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Transport properties through graphene grain
boundaries: strain effects versus lattice symmetry

V. Hung Nguyen,*a,b,c Trinh X. Hoang,c P. Dollfusb and J.-C. Charliera

As most materials available at the macroscopic scale, graphene samples usually appear in a polycrystalline

form and thus contain grain boundaries. In the present work, the effect of uniaxial strain on the electronic

transport properties through graphene grain boundaries is investigated using atomistic simulations. A sys-

tematic picture of transport properties with respect to the strain and lattice symmetry of graphene

domains on both sides of the boundary is provided. In particular, it is shown that strain engineering can

be used to open a finite transport gap in all graphene systems where the two domains are arranged in

different orientations. This gap value is found to depend on the strain magnitude, on the strain direction

and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large

transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents.

For a specific class of graphene grain boundary systems, strain engineering can also be used to reduce

the scattering on defects and thus to significantly enhance the conductance. With a large strain-induced

gap, these graphene heterostructures are proposed to be promising candidates for highly sensitive strain

sensors, flexible electronic devices and p–n junctions with non-linear I–V characteristics.

I. Introduction

Graphene-based nanostructures have attracted a great amount
of attention from the scientific communities, in view of the
numerous possibilities offered not only for fundamental
science but also for practical applications.1 This broad interest
is basically motivated by the outstanding properties of
graphene such as high carrier mobility, small spin–orbit coup-
ling, superior mechanical strength and stiffness, high elec-
tronic and thermal conductivities, optical transparency, etc.
Hence, graphene appears as a promising material for inte-
gration into a variety of electrical, spintronic and optical appli-
cations and also for improving the performance of flexible
devices.

Regarding the production of a large graphene area, the
chemical vapor deposition (CVD) method is known to be the
best technique as it is capable of achieving both high struc-
tural quality and wafer-scale growth.2 However, the transfer of
graphene to insulating substrates remains a big challenge and
considerable efforts are still needed to further improve the

growth process. In particular, CVD graphene is found to be
polycrystalline in nature3,4 and composed of many single-
crystal graphene domains separated by grain boundaries (GB)
of irregular shapes. The GBs appear as extended structural
defects consisting of a random one-dimensional distribution
of non-hexagonal rings (i.e., pentagon, heptagon, octagon,
etc.). These structural defects strongly affect the overall pro-
perties of wafer-scale graphene materials.5 In particular, it has
been shown that the intrinsic strength of graphene samples is
strongly modified according to the type of grain boundaries.6–8

Additionally, the grain boundaries are an important source of
scattering that limit drastically the carrier mobility in CVD gra-
phene samples9,10 and consequently the performance of gra-
phene-based electronic devices.11 The optical and thermal
properties of graphene are also significantly affected by the
presence of these structural defects.12–15 The localized states at
grain boundaries also play an important role in the transport
properties of graphene samples. For instance, strongly loca-
lized states at the center of Landau levels and extended
electronic states between Landau levels are observed in poly-
crystalline graphene, which is opposite to that of the conven-
tional quantum Hall effect.16 Interestingly, such localized
states essentially respond to van Hove singularities in the
density of states17 and enhanced magnetism in polycrystalline
graphene systems.18

Besides its intrinsic defective nature, graphene also exhibits
an important drawback: the lack of a bandgap, which is a real
problem for conventional applications in electronics.19 So far,
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many efforts in engineering a bandgap in graphene have been
made to solve this issue. For instance, techniques such
as cutting 2D graphene sheets into narrow nanoribbons,20

depositing graphene on a hexagonal boron nitride substrate,21

doping graphene with nitrogen,22 applying an electric field
perpendicularly to Bernal-stacking bilayer graphene,23 creating
graphene nanomeshes,24 using hybrid graphene/hexagonal
boron-nitride25 or vertical graphene channels26 are a few
examples. Recently, it has also been suggested that the use of
hetero-channels consisting of two graphene domains
with different electronic structures could be a potential
strategy.27–29 The idea is that by joining two semi-metallic gra-
phene domains, a finite energy gap of conductance/current
through the channel can be achieved if the Dirac cones of
these domains are shifted from each other in the k-space.
Following this idea, a finite energy gap as large as a few
hundred meV has been predicted in unstrained/strained gra-
phene heterojunctions27 and in vertical channels made of mis-
oriented graphene layers28 when the strain is conveniently
applied. Furthermore, the transport gap has been shown to be
strongly dependent not only on the strain magnitude but also
on both the strain direction and the lattice orientation. This
idea of opening a finite transport gap due to the mismatch
between Dirac cones has been also explored in hetero-struc-
tures based on the vertical stacking of two different Dirac
materials (graphene, silicene, germanene, etc.).30 Given the
superior ability to sustain a large strain of over 20%,31 gra-
phene appears as a promising material for flexible electronic
devices.32 In this regard, the studies in ref. 27 and 28 have
suggested a new route to enlarge the possibility of using gra-
phene in strain sensors and flexible transistors. It is worth
noting that strain engineering has also been demonstrated to
be an alternative/efficient approach to modulate the electrical,
optical and magnetic properties of several graphene
nanostructures.33–40

In polycrystalline graphene, the graphene domains
surrounding a grain boundary frequently have different
orientations. This naturally offers the possibility of designing
heterostructures with similar properties as those studied in
ref. 27–29. In principle, a finite transport gap can be achieved
in the presence of a mismatch between the band structures of
these two graphene domains. Indeed, it has been demon-
strated in ref. 41 that a large transport energy gap of about
1 eV can be achieved in a graphene structure made of an in-
commensurable couple of armchair-oriented and zigzag-oriented
domains on both sides of a grain boundary. However, in gra-
phene systems made of two commensurable lattices, the gap
remains zero. It has been also shown that the electronic trans-
port through a grain boundary can be modulated by strain
engineering.42 Actually, by applying the strain perpendicularly
to the GB, that is the only strain direction investigated in ref.
42, a finite gap can be induced if the two domains of commen-
surable systems are asymmetric with respect to the GB while
the gap in the incommensurate cases can be significantly
modified by strain. However, a strain amplitude of about
15–20% appears to be required to achieve a large modulation

of the transport gap and conductance. We would like to
emphasize that the requirement of such a large strain is a big
challenge in practice. On the one hand, the presence of grain
boundaries can severely weaken the intrinsic strength of poly-
crystalline systems, compared to that of pristine graphene.43–47

On the other hand, to our knowledge, the highest strain
reported that has been attained in a controlled, reversible and
reproducible way is just about 10% (see in ref. 48 and refer-
ences therein). Besides this limitation, a strain applied perpen-
dicularly to the GB as in ref. 42 cannot change the semi-
metallic character of symmetric systems. As suggested in
similar graphene heterosystems,27,28 the transport gap should
strongly depend not only on the strain magnitude but also on
the strain direction. Hence, the strain direction studied in ref.
42 may not be the optimal one to achieve a large gap and
hence cannot fully clarify the high strain-sensitivity of the
charge transport in these kinds of heterostructures. In
addition, since the transport gap is essentially due to the mis-
match between the electronic structures of two graphene
domains, we anticipate that the symmetry properties of the
global system should play an important role, which has not
been properly investigated yet.

