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The thermodynamic and mechanical properties of graphitic systems are strongly depen-

dent on the shear elastic constant C44. Using state-of-the-art density functional calcula-

tions, we provide the first complete determination of their elastic constants and

exfoliation energies. We show that stacking misorientations lead to a severe lowering of

C44 of at least one order of magnitude. The lower exfoliation energy and the lower C44 (more

bending modes) suggest that flakes with random stacking should be easier to exfoliate than

the ones with perfect or rhombohedral stacking. We also predict ultralow friction behav-

iour in turbostratic graphitic systems.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction tic constant C44 affects the mechanism of exfoliation that is
Graphitic systems are used for a wide variety of industrial

applications, ranging from lubricant and refractory materials

to neutron moderators in nuclear fission reactors [1] and plas-

ma shields in the next generation of fusion reactors [2,3]. The

recent realization of graphene [4] (single graphitic layer) and

the discovery of its unusual electronic properties [5,6] have

raised the interest on flake graphitic systems as a route to pro-

duce graphene samples of high quality and in large scale [7–9].

Despite the technological and scientific importance of gra-

phitic systems, the knowledge of their elastic properties is

unexpectedly poor and new insights are needed. The values

of the elastic constants describe the mechanical behaviour

[10] and are decisive in engineering design to avoid material

failure. In layered materials, they are even more important

for the thermodynamic properties due to a low-lying branch

of acoustic vibrations, the bending modes, predicted by Lif-

shitz [11] over 50 years ago. Here we show that the shear elas-
er Ltd. All rights reserved

gineering, University of

ini).
relevant for the production of graphene.

The most reliable experimental studies of the elastic con-

stants have been obtained by inelastic X-ray scattering [12]

and ultrasonic, sonic resonance, and static test methods [13].

The sample used in the first study [12] was single-crystalline

Kish graphite, characterized by an extraordinary high degree

of ordering, the closest approximation to the perfect AB

stacking graphite (hex-g). The second study [13] was done

using highly oriented pyrolitic graphite, the closest approxi-

mation to turbostratic graphite (turbo-g) where the graphitic

layers are randomly oriented around the c-axis.

Except for C44 and C13, both studies are in agreement with-

in the experimental uncertainties. The C13 value in turbo-g

was determined only by the less accurate static test method

and it may be affected by errors. Conversely, C44 in turbo-g

was determined from the sound velocity and its value ranges

between 0.18 and 0.35 GPa [13], one order of magnitude lower

than 5.0 ± 3 GPa found in hex-g [12].
.
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The discrepancy on C44 is attributed to the existence of

mobile basal dislocations [13,14]. After neutron irradiation,

the elastic constant C44 increases by up to an order of magni-

tude [14], suggesting that interstitial defects [15] could pin the

dislocation motions, whence the intrinsic value of C44 is mea-

sured. A principal difficulty with this explanation is that

interstitial atoms inevitably increase the shear resistance be-

tween graphitic layers and therefore they may increase the

C44 value by themselves.

The aim of this study is to investigate from first principles

the elastic constants of graphitic systems with respect to the

stacking misorientations between layers, and to describe the

key role of the shear elastic constant C44 on the bending

modes (thermal property) and mechanical stability. We show

that stacking misorientations greatly affect C44 and that gra-

phitic systems with perfect (hex-g) and random (turbo-g)

stacking should be considered as two distinct materials de-

scribed by their own elastic and thermodynamic properties.

This paper is structured as follow. In Section 2, we give a

brief summary of the theoretical methods and a discussion

of the LCAO-S2 + vdW formalism to include the long-range

van der Waals (vdW) interactions. The consequences of shear

elastic constant C44 on the bending modes and mechanical

stability are shown in Sections 3.1 and 3.2, respectively.

The elastic constants in the case of high-symmetric sys-

tems (hexagonal, orthorhombic, rhombohedral and AA hex-

agonal stackings) and for graphitic layers randomly oriented

around the c-axis (turbostratic stacking) are presented in Sec-

tions 3.3 and 3.4, respectively.

Finally, we summarize and comment on our results

(Section 4).
2. Method

All the calculations are performed using density functional

theory, within the local density approximation scheme (LDA),

norm-conserving pseudopotentials [16] and plane waves with

cut-off energy of 150 Ry (ABINIT package [17]). The k-point

mesh was chosen so that the average density corresponds

approximately to a 32 · 32 · 16 mesh for hex-g. Energies were

converged within 0.05 meV/atom, and elastic constants within

0.5%. For large supercells (turbo-g with more than 50 atoms) we

have used localized basis-set composed of Gaussian orbitals

(AIMPRO code [18]). The elastic constants calculated by the

two LDA codes are in agreement within 3% or better.

