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Three-dimensional massless Dirac fermions in carbon schwarzites
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The discovery of gapless linear energy dispersion in low-dimensional carbon-based nanostructures had a
tremendous impact on conventional condensed-matter physics by imposing relativistic physics in the electronic
properties of these nanosystems. Indeed, the electrons in graphene [two-dimensional (2D)] and carbon nanotubes
[one-dimensional (1D)] behave like pseudorelativistic massless particles (Dirac fermions) as described by the
crossing of linearly dispersive electronic bands, also called the Dirac cone. The presence of Dirac cones is not
restricted to 1D or 2D nanostructures and has recently been observed in several more complex 3D materials.
Here, using density functional theory and tight-binding approaches, we predict the presence of a Dirac cone in
a 3D carbon-based material. Indeed, our simulations reveal a linear band crossing merging in a point forming a
Dirac (hyper)cone for a large gyroidal schwarzite structure. Such a specific linear dispersion relation as reported
in this 3D negatively curved sp2-bonded carbon allotrope is believed to be a direct consequence of the Dirac
cone present in 2D graphene. The corresponding charge carriers are thus expected to behave as 3D massless
Dirac fermions. Therefore, we expect this prediction to stimulate the experimental synthesis of such fascinating
3D bulk carbon allotropes, which are a remarkable playground to investigate relativistic physics of these exotic
fermions.
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I. INTRODUCTION

Massless electrons for which the energy dispersion relation
is linear are not frequently observed in the electronic structures
of materials. It is even more exceptional when these linear
electronic bands are merged into a crossing point, where
the Fermi surface is then reduced to a single spot. Such
electrons can locally be described as massless Dirac fermions
whose related physics is fascinating and different than that for
conventional massive fermions. In modern condensed-matter
physics, such pseudorelativistic electrons occupy a more and
more dominant position because their unique properties, such
as ultrahigh mobility and the possibility of Klein tunneling
[1], motivate new paradigms in electronics and hence potential
disrupting technology. Although the first prediction of a linear
energy dispersion of electrons in graphene goes back to 1947
with the seminal paper of Wallace [2], it is only with carbon
nanotubes and, even more significant, with the advent of
graphene [3,4] demonstrating uncommon phenomena such as
anomalous quantum Hall effects [5,6] that massless Dirac
fermions became genuinely popular in condensed-matter
physics. Now, not only Dirac fermions are in the spotlight.
More and more exotic particles which used to be popular
almost solely in the field of high-energy physics are now
being included in the study of condensed-matter physics. In
recent years, considerable efforts have been made to realize
the experimental synthesis of new materials that could contain
an unusual class of fermions such as Dirac electrons [7–14] or
Majorana electrons [15,16].

While the existence of Dirac fermions in low-dimensional
systems had been well established, evidence of bulk massless
Dirac fermions in three-dimensional (3D) materials had still
been missing. Their presence has recently been experimentally
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detected through angle-resolved photoemission spectroscopy
(ARPES) measurements in Na3Bi [10] and in Cd3As2 [11,12]
and through the anomalous quantum Hall effect in HgCdTe
[13]. However, although massless Dirac fermions are present
in one-dimensional (1D) and two-dimensional (2D) sp2 carbon
materials, namely, carbon nanotubes and graphene, to date, the
presence of bulk massless Dirac fermions in a 3D carbon-based
system has not been reported yet. The goal of the present paper
is to predict the possibility to observe such bulk massless Dirac
electrons in a 3D lattice of sp2-bonded carbon atoms whose
atomic structure is a gyroidal schwarzite.

The schwarzite structures come from the decoration of
triply periodic minimal surfaces (TPMS); thus they exhibit
high surface areas and negative Gaussian curvature due to
the presence of carbon-membered rings with more than
six atoms [17]. Carbon-based schwarzites were naturally
first suggested as 3D counterparts of the zero-dimensional
(0D) fullerenes, which, in contrast, have a positive Gaussian
curvature through the presence of pentagonal rings of carbon.
Although density functional theory (DFT) predicts that several
types of schwarzites are more stable than C60 [18], such 3D
carbon allotropic forms have not yet been experimentally
synthesized and therefore remain largely unexplored compared
to other more fashionable carbon nanostructures. Although
schwarzites remain elusive, recent advances in templated
nanocarbons [19,20] in combination with new liquid ex-
foliation techniques for obtaining graphene and monolayer
transition-metal dichalcogenides [21] indicate the right strat-
egy to follow in order to get closer than ever to the mysterious
schwarzites. Conjectural materials often need outstanding
properties to boost motivation towards their experimental
synthesis. Schwarzites have already been considered good
candidates for electrodes in the next generation of alkali-ion
batteries and supercapacitors [22] because their nanoscale
sponge structures offer an extreme bulk-surface ratio. The
present theoretical prediction of massless Dirac electrons in
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such 3D carbon surfaces will certainly enhance the interest in
these schwarzite structures and graphene sponges.