In this context, we aim to investigate systematically the
effects of uniaxial strain on the transport properties of gra-
phene-based systems containing a single grain boundary.
First, we clarify systematically the dependence of the transport
gap on (i) the strain (both in amplitude and applied direction)
and (ii) the symmetry properties of the global system that are
characterized by the nature of the grain boundary, both orien-
tations of the two graphene domains, their relative commen-
surability, and so on. Based on this, we explore the
possibilities of strongly modulating/generating a transport gap
in all systems where the graphene domains have different
orientations and, especially, for small strain amplitudes of
only a few percents. We also report on a new property of scat-
tering on defects in graphene grain boundary systems when a
strain is applied. Finally, we suggest some typical applications
of these kinds of graphene heterostructures and study in more
detail the case of p–n junctions exhibiting strong negative
differential conductance and rectification effects.

II. Model and methodology

The investigated graphene-based systems containing a single
grain boundary that presents periodic pentagon–heptagon
pairs along the Oy direction are illustrated as in Fig. 1. In this
work, we consider the electronic transport along the Ox direc-
tion, i.e., perpendicularly to the grain boundary.49,50 A uniaxial
strain applied to the system is characterized by its magnitude
ε and its direction θ with respect to the transport direction (see
the inset on the right of Fig. 1).

In most cases, graphene domains surrounding the bound-
ary exhibit different crystallographic orientations. More specifi-
cally, we distinguish two typical cases for these domains
depending on their lattice relative symmetries (see Fig. 1).
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In both cases, the domains are determined by rotating the orig-
inal (zigzag- or armchair-oriented) lattice by an angle ϕrot. This
angle is actually the angle between translation vectors~Ly of the
rotated lattice and ~Ly0 of the original one (see the images in

the top of Fig. 1) and determined as cos ϕrot ¼
~Ly �~Ly0
LyLy0

. These

vectors are simply given by ~Ly0 ¼~a1 þ~a2 while ~Ly ¼ p~a1 þ q~a2.

Before the rotation, ~a1;2 ¼ +
ffiffiffi
3

p
; 3

� �
a0=2 and +3;

ffiffiffi
3

p� �
a0=2 in

the zigzag- and armchair-oriented lattices, respectively, where
a0 is the in-plane C–C bond length (= 1.42 Å) in pristine gra-
phene. Hereafter, these zigzag- and armchair-oriented lattices
are identified with the denominations ZZp,q and AMp,q, respec-
tively. Accordingly, we also determine the translational vectors

along the Ox axis as~Lx ¼ n~a1 þm~a2 that satisfies the condition

~Lx �~Ly ¼ 0, i.e.,
n
m

¼ � 2qþ p
2pþ q

for ZZp,q and
n
m

¼ � 2q� p
2p� q

for

AMp,q lattices. Depending on their orientation and the period-
icity of the grain boundary, the supercell of graphene domains

can be classified into two cases where either Lx ¼ Ly
ffiffiffi
3

p
if

p − q ≠ 3l (supercell of type 1) or Lx ¼ Ly=
ffiffiffi
3

p
if p − q = 3l (super-

cell of type 2) with l ∈ Z41 for ZZp,q lattices. For AMp,q ones,

we have Lx ¼ Ly
ffiffiffi
3

p
if p + q ≠ 3l and Lx ¼ Ly=

ffiffiffi
3

p
if p + q = 3l.

We also distinguish two types of grain boundary systems
where the left and right graphene domains are either commen-
surable or incommensurable. In the commensurable cases,
one can find a common periodicity for the two graphene
domains by extending the supercell appropriately from the
original lattices, which is not the case for the incommensur-
able lattices. Hence, the translational length Ly is exactly the
same for both domains in the commensurable systems while
there is a mismatch between their translational lengths in the
incommensurable cases. Regarding the incommensurable
systems studied in the present work, we only focus on the
cases where the mismatch mentioned above is small (i.e.,
≲3%), which allowed us to perform calculations using the
average translational length as the size for the periodic cells
along the Oy axis.41

Each graphene-based system was relaxed using classical
molecular dynamics to minimize its energy determined from
optimized Tersoff potentials.51 This empirical potential model
has been shown to accurately describe the structural properties

Fig. 1 Graphene-based systems investigated in this work. The systems contain a single grain boundary that presents periodic pentagon–heptagon
pairs along the Oy axis. The top images illustrate the rotation of the graphene sheet to form two graphene domains surrounding the grain boundary
(see text). The transport direction (Ox axis) is perpendicular to the grain boundary. The uniaxial strain of magnitude ε is applied in the direction θ with
respect to the Ox axis as illustrated by the small inset on the right side.
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and to provide accurate calculations of the thermal/mechan-
ical properties in pristine and defective graphene including
grain boundaries.14,15,52–57 To compute the electronic trans-
port quantities, we then employed a non-equilibrium Green’s
function formalism to solve the π-orbital tight-binding model.
It is worth noting that the agreement between tight-binding
calculation and density functional theory in graphene GBs has
been demonstrated in ref. 41. It has to be also noted that even
without applying any external strain, local strains caused by
the atomic dislocation still occur in the vicinity of the GB.
However, while the quantitative value of transmission across
the boundary is slightly affected, its qualitative behavior
around the gap as well as the transport gap is not significantly
affected by this local strain. This can be explained by the fact
that the transport gap is essentially due to the mismatch
between electronic structures of graphene lattices in both
sides (far from the grain boundary) where the effects of atomic
dislocations are negligible.

