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1.  Introduction

The Hall effect [1] is a fascinating phenomenon 
describing electrical conduction transverse to an 
applied electric field which is usually obtained thanks 
to a magnetic field. Its quantized version, the quantum 
Hall effect, has become one of the key tools for exploring 
quantum phenomena in 2D mesoscopic systems [2]. 
Although most of the works have concentrated on static 
properties, the optical Hall effect (OHE) is another 
exceptional feature [3]. Indeed, while the longitudinal 
optical conductivity is related to the light absorption, a 
finite optical Hall component is the basis of the Faraday 
rotation and magneto-optic Kerr effect [4]. Studying 
the OHE, on the one hand, is necessary to understand 
fully the picture of the dynamics of charges interacting 
with light and on the other hand, is a guide for magneto-
optical applications, e.g. in optical diodes and other 
non-reciprocal optical elements [5]. Additionally, 
quantum Hall effect measurements in both DC and 
AC cases have been known as the basis of metrology 
applications [6].

In recent years, graphene and 2D layered materials 
have attracted increasing attention for many funda-
mental researches and applications [7]. Especially, due 

to its unusual electrical, optical properties and out-
standing mechanical properties, graphene has been 
shown to be very promising for specific applications in 
flexible electronics [8], photonics and optoelectronics 
[9]. In flexible electronics, the attractiveness of gra-
phene lies in its excellent mechanical endurance and 
high sensitivity of the electronic properties to strain 
[10]. Due to its unconventional electronic structure 
with a linear dispersion at low energies, graphene has 
been widely used for numerous photonic and opto-
electronic devices, operating in a broad spectral range 
from the ultraviolet, visible and near-infrared to the 
mid-infrared, far-infrared and even to the terahertz and 
microwave regions [9]. Its applications include trans-
parent electrodes, solar cells, optical modulators and 
photodetectors [11].

Actually, the optical properties of graphene and 
related materials have been already reported in numer-
ous published works [12–22]. The OHE in graphene 
subjected to an external magnetic field has been also 
theoretically and experimentally explored [23–31]. 
The magnetic field breaks the time-reversal symmetry 
in graphene and hence, similarly to the static case, a 
finite optical Hall conductivity can be achieved. On this 
basis, the Faraday rotation of a few degrees in modest 
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Abstract
When passing an optical medium in the presence of a magnetic field, the polarization of light can be 
rotated either when reflected at the surface (Kerr effect) or when transmitted through the material 
(Faraday rotation). This phenomenon is a direct consequence of the optical Hall effect arising from 
the light-charge carrier interaction in solid state systems subjected to an external magnetic field, in 
analogy with the conventional Hall effect. The optical Hall effect has been explored in many thin 
films and also more recently in 2D layered materials. Here, an alternative approach based on strain 
engineering is proposed to achieve an optical Hall conductivity in graphene without magnetic 
field. Indeed, strain induces lattice symmetry breaking and hence can result in a finite optical Hall 
conductivity. First-principles calculations also predict this strain-induced optical Hall effect in other 
2D materials. Combining with the possibility of tuning the light energy and polarization, the strain 
amplitude and direction, and the nature of the optical medium, large ranges of positive and negative 
optical Hall conductivities are predicted, thus opening the way to use these atomistic thin materials in 
novel specific opto-electro-mechanical devices.
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magnetic fields has been experimentally observed  
[24, 26]. It has been also shown that strain engineering 
is an efficient technique to modulate the optical prop-
erties of graphene [32–36]. In particular, the strain can 
break the lattice symmetry and the optical spectrum of 
graphene exhibits strong anisotropy and dichroism [32, 
33, 36]. These findings appeal for an in-depth invest
igation of the optical Hall conductivity in strained gra-
phene, which is still missing.

The aim of the present work is to investigate thor-
oughly the emergence of OHE in graphene systems sub-
jected to strain, using the density functional theory (DFT) 
and parametrized tight-binding (TB) approaches1. It is 
found that when strain is applied, a finite optical Hall con-
ductivity is observed in graphene even though magnetic 
field is zero. Especially, this conductivity has rich proper-
ties, compared to the longitudinal component and con-
ventional Hall effect obtained under an external magnetic 
field. In particular, the strain-induced Hall conductivity 
can be modulated while its sign can be reversed by tuning 
incident light (frequency and polarization) and/or strain 
(magnitude and direction). Finally, it is worth noting that 
this strain-induced OHE is demonstrated to be common 
for many other 2D materials and the explored properties 
could be the basis of several novel applications in opto-
electro-mechanical systems.

