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Abstract
Hexagonal boron-nitride (h-BN) provides an ideal substrate for supporting graphene devices to
achieve fascinating transport properties, such as Klein tunneling, electron optics and other novel
quantum transport phenomena. However, depositing graphene on h-BN creates moiré
superlattices, whose electronic properties can be significantly manipulated by controlling the
lattice alignment between layers. In this work, the effects of these moiré structures on the transport
properties of graphene are investigated using atomistic simulations. At large misalignment angles
(leading to small moiré cells), the transport properties (most remarkably, Klein tunneling) of
pristine graphene devices are conserved. On the other hand, in the nearly aligned cases, the moiré
interaction induces stronger effects, significantly affecting electron transport in graphene. In
particular, Klein tunneling is significantly degraded. In contrast, strong Fabry-Pérot interference
(accordingly, strong quantum confinement) effects and non-linear I-V characteristics are observed.
P-N interface smoothness engineering is also considered, suggesting as a potential way to improve
these transport features in graphene/h-BN devices.

1. Introduction

Since its discovery in 2004 [1], graphene has become
the subject of intensive research and was suggested
as candidate for several potential applications, thanks
to its unique electronic properties [2–4]. In particu-
lar, monolayer graphene exhibits a linear dispersion
relation at the six corners (i.e. K- and K′- points) of
its hexagonal Brillouin zone [4]. These Dirac cones
result in massless Dirac fermions with relativistic-
like behaviors near the Fermi level and interesting
ambipolar characteristics [5]. On this basis, several
peculiar phenomena, such as Klein tunneling [6–
11], electron optics [12–15], unusual half-integer
quantum Hall effect [16, 17], valleytronics [18, 19],
etc have been explored in graphene. In addition,
pristine graphene exhibits exceptionally high mobil-
ity of charge carriers [20–23], which is an import-
ant ingredient for applications in nanoelectronics
[24–27]. Remarkably, the high carrier mobility of
graphene makes it an ideal platform for observing

ballistic transport phenomena and exploring novel
electronic components of Dirac fermions optics [13,
14, 28–36].

Among the transport phenomena reported in
graphene, Klein tunneling and Fabry-Pérot inter-
ference are two especially fascinating ones. Klein
tunneling [37], predicted for massless relativistic
particles, refers to the feature that electrons can
be transmitted through potential barriers without
any backscattering. This phenomenon has been
indeed observed in monolayer graphene devices,
since their charge carriers really exhibit massless
Dirac characteristics [6]. In fact, the perfect match-
ing of electron and hole wave-functions at the bar-
rier interface enables a unit transmission probab-
ility in the normal incident direction. Fabry-Pérot
interference [38] has been originally explored for light
propagation through an optical cavity and obtained
when circulating light in the cavity and incident light
are in phase. Due to their high mobility, ballistic
Dirac fermions in graphene behave in close analogy
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to light rays in optical media, manifesting in a variety
of interference and diffraction effects [12–14, 31, 39].
Fabry-Pérot interference has been hence also explored
in graphene P-N heterostructures [7, 28, 35, 40]. It
is worth noting that strong Fabry-Pérot resonances
require resistive P-N interfaces, whereas Klein tunnel-
ing makes these interfaces more transparent. The lat-
ter actually limits Fabry-Pérot resonances, which is a
manifestation of the weak confinement of electrons
by electrostatic potentials in graphene [35].

Due to its 2D nature, the carrier mobility in
graphene is however very sensitive to the quality of
its supporting substrate. Indeed, scattering is induced
by charged surface states and impurities, by sub-
strate surface roughness, by surface optical phonons,
etc [41]. In such context, hexagonal boron nitride
(h-BN) has emerged as one of the best substrates
to improve the carrier mobility in graphene [42].
Owing to the strong, in-plane bonding of the planar
hexagonal lattice structure, h-BN is relatively inert
and free of dangling bonds or surface charge traps.
Indeed, high carrier mobilities of ∼104 cm2 Vs−1 to
105 cm2 Vs−1 and micrometer-scale ballistic trans-
port length have been demonstrated in encapsu-
lated graphene/h-BN [23, 43]. Therefore, h-BN sub-
strates have been chosen for graphene devices in sev-
eral transport experiments, most remarkably, such
as Klein tunneling [9], Fabry-Pérot [44, 45] and
Aharonov–Bohm interferences [46, 47], and electron
optics phenomena [14, 33, 34, 36, 48, 49].