In particular, the real space tight-binding Hamiltonian was
constructed as follows: Htb ¼

P
i;j
ti;jciþcj where ti,j corresponds

to the nearest-neighbor hopping energy between ith and jth

atoms. When a uniaxial strain is applied, the change in the
C–C bond vectors ~rij was determined according to
~rijð~εÞ ¼ 1þMsð~εÞf g~rijð0Þ with the following strain tensor33

Msð~εÞ ¼ ε
cos2 θ � γ sin2 θ ð1þ γÞ sin θ cos θ
ð1þ γÞ sin θ cos θ sin2 θ � γ cos2 θ

� �
ð1Þ

where ~ε ; ε; θð Þ represents the strain (see in Fig. 1) and
γ ≃ 0.165 is the Poisson ratio.58 When taking into account
strain effects, the hopping parameters were adjusted accord-
ingly,33 i.e., tijð~εÞ ¼ tijð0Þ exp �3:37 rijð~εÞ=a0 � 1

� �	 

where

tij(0) ≡ −2.7 eV corresponds to the hopping energy between
nearest neighbor atoms in pristine graphene. The tight-
binding Hamiltonian Htb can be rewritten in its wavevector ky-
dependent (quasi-1D) form Htb(ky), as described in more detail
in ref. 27 and 28. The Green’s function was then computed59

using the equation:

GðE; kyÞ ¼ ½E þ i0þ � HtbðkyÞ � Σðε; kyÞ��1; ð2Þ

where the self-energy Σ(E, ky) = ΣL(E, ky) + ΣR(E, ky) with ΣL,R

being the terms that describe the left and right contact-
to-device couplings, respectively. The transmission probability
needed to evaluate the current is calculated as
T e E; ky

� �
¼ Tr ΓLGΓRG†

n o
, with ΓL(R) = i(ΣL(R) − Σ†

L(R)) being
the transfer rate at the left (right) contact. The conductance
and current were obtained by the Landauer formulas:

G ¼ e2W
πh

ð
BZ

dky

ð
dET e E; ky

� �
� @f Eð Þ

@E

� �
; ð3Þ

I ¼ eW
πh

ð
BZ

dky

ð
dET e E; ky

� �
fLðEÞ � fRðEÞf g: ð4Þ

Here, the integrals over ky are performed in the whole Bril-
louin zone, W denotes the channel width, and fL(R) = 1/[1 + exp

((E − EFL(R))/kbT )] is the Fermi distribution function in the left
(right) contact with the Fermi energy level EFL(R).

III. Results and discussion

Within the methodology described above, we investigate the
transport properties through different graphene grain bound-
ary systems.

A. Transport gap induced by strain

First, we investigate the transport properties of the symmetri-
cal graphene-based systems schematized in Fig. 1. Considering
a strain applied along the Ox axis, the symmetrical graphene
GBs have been found to always remain semi-metallic.42

However, this conclusion is no longer true when the strain
direction is changed. The strain effects on the transmission
function obtained in the system with the ZZ2,1 and ZZ1,2 lat-
tices surrounding the GB (see Fig. 1c) are represented in Fig. 2.
It is true that in the unstrained case and for a strain (ε,θ) =
(4%, 0°), the system remains semi-metallic with a zero energy
gap in its transmission function. However, when the strain
direction is changed, a significant gap Eg opens, as shown in
Fig. 2c and d. The origin of this feature can be easily explained
as follows. Since the two graphene domains are arranged in
different orientations, the effects of strain on their electronic
structures are generally different. In particular, their band
structures are identical in the commensurable system studied
here (see the band-edges superimposed in Fig. 2a) when no
strain is applied. However, when a strain is applied in an
appropriate direction, their band structures are deformed
differently, leading to a separation of their Dirac cones along
the ky axis (see the band-edges superimposed in Fig. 2c and d).
This separation results in a finite energy interval where there
is no overlap between the band structures of the two domains.
In the presence of a periodic grain boundary, the charge trans-
port through the system satisfies the ky conservation and
hence only the states in the overlapped region of band struc-
tures can be transmitted. Otherwise, a gap of transmission,
i.e., a transport gap, is formed. Essentially, this transport is
proportional to the separation between the Dirac cones of
the two domains ΔDy = |D1y − D2y|, i.e., Eg ≃ ħvFΔDy with the
Fermi velocity vF = 106 m s−1. Note that the same separation is
obtained for the D′ cones, i.e., ΔD′y = |D′1y − D′2y| ≡ ΔDy. This
property explains why the structure is gapless (i.e., ΔDy = 0)
when no strain is applied, as shown in Fig. 2a. Because of the
system symmetry with respect to the grain boundary, ΔDy (and
Eg) remains zero when a strain is applied along the Ox direc-
tion (θ = 0°). For other strain directions, in particular θ = 20°
and 45° presented in Fig. 2c and d, the system symmetry men-
tioned is broken by strain and hence a finite ΔDy (and Eg) is
achieved.

In Fig. 3, maps of the transport gap with respect to the
strain magnitude (from 0% to 6%) and its applied direction
were calculated for the different graphene systems described
in Fig. 1. Except for the AM02 case that will be discussed later,
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Fig. 2 Transmission probability maps around the neutrality (Dirac) point obtained in the graphene GB system ZZ03 (see Fig. 1c). Various applied
strains (ε,θ) are considered. The dashed and solid lines are superimposed to show the strain effects on the band (conduction and valence) edges of
the two graphene domains along the ky axis.

Fig. 3 Color maps of the transport-gap with respect to the strain (ε,θ) in different graphene GB systems (see Fig. 1). Note that the radius from the
central point of the maps represents the strain magnitude ranging from 0% (center) to 6% (edge).

Paper Nanoscale

11662 | Nanoscale, 2016, 8, 11658–11673 This journal is © The Royal Society of Chemistry 2016



the transport gap is zero for θ = i × 90° (where i = 0, 1, 2, 3)
while it gets maximum around θ = i × 90° + 45°. In conclusion,
opening a finite transport gap in graphene GB systems is
always possible even if they are symmetric. The gap value is
strongly dependent on both the strain magnitude and its
applied direction. Interestingly, when strain is applied in the
appropriate direction, a large transport gap of a few hundred
meV can be achieved with the strain magnitude as small as a
few percents. For instance, a large gap of ∼840 meV is achieved
for ε = 6% as shown in Fig. 3b.