2.  Methods

2.1.  First-principles calculations
First-principles calculations were performed using the 
self-consistent density functional theory (DFT) within 
the GGA–PBE approach implemented in the SIESTA 
[37] package. The complex optical conductivity tensor 
σpq is derived from the complex dielectric tensor εpq 
using the formula σ ω ωε ε ω= −ipq pq0( ) ( ), where ε0 is the 
vacuum dielectric constant. Note that the calculation 
of εpq requires a specific treatment because of the 2D 
nature of the system. Further details can be found in the 
supplementary material.

2.2.  Tight-binding calculations
The tight binding (TB) calculations for graphene were 
performed within a third-nearest-neighbors orthogonal 
model that has been demonstrated to give reasonably 
accurate results, compared to the DFT ones [38]. In 
this work, the parameters (i.e. onsite energy and three 
hopping terms) of this TB model were elaborated from 
the DFT data so as to achieve the best agreement between 
the two methods in the calculation of the electronic 
bandstructure and the optical conductivities (see 
supplementary material). The TB optical conductivities 
are computed using the standard Kubo formula [20, 21]:
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where S is the area of the primitive cell, f(E) is the Fermi 
distribution function, E kkn m, ( ) and n m,  represent the 
eigenenergies and eigenstates of the system, vp qˆ /  are 
the velocity operators, and η is a phenomenological 
broadening.

When strain is applied, the graphene lattice is 
deformed and the C−C bond length is hence modi-
fied. Taking into account this effect, the TB hopping 
energies are modified following the exponential decay 
law as in [39]. The detailed description of this calcul
ation method can be also found in the supplementary 
material.

3.  Results

Both DFT and TB approaches described above were 
employed to investigate the opto-electro-mechanical 
graphene systems schematized in figure 1(a) where a 
linearly polarized light with energy ωħ  and polarization 
angle φ is considered and an in-plane uniaxial strain of 
magnitude ε is applied in the direction θ with respect to 
the armchair direction of graphene.

In figures 1(b) and (c), the optical conductivity 
components are computed as a function of light energy 
in monolayer graphene without and with strain. As 
seen, our parametrized TB calculations reproduce very 
well the DFT results at low and high energies. A slight 
discrepancy between two methods occurs only in the 
medium energy range where the conductivity peaks 
are present. In spite of this fact, the two methods are 
still in very good agreement for the investigation of 
the overall spectrum of optical conductivities in both 
unstrained and strained graphene systems (see the fur-
ther demonstration in the supplemental material). Very 
remarkably, the optical Hall conductivity is found to be 
zero for unstrained graphene but exhibits finite values 
when strain is applied. This is accompanied by a peak 
splitting in the longitudinal optical conductivity spec-
trum. Throughout the work, the considered systems are 
undoped. In doped cases, a well-known phenomenon is 
observed, i.e. the Pauli blocking mechanism comes into 
play and hence all the optical spectra exhibits a finite 
gap at low energies (e.g. as seen in [21]).

In order to understand the origins of the optical 
Hall effect observed, the effects of strain on the optical 
conductivities are investigated in more detail in figure 2. 
Note that in the graphene bandstructure, there are six 
Dirac cones at the corners (K-points) of its Brillouin 
zone, however, they are characterized by only two dis-
tinguishable ones. Accordingly, six saddle (M-) points 
occur in the middle of these Dirac cones and only three 
are distinguishable. In the unstrained case, these saddle 
points are degenerate but can be separated in the energy 

1 See the supplementary material for the detailed description 
of calculation methodologies and the illustration of Faraday 
rotation of a circularly polarized light stacks.iop.org/
TDM/4/025041/mmedia.
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when strain is applied (see the energy color map in  
figure 2(a)). Because the optical transitions of charges 
around the Γ-point are low (see in figures 2(b) and (c) 
and the related discussions below), the optical spectra 
of graphene can be basically understood by analyzing 
the transitions around K- and M- points. Indeed, the 
optical transitions around the K-points with a linear 
energy dispersion result in an almost flat spectrum of 
the longitudinal conductivity σxx with a universal value 
of σ = e 40