II. STRUCTURAL PROPERTIES

A. Atomic structure

Large gyroidal schwarzites basically consist of bent
graphene layers curved in a particular and periodical way in
which two intertwined labyrinths, one the mirror image of
the other, are formed. Schwarzites are therefore essentially
3D space partitioners made out of bent graphene layers. As
for fullerenes, non-hexagonal-membered rings have to be
introduced in the sp2-bonded carbon surface to accommodate
the curvature present in schwarzites. Moreover, the number
of these non-hexagonal-membered rings has to satisfy the
following expression extracted from the Euler theorem: 2n4 +
n5 − n7 − 2n8 = 12(1 − g), where ni are integers represent-
ing the number of polygons composed of i vertices (e.g., n7

is the number of heptagons) and g is the genus or number
of handles in the structure (a topological invariant). In the
case of schwarzites, g is the genus per primitive cell. Note
that the number of hexagons n6 is thus irrelevant since
they do not contribute to the curvature of the system. The
present investigated gyroidal schwarzite corresponds to g = 3
per primitive cell exhibiting 12 octagonal rings (n8 = 12).
Consequently, the curvature is only induced by these 12
octagons present at the saddle-node points of the structure.
Since schwarzites are periodic crystals of sp2 carbon, their
symmetry is related to the symmetry of the associated TPMS.
In the case of gyroidal (G) TPMS or G schwarzites, the space
group is Ia3d with a bcc Bravais lattice. In our particular
case the primitive cell contains 768 carbon atoms (1536 atoms
per conventional cubic cell) [see Fig. 1(a)] and possesses a
surface area of 2670 m2/g, close to that of graphene, which is
around 2675 m2/g [23]. The atomic coordinates of this large
G-schwarzite structure were obtained by inflating, i.e., adding
hexagonal rings of carbon between octagons, to the model of
the G-8-bal structure given in Ref. [24].

B. Geometry optimization

DFT-based calculations have been performed to relax both
the atomic positions and the cell volume of this G-schwarzite
structure. The DFT calculations were conducted using the
SIESTA package [25] using the Perdew-Burke-Ernzerhof (PBE)
generalized gradient approximation (GGA) functional [26].
Core electrons were accounted for through the use of Troullier-
Martins pseudopotentials [27]. The valence electron wave
functions were expanded in a double-ζ polarized (DZP) basis
set of finite-range numerical pseudoatomic orbitals [28]. The
density was self-consistently calculated using a mesh cutoff of
250 Ry and a 2 × 2 × 2 Monkhorst-Pack k-point grid [29]. The
atomic positions were optimized for a fixed lattice parameter
by relaxing the forces until a maximum tolerance criterion of
0.01 eV/Å was reached. The bulk modulus B0 was computed
using this relaxation procedure performed for different lattice
parameters [b = a

√
3/2, where b is the primitive lattice

parameter indicated in Fig. 1(a) and a is the conventional
cubic lattice parameter] and was predicted to be in the range of
40 GPa [Fig. 1(b)]. This is a typical value for glassy materials

FIG. 1. (Color online) (a) Different view angles of the atomic
structure of the gyroidal (G) schwarzite: the [111] orientation (left
panel), the [100] and [010] orientation (top right panels), and the [110]
orientation (bottom right panel). The system contains 768 carbon
atoms in the present primitive unit cell (bcc cell with lattice parameter
b indicated by an arrow). Carbon bonds are colored from black to blue
with increasing length, highlighting the presence of the 12 octagons.
(b) Total energy dependence on the cubic lattice parameter a. The
equilibrium lattice parameter minimizing the total energy is estimated
to be a0 = 35.82 Å using a polynomial fit. The corresponding bulk
modulus is B0 ∼ 40 GPa.

and is thus much lower than that for incompressible materials,
which is in agreement with the flexible sponge structure of
schwarzite.