Moreover, Fig. 3 also demonstrates that besides its depen-
dence on the strain magnitude and strain direction, the trans-
port gap is also very sensitive to the system symmetry. First, as
explained above, the key factor responding to the strain-
induced generation/modulation of the transport gap in these
kinds of graphene heterostructures is the degree of misorienta-
tion between the two domains. The transport gap cannot be
neither created nor modulated in the systems consisting of the
same oriented graphene lattices (e.g., graphene sheet with a
line defect60) because a mismatch between their electronic
structures does not occur even if a strain is applied. Therefore,
the transport gap is generally dependent on the misorientation
angle ϕMO between the two graphene domains. Indeed, for
zigzag-oriented lattices and for small strains, the gap generally
decreases when increasing the misorientation angle as shown
for instance in the cases ZZ02 (ϕMO ≈ 13.2°) – Fig. 3b and ZZ03
(ϕMO ≈ 21.8°) – Fig. 3c. However, for armchair-oriented lat-
tices, the gap has an opposite behavior, which is seen in the
cases AM01 (ϕMO ≈ 17.9°) – Fig. 3d and AM03 (ϕMO ≈ 27.8°) –
Fig. 3f. Here, we would like to notice that the band structure of
graphene domains surrounding the grain boundary is actually
obtained by band folding from the original lattice. In prin-
ciple, the resulting band folding is essentially dependent on
both the rotation of the graphene sheet and its original lattice.
In the original lattices, the Dirac cones are located at different

positions in the k-space, i.e., at +
2π
3Lx

; 0
 �

and 0;+
2π
3Ly

 �
in

the zigzag- and armchair oriented cases, respectively. Hence,
the folded bands of the corresponding rotated lattices have
different behaviors under the effect of strain, which can
explain the results discussed above regarding the ϕMO-depen-
dence of Eg. Moreover, since the system symmetry is depen-
dent not only on the orientation of two graphene domains but
also on the nature of the grain boundary (e.g., its direction,
periodic length Ly, etc.), it will be shown later (see the discus-
sions for Fig. 8 and 9 below) that besides its dependence on
the misorientation angle, the transport gap also exhibits a
strong sensitivity to other structure parameters.

Next, the behavior of the transport gap is found to be
strongly dependent on the supercell (type and size) of gra-
phene domains. In Fig. 4a, the transport gap is presented as a
function of strain direction θ for ε = 6% in the armchair-
oriented cases. Actually, the transport gap in the AM02 system
(ϕMO ≈ 21.8°) obtained for strain directions close to θ = i × 90°
also satisfies the ϕMO-dependence discussed above for the
armchair-oriented systems. However, in contrast with the
other cases, it exhibits an additional valley, instead of a
maximum, around θ = i × 90° + 45° (see also Fig. 3e). To
explain this feature, the supercell and Brillouin zone of two
typical graphene lattices are illustrated in Fig. 4b and c. The
displacement of the Dirac cones when changing the strain
direction is also depicted. As mentioned, the supercell of gra-
phene lattices has two possible types, i.e., either Lx ¼ Ly

ffiffiffi
3

p

(type 1) or Lx ¼ Ly=
ffiffiffi
3

p
(type 2). These supercell types corres-

pond to the two cases where p − q ≠ 3l (p + q ≠ 3l) and p − q =
3l (p + q = 3l), respectively, for ZZp,q (AMp,q) systems as
described in the previous section. Accordingly, there are two
different types of Brillouin zones and the corresponding Dirac
points (i.e., at the K-points without strain) are located either at

Fig. 4 Transport gap versus strain direction θ in armchair oriented graphene based systems for ε = 6% (a). Two supercell types (see text) and corres-
ponding Brillouin zones of the rotated graphene lattices are illustrated in (b) and (c).
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+
2π
3Lx

; 0
 �

or at 0;+
2π
3Ly

 �
, respectively (see Fig. 4b and c).

In the AM01, AM03, ZZ01, ZZ02 and ZZ03 systems (i.e.,

Lx ¼ Ly
ffiffiffi
3

p
), the transport gap Eg is simply proportional to ΔDy

= |D1y − D2y|(≡ |D′1y − D′2y|). Hence, Eg represents a maximum
around θ ≈ i × 90° + 45° while it is zero for θ = i × 90° when
D1y ≡ D2y and D′1y ≡ D′2y. However, the situation is different for

the AM02 systems (i.e., Lx ¼ Ly=
ffiffiffi
3

p
) since ΔDy is the minimum

of |D1y − D2y|, |D1y − D′2y|, |D′1y − D2y| and |D′1y − D′2y|,
making twice smaller the period of θ-values for which the
transport gap vanishes. Hence, besides the zero value of Eg at
θ = i × 90°, the gap is also zero with a corresponding valley
around additional points θ ≈ i × 90° + 45° when |D1y − D′2y|
(≡ |D′1y − D2y|) is zero or small. Note that this dependence of
Eg on the supercell type is a common property for all graphene
GB systems even if (not shown in this paper) graphene
domains are asymmetric (but still commensurable) or
incommensurable.

In order to investigate its dependence on the supercell size,
the transport gap is plotted as a function of strain direction
θ in Fig. 5a and of strain magnitude in Fig. 5b for the cases of
zigzag-oriented systems. Note that the transport gap in the

ZZ01 system (ϕMO ≈ 9.4°) obtained for small strains or large
strains with directions close to θ = i × 90° also satisfies the
ϕMO-dependence discussed above for the zigzag-oriented
systems (see Fig. 5a). However, when the strain magnitude is
large enough, the gap around θ = 45° obtained in this system
is suddenly reduced when increasing ε. To clarify this feature,
the transport gap is investigated in a large range of ε while θ is
fixed at 45° (Fig. 5b). Actually, in all cases, the gap is found to
increase with the strain magnitude and then to decrease when
ε is large enough. The gap can even vanish at ε ≃ 14.3% in the
case of the ZZ01 system (Fig. 5b). Interestingly, the threshold
value of strain εpeak at which the behavior of Eg changes is
found to be inversely proportional to the size Ly of the super-
cell. In particular, εpeak is ∼11.2%, 6.7% and 4.9% for Ly ≃
0.65 nm (ZZ03), 1.1 nm (ZZ02) and 1.5 nm (ZZ01), respectively.
To explain these properties, we draw in Fig. 5c some diagrams
illustrating visually the displacement of the Dirac cones of
both graphene domains along the ky axis when a large strain is
applied. For small strains, the Dirac cones D1 (of domain 1)
and D2 (of domain 2) are gradually separated, which makes the
transport gap increase with the strain magnitude. When the
strain is large enough, D1 reaches the edge of the Brillouin
zone and then the situation (1) illustrated in Fig. 5c takes

Fig. 5 Transport gap versus strain direction θ for two different ε values (a) and versus ε for θ = 45° (b) for zigzag oriented-graphene systems. (c)
Schematics illustrating the displacement induced by strain along the ky axis of the Dirac points related to the two graphene domains (see text).
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place, thus modifying the behavior of ΔDy (and Eg) from an
increasing to decreasing function of ε. On further increasing
the strain, D2 reaches the zero point, which induces the situ-
ation (2) to happen and makes the gap decrease even more
rapidly. Additionally, the dependence of εpeak on Ly is a direct
consequence of the Ly-dependence of the size of the Brillouin
zone (see further discussions below). For a smaller Ly, the
corresponding Brillouin zone is larger and hence the situ-
ations described above occur at a larger strain.

