic to sim-
ulate since the density of charge carriers may be very scarce.
Nevertheless, our results suggest that the saturation limit of the
diffusion coefficient is reached for longer simulation time and
then turns into a moderate decrease characteristic of quantum
effects.

This discussion on the diffusion coefficient points out two
different regimes, which are approached separately in the
remaining sections. First, the semiclassical quantities, which
neglect quantum effects, are discussed in Sec. IV C. Second,
the localization regime is analyzed in Sec. IV D.

C. Semiclassical regime

1. Analysis of elastic mean free paths

Using Eq. (7), the mean free path �e is calculated using the
diffusion coefficient and plotted in Fig. 10 for energies between
the two VHS at −2.6 and 2.6 eV. For the considered elapsed
times, the diffusive regime is not reached at every energy
for the smallest impurity concentrations (i.e., ni < 0.1%; see
Fig. 8, upper panel). Therefore, the mean free path cannot be
estimated for these small concentrations. For concentrations
larger than 0.5%, the diffusive regime is reached within
the entire energy window. The dip in the mean free path
at the right of the CNP (and in a lesser extent, at the left of
the CNP), indicating larger scattering effects, shifts away from
the CNP and becomes smoother with increasing concentration
of oxygen atoms in epoxy position. Such dips correspond to
the resonance peaks found in the DOS which are induced
by the oxygen. The inset of Fig. 10 confirms the predicted
asymmetry, affecting the electrons more strongly. The largest
concentrations scatter more uniformly across the entire energy
window. In addition, the evolution of the mean free path
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FIG. 10. (Color online) Energy-dependent mean free paths for
different impurity concentrations. Inset: mean free path versus hole
(dashed/squares) and electron (solid/circles) carrier density for epoxy
concentrations of 0.49 (blue) and 0.95%(yellow).

with impurity concentration follows a simple scaling law as
expected from a Fermi golden rule (Fig. 11):

�e(x1)

�e(x2)
= x2

x1
. (13)

2. Mobility

In Fig. 12 (mainframe), the mobility of the charge carriers
is estimated theoretically using

μ(E) = σsc(E)

ne
. (14)

Scattering effects are affecting the electron mobility more
strongly than the hole mobility. This asymmetry is reduced for
the largest impurity concentrations [see Fig. 12 (inset)].

Experimentalists usually consider the absolute value of
the mobility as a key quantity to characterize samples and
corresponding inherent disorder. Temperature breaks the phase
coherence of electrons along the scattering path and generally
reduces quantum interference effects. Accordingly, the use of
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1.77 %
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FIG. 11. (Color online) Ratio of mean free paths at two selected
impurity densities. �e(x1)/�e(x2) (solid lines) and x2/x1 (dashed lines)
with x2 = 0.49%.

μ

FIG. 12. (Color online) Main frame: electron and hole mobility
for usual experimental carrier densities. More severe scattering effects
for negative charge carriers cause an asymmetry in mobility compared
to the hole mobility. Inset: same mobilities with respect to the gate
voltage Vg .

the semiclassical conductivity in evaluation of μ(E) [Eq. (14)]
is a reasonable approximation to analyze the experimental data.
On the same basis, computed semiclassical conductivities are
expected to be more valuable for comparison with conduc-
tivities measured experimentally at room temperature. One
may argue that in such a nonzero temperature environment,
electron-phonon coupling may also play a significant role.
However, inelastic scattering lengths due to electron-phonon
coupling are extremely long in graphene and may thus be
disregarded, too, at least as a first approximation.

3. Numerical Kubo conductivity and Drude approximation

Figure 13 compares the semiclassical value of the Kubo-
Greenwood conductivity σsc (solid lines) with the Drude
conductivity σD (dotted lines), extracted from Eqs. (8) and
(9), respectively. The Drude approximation seems to be valid

-1 -0.5 0 0.5 1
E-E
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1000

σ
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2/π

FIG. 13. (Color online) Comparison between the numerical Kubo
conductivity σsc (solid lines) and the Drude approximation σD (dashed
lines) for different impurity concentrations. Minimum theoretical
value 2/πG0 is plotted in horizontal dashed green line.
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only for small impurity concentrations in the energy window
[−1 to 1 eV]. For larger densities, the conductivities are
underestimated by a factor of two for energies close to the
CNP. Moreover, σD is ill-defined at the CNP [see Eq. (9)].
Indeed, at the CNP, k = 0 and, consequently, σD vanishes.
However, theoretical work41,82,96 reports extensively on a
minimum value of the semiclassical conductivity equal to
2/πG0 = 4e2/πh (when neglecting quantum interferences).
To avoid the singularity at 0 eV, the mean free path could be
calculated analytically, including its k dependence explicitly.
As illustrated by the calculations for larger impurity concen-
trations, the variations of the DOS with disorder have to be
included, as it is presently the case in the Kubo formula
[Eq. (8)]. These variations account for single and multiple
scattering events mentioned in Ref. 102. Up to some numerical
discrepancy, the semiclassical minimum value of conductivity
is confirmed.