III. ELECTRONIC PROPERTIES

A. Band structure and Dirac fermions

From the optimized atomic structure, the ab initio band
structure and density of states (DOS) have been computed and
are depicted in Fig. 2(a) (black lines). The band structure is
calculated along the usual high symmetry points of the bcc
Brillouin zone, i.e., a �-H -N -�-P -H -N -P path. The DOS is
obtained from a self-consistent calculation using a 6 × 6 × 6
k-point grid and a smearing factor of 25 meV. Linearly
dispersive bands are observed around the high-symmetry point
P , i.e., at the corner of the Brillouin zone. Two crossing points
related to these linear dispersions are located at energies of
about +0.5 eV (above the Fermi energy EF ) and at −0.35 eV
(below EF ) in the electron and hole regions, respectively.
Around these Dirac points, energy windows of a few tenths
of eV are free of other bands, reducing the Fermi surface to a
single spot exactly at the Dirac energy ED . However, the latter
acquires a spherical shape whose radius increases linearly with
energy when moving away from these Dirac points [Fig. 2(b)].
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FIG. 2. (Color online) (a) The DFT (black lines) and TB (blue
lines) band structures are calculated along the conventional �-H -
N -�-P -H -N -P path. Two Dirac points are observed at the P point
in both the valence and conduction sides (E = −0.35 eV and E =
+0.5 eV). The analytical Dirac equation E = ED ± �kvF is used to
plot the linear dispersion around the Dirac point for electrons (red
dashed lines). The corresponding densities of states are represented
in the right panel. (b) Brillouin zone (bottom left) and 3D energy
isocurves of the 4D Dirac hypercone. At the Dirac point, located at
the corner of the Brillouin zone, the Fermi surface reduces to a spot
and displays a perfect spherical shape when moving away from the
Dirac point energy ED . The central image shows a magnification of
the top left image together with a cutting plane with a color map of the
energy variation (from red at E = ED to blue for E = ED + 70 meV.
The radius of this Fermi sphere increases linearly with the energy.

It has to be noted that the electron Dirac (hyper)cone [it is a
four-dimensional (4D) object, i.e., the energy as a function of
the three directions in k space] is very isotropic and symmetric
in a fairly large energy range of ∼400 meV. It is also worth
mentioning that the Dirac hypercone at a given energy is
fourfold degenerate. The first twofold degeneracy has its origin
in a valley degeneracy, as in graphene, coming from the two
inequivalent P points (P and P ′ = −P ) over the eight-corner
highly symmetric points of the bcc Brillouin zone [black
dots in the left panel of Fig. 2(b)]. This valley degeneracy
directly creates two copies of the Dirac hypercone. The second
two-fold degeneracy is internal to a given Dirac hypercone
since two superimposed bands coexist [indistinguishable in
Fig. 2(a)]. Using this order of degeneracy and the Dirac
linear energy dispersion E = ED ± �kvF [dashed red lines
in Fig. 2(a)], an analytical formula for the DOS ρ can be
established, which is ρ = 4

2π2
(E−ED )2

(�vF )3 (spin degeneracy not
included). Hence, the DOS for the massless charge carriers in
schwarzite is comparable to the DOS of photons but with a

higher degree of degeneracy [dashed red curve in Fig. 2(a)].
The speed of light c is replaced here by the Fermi velocity vF ,
which is found to be 2.5 times smaller than in 2D graphene
(i.e., ∼4 × 105 m s−1 ∼ c/750).

Finally, note that the presence of the Dirac hypercone is
robust against volume expansion. While the band structure
changes around the Fermi level for the non-fully-relaxed
geometry [30], the Dirac hypercones are still preserved for
an ∼4.5% expansion of the cell vector length, corresponding
to the largest cell volume in Fig. 1(b).