We would like to notice that such a merging of Dirac cones
when a large uniaxial strain is applied in pristine graphene
has already been reported in ref. 33 showing that beyond the
critical strain (∼23%), a bandgap opens. However, the merging
process in the present case is completely different. Indeed, it
appears at a much lower strain than the critical value men-
tioned above and the band structure of graphene domains is
still gapless. This is because the presence of a grain boundary
changes the periodicity of graphene lattices and the merging
process observed here is essentially a consequence of the
folding of the graphene band structure from the original Bril-
louin zone to the reduced Brillouin zone. Actually, the reduced

Brillouin zone along the ky axis is determined as ky [ � π
Ly

;
π
Ly

� �

and hence the maximum of ΔDy is π/Ly (approximately, the
maximum of transport gap is Egmax = ħvFπ/Ly) obtained when,
for instance, D1y = 0 and D2y = π/Ly. Generally, it is difficult to
simultaneously satisfy these conditions for D1y,2y and hence
the maximum of the transport gap, depending on the system
symmetry, is always smaller than Egmax. Importantly, the men-
tioned property suggests that the graphene GB systems with a
short periodic length Ly are preferable to obtain a large trans-
port gap induced by strain.

In order to present a general view, the properties of Eg in
asymmetrical (but still commensurable) systems have also
been investigated. Since the gap is dependent on both the
strain and orientation of graphene domains, the properties of
Eg should change dramatically when the global system is no
longer symmetric. In Fig. 6b, a polar map of Eg with respect to

the strain was calculated for the asymmetrical system rep-
resented in Fig. 6a. Note that Eg has properties similar to that
of symmetrical systems, except that it exhibits a different
θ-dependence. In particular, the gap is strongly dependent
on the strain direction with valleys of minimal values at
θ ≃ i × 90° + 61° and high peaks of maximal values in between
such valleys. A large gap up to 730 meV for a strain ≃6% is
also observed.

The next section is devoted to the effects of strain on the
transport gap in incommensurable graphene-based systems.
Note that in the incommensurable systems where the two gra-
phene domains have the same supercell type (not shown in
this paper), the transport gap has properties similar to that of
commensurable ones discussed above. However, differently
from the commensurable systems, it is possible to design
heterostructures where the graphene domains have different
supercell types (see Fig. 4b and c) in the incommensurable
cases. In these heterostructures, the Dirac cones of the two gra-
phene domains are located at different positions in the k-space

(i.e., at +
2π
3Lx

; 0
 �

and 0;+
2π
3Ly

 �
). Consequently, a finite

transport gap can be achieved even if no strain is applied.41 In
Fig. 7, the maps of Eg with respect to the strain are displayed
for two different incommensurable systems shown in Fig. 7a
(INC01) and Fig. 7d (INC02), respectively. Here, both the
tensile (Fig. 7b and e) and compressive strains (Fig. 7c and f)
are investigated. When no strain is applied, the gaps of ∼1 eV
and 0.58 eV are obtained for the INC01 (Ly ≃ 1.23 nm) and
INC02 (Ly ≃ 2.13 nm) systems, respectively. Similarly as dis-
cussed above, these values of the transport gap approximately
satisfy the formula Eg(0) = 2ħvFπ/3Ly. More interestingly, strain
engineering is found to be a very efficient way to modulate the
gap. Depending on the strain direction, gaps in the range of
[0.31, 1.20] eV and [0.37, 1.38] eV can be respectively achieved
when the tensile and compressive strains (≤6%) are applied to
the INC01 system. In the case of INC02, the ranges of Eg are
[0.0, 0.86] eV (tensile strain) and [0.0, 0.98] eV (compressive
strain). Again, the θ-dependence of Eg is shown to be strongly

Fig. 6 (a) Asymmetrical graphene GB system: an armchair oriented lattice (on the left) connected to a ZZ3,5 lattice (on the right). (b) Color map of
the transport gap with respect to the strain (ε,θ). The radius from the central point represents the strain magnitude ε ranging from 0% (center) to 6%
(edge).
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sensitive to the overall symmetry of the system, i.e., it is very
different in the INC01 and INC02 cases. Interestingly, even
if a finite transport gap is achieved without a strain, a
metal–semiconductor transition can be observed for the
system INC02 with the strain magnitude ε < 6%. For the
system INC01, such a transition also occurs for a strain of
about 8.7% (not shown). In these systems, the maximum of
the transport gap when a strain is applied is generally larger
than the value Eg(0) but smaller than the value Egmax (≃ ħvFπ/Ly),
as already explained above. Additionally, the behavior of
Eg is qualitatively similar in the two strain cases (ε,θ) and
(−ε,θ + 90°). This can be explained by analyzing the strain
tensor in eqn (1). For small strains, the relationship between
the bond lengths under these two strains is approximately
given by

rðε; θÞ � rð�ε; θ þ 90°Þ ’ εð1� γÞr0; ð5Þ

which is θ-independent for all C–C bond vectors. It also
implies that there is a fixed ratio between the hopping energies
tij(ε,θ) and tij(−ε,θ + 90°) and hence the displacement of Dirac
cones (and Eg) is qualitatively similar in these two cases.27

This property is actually valid for all systems, i.e., also includ-
ing the commensurable cases studied above. The only differ-
ence between the effects of the two types of strain is that the

gap varies more strongly under a compressive strain than
under a tensile one.