However, the assembly of graphene and h-BN also
induces the presence of a moiré superlattice because
of their lattice mismatch, and the moiré wavelength
is dependent on the misalignment angle between the
two hexagonal lattices [50, 51]. A large moiré struc-
ture at small misalignment angles presents significant
effects on the electronic structure of graphene. In par-
ticular, a finite bandgap opens at the Dirac (charge
neutrality) point, and second-generation Dirac cones
are also observed at finite energies [51, 52]. These
electronic properties result in the observation of excit-
ing phenomena such as Hofstadter butterfly and frac-
tional quantumHall effects [53, 54], valley Hall effect
[55], correlated states [56], orbital ferromagnetism
[57], and so on.

As h-BN has often been used as a high-quality
substrate for graphene devices, it naturally gives rise
to questions about the effects of the mentionedmoiré
structure on transport phenomena, such as Klein
tunneling and Fabry-Pérot interference. Using atom-
istic simulations, we found that at largemisalignment
angles (when small moiré structures are induced),
the transport properties reported in pristine graphene
are preserved in graphene/h-BN devices. However,
at small misalignment angles, large moiré structure
induces significant effects on the electronic transport.

Most remarkably, Klein tunneling is found to be sig-
nificantly degraded whereas strong Fabry-Pérot res-
onances and strong quantum confinement can be
obtained in the nearly aligned cases.

2. Methodology

Electronic transport through a single potential bar-
rier in graphene on h-BN devices is investigated, as
schematized in figure 1. The transport takes place
along the (Ox) direction, while a 1D potentialU(x) is
induced and controlled by the gate voltage. The size
of graphene sample in the lateral (Oy) direction Wy

is assumed to be much larger than the gate length (in
particular, the barrier width LB here). In such con-
dition, the graphene channel can be approximately
modeled as an infinite and periodic lattice along the
Oy axis. Since h-BN substrate is a large-gap semicon-
ductor, its contribution to the electronic transport of
the device is negligible. On this basis, our atomistic
simulations consider a model with graphene coupled
to a single h-BN layer to compute the effects of moiré
structure.

Before computing the electronic transport in the
above-described device, graphene/h-BN superlattices
were first relaxed using molecular dynamics simu-
lations with classical potentials. In particular, int-
ralayer forces are computed using the optimized
Tersoff potentials [58, 59], whereas interlayer forces
are modeled using the Kolmogorov–Crespi potentials
[60]. These potential models have been demonstrated
to compute fairly well the structural properties of
graphene/h-BN heterostructures, compared to both
experimental data and first-principles calculations
(see the details in [60].) The atomic structure was
optimized until all the force components were smal-
ler than 0.5meV/atom. The electronic properties and
transport were then computed using the pz tight-
binding Hamiltonian, similar to those in [52, 61],

H=H0 +U(x)

H0 =
∑
n

ϵna
†
nan +

∑
n,m

t (⃗rnm)a
†
nam + h.c. (1)

While the tight-binding Hamiltonian H0 computes
the electronic properties of graphene/h-BN superlat-
tices, U(x) models the gated-induced potential bar-
rier as mentioned above. ϵn represents the onsite
energies of atoms, in particular, ϵn = 0 eV, 3.34 eV
and −1.4 eV for carbon, boron and nitrogen atoms,
respectively. The hopping energy t(⃗rnm) between nth
and mth sites is determined by the Slater–Koster
formula
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Figure 1. (a) Schematic of a typical device of graphene on h-BN substrate. Electronic transmission takes place along the Ox axis
and gate voltage induces a 1D potential barrier U(x). The inset illustrates the atomic model of graphene coupled to a single h-BN
layer. (b) Electron transport through the potential barrier U(x) with the barrier height UB and width LB.

t (⃗rnm) = Vppπ (rnm) sin
2ϕnm

+Vppσ (rnm)cos
2ϕnm

Vppπ (rnm) = V0
ppπ exp

(
a0 − rnm

r0

)
Vppσ (rnm) = V0

ppσ exp

(
d0 − rnm

r0

)
(2)

where the same parameters V0
ppπ =−2.7 eV and

V0
ppσ = 0.48 eV are used to compute hopping ener-

gies in graphene and hBN layers, as well as their
interlayer couplings. The direction cosine function
of r⃗nm along Oz axis cosϕnm = znm/rnm, r0 = 0.184a,
a0 = a/