The choice of LDA is not fortuitous [19] and it was dictated

by test calculations using the generalized-gradient approxi-

mation (GGA) within the Perdew–Burke–Ernzerhof scheme

[20]. According to GGA, the distance between graphitic layers

is far too large (4.2 Å), resulting in a negligible interlayer bind-

ing energy and almost vanishing out-of-plane elastic con-

stants (C44;C33). For these reasons we have dismissed the

use of GGA from this study [21–23].

Even though LDA yields accurate equilibrium distances,

due to energetical error compensations, the long-range van

der Waals (vdW) and more generally the weak contribution

to the out-of-plane interactions is not well described [24,25].

In order to check the importance of these effects on

C44 and C33, we have used the LCAO-S2 + vdW formalism to
include these specific interactions within LDA [26] (using

FIREBALL code [27]).

This formalism takes into account two major contribu-

tions. The first one, which we call weak chemical interaction,

is a repulsive energy originating from the overlaps of elec-

tronic densities between the weakly interacting subsystems.

Even though the overlaps are rather small, this energy is

not negligible. This contribution is evaluated proceeding to

a second order expansion of the electronic wavefunctions

with respect to the overlaps.

The second contribution, which is the vdW itself, originat-

ing from charge fluctuations, can be seen as the interaction be-

tween electronic dipoles. In the frame of the dipolar

approximation, we use a second order perturbation theory to

describe this contribution. This method has originally been

tested with success on standard graphene–graphene interac-

tion, and more recently on a wide range of graphitic materials

[28]. In its current stage, the analysis of the internal stresses

is not implemented yet, thus the elastic constants that change

the in-plane bond lengths (C11; C12; C13) are overestimated by

up to 15%. However, for C44 and C33 that describe the weak

interaction between layers, the internal stresses are negligible,

and the calculated values are expected to be very accurate.

The elastic constants are determined using two different

approaches. The first one uses the response-function, imple-

mented in the ABINIT code, to calculate the second derivative

of the total energy with respect to the strains.

The second approach uses the elastic energy density [29].

For each elastic constant we have applied 21 strain compo-

nents eij to the equilibrium crystal structures (eij were typically

ranging between ±0.01 with increments 0.001). The elastic

constants are found by fitting the calculated energies to a

polynomial function in the strains. Both approaches yield re-

sults in agreement within 0.2%.

3. Results and discussion

3.1. Bending modes

The bending modes are atomic vibrations that can be excited

even at low temperature and strongly influence the thermal

properties of layered materials. In 1952, Lifshitz [11] obtained

the following dispersion law for the out-of-plane acoustic

mode x:

q� x2 qð Þ ¼ C44 q2
x þ q2

y

� �
þ C33 q2

z

� �
þ j q2

x þ q2
y

� �2

=c ð1Þ

where q is the density, c is the interlayer distance, qx;y;z are the

wave vectors and j describes the intralayer forces character-

izing the bending rigidity (1.1 eV [30]). The small value of C44

(characteristic of graphitic systems, see Table 1) leads to a

predominant contribution of the transversal bending modes

(qz ¼ 0) in the phonon dispersion curves. These modes are

sinusoidal displacements that propagate along the planes

and change the local stacking between layers (see Fig. 1).

For nearly flat planes the shear stacking Dd is almost zero,

whereas, for positive (or negative) slope Dd becomes positive

(or negative). Using trigonometric considerations, it can be

shown that the maximum value of Dd (see boxes in Fig. 1) is

given by:



d > 0Δ ΔΔ d < 0 Δ Δ d > 0

(a) (b) (c) (d) (a)

   ≅ 0d
d   ≅ 0

−Δ+Δd d

(b) (d)(c)(a)

Fig. 1 – Transversal acoustic (bending) mode. The bending changes the local stacking between graphitic layers. The boxes

(a–d) show regions with different slopes and stackings. The shear Dd gives the deviations from AB phase (perfect stacking).

Table 1 – Elastic constants in unit of GPa for the different graphitic systems. The values between brackets are calculated using
the van der Waals correction. These results show that the C13 values do not significantly change between turbo-g and hex-g
and we propose that the same value 0 ± 3 GPa should be appropriate also for turbostratic stacking. The shear elastic constants
C44 found in turbostratic stacking correspond to commensurate structures of area ranging between 36 and 563 Å2.