For the sake of completeness, we present in Fig. 8 the
strain-induced transport gap obtained in some systems61

where the grain boundary (direction and/or periodic length Ly)
is modified. The two graphene domains in Fig. 8a–c are the
same as in Fig. 1c while the domains in Fig. 8d and e are the
same as in Fig. 7a. As emphasized above, the symmetry pro-
perty of the global system is dependent on both the orientation
of the two domains and on the nature of the grain boundary.
Indeed, Fig. 8 shows that the degree of symmetry between two
domains, their relative orientation with respect to the GB line,
the periodic length Ly, and the supercell types of graphene
domains are modified when the grain boundary is changed.
These changes in the system symmetry lead to significant
changes in the properties of the transport gap induced by the
strain. In particular, differently from the data shown in Fig. 3c,
the transport gap obtained for the systems in Fig. 8a and b is
an asymmetric function of the strain direction (similarly as in
the case presented in Fig. 6) while the gap for the system in
Fig. 8c exhibits four peaks/valleys in the range of θ ∈ [−90°,
90°] (similarly as in the case presented in Fig. 3e). The latter
feature is explained by the fact that graphene domains in the
system of Fig. 8c have supercells of type 2 while the domains
in other systems of Fig. 8a and b and Fig. 1c have supercells
of type 1. The systems in Fig. 8d and e even exhibit a more

Fig. 7 Color maps (b, c) and (e, f ) of the transport gap with respect to the strain (ε,θ) in two incommensurable systems shown in (a) and (d), respect-
ively. Both tensile and compressive strains are considered in (b, e) and (c, f ), respectively. The radius from the central point represents the strain mag-
nitude ε ranging from 0% (center) to 6% (edge).
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significant change in the properties of the transport gap, com-
pared to the results obtained for the system in Fig. 7a. Both
changes in the periodic length Ly (Fig. 8d) and/or in the GB
direction (Fig. 8e) lead to a modification of the supercell type
of the two graphene domains. While they have different super-
cell types in Fig. 7a, these domains have the same supercell of
type 2 in the systems of Fig. 8d and e. When no strain is
applied, the former system behaves as a semiconducting
channel while the latter ones are semimetallic, as shown for
instance in the inset of Fig. 8d. Importantly, it demonstrates
again that a metal–semiconductor transition induced by a
strain can be achieved in all the systems studied.

Thus, our results show that generally, (i) a large generation/
modulation of the transport gap by a strain can be achieved in
all systems where the two graphene domains are arranged in
different orientations, (ii) this gap is not only dependent on
the strain (magnitude and direction) but also is very sensitive
to the symmetry properties of the global system (i.e., depend-
ing on the nature of the grain boundary and the orientation of

the two graphene domains). In order to provide a more com-
plete picture about these properties, we plot in Fig. 9 the
maximum of the transport gap as a function of the misorienta-
tion angle between the two graphene domains, summarizing
the possibility of a strain-induced transport gap in many
different systems. This maximum value of the transport gap is
obtained when varying the strain direction while the strain
magnitude is fixed at ε = 5%. Note that the misorientation
angle is determined here as the angle between the high sym-
metry (armchair or zigzag) directions of the two domains and
hence the full range of ϕMO is only [0°, 30°]. Indeed, besides
its dependence on the misorientation angle, the transport gap
exhibits a strong variation with respect to other structure para-
meters such as the GB direction, the periodic length Ly, the
relative orientation angle of graphene domains with respect to
the grain boundary, the commensurability of these two
domains, etc. However, two common properties are observed.
First, the gap tends to zero when the misorientation angle
approaches zero. Second, the variation is strong for moderate

Fig. 8 (f ) Polar plots of a strain-induced transport gap with respect to the strain direction obtained in five systems (a–e) while the strain magnitude
ε = 5% is fixed. The inset of (d) shows the (E − ky) map of transmission obtained in the corresponding system under zero strain.
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angles but it weakens and the transport gap tends to a finite
value when the misorientation angle reaches 30°. The latter
feature suggests that to obtain a finite transport gap and to
avoid its strong sensitivity to the system symmetry, the systems
with a misorientation angle of about 30° are good candidates.
Additionally, note that the data obtained in the incommensur-
able systems where two domains have different supercell types
are not included in Fig. 9. In such cases, the transport gap is
finite even without a strain and its maximum value when

a strain is applied is generally in the range of ℏvF
2π
3Ly

;ℏvF
π
Ly

� �
,

as already discussed above. Otherwise, the gap also has a
strong sensitivity to other symmetry properties of the global
system, as discussed for the data in Fig. 9.

Finally, though the transport gap is complicatedly depen-
dent on all structure parameters (i.e., the nature of grain
boundary and both orientations of the two graphene
domains), we would like to demonstrate here a common prop-
erty that can be simply used to estimate the transport gap in
any graphene periodic GB system. As shown above in Fig. 2,
the transport gap is essentially due to the mismatch of band
structures of the two graphene domains and hence its value
can be estimated from the width of the energy interval in
which there is no overlap between their band structures along
the ky axis. On this basis, we propose a simple numerical
scheme to estimate the transport gap without any expensive
atomistic simulation. The transport gap can be determined
by the following steps: (i) determine the supercells (with two
translation vectors Lx,y) of the two graphene domains, for
instance, from experimental micrographs;61 (ii) compute the
energy bands and the (conduction and valence) band edges of
these domains as a function of momentum ky using the tight
binding Hamiltonian given in section II; (iii) the transport gap
is finally determined as the energy interval in which the bands

of the two domains do not overlap each other (see Fig. 2). To
determine the supercells of graphene domains, note that their
relaxed lattices far from the defect region are, in principle,
identical to that of pristine graphene. This numerical scheme
is simple and could be a very useful tool for predicting and
designing the GB systems with desirable properties.

B. Strain versus defect scattering

In polycrystalline graphene, the scattering on the GB defects is
one of the important factors that strongly affects the transport
properties (carrier mobility, mean free path, conductivity and
so on9–11). In this subsection, we investigate these scattering
mechanisms when a strain is applied. Our calculations have
shown that the conductance of graphene is drastically affected
and strongly degraded in the presence of these GB defects.
As discussed in the previous subsection, a finite transport gap
can open and hence the conductance is further reduced by the
effects of the strain. However, we additionally found that in
the systems where the two graphene domains have the super-
cell of type 2 as shown in Fig. 4b, e.g., the AM02 system
(Fig. 1e), the strain effects have another peculiar property, i.e.,
they can significantly modify the GB defect scattering. In
Fig. 10a, the conductance as a function of Fermi energy was
calculated in the AM02 system for different applied strains and
compared to the unstrained case. To avoid finite transport-gap
effects, only strain directions θ = 0° and 90° are considered
here, i.e., D1y ≡ D′2y and D2y ≡ D′1y even though D1y ≠ D′1y and
D2y ≠ D′2y. Instead of its reduction, the conductance around
the neutrality point is found to be significantly enhanced
when a strain is applied. Indeed, its value is about twice the
conductance obtained in the unstrained case. When a strain is
applied, the band structure of both graphene domains is
deformed and the separation of Dirac cones D and D′ of each
domain along the ky axis is observed, as illustrated in Fig. 10b.
Interestingly, the enhancement of conductance is especially
significant in the energy window [E1, E2] where there is no
overlap between the D and D′ cones along the ky axis. Beyond
this energy window, the conductance enhancement weakens
gradually when increasing the energy.