√
3 with a≃ 2.49 Å and d0 = 3.35 Å. As U

is a function of x only, the Hamiltonian (1) satis-
fies the translational periodicity in the Oy direction
and can therefore be rewritten in a wavevector ky-
dependent (quasi-1D) form H(ky). In addition, the
potential barrier is practically a smooth function of x,
and its smoothness depends on the thickness as well
as dielectric constant of the gate-insulating layer. To
mimic this property, the potential U(x) = UB/[1+
(2x/LB)α] [35] was used in our simulations, with bar-
rier height UB and width LB (see figure 1(b)). Here,
α is the smoothness parameter. In particular, the lar-
ger it is, the more abrupt the barrier is and the ideally
abrupt one corresponds to α=∞.

The Hamiltonian (1) was solved using Green’s
function technique [62]. In particular, the retarded
Green’s function is computed as

G
(
E,ky

)
=
[
E+ i0+ −Hdevice

(
ky
)
−ΣL

(
E,ky

)
−ΣR

(
E,ky

)]−1
(3)

where ΣL,R(E,ky) are self-energies representing the
left and right lead-to-device couplings, respect-
ively. The transmission function is determined as
T(E,ky) = Tr(ΓLGΓRG†)withΓL,R = i(ΣL,R −Σ†

L,R).

The current and low-bias conductance are then estim-
ated using the Landauer formula:

J(Vb) =
eWy

πh

ˆ
BZ
dky

ˆ
dE,T(E,ky) , [ fL (E)− fR (E)] ,

(4)

G(EF) =
e2Wy

πh

ˆ
BZ
dky

ˆ
dE,T

(
E,ky

)
,

[
−∂f(E)

∂E

]
,

(5)

where fL,R(E) =
[
1+ exp

(
E−EFL,FR

kbT

)]−1
are the Fermi

distribution functions in the left and right leads,
respectively, with the Fermi levels EFL,FR and EFR =
EFL − eVb. In addition, the local density of states
(LDOS) can also be computed using Green’s func-
tion: D(E,ky, rn) =−ℑ[Gn,n(E,ky)]/π. Finally, note
that as the number of atoms in the supercell of
nearly-aligned graphene/h-BN is huge (particularly,
12 322 atoms for θ = 0◦), making standard calcula-
tions unfeasible, the Green’s function equation (3)
is solved using the recursive techniques developed in
[62].

3. Results and discussions

First, the atomic structure of the moiré superlattice
is discussed. Figures 2(a)–(c) visualize the buckling
of the moiré structures obtained in graphene by MD
simulations when varying the misalignment angle θ
with the h-BN layer. These results are shown to be in
good agreement with the reported STM images [50].
In particular, at large θ-angles, moiré structures have
a small wavelength and present negligible effects on
graphene. Indeed, the graphene sheet is almost flat as
illustrated in figure 2(c) for θ ≃ 12.7◦. When decreas-
ing θ, especially in the nearly aligned cases, the moiré
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Figure 2.Moiré atomic structures (a)–(c) and densities of electronic states (d) of largely misaligned (θ = 12.7◦) and nearly
aligned (θ = 1◦ and 0◦) graphene on h-BN. Local stacking configurations within the obtained moiré cell are depicted in (b).
Buckling is measured by the spatial variation of height∆h(Å) of the graphene sheet along Oz axis.

structures become more visible and display a signi-
ficantly large wavelength, i.e. about 10 nm at θ = 1◦

(figure 2(a)) and 14 nm at θ = 0◦ (figure 2(b)).
Consequently, the electronic structure of free-

standing graphene is preserved at large θ-angles,
i.e. the V-shaped density of states (DOS) signifying
gapless linear dispersion (see also in the supplement-
ary material (SM)) is still observed, as illustrated in
figure 2(d). At smaller angles, the large moiré struc-
tures significantly affect the electronic properties of
graphene. In particular, a moiré induced-bandgap
at zero energy (∼15 meV for θ = 0◦), second-
generation Dirac points and spatially dependent elec-
tronic properties are observed (see figure 2(d) and
SM—section (A)). These electronic DOS are in good
agreement with experimental measurements [50, 51,
63]. Note that a negligible bandgap is obtained and
the electronic transport is significantly affected when
the atomic relaxation is not taken into account (see

[52] and figure S3 in SM). This emphasizes the
importance of atomic relaxation effects on the elec-
tronic properties of nearly aligned graphene/h-BN
superlattices.