Additionally, an asymmetry exists between the electron and
hole conductivities. This effect is weakened but not canceled
with increasing impurity concentrations. This is similar to the
asymmetry already observed for both charge carriers in their
respective mean free paths and mobilities. Albeit physically
different, the stronger quantum localization effects on the
electron side are directly linked to the stronger classical
scattering effects on the same energy window (see Fig. 9). This
will be emphasized in Sec. IV D by studying the evolution of
the conductivity with time deep into the diffusive regime.

4. Short-range versus long-range scattering

The nature of scattering range induced by oxygen atoms
placed in epoxy position can be discussed using the scaling
properties of semiclassical quantities. Both the scattering time
and the conductivity are here briefly outlined.97

The elastic scattering time is defined by

τ (E) = �e(E)

v(E)
. (15)

Using the dispersion relation E = h̄vF k, τ (E) can be estimated
in terms of the Fermi wave vector k. According to Nomura
et al.,98 who also used the Kubo-Greenwood approach, the
following conclusions apply. Long-range (lr) and short-range
(sr) disorder scattering times scale, respectively, as follows:

τlr ∝ k and τsr ∝ 1

k
(16)

Following such criterion, our data with corresponding
numerical fits (Fig. 14) clearly indicate a short-range scattering
behavior of oxygen in epoxy position. Such short-range
scattering time should diverge at the CNP. This does not
happen within the Kubo formalism since the DOS remains
finite close to the CNP, in contrast with the prediction of the
Drude approximation.

A similar analysis based on the scaling of conductivity
is not straightforward. According to Ref. 98, long-range
conductivity should scale linearly with n, while short-range
conductivity should display a nonlinear behavior, approaching
the constant Boltzmann (or Drude) conductivity σD for
|EF | � h̄/τ . In Fig. 13, the behavior close to the Dirac point
behaves differently, depending on the impurity concentration.
For smaller impurity concentrations, the conductivity tends

FIG. 14. (Color online) Scattering times in function of Fermi
wave vector k for different oxygen densities. Numerical fits for each
data set based on a regression algorithm with fitting parameters A
and B (black) to account for the generalized inverse function. Hole
and electron scattering times were fitted separately.

to decrease for energies corresponding to reasonable carrier
concentrations (up to 1013 cm−2), while it increases slightly
for larger impurity concentrations. The Drude conductivity
never reaches a constant plateau for the whole of the energy E

or carrier n range. The shortcomings of this conductivity have
already been pointed out.

We note that this subject is still debated, as other
models41,90,99,100 predict a dominant linear dependency (with
logarithmic corrections) for both long-range and short-range
conductivity.

Additionally, it has been observed experimentally101 that
a quasiballistic regime exhibits a nonlinear behavior with n,
while a more disordered system scales linearly with n. Com-
parison with experiment becomes particularly tricky as most
of previously mentioned analytical models disregard important
multiple scattering effects on the computed conductivity.

Another important remark is that most theoretical predic-
tions have been derived assuming restrictions on disorder mod-
els which are partly invalidated in the present study. Indeed, the
epoxy defects have been derived from accurate first-principle
calculations, and the resulting TB model brings more realism
and generality when compared to simplified academic models.
As a matter of fact, the DOS (Fig. 6) evidences resonant energy
bumps, driven by randomly distributed oxygen, which could
cause squared logarithmic corrections.41 Our data cannot really
be accurately fitted to obtain the different corrections to the
scaling in this context.

This dominant short-range disorder is at the root of the
quantum effects presented in the remaining sections.

D. Evolution of the Kubo conductivity with time
scale (or length)

The semiclassical expression of the Kubo-Greenwood
conductivity [Eq. (7)] restricts the transport to the diffusive
regime, i.e., when suppressing quantum interferences. To
follow the time evolution spreading of the quantum wave
packets, the expression of Dx(t) in Eq. (3) should be replaced

235420-8
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FIG. 15. (Color online) Kubo conductivities at different elapsed
times of wave packet evolution for 4.42% of impurities.

as follows:

Dx(t) = ∂[	X2(t)]

∂t
. (17)

When replacing Dmax by the new expression of D(t) [Eq. (4)]
in Eq. (8), the Kubo conductivities are obtained at different
time scales as depicted in Fig. 15 for a 4.42% impurity density.
The time-evolution of the conductivity is found not to be
uniform over the energy spectrum, indicating there might be
different transport regimes depending on the charge carrier
energies and impurity concentrations for a given length scale.

According to the scaling theory of localization,36 there are
two possible behaviors for the conductivity corresponding
to the weak and strong localization regimes, which read as
follows:

σ (L) = σ |Dmax − e2

h̄π2
ln

[
L(t)√

2�e

]
, (18)

σ (L) ∼ exp

[
−L(t)

ξ

]
, (19)

where the localization length ξ gives an estimation of the
distance covered by a charge carrier before it is totally trapped
due to multiple scattering effects. The diffusion length is
defined as

L(t) = 2
√

2	X2(t). (20)

This definition of L is reasonable when saturation of the
diffusion coefficient has been reached. The extra factor

√
2

in Eq. (18) compared to the correction obtained by Lee
et al. [Ref. 36] comes from a different definition of D(t).
Both numerical estimation of σ (L) (symbols) and analytical
[σ |Dmax − e2/h̄π2 ln( L(t)√

2�e

)] from Eq. (18) (solid lines) are
plotted in Fig. 16 for L > Lmax. The numerical part contains
small jiggling caused by the very sensitive derivation in
Eq. (17).