In order to explain this peculiar phenomenon, schematic
diagrams illustrating the transmission/reflection processes,
band profiles of both graphene domains, and phase difference
Δϕ between the incoming and reflected states calculated at
the atomic sites are presented in Fig. 11. When transmitting
through the graphene system, the incoming wave eikx is separ-
ated at the grain boundary into two components teikx and re−ikx

that correspond to the transmitted and reflected waves,
respectively. The transmission and reflection probabilities of
this process are simply determined by T = |t|2 and R = |r|2. If
there is no scattering source (i.e., no defect), T = 1 and R =
0. The presence of defects in the GB should enhance the tran-
sition between the incoming and reflected states (i.e., should
increase the amplitude of r) and hence enlarge the reflection.
The transition probability of these processes is, in principle,
dependent on both the nature of the defects and the pro-
perties of these two states.

Fig. 9 Maximum of the transport gap when varying the strain direction
is summarized for many different graphene GB systems as a function of
the misorientation angle between the two graphene domains. The strain
magnitude ε = 5% is fixed.
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Here, we would like to remind the readers of a peculiar
phenomenon in graphene: the parity symmetry of the sub-
bands in zigzag graphene nanoribbons (ZGNRs).62 Because of
their inversion symmetry, the subbands of ZGNRs have alter-

natively even/odd parity wavefunctions |ψ〉. These properties
also imply that |〈ψK|ψK′〉| ≃ 0 if these states have different
parity symmetries while |〈ψK|ψK′〉| is high when they have the
same parity. In ZGNR p–n junctions, the superimposed

Fig. 11 The top panel illustrates transmission and reflection processes at the grain boundary. Two diagrams (a, b) depict the band profile of
graphene domains along the kx-axis. The phase difference Δϕ between the incoming state |p+〉 and reflected state |q−〉 along the Oy axis is displayed
in (c).

Fig. 10 (a) Zero-temperature conductance as a function of Fermi energy in the AM02 system (see Fig. 1e) for different applied strains, with G0 =
e2W/hLy. (b) Schematics illustrating the Brillouin zone and band profiles along the ky axis for two graphene domains when a strain is applied.
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potential acts as an intervalley scattering source. However,
because of the parity symmetries only transitions between
states of the same parity are allowed while they are blocked
between states of different parities. This is the so-called parity
selective tunneling in ZGNR devices. Interestingly, similar pro-
perties are found in the system studied here. Note that while
the transition processes from the |p+〉 states in the left domain
to the states |q+〉 in the right one contribute to the trans-
mission, the coupling between |p+〉 and |q−〉 states corres-
ponds to the reflection (see the illustration in Fig. 11). The
data in Fig. 11c show that the states |p1

+〉 and |q1
−〉 (and simi-

larly, the states |p2
+〉 and |q2

−〉) have the same symmetry prop-
erty (i.e., the phase difference Δϕ is very small) but Δϕ
between the states |p1

+〉 and |q2
−〉 (similarly, between |p2

+〉 and
|q1

−〉) is large and varies strongly along the atomic position.
This leads to the fact that their projection is high in the
former case while it is very small in the latter one, similarly to
the even/odd parity properties of subbands in the ZGNRs men-
tioned above. These properties suggest that the strain-induced
degradation of defect scattering (i.e., the conductance
enhancement) can be understood as follows. First, defect scat-
tering tends to promote the transition between the states |p+〉
and |q−〉 and hence to reduce significantly the conductance of
the GB systems. In the unstrained case, all four processes |p1

+〉 →
|q1,2

−〉 and |p2
+ → |q1,2

−〉 contribute to the reflection. When
a strain is applied, the Dirac cones D and D′ are separated
along the ky axis and hence the processes |p1

+〉 → |q1
−〉 and

|p2
+〉 → |q2

−〉 are forbidden. Moreover, due to their symmetry
properties, the transition probability of the processes |p1

+〉 →
|q1

−〉 and |p2
+〉 → |q2

−〉 (i.e., between states of the same
symmetry) should be much larger than that for |p1

+〉 → |q2
−〉

and |p2
+〉 → |q1

−〉 (i.e., between states of different symmetries).
Consequently, the disappearance of the former processes is
suggested to be the principal reason for the reduction of reflec-
tion at the GB (i.e., of the conductance enhancement) in
the strained system, compared to the unstrained case. This
also explains why the conductance enhancement gradually
weakens at higher energies beyond the energy window [E1, E2],
when the overlap between the D and D′ cones reappears as in
the unstrained system. Note that because of symmetry reasons,
the properties observed here do not occur in systems
where the two graphene domains have the supercell of type 1
as schematized in Fig. 4c.

Together with our previous findings on the strain-induced
transport gap, the results obtained here demonstrate the deci-
sive role of the lattice symmetry in the transport picture of
graphene systems, thus motivating further investigations on
these graphenehetero-channels in viewof using strain engineering
to restrain the detrimental impact of defects on the transport
properties of polycrystalline graphene devices.9–11

C. Suggested applications

In the previous sections, we demonstrated that (i) the trans-
port properties of graphene GB systems are very sensitive to
strain (both in magnitude and direction), (ii) strain engineer-
ing can be used to open a finite transport gap in all systems

where the two graphene domains have different orientations
and (iii) a large gap of about a few hundred meV can be
achieved with a strain as small as a few percents. Unquestion-
ably, such properties should make these graphene hetero-
structures very interesting for practical applications.

Room-temperature conductance of the ZZ03 system (see in
Fig. 1c) as a function of strain magnitude obtained for
different Fermi levels and strain directions is presented in
Fig. 12. Indeed, due to its strong strain-sensitivity, the conduc-
tance can be largely modulated when varying the strain magni-
tude (range of a few percents) and strain direction. In
particular, the conductance can be reduced by a factor of ∼105

and 103 at EF = 0 and 0.2 eV, respectively, for a small strain of
∼4–5%. The conductance can also be significantly modulated
when changing the strain direction from θ = 20° to 45° for EF =
0.2 eV. This result suggests the possible use of this graphene
system in highly sensitive strain nano-sensors. Given the large
strain-induced gap, the system could be also very promising
for application in flexible transistors. Indeed, a room-tempera-
ture ON/OFF ratio (i.e., GEF = 0.4eV/GEF = 0) as large as ∼104–105

can be achieved when a strain of only 3–4% is applied, as
shown in Fig. 12.