As a potential barrier (see figure 1) consists of two
parallel P-N junctions, electronic transport through
a single P-N junction in graphene on h-BN devices
is first investigated. In figure 3, the electronic trans-
mission in the normal incident direction (ϕ = 0◦)
is computed and presented for graphene/h-BN P-N
junctions with four different misalignment angles.
It is worth noting that because of its Dirac con-
ical electronic structure, this transmission in pristine
graphene devices also takes place without any backs-
cattering (T(E,ϕ = 0◦) = 1 ∀E) [10]. This implies
that the pristine graphene P-N junctions are perfectly
transparent for ϕ = 0◦, manifesting the Klein tunnel-
ing effect. In the graphene/h-BN cases, these trans-
port properties are conserved at large misalignment

4



2D Mater. 11 (2024) 025023 V-A Tran et al

Figure 3. Electronic transport through a single P-N junction in graphene/h-BN devices with different misalignment angles θ: 0◦,
1◦, 3◦, and 12.7◦. The transmission function is estimated along the normal incident direction (ϕ = 0◦, parallel to the Ox axis).
Green line illustrates perfect transmission obtained in pristine graphene devices.

Figure 4. Electronic transport through a single potential barrier in graphene/h-BN devices. Transmission function in the normal
directionb (ϕ = 0◦) is presented for different misalignment angles θ in (a). The smoothness parameter of the barrier is α= 8.
The other barrier parameters, UB and LB, are mentioned in the frame. Transmission function versus incident direction
(ϕ ∈ [−90◦,90◦]) is presented for θ = 12.7◦ in (b) and for θ = 1◦ in (c) at different energies marked in (a).

angles, as demonstrated by the results for θ = 12.7◦

in figure 3. This result is consistent with the neg-
ligible effects of moiré structure at such angle, as
discussed in figure 2. However, when decreasing θ,
a significant reduction in the transmission function
is observed in the range E ∈ [0,UPN], implying that
these graphene/h-BN P-N junctions are no longer
perfectly transparent. This result is a direct con-
sequence of the above-discussed effects of largemoiré
structure on the electronic properties of graphene
(see figure 2(d)).

The electronic transport properties through a
potential barrier in the graphene/h-BN devices are
computed in figure 4. First, the transmission func-
tion in the normal incident direction is presented in

figure 4(a) for the three misalignment angles. Note
again that in pristine graphene devices, this normal-
incident transmission represents the Klein tunnel-
ing effect, which has been explained by the con-
servation of the sublattice pseudo-spin of massless
Dirac fermions [6, 10]. Indeed, such a feature is
preserved in graphene/h-BN devices with large mis-
alignment angles, as demonstrated for θ = 12.7◦ in
figure 4(a). This result is actually consistent with the
transport properties through the P-N junctions, as
discussed above. Indeed, h-BN layers simply act as a
flat substrate, thus not affecting the conservation of
sublattice pseudo-spin. However, when decreasing θ,
thus increasing the moiré wavelength, the considered
transmission is overall reduced and some resonant

5
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peaks are observed. Indeed, the transmission is not
always perfectly equal to 1 in the energy range E ∈
[0,UB], as obtained in the cases of large θ. Actually,
electrons described by the 2DmasslessDirac equation
in graphene carry a pseudo-spin related to their free-
dom of belonging either to sublattice A or to sub-
lattice B. In pristine graphene, sublattice symmetry
is present, and accordingly, the conservation of the
sublattice pseudo-spin can be obtained in the nor-
mal incident transmission through potential barri-
ers, thus resulting in the observation of Klein tun-
neling. These features are conserved in largely mis-
aligned graphene/h-BN systems, because h-BN acts as
a flat substrate (whenmoiré effects are negligible) and
therefore does not affect the sublattice symmetry and,
accordingly, does not affect the conservation of sub-
lattice pseudo-spin in graphene. The picture however
changes drastically when the large moiré structure is
obtained at small misalignment angles. In particu-
lar, different (i.e. AA, AB, and BA) stacking and large
regions are formed within the moiré cell, essentially
due to the atomic reconstruction effects in small-θ
superlattices, as illustrated in figure 2(b). In these
stacking regions, the electronic couplings with the B
and N atoms of the substrate locally break the sub-
lattice symmetry of graphene, as illustrated by the
LDOS images projected on its two sublattices (see SM,
figure S2). On the one hand, these sublattice sym-
metry breakings lead to a finite bandgap opening as
discussed above. More importantly, because of the
discussed sublattice symmetry breaking, the conser-
vation of the sublattice pseudo-spin can no longer be
satisfied in the transmission through potential barri-
ers (see SM—section B for more details), thus essen-
tially explaining the observed degradation of Klein
tunneling.