C11 C12 C33 C13 C44

Hex-g (AB) Exp. [12] 1109 ± 16 139 ± 36 38.7 ± 7 0 ± 3 5.0 ± 3.0
Theory 1109 175 29 (42) �2.5 4.5 (4.8)

Turbo-g Exp. [13] 1060 ± 20 180 ± 20 36.5 ± 1 15 ± 5 0.18/0.35
Theory 1080 ± 3 171 ± 4 27 ± 2 (36 ± 1) �2.7 ± 1 0.16/0.31 (0.19/0.34)

Rhombo-g Theory 1107 175 29 (42) �2.5 4.4 (4.8)
Ortho-g Theory 1095 173 26 (38) �2.6 �2.7/7.7 (�2.9/7.3)
Hex-g (AA) Theory 1028 162 21 (30) �3.0 �3.8 (�3.8)
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Dd ¼ pâc
k
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2pâ
k

� �2
q ð2Þ

where â is the amplitude, k is the wavelength and c is the

interlayer distance. The crystal resistance to the stacking

shear [29] is proportional to E / C44 � Dd2
; and by lowering

C44 more bending modes can be excited at lower temperature.

In the limit of C44 ¼ 0, graphitic systems approach the graph-

ene behaviour, where indeed bending modes (or ripples) are

always present [30].
3.2. Mechanical stability

By imposing the elastic strain energy as positively definite

[29], the stability conditions are given by:

2C2
13 < C33 C11 þ C12ð Þ and C11;C12;C33;C44 > 0 ð3Þ

Note that C13 does not affect the stability: a positive (or

negative) value means that under in-plane compression the

out-of-plane distance tends to expand (or contract).
The elastic constants C11; C12 describe in-plane deforma-

tions and they possess the highest values due to the strong

sp2 bonding interactions within the graphene planes. The

elastic constant C33 describes out-of-plane compression or

expansion and it has always a positive value for perfect and

stacking misorientations (see Table 1).

The elastic constant C44 corresponds to a shear between

graphene layers. Due to the weak interaction between planes,

the C44 value is the lowest and can be positive or negative

depending on the stacking misorientations (see Table 1).

The latter elastic constant is the only one that can break

the mechanical stability condition (i.e. C44 < 0).

3.3. Elastic constants in high-symmetric graphitic
systems

By imposing a translation vector between graphitic layers we

found four high-symmetric stackings that correspond to sta-

tionary points on the stacking-fault energy surface [31]. To

calculate the stacking-fault energy surface (for graphitic



C A R B O N 4 9 ( 2 0 1 1 ) 6 2 – 6 9 65
system is often called corrugation energy surface [32–34]), we

have used 16-atoms unit cell model of eight layers in AB se-

quence in which the stacking at the unit cell boundary is

changed by imposing a shear displacement. This represents

an intrinsic stacking fault between layers at the unit cell

boundaries whereas the others remains stacked in the AB se-

quence. The multiple layers repeat along the c-axis (eight lay-

ers) makes negligible self-interaction of the intrinsic fault

[31]. The stationary points, indicated with square and circle

symbols in Fig. 2a, correspond to the four high-symmetric

structures (hexagonal, rhombohedral, orthorhombic and AA

hexagonal graphite, see Fig. 2b). The in-plane lattice parame-

ter was 2.45 Å very close to the experimental value 2.463 Å

[12], with no significant changes among all the graphitic

structures.

The origin in Fig. 2a corresponds to hex-g (black square

symbol), the global minimum of the energy surface with an

interlayer separation of 3.34 Å (experimental value 3.356 Å

[12]). With the exception of the C33 value (29 GPa), the calcu-

lated elastic constants (given in Table 1) are in agreement
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Fig. 2 – (a) Stacking-fault energy surface (also called corrugation
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structures with respect to hex-g are 1.66 meV/atom for ortho-g,

hex-g (see text).
within the experimental uncertainties found in hex-g [12].

Using the LCAO-S2 + vdW formalism, the out-of-plane elastic

constant C33 becomes 42 GPa, very close to the experimental

value 38.7 ± 7 GPa [12].

The local minimum at 1=3 1100
� �

(black circle symbol) rep-

resents the rhombohedral stacking (rhombo-g). This structure

possesses the same interlayer separation and elastic con-

stants of hex-g (the differences are beyond the accuracy of

the calculations) with formation energy of 0.10 meV/atom.