2 ħ/  at low energies for monolayer graphene 

[18–21] (see figure 2(d)). At moderately high energies 
when the transitions around the M-points take place, 
this conductivity exhibits a relatively high peak, which 
is essentially due to high optical transitions and high 
density of states of graphene at these points. Note that 
taking into account the many body effects and other 
scatterings can lead to corrections to the position of this 
saddle-point peak and its value. In particular, a posi-
tion shift of about 10% the saddle-point energy toward 
high energy should be applied to our calculated optical 

Figure 1.  Schematic representation of the opto-electro-mechanical graphene-based system (a). Optical conductivities, predicted by 
both DFT (dashed) and TB (solid lines) calculations, in graphene without (b) and with strain (c).

Figure 2.  Conduction bands (a), transition coefficients P kxx( )
→

 (b) and P kxy( )
→

 (c) (see text) are presented for light polarization 
φ = − �45  and uniaxial strain θ = �ε , 8%, 75( ) ( ). Longitudinal optical conductivity (d) and optical Hall component (e) in uniaxial 
strained graphene obtained for different φ and θ angles.

2D Mater. 4 (2017) 025041
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spectra, compared to the data in [18]. The peak value 
is strongly dependent on the effects of all scatterings 
involved (e.g. see [40]). These effects can be effectively 
described by introducing properly the broadening fac-
tor η in equation (1) however are beyond the scope of 
the current work. When strain is applied, two main 
features occur. First, strain effects make graphene lat-
tice very anisotropic, leading to a strong anisotropy 
of the absorption spectrum, i.e. the conductivity σxx is 
strongly dependent on the light polarization and strain 
direction (see the further details in [32, 33]). Second, as 
already mentioned, the strain can break the degeneracy 
of saddle points, leading to the separation of the peaks 
of σxx as presented in figures 1(c) and 2(d).

Now, the OHE in strained graphene is explored, i.e. 
a finite strain-induced conductivity σxy as displayed in 
figures 1(c) and 2(e). One of the key terms to determine 
the conductivity σpq from the Kubo formula in equa-
tion (1), and hence understand the underlying mech
anism of this OHE, is the optical transition functions 

=P k s v s s v spq v p c c q v( ) ˆ ˆ
→

. Here, sv c,  are eigenstates 

in the valence/conduction bands, respectively. Differ-

ent from P kxx( )
→

 that is a non-negative function (see  

figure 2(b)), P kxy( )
→

 is either positive or negative when 

considering the whole Brillouin zone of graphene (see in  

figure 2(c)). The Hall conductivity can be hence 

rewritten as σ σ σ= −+ −
xy xy xy where σ±xy are the absolute 

values of terms corresponding to positive and nega-

tive P kxy( )
→

, respectively. In unstrained case, σ σ=+ −
xy xy 

and hence the conductivity σxy is totally zero for any 

polarization and energy of light. In strained gra-

phene, the equality of σ±xy is broken by strain, leading 

to a finite σxy. Physically, it can be understood that in 
analogy to the magnetic-field effects that break the 
time-reversal symmetry, the lattice symmetry break-
ing by strain changes the optical responses and hence 
results in the OHE in graphene. Note that in this 
work, we consider uniform strains and hence there 
is no pseudo magnetic field as observed in graphene 
under a strain gradient [41].

For all cases presented in figure 2(e), two interesting 
properties of σxy are found. First, similarly to the con-
ductivity σxx, the Hall conductivity σxy exhibits an almost 
flat spectrum in the low energy regime and tends to zero 
at very high energies. In the low energy limit, σxy can be 
also estimated by the simple Dirac model as in [36]. Sec-
ond, high peaks of σxy are also observed, especially, at the 
same energies as for the σxx-component (see figures 1(c) 
and 2(d), (e)). However, while σxx is always positive, the 
full spectrum of σxy presents both positive and nega-
tive peaks and accordingly, two (low and high) energy 
regimes where this Hall conductivity has opposite signs. 
This novel property can be understood as follows. As 

mentioned, P kxy( )
→

 can be either positive or negative in 

specific areas of the Brillouin zone of graphene. Simulta-
neously, when strain is applied, the graphene bandstruc-
ture is deformed, leading to the separation of degener-
ate bands in such different areas. Because of these two 

features, two terms σ±xy are alternatively dominant in dif-

ferent energy regimes, leading to opposite Hall conduc-
tivities at low and high energies as observed. Addition-
ally, this Hall conductivity is also predicted to be strongly 
anisotropic (see the detailed discussions below), similar 
to the σxx component [32, 33].