The corrections to the semiclassical conductivity in the low
impurity limit (mainframe) follows the logarithmic behavior,
from which an estimation of ξ can be deduced. ξ corresponds to
the length where the cooperon corrections equal the semiclas-

0 20 40 60
L (nm)

2

3

4

5

6

σ 
(G

0) 0.49 %
0.95 %

0 5 10 15
0

0.5

1
3.22 %
4.42 %

FIG. 16. (Color online) Kubo conductivities for L > Lmax, which
include weak localization corrections to the semiclassical conductiv-
ity, for different impurity densities at energy 0.8 eV. The numerically
estimated conductivity σ (L) [obtained using Eqs. (17) and (20),
symbols] contains numerical jiggling caused by the very sensitive
derivation in Eq. (17). The conductivity obtained using Eq. (18) is
plotted in solid lines. Only one of five points are plotted in the inset
for clarity reasons.

sical conductivity.36 Starting from Eq. (18), the localization
length is thus estimated with

ξ (E) =
√

2�e exp

(
πσsc

G0

)
, (21)

with the computed �e and σsc and corresponds to the 2D gener-
alization of the Thouless relationship.103,104 These localization
lengths are plotted in Fig. 17.105

For larger concentrations, the cooperon corrections to the
semiclassical conductivity seem to saturate and depart from the
perfect logarithmic behavior (Fig. 16, inset). The corrections
obtained numerically become smaller than what is predicted
due to a transition to the strongly localized regime following
an evanescent exponential behavior. This can be rationalized
invoking the Ioffe and Regel criterion,106 which states that

FIG. 17. (Color online) Localization lengths estimated using
Eq. (17) for different impurity concentrations.
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fit gives ξ = 8.4 nm 
fit gives ξ = 4.8 nm
fit for L > 8.4 nm gives ξ = 11.2 nm
fit for L > 4.8 nm gives ξ = 5.3 nm

FIG. 18. (Color online) Exponential fits [Eq. (19)] to estimate
localization lengths ξ in the strongly localized regime at energy 0.8
eV. A first fit (dashed lines) for the whole of the available data allows
us to estimate a length L for which wavepackets are localized. A
second fit (solid lines) for values larger than L gives us new estimates
for ξ .

the appearance of strong localization becomes significant for
impurity concentrations satisfying kF �e = 1. Such a criterion
implies a mean free path of the order of the interatomic
distance, which is actually the case for 4.42% of impurities,
where the mean free path is estimated to be below 3 Å for the
energy window from 0.5 to 1.0 eV.

In Fig. 18, by fitting the exponential behavior of Eq. (19),
values for ξ equal to 8.4 and 4.8 nm are estimated for 3.22
and 4.42% of impurities, respectively, at an energy of 0.8 eV
(dashed lines). Refitting σ (L) for the region at the right of these
values (solid lines), we obtain convincing exponential decays
and more accurate estimates for ξ equal to 11.2 and 5.3 nm,
respectively. Both these estimates and the ones obtained by
Eq. (21) in Fig. 17 are of the same order of magnitude, thus
validating our results. Experimentalists, however, often use the
Drude approximation σD instead of the correct semiclassical
conductivity σsc in Eq. (21). The inaccuracy of the Drude
approximation for largest impurity concentrations causes the
localization length to be underestimated by an order of
magnitude.

V. CONCLUSIONS

In this paper, the quantum transport properties of chem-
ically damaged two-dimensional graphene-based structures

have been investigated. Using the Kubo-Greenwood transport
framework, and by means of an efficient order N numerical
implementation, mesoscopic transport features in disordered
graphene have been explored in details, with impurities
(adsorbed oxygen-driven epoxide defects) described by local
tight-binding parameters, deduced from first-principles calcu-
lations.

In addition to the numerical calculation of the energy-
dependent elastic mean free path driven by a given epoxide
density, quantum localization effects have been analyzed
from the weak to the strong (Anderson) localization regimes.
By applying the conventional scaling theory of localization,
the 2D-localization lengths have been evaluated from the
scaling behavior of the Kubo conductivity and contrasted to
the prediction deduced from the cooperon correction to the
conductivity (which relates ξ to the elastic mean free path
and semiclassical conductivity). A very reasonable agreement
has been obtained, pinpointing further toward a strong energy-
dependence of all transport length scales.

By combining the ab initio approach for the description of
the defects structure and local energetics with an efficient and
exact quantum transport methodology implemented on tight-
binding models, our general theoretical framework provides a
solid foundation and tool to understand the origin of complex
transport phenomena in strongly disordered and chemically
complex graphene-based nanostructures. The extension of our
study to any other kinds of defects (topological, chemical, etc.)
and other types of two-dimensional structures is straightfor-
ward.
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