Figures 3 and 4(a) additionally suggest that
although perfect transmission (Klein tunneling) is
overall no longer observed in large moiré super-
lattices, P-N junctions and potential barrier devices
exhibit different behaviors. In particular, resonant
peaks occur for potential barriers, whereas the trans-
mission is reduced over the whole energy range com-
puted for P-N junctions. Interestingly, this result is
in good agreement with the principles of Fabry-
Pérot interference, implying an optical-like behavior
of electrons in graphene. In particular, resistive P-N
interfaces are the key ingredient for generating cir-
culating electron waves inside the potential barriers,
leading to Fabry-Pérot resonance when the incident
wave aligns in phase with these circulating ones. In
pristine graphene and largelymisaligned graphene/h-
BN devices, the presence of Klein tunneling in
the nearly normal incident directions makes P-N
interfaces highly transparent. Therefore, Fabry-Pérot
interference can only observed in these devices in
the very oblique directions ϕ≫ ϕ0 ≡ 1/

√
π kFd [10].

Here ϕ0 is the collimation angle determined with
the Fermi momentum kF and the barrier smooth-
ness length d. However, these properties are drastic-
ally changed in nearly aligned graphene/h-BN devices
as P-N interfaces become resistive and hence signi-
ficant Fabry-Pérot interference can be observed even
in the normal incident direction. For completeness,
Figures 4(b) and (c) present the angular-dependent
transmission computed at the energies marked in
figure 4(a) and for two angles θ = 12.7◦ and 1◦. The
transmission angle ϕ is determined as illustrated in
figureS4 in SM. In a short summary, together with
the data depicted in figure 4(a), the presented res-
ults emphasize that (1) at large misalignment angles,
Klein tunneling is observed in the nearly normal
direction whereas Fabry-Pérot interference occurs in
the very oblique ones; (2) in nearly aligned cases, as
the Klein tunneling is strongly degraded, significant
Fabry-Pérot resonances can be obtained in all incid-
ent directions.

The above-discussed transparency and resistivity
of the P-N interfaces and related transport proper-
ties at large and small misalignment angles are vis-
ibly illustrated by the LDOS in figures 5(a) and (b). In
addition, it is well known that the presence of Klein
tunneling is an obstacle to graphene-based systems
that prevents the confinement of electrons by elec-
trostatic potentials. This obstacle similarly occurs in
largely misaligned graphene/h-BN devices, as illus-
trated in figure 5(a). In particular, the potential bar-
rier is perfectly transparent, which is consistent with
the perfect transmission of the electron wave dis-
cussed above. In contrast, relatively strong confine-
ments of electrons is observed in the nearly aligned
graphene/h-BN case (see figure 5(b)), which is in
accordance with the observation of the Fabry-Pérot
resonance in figure 4(a). Figures 5(c) and (d) present
2D maps of the LDOS obtained at two energy levels,
resonant (ER) and off-resonant (EOR) states, in the
device with θ = 1◦ in figure 5(b). These images clearly
characterize the signature of moiré structure, which
governs all the transport properties discussed above.

The electronic transport in graphene devices has
been demonstrated to be also strongly dependent
on the smoothness of both P-N junctions [64] and
potential barriers [35]. In principle, while the bar-
rier height and width are determined and controlled
by gate voltage and gate length, respectively, the bar-
rier shape (i.e. smoothness) is dependent on the gate
insulator layer, in particular, on its thickness and its
dielectric constant. While varying the barrier height
and width mainly leads to a change in the number
of resonant peaks [65], barrier smoothness engineer-
ing has been suggested as a way to enhance the Fabry-
Pérot effect in graphene [35]. A larger enhancement
is even observed in nearly aligned graphene/h-BN
devices, as depicted in figure 6, compared to the
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Figure 5. Local densities of states computed for electrons propagating in the normal direction as a function of energy in (a), (b)
with the barrier parameters (θ,UB,LB) as given in figure 4(a). 2D maps of LDOS computed for θ = 1◦ at the resonant (E= E5, see
also in figure 4(a)) and off-resonant (E= E4, see also in figure 4(a)) states depicted in (b) are illustrated in (c), (d), respectively.