In the following, the possibilities of achieving and 
tuning a large Hall conductivity are investigated. First, 
the Hall conductivity obtained for different uniaxial 
strains is displayed in figure 3(a) The light polariza-
tion φ = − �45  is chosen so as to achieve the largest 
σxy for strains applied along the direction θ = �90  (see 
figure 4 below). At low energies, the Hall conductivity 
is gradually increased when increasing the strain mag-
nitude and, particularly, reaches  ∼ σ0.5 0 for =ε 10% 
and ω = 1.5ħ  eV. At high energies, σxy-peaks occur and 
are very rapidly increased for low strains, i.e. they reach 
values larger than σ0 for a small strain of only 2%, and 
progressively saturate at large strains. Basically, the 
high peaks of σ σ∼ ÷1 2xy 0 can be achieved for a strain 
of only a few percents. In order to further enlarge σxy 
(e.g. to achieve large Faraday/Kerr rotations), another 
strategy is suggested [18], i.e. to use few-layer graphene 
systems. Indeed, as presented in figure 3(b), the Hall 
conductivity is almost linearly increased as a func-
tion of number of graphene layers NL. In particular, 
extremely large peaks of σxy, ∼13σ0 at ω� 2.67ħ  eV 
and  ∼ σ−10 0 at 4.51 eV, and a large value  ∼5σ0 at 2 eV 
are achieved for a uniaxial strain of 8% and NL  =  10.

The effect of shear strains is also investigated in  
figure 3(c). Interestingly, a smaller shear strain than 
uniaxial one is required in order to achieve a simi-
larly large σxy. Our calculations show that overall, 
the amplitude of Hall conductivity is proportional 
to the off-diagonal term εxy of the strain tensor (see 
supplementary material). In the Oxy axis chosen as 
in figure  1(a), α θ φ= + −ε ε1 sin 2 2xy ( ) ( ( )) /  and 

θ φ− εcos 2( ( ))  for uniaxial and shear strains, respec-
tively, with the Poisson ratio α = 0.165 [42]. On this 
basis, the largest σxy is respectively proportional to 
α+ ε1 2uniaxial( ) /  and εshear, i.e. with two strains satis-

fying α+ =�ε ε 1 2 0.5825shear uniaxial/ ( )/  the similar 
σxy-magnitude can be achieved as shown for =ε 4%shear  
and =ε 6.8%uniaxial  in figure 3(c).

Achieving both positive and negative values of 
the Hall conductivity is a very novel/ promising result 
for practical applications (see the discussions below). 
As presented in figures 2 and 3, the sign of σxy can be 
reversed by tuning the light energy. In figure 3(a), 
another possibility of reversing this conductivity is also 
found, i.e. by switching from positive to negative strain.

As already shown in figure 2, the Hall conduc-
tivity induced by strain is predicted to be strongly 
anisotropic, i.e. strongly dependent on the light polari-
zation and strain direction. In figure 4, colormaps 
showing the full dependence of σxy on the directions 
of light polarization and strain are presented. For a 
given strain (see figures 4(a)–(c), 4(g) and (h)), the 
φ-dependence of σxy generally satisfies the simple rule 

2D Mater. 4 (2017) 025041
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σ φ θ θ∝ − −sin 2xy s( ( )) where θs is a function of ω, ε 
and θ. At low energies, θs is approximately zero for all 
strain directions. For a given light polarization (see 
figures 4(d)–(h)), the θ-dependence of σxy also satisfies 
the same rule at low energies but due to the presence 

of σxy-peaks, becomes more complex at high energies. 
Additionally, the peaks of σxy in (ω θ, )-maps presents 
three specific peanut lines with the symmetry under 
a rotation of 60° (see in figures 4(d)–(f)). The full  
spectrum of σxy generally presents three peaks but only 

Figure 3.  Optical Hall conductivity in monolayer graphene with different strains ((a) and (c)) and in few-layer systems (b). Uniaxial 
(θ = �90 )/shear (θ = �45 ) strains are applied in ((a)–(c)), respectively. The light polarization is fixed to φ = − �45 .