Besides the two applications mentioned above, this system
can also be used in another electronic device, namely the p–n
junction (or tunnel diode63), where the interband tunneling
between electron states of the n-side and hole states of the
p-side is the main conduction mechanism. Our proposed device,
where one graphene domain is n-doped while the other one is
p-doped, is schematized in Fig. 13a. The doping profile is
characterized by the potential difference ΔU between two gra-
phene domains that is additionally introduced in the tight-
binding Hamiltonian given in section II. Our idea consists of
considering that in this device, while the strain can lead to the
separation of Dirac cones of the graphene domains along the
ky-axis, the doping is used to generate their relative shift in

Fig. 12 Conductance in the ZZ03 system (see Fig. 1c) as a function of
strain magnitude for different Fermi levels and strain directions. G0 =
e2W/hLy. The simulations were performed at room temperature.
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energy. The combination of these two features can offer the
possibility of modulating the energy gap of the transmission
function and hence of generating strong non-linear I–V charac-
teristics. In Fig. 13b and c, the I–V characteristics obtained for
different strains (b) and different doping levels (c) are dis-
played. For a fixed potential difference ΔU = 0.7 eV (Fig. 13b),
I–V characteristics with only a weak effect of negative differen-
tial conductance (NDC) are observed when no strain is
applied. This is an expected result since the graphene system
has a zero transport gap and the interband tunneling current
cannot be strongly switched off. However, when a strain is
applied, though the peak current is reduced, the valley current
can be very strongly suppressed, leading to a very strong NDC
behavior with an extremely large peak-to-valley ratio. Indeed, it
can reach values as large as ∼270 and 792 for strains of 3.5
and 4%, respectively. Moreover, in Fig. 13c, the I–V character-
istics were calculated for different ΔU while the strain is fixed
at 3.5%. In a finite range of forward bias, the current is found
to be strongly modulated by varying the doping level ΔU. For
an appropriate doping (i.e., ΔU ≃ 0.45 eV here), the current
can be totally suppressed in a finite range of forward bias.
However, it still increases rapidly when applying and raising a
reverse bias, implying a strong rectification effect.

To explain the mechanisms at the origin of these strong
non-linear effects, (E − ky)-maps of the transmission prob-
ability obtained at different biases are plotted in Fig. 14. The
key ingredient consists of using the strain/doping-induced
modulation of the band profile to engineer the energy gap and
transmission through the graphene p–n junction. The trans-

mission is large in the energy regions where the bands of the
two graphene domains overlap, otherwise, an energy gap is
achieved. At a low bias and for high doping (i.e., ΔU > Eg,
where Eg is the strain-induced gap obtained without doping),
there are three overlapped regions (i.e., high transmission),
namely, the high-energy (thermionic), middle (interband tun-
neling) and low-energy (thermionic) ones as shown in Fig. 14a.
In the p–n junctions considered here, the transmission in the
interband tunneling region contributes mostly to the current
and a high peak-current is observed at a low bias. When
raising the bias, the potential profile is modulated and this
interband tunneling region disappears at a high bias
(Fig. 14b). This leads to a large energy gap covering the energy
window [EFL, EFR] and hence the current is almost suppressed
if a large enough strain is applied. Indeed, a very small valley
current and a strong NDC behavior can be obtained as shown
in Fig. 13. Additionally, for a given strain (i.e., a given Eg) and a
doping level corresponding to ΔU ≃ Eg, the transport picture is
as shown in Fig. 14b if a forward bias is applied and a current
gap is hence obtained in a finite range of forward bias. In con-
trast, when applying and raising the reverse bias, the inter-
band tunneling region shown in Fig. 14a is extended and the
current increases rapidly with the bias. This explains the
strong rectification effect observed in Fig. 13b.

Thus, when considering the possibility of modulating the
electronic properties of graphene using strain, the graphene
GB systems appear to be very promising for applications as in
strain nanosensors, flexible transistors and p–n tunnel junc-
tions with strongly non-linear I–V characteristics.

Fig. 13 Schematic of the graphene p–n junction (a) and its corresponding I–V characteristics obtained for different applied strains (b) and different
doping levels ΔU (c). The strain was applied in the direction θ = 45° and all the simulations were performed at room temperature.
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IV. Summary

By means of atomistic simulations, we have reported on a
theoretical study of the electronic transport in graphene
systems containing a single grain boundary and provided a sys-
tematical analysis on the effects of uniaxial strain and lattice
symmetry on their electronic properties. First, it has been
shown that the transport properties of these systems are not
only sensitive to the magnitude of strain but also dependent
on its applied direction and the lattice symmetry of the two
graphene domains surrounding the boundary. On this basis,
strain engineering is suggested to be used to open a finite
transport gap in all systems where two graphene domains are
arranged in different orientations. By choosing appropriately
the strain direction, a large transport gap (i.e., ∼ a few
hundred meV) and/or a large modulation of the gap can be
achieved with a strain as small as a few percents. The depen-
dence of this transport gap on the lattice symmetry of gra-
phene domains (i.e., their misorientation, the type and size of
their supercell, their relative commensurability) has been also
carefully investigated and clarified. We have additionally
reported on a peculiar phenomenon concerning strain effects
on the mechanisms of defect scattering in these graphene
heterostructures. We have shown that in specific graphene
grain boundaries where the energy bands have different parity
symmetries (similarly to that in ZGNRs), strain effects can be
used to reduce GB defect scattering and significantly enhance
the conductance. Finally, on the basis of a large strain-induced
transport gap, we suggest that the graphene systems with a
single grain boundary are very promising for applications as
highly sensitive strain sensors, flexible electronic devices and
p–n junctions with strongly non-linear I–V characteristics.
Hence, our study provides a good and direct guide for recent
experiments (for instance, as in ref. 49 and 50) to achieve
desirable transport properties with these kinds of
graphene heterostructures and to exploit them in practical
applications.

Finally, note that an important factor may have an influ-
ence on our results. Since our simulations are performed on
periodic grain boundary structures, the presence of a disorder
may have an important impact on their transport properties.
In particular, the disorder can break the conservation of
momentum ky and thus can induce some leakage current
within the gap region. However, it has been demonstrated in
ref. 41 that this current is still low for moderate disorder in
grain boundaries. More interestingly, some recent efforts to
control the periodicity of grain boundaries at a large scale have
been experimentally realized.49,60,64,65 For instance, periodic
grain boundaries as long as a few ten nanometers can be
achieved after the thermal reconstruction of aperiodic ones.64

These samples of reconstructed polycrystalline graphene could
be very useful to check the interesting findings predicted in
this work for periodic GB graphene heterostructures.
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