The present G-schwarzite band structure does not exhibit
any band gap at the Fermi level and possesses an overall
electron-hole symmetry, reminiscent of the 2D graphene π -π∗
electronic structure. For this reason and adding the fact that
such a large G schwarzite resembles a twisted graphene
layer with octagons, a simple one-orbital pz tight-binding
(TB) model was expected to be sufficient to reproduce its
electronic structure. A first-nearest-neighbor π -π∗ TB model
(not shown here) already provides a good match but fails to
reproduce accurate details at the Fermi level or to introduce
an artificial band gap as well as fully symmetric conduction-
and valence-band structures. However, better agreement is
obtained with a semiempirical distance-dependent π -π∗ TB
model [31] [blue lines in Fig. 2(a)]. In this model, the distance-

dependent hopping term reads γ (d) = γ0e
−3.37( d

dCC
−1), where

γ0 = 2.8 eV and dCC = 1.41 Å. A cutoff distance of 3.1 Å
surrounding the third-nearest neighbors was applied. For the
fully relaxed schwarzite structure, the octagons encounter a
stronger distortion. This is accounted for in the present TB
model by modifying the pz orbital on-site energy (δεpz

=
−0.5 eV), and the hopping energy (δγ = +0.15 eV) for carbon
atoms belonging to an octagon. The only deficiencies of this
semiempirical model can be observed around the � point (at
E = +0.1 eV and E = −0.1 eV), where the TB bands are
not well positioned in energy compared to the DFT bands.
These two particular pairs of bands are more sensitive to the
on-site and hopping energies of the carbon atoms involved in
the octagons.

Using this TB model, the DOS in Fig. 2(a) was obtained
with a 15 × 15 × 15 k-point grid and a smearing factor of
10 meV. The energy isosurfaces depicted in Fig. 2(b) were
obtained using this TB model and by computing eigenenergies
in a cubic mesh of ∼36 000 k points.

B. Doping and Fermi-level shift

The Dirac hypercones are well separated from the rest of the
other bands (especially for electrons), offering the possibility
to observe independently the properties of the corresponding
massless 3D Dirac fermions without them being mixed with
other massive fermions. Also, the fact that the present Dirac
hypercones are fully isotropic and symmetric is rather unique,
to the best of our knowledge.

However, the Dirac hypercones are, unfortunately, not lying
at the Fermi energy. Different suggestions could be proposed
to shift the Fermi level at the Dirac point. For instance, a
nonperturbative approach would be to contact and gate the
system and fill or deplete it with charge carriers by applying
an adequate gate voltage. However, in typical conditions, the
required gate capacitance to move Fermi energy of such an
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FIG. 3. (Color online) The DFT band structures and DOS of a
0.8% N-doped schwarzite (black lines). A simplified impurity TB
model (δε = −12 eV) reproduces the main features of the N dopants
(blue lines).

amount might be too high. Doping with nitrogen or boron
could also be an interesting and natural route. Such chemical
doping would easily induce a shift of the Fermi-level position.
However, ab initio calculations of a 0.8% N-doped schwarzite
(six N atoms in substitution, randomly chosen) indicate that
such chemical doping is too intrusive (Fig. 3, black lines). The
Dirac points are split and shifted away from the high-symmetry
path, giving rise to the small apparent band gap. Moreover,
the hypercone internal degeneracy is lifted, and the two
superimposed Dirac cones are now easily distinguishable.
Since 1.6% of N doping would be needed to bring EF exactly
to the Dirac point, such a chemical doping is probably not
an appropriate strategy. As an alternative to the chemical
and electrostatic doping proposed above, the charge transfer
occurring through π -π stacking of physisorbed molecules,
for instance, might provide soft doping, thus satisfying a
rigid-band-model approach. Since schwarzite offers a large
surface area, this could be an interesting route.

Using a simplified impurity model within the TB approach,
realized by shifting the on-site energy of the pz orbital of the
impurity, the main features of the N-doped G-schwarzite band
structure can be reproduced (blue lines in Fig. 3). Although this
impurity model is oversimplified, it allows one to investigate
other doping situations easily. An interesting solution is
obtained by positioning impurities only at the octagonal carbon
rings. While the number of modified carbon atoms reaches the
high concentration of 12.5%, the corresponding band structure
preserves the presence of the Dirac cone and Dirac nodal point
in the conduction bands (Fig. 4). In contrast, the valence-band
structure is strongly modified, and the valence Dirac cone
rapidly disappears upon this specific doping. Because of this
high concentration of modified carbon atoms, even a small
charge transfer to each carbon atom would be sufficient to
shift EF towards ED . Although obtained from a simplified TB
impurity model, this result suggests that doping the octagonal
ring sites with, for instance, metal adatoms such as Pt or Ti
[32] or Li [33] in the hollow position, i.e., at the center of the
octagons, could be an interesting route.