Figure 4.  Optical Hall conductivity in monolayer graphene with respect to the light energy ωħ  (>0 and in eV) and polarization φ, 
and the strain direction θ. The polar axis of (a)–(f) presents the energy ωħ  while the azimuthal direction indicates the angles φ in 
(a)–(c) and θ in (d)–(f). The dashed lines in ((g) and (h)) indicate the cases φ θ π− = n 2/ . The amplitude of uniaxial strain is fixed 
to =ε 8%.

2D Mater. 4 (2017) 025041



6

V Hung Nguyen et al

two peaks are observed if the light polarization or strain 
direction is parallel to the armchair or zigzag directions 
of graphene (see figures 2 and 4(a), (c), (d), (f)). Actually, 
when uniaxial strain is applied, there are two symmetry 
directions of lattice deformation, i.e. either parallel or 
perpendicular to the strain direction. The most com-
mon property observed here is that σxy is generally high 
if φ θ π π− +� n 2 4/ /  and low if the light polarization is 
parallel to any symmetry direction of lattice deformation 
mentioned above, i.e. φ θ π− � n 2/  as seen in figures 4(g) 
and (h). Therefore, the overall dependence of σxy on φ and 
θ generally satisfies the rule σ φ θ∝ −sin 2xy ( ( )) although 
it is considerably disturbed by the presence of σxy-peaks 
at high energies (see figure 4(h)). For shear strains, this 
rule becomes σ φ θ∝ −cos 2xy ( ( )) as discussed above for 
figure 3(c). Most interestingly, the direction dependence 
explored here suggests other possibilities of controlling 
the sign of σxy, i.e. by changing the light polarization and 
strain direction.

Finally, it is worth noting that in analogy to the effect 
of an external magnetic field, the present opto-electro-
mechanical effect is essentially due to the lattice sym-
metry breaking and hence completely general, i.e. it can 
be observed in many other 2D materials even though 
they are metallic, semimetallic or semiconducting. As 
some examples, ab initio optical Hall conductivities 
calculated in silicene, borophene, and phosphorene 
are presented in figure 5, which demonstrates that the 
mechanism explored in this study is indeed very gen-
eral. Note however, that the optical Hall conductiv-
ity remains zero until the optical gap is reached. For 
instance, while borophene is a metal, optical trans
itions occur only for energies above 2–3 eV (depend-
ing on the applied strain) [43]. For phosphorene, the 
energy threshold for transitions is  ∼1 eV at the level 
of DFT but the optical gap can be modified because of 
screening and exitonic effects. Finally, due to its similar 
bandstructure at low energies, there is no gap for the 

optical Hall conductivity in silicene (see the inset of  
figure 5), but its value is much smaller than that obtained 
in graphene. The latter might be explained by a lower 
Fermi velocity in silicene compared to graphene as the 
optical transitions are proportional to the expectation 
value of velocity operators (see supplementary material).

4.  Discussion

First, we would like to give a comparison between this 
opto-electro-mechanical effect and that induced by an 
external magnetic field. Essentially, the effects of strain 
investigated here are different from those of a magnetic 
field. A magnetic field can break the time-reversal 
symmetry and result in cyclotron orbits and quantum 
Landau spectrum while strain simply breaks the lattice 
symmetry of the system. On this basis, the optical 
Hall conductivity induced by a magnetic field is a step 
like function of Fermi energy (due to the quantum 
Landau spectrum) [23] but it is not the case of strained 
materials. Additionally, the conductivity induced by a 
magnetic field in graphene is an oscillating function but 
decays rapidly when increasing the light energy [23–25].  
A very large magnetic field has to be hence applied to 
achieve a significant value of σxy in the range of visible 
light. As demonstrated, the effects of strain seem to be 
more promising regarding this point. Next, the strain-
induced Hall conductivity is strongly directional 
dependent (i.e. strongly depends on the direction of 
strain and light polarization) while the conductivity 
induced by a magnetic field is independent on the light 
polarization. Finally, the Hall conductivity reported in 
[23–25] ranges from a few to ten times of the universal 
value σ0 for a magnetic field as large as 10 Tesla. This 
large value of σxy can be achieved by strain in few layer 
systems as shown above.

Now, let us discuss other novel properties of this 
strain-induced OHE and related possible applications. 

Figure 5.  Strain-induced optical Hall effect (a) in borophene (b), silicene (c), and phosphorene (d). A uniaxial strain of 4% is 
applied in the direction θ = �0  while the light polarization is φ = �45 . The inset in (a) is a zoom of the optical Hall conductivities at 
low energies.