This very small energy explains why the rhombohedral phase

is usually 5–15% intermixed with the perfect hexagonal one in

natural graphitic flakes.

The saddle point at 1=6 1100
� �

(grey square symbol) repre-

sents the orthorhombic stacking (ortho-g). The interlayer sep-

aration of the primitive unit cell is 3.37 Å with formation

energy of 1.66 meV/atom. The latter energy represents the

lowest barrier that has to be overcome during the shearing

process from an ideal configuration to another equivalent

one. The C44 values are found to range between �2.7 GPa,

for shearing along 1100
� �

and 7.7 GPa, for shearing along
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the 2110
� �

axis. No significant changes are found for the

other elastic constants (see Table 1). Although unstable (due

to the negative C44), this structure acts as an intermediate

phase during the transformation from graphite to diamond

[35].

The global maximum at 2=3 1100
� �

(grey circle symbol)

corresponds to AA hexagonal stacking (AA hex-g). This

phase has the largest interlayer separation (3.60 Å) and the

highest formation energy (9.29 meV/atom). Its elastic con-

stants are smaller than in hex-g, and C44 in particular, be-

comes negative (�3.8 GPa) breaking the stability conditions.

Even though this structure is highly unstable, a recent study

has suggested that screw dislocations locally encourage this

stacking [36].
: s

0.0

2.0

1.0

7.08
10.61

14.15
17.69

21.23

E
ne

rg
y 

(m
eV

/a
to

m
)

Basal shift <1100> (A)

(c)

=38.21θ

(2,1)

(a)
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supercell vector 2;1. The respective elastic constants are calculat

energy surface becomes much flatter leading to a reduction of C4

legend, the reader is referred to the web version of this article.)
In the following section we describe the elastic constants

for graphitic layers randomly oriented around the c-axis.

3.4. Elastic constants in turbostratic stacking

The modelling of turbostratic staking is challenging since the

incommensurate nature of these stackings must combine

with the finite-size constraint required by calculations. To

overcome this difficulty we used the method proposed by

Kolmogorov and Crespi [32] in which a layer with supercell

basis vector n;mð Þ becomes commensurate with a second

layer for a specific rotation angle of:

# ¼ cos�1 2n2 þ 2nm�m2

2 n2 þ nmþm2ð Þ

	 

with n > m ð4Þ
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Fig. 4 – An example of five layers turbostratic stacking (supercell basis vector 2,1). Each layer is stacked along the c-axis,

rotated with respect to each other with an angle of 38.21� and randomly translated along the basal plane.
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Fig. 5 – In-plane lattice parameters vs. pressure. The solid
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shows the results found here for turbostratic graphite. For

comparison, the experimental results are also plotted.
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Fig. 3a and b shows the case of the two smaller supercell

with basis vector 2; 1 and 3;1 (corresponding to 14, 26

atoms/layer and rotation angles of 38.21�, 32.20�, respec-

tively). Fig. 3c shows the stacking energy surface for a bilayer

supercell of basis vector 2;1. To better describe the complete

misorientation of turbostratic stacking we have increased

the number of layers along the c-axis. Each layer was rotated

with respect to each other and randomly translated along the

basal plane (see Fig. 4). The rotation angles used are 15 values

ranging from 6.01� to 53.99�. The smallest supercell contains

28 atoms with two layers rotated with respect to each other

by 38.21�, whereas the largest one contains 456 atoms with

12 layers and rotation angle of 46.83�.
For each model we carried out extensive structural optimi-

zations starting from different translation vectors along the

basal plane. The corrugation energy is about one order of

magnitude lower than commensurate structure (see Fig. 2a)

with a maximum value of 0.9 meV/atom (see Fig. 3c). As we

increased the size of the supercell over the basal plane we

found that the average corrugation energy tends to decrease

up to 20% for the largest size (basis vector 8,3 with 194

atoms/layer). Extrapolating these results in the ideal case of

infinite layers, we suggest corrugation energy virtually flat

with layers mutual independent.

For all the supercell studied the in-plane lattice parame-

ters remain almost equal to the value found in hex-g, whereas

the interlayer distances were on average slightly larger,

3.42 ± 0.01 Å, with formations energies of 3.03 ± 0.6 meV/

atom.