As a proof of concept, the case of Li has been calculated
with the DFT approach. The Li atoms are initially placed

FIG. 4. (Color online) TB band structures and DOS for the
pristine and two impurity models (δε = −1, −2 eV) for which the
on-site energy terms of carbon atoms belonging to the octagons are
modified (12.5%).

at the center of the octagons (12 Li atoms total), and
their positions are optimized under the conjugated-gradient
approach, keeping all carbon positions fixed. Different views
of the final structure geometry are given in Fig. 5(a), showing
that Li are alternatively positioned slightly below and above
the surface. The corresponding band structure is depicted in
Fig. 5(b). The Fermi energy is now lying very close to the Dirac
point. Furthermore, the splitting and degeneracy lifting are
much weaker than in the case of the random nitrogen-doping
case, demonstrating that this particular doping at octagons
should be preferred to better preserve the Dirac fermions.
Although the present results tend to demonstrate that these
Dirac cones undergo important deformations with symmetry

FIG. 5. (Color online) (a) Different view angles of the atomic
structure of a Li-doped G schwarzite (12 Li atoms at the octagonal
sites). (b) DFT band structure of the Li-doped G schwarzite. The
Fermi level lies just below the Dirac point.
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breaking, Fig. 5 illustrates a possible solution for correctly
moving the Fermi energy towards the Dirac point. Finally, it
is worth mentioning that other carbon schwarzite structures
could host Dirac fermions, possibly lying directly at the Fermi
energy and/or being more robust against symmetry breaking.

IV. DISCUSSION

The true connection between graphene’s Dirac cone and
the present Dirac hypercone remains to be clarified. However,
several hypotheses can be mentioned. The first hypothesis is
that the present schwarzite structure is sufficiently large to
avoid high strain induced by curvature and thus does not
destroy the resemblance to graphene’s Dirac cone. This is
consistent with the sp2 hybridization of carbon, confirmed by
the π -π∗ character of electronic bands around the Fermi energy
and the possibility to reproduce them with a one-atomic-orbital
TB model. Moreover, if linear band crossings were frequently
observed in previously computed band structures of smaller
schwarzites [34], no isolated Dirac cones have been detected.
The second hypothesis is that the present schwarzite containing
only even-membered rings (octagons and hexagons) preserves
the existence of two sublattices, hence allowing the wave
function to eventually conserve a spinorial component linked
to the bipartite nature of the honeycomb lattice. The third
hypothesis is to consider the structure as a larger crystalline
network whose nodes are centered at the octagons. Indeed,
molecular crystalline structures have been shown to host
Dirac cones, at least in planar (Euclidean) systems such as
in graphyne [9] and in other pseudographenic systems such
as molecular graphene assemblies [35]. Although the surface
is non-Euclidean here, a hexagonal patch can still be formed
where each octagon placed at the vertices is separated by a
strip of three benzene rings from the four nearest-neighbor
octagons [see left panel of Fig. 1(a)].

V. CONCLUSION

Carbon is a highly versatile chemical element accepting
different atomic orbital hybridizations, allowing a large variety

of carbon-based materials with outstanding properties. Carbon
allotropes can be found in all dimensions (0D fullerenes, 1D
carbon nanotubes and nanoribbons, 2D graphene layers, 3D
graphite and diamond). Although known as a 3D counterpart
of fullerenes since the early 1990s [17,18,34,36], schwarzite
structures have received increasing attention in recent years
due to the recent interest in finding a graphene foam [37–39].
As reported herein, the possible presence of 3D isotropic
massless Dirac fermions represents another strong reason to
have a closer look at schwarzite-related systems. While the
exact conditions for the existence of such Dirac hypercones
in schwarzites are still unclear, the effect on the electronic
transport properties should be investigated. As for graphene,
the Klein tunneling paradox is expected to be observed in
this schwarzite structure. A sizable linear quantum magne-
toresistance has recently been predicted for 3D massless Dirac
fermions [40], and this prediction needs to be confirmed in
schwarzites, along with other transport properties. Schwarzites
are distinguished from the other carbon compounds by the
fact that they belong to a non-Euclidean geometry with a
negative Gaussian curvature (the hyperbolic geometry). Thus,
including a new type of geometry certainly might result in
materials with novel and fascinating properties, such as the
reported 3D massless fermions, which could open new avenues
in electronics for carbon-based materials.
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