2D Mater. 4 (2017) 025041
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First, a finite σxy can be achieved under zero magnetic 
field. Second, different from the longitudinal comp
onent, the sign of this conductivity can be reversed by 
tuning the light energy and polarization, changing the 
strain type (i.e. from positive to negative) and its direc-
tion. These switching possibilities can be exploited to 
explore novel applications in opto-electro-mechanical 
devices. Third, extremely large σxy can be observed when 
shining on the system by a light beam with appropriate 
energy and can be further enlarged using few-layer sys-
tems, of course, at the expense of higher transmittance 
loss. This is an important ingredient for designing effi-
cient Faraday rotators and related applications.

Interestingly, with the binary property of σxy when 
varying the ligh energy and its polarization, the designed 
Faraday rotator can work as an optical polarizer with a 
specific output polarization that is dependent on and 
can be controlled by tuning the strain direction. Indeed, 
figure 6 illustrates this feature in the case of strain angle 

θ = �60 . The linearly polarized light carries an electric 
field oscillating along a given axis determined by the 
angle φ (see in figure 1 and the red line in figure 6(a)). 
In the low energy regime and for the chosen angle φ 
as in the figure 6(a), the corresponding value of the 
Hall conductivity is positive (see inset) and therefore 
the light rotates in the clockwise direction (orange 
arrow) towards the axis determined by the strain direc-
tion (green axis). When its polarization is aligned with 
the strain direction, σxy is zero and hence the light does 
not rotate anymore. It is worth noting that due to the 
dependence of σxy (i.e. both intensity and sign) on the 
light polarization φ as presented in figures 4(a)–(c) and 
more clearly in figure 4(g), all the light beams in the low 
energy regime are always rotated towards the strain axis 
either with a clockwise or anti-clockwise rotation. Note 
that by symmetry, the two directions φ and φ+ �180  are 
equivalent. The direction orthogonal to the strain (dark 
orange axis) presents also σ = 0xy  but corresponds to 

Figure 6.  Faraday rotation with low (a) and high (b) energies of the incident light.

2D Mater. 4 (2017) 025041
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a saddle point since for any small deviation, the light 
rotates away from this point. Such a device can thus be 
used as an efficient light polarizer in the sense that it 
does not only filter polarized light but also convert light 
that is not correctly oriented into the desired orienta-
tion determined by the direction of applied strain.

Additionally, if one now considers linearly polarized 
light with several frequencies, it is possible to separate 
the spectrum into two parts. As discussed above, the low 
energy components of the incoming light rotate towards 
the strain axis. In the high energy regime the optical 
Hall conductivity has a opposite sign, compared to that 
obtained at low energies. Therefore, as illustrated in 
figure 6(b), the high energy components rotate towards 
the axis orthogonal to the strain direction. Thus, the 
incoming light can be separated into two beams hav-
ing orthogonal polarizations with the energy threshold 
(∼3–4 eV depending on the applied strain), which is the 
energy point where the sign of σ ωxy( ) is reversed.

With these properties discussed above, the system 
can also act as a converter of circularly polarized light 
into a linearly polarized light. Actually, a circularly 
polarized light can be considered as a combination 
of two orthogonal and dephased linearly polarized 
lights. Since these two linearly polarized lights can be 
subjected to opposite Faraday rotations, the transmit-
ted light becomes linearly polarized along to the strain 
(resp. its orthogonal) axis in the case of low (resp. high) 
energies, respectively, with an amplified electric field 
(see supplementary material).

Finally, it is worth noting that since the transmit-
tance is extremely high in the considered thin 2D 
systems [43], the intensity of transmitted light main-
tains high values compared to the incoming one, which 
is different from 3D systems where a large part of light 
can be reflected or absorbed.

5.  Conclusion

Strain engineering has been demonstrated to be a 
novel and alternative approach to efficiently generate 
optical Hall effect in graphene and 2D materials. 
Compared to the conventional effect observed under 
an external magnetic field, the strain-induced optical 
Hall conductivity exhibits rich properties, i.e. its value 
can be modulated whereas its sign can be reversed by 
tuning incident light (frequency and polarization) 
and/or strain (magnitude and direction). The observed 
properties could be exploited to explore novel optical 
devices and, particularly, specific applications in opto-
electro-mechanical 2D systems.
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