The interlayer binding energy between graphitic layers

(i.e. exfoliation energy) was 21 ± 1 meV/atom (70 ± 4 meV/

atom with vdW), a value slightly lower than the 24 meV/

atom found in hex-g (80 meV/atom with vdW). Note that

LDA values yield to a binding energy within a factor of

2–3 with respect to LCAO-S2 + vdW formalism and experi-

ment values (43 meV/atom found in heat-of-wetting exper-

iment [37], 35 ± 10 meV/atom found by analyzing TEM

images of twisted collapsed nanotubes [38], and

52 ± 5 meV/atom by studying thermal desorption of polyar-

omatic hydrocarbons [39]). In Table 1 we report the calcu-

lated values of the elastic constants. With the exception

of C44, these values hardly change among all the studied
turbostratic stackings with no clear dependence on the

rotation angles and number of layers. The elastic constants

C11; C12 slightly decrease by about 3% with respect to hex-

g, remaining within the experimental uncertainties found

in turbostratic samples [13]. As previously found in hex-g,

LDA calculations underestimate the C33 value (27 ± 2 GPa)

with respect to the vdW correction (36 ± 1 GPa) and the

experimental value of 36.5 ± 1 GPa [13].

Conversely, we found C13 = �2.7 ± 0.5 GPa in disagreement

with the experimental value 15 ± 5 GPa [13]. The latter value

was only indirectly obtained as a function of the other elastic

constants by the less accurate static test method. This meth-

od requires larger strains than ultrasonic experiments and

non-linear behaviour of stress–strain curve may affect the

measured value. Furthermore, the linear bulk modulus Ba cal-

culated from these elastic constants is far too large (2080 GPa),

almost double than the one found in diamond (1326 GPa [40]).

The linear bulk modulus Ba describes the variation of the

lattice parameter a as a function of the hydrostatic pressure

[41] and it is given by:

Ba ¼
C33ðC11 þ C12Þ � 2C13

C33 � C13
ð5Þ
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This modulus is strongly weighted by C13. For example, if

we use the measured value found in hex-g 0 ± 3 GPa (instead

of 15 ± 5 GPa), Ba becomes 1240 GPa (instead of 2080 GPa).

Several X-ray studies have measured the linear bulk mod-

ulus Ba. In these experiments powder samples were prepared

by grinding different types of graphitic materials, ranging

from well crystallized to poorly crystallized grains [42–44].

The good agreement between the experiments (see Fig. 5)

indicates that the linear bulk modulus Ba does not strongly

depend on the stacking order with a measured value of

1250 ± 70 GPa [43]. By including the latter modulus in the Eq.

(5), the elastic constant C13 becomes 0.3 GPa. Therefore, we

conclude that the C13 value does not significantly change be-

tween turbo-g and hex-g and we propose that the same value

0 ± 3 GPa should be appropriate also for turbostratic stacking.

The C44 represents the second derivative of the total en-

ergy as a function of shear displacement over the basal plane.

As the corrugation energy of perfect AB stacking is much

higher than turbostratic we are expecting a corresponding

lower value of the shear elastic constant. We have found that

C44 tends to decrease as a function of the supercell area over

the basal plane (see Fig. 6) and is independent on the relative

rotation angles and number of layers along the c-axis (the

respective average corrugation energies and therefore the

C44 values are also independent on the relative rotation angles

and number of layers).

For commensurate structures of finite area ranging be-

tween 36–563 Å2 the respective C44 values are within 0.16–

0.31 GPa, one order of magnitude lower than hex-g (4.5 GPa)

and close to the experimental measures ranging from 0.18

to 0.35 GPa [13]. The vdW correction does not significantly af-

fect the C44 values with respect to LDA (see Table 1), suggest-

ing that the variations in energy under interlayer shears are

nearly identical between these two approximations. As we in-

crease the sizes of the commensurate structures towards the

ideal case of infinite layers (incommensurate) the C44 values

tend to zero with corrugation energy virtually flat. These re-

sults indicate that turbostratic stacking possesses the lowest

friction among all the graphitic materials bearing great poten-

tial applications in nano-mechanical systems [45,46].
4. Conclusions

To summarize, we have discussed the importance of C44 as

the main parameter that restrains the bending modes and

controls the mechanical stability of layered materials. Using

advanced ab initio method, which includes vdW interactions,

we have provided the first complete description of the elastic

constants in graphitic systems. The lower exfoliation energy

(�10 meV/atom) and the lower C44 (at least one order of mag-

nitude) found in turbostratic stacking suggest that the exfoli-

ation mechanism, relevant for the production of graphene,

should be easier for graphite flakes with random stacking.

Our results indicate that turbostratic graphitic systems

possess the lowest friction among all the graphitic stackings.

It would be interesting to check these predictions

experimentally.
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