Figure 6. (a) Electronic transmission through potential barriers in the normal direction with different smoothness parameters in
the nearly aligned (θ = 1◦) graphene/h-BN device. Barrier parameters are defined on the right (b).

effect in pristine graphene and largely misaligned
graphene/h-BN ones. In particular, the Klein tun-
neling in the nearly normal incident directions is
unaffected by the mentioned smoothness engineer-
ing in the latter devices. However, the Fabry-Pérot
effect in the normal incident direction is signific-
antly enhanced when increasing the barrier smooth-
ness (i.e. reducing α) in nearly aligned graphene/h-
BN devices as illustrated for θ = 1◦ in figure 6.
Indeed, the variation of transmission ∆T/Tpeak gets
a large value ⪆ 80% for α= 2 while it is only
about 15% for the abrupt barrier (α=∞). These

results also imply that the degradation of Klein
tunneling in nearly aligned graphene/h-BN devices
can be significantly enlarged by barrier smoothness
engineering.

The electrical conductance, which is a charac-
teristic quantity determined by the contribution of
all transmission directions, is also investigated since
it is often measured in standard experiments. In
figure 7(a), the conductance at 0K is computed as a
function of Fermi energy for three different θ angles.
In the largely misaligned devices, the Fabry-Pérot
effect occurs in oblique transmission directions, thus

7
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Figure 7. Conductances computed in single barrier graphene/h-BN devices with (a) different misalignment angles and (b)
different barrier smoothness parameters (for θ = 1◦). Other barrier parameters (UB and LB) are the same as given in figure 4(a).
Some estimated values of conductance variation∆G/Gpeak are indicated by arrows.

Figure 8. I-V characteristics of the graphene/h-BN device of θ = 1◦ is computed in (a) for different barrier smoothness
parameters. The results in the θ = 12.7◦ case is added in (b) for a comparison. Other barrier parameters (UB and LB) are the
same as given in figure 4(a).

explaining the observed conductance resonant peaks
for θ = 12.7◦. However, the presence of Klein tun-
neling in nearly normal incident directions dimin-
ishes the magnitude of this resonance, similar to that
observed in pristine graphene devices.When decreas-
ing the θ angle, the degradation of Klein tunneling
enlarges the conductance Fabry-Pérot resonance, in
particular, the variation of conductance∆G/Gpeak ≃
53% and 55% for θ = 1◦ and 0◦, respectively, com-
pared to 33% for θ = 12.7◦. In accordance with the
effects of barrier smoothness engineering discussed in
figure 6. much stronger Fabry-Pérot resonances are
obtained in the smoother barrier device, as demon-
strated in figure 7(b). Indeed, ∆G/Gpeak ≃ 83% is
observed for α= 2 in the device with θ = 1◦. Note
that such a large enhancement cannot be achieved for
largely misaligned graphene/h-BN devices, due to the

presence ofKlein tunneling that is independent on the
shape of potential barriers.

At last, with their high carrier mobility, graphene
devices have been demonstrated to be highly effi-
cient for high-frequency applications [66, 67]. These
potential applications are extended even when cur-
rent saturation or negative differential resistance
(NDR) occurs [68–71]. Such non-linear character-
istics are obtained and essentially explained by the
bottleneck effect on the transmission induced by the
V-shaped DOS of graphene [65, 72]. The I-V char-
acteristics of the graphene/h-BN devices at 0K are
also computed and presented in figure 8. Indeed, the
NDR effect can be obtained in both cases of nearly
aligned (figure 8(a)) and misaligned (figure 8(b))
graphene/h-BN. Interestingly, a much larger NDR
is obtained in the nearly aligned case, compared to

8



2D Mater. 11 (2024) 025023 V-A Tran et al

the largely misaligned one. In particular, a peak-to-
valley ratio of approximately 2.4 is obtained for θ =
1◦ (seeα=∞ in figure 5(a)) while it is only about 1.3
for θ = 12.7◦. This enhanced NDR can be essentially
explained by the effect of the bandgap opening at θ =
1◦. Note that the peak current is obtained at low bias
when the tunneling transmission through the barrier
presents a large contribution whereas the valley cur-
rent occurs when the contribution of such tunnel-
ing transmission is minimized, thanks to the above-
mentioned bottleneck effect at large bias as explained
in details in [65, 72]. When a bandgap opens (in par-
ticular, at θ = 1◦, compared to the θ = 12.7◦ case),
such bottleneck effect is enlarged. This significantly
reduces the valley current while the peak current is
moreweakly affected. On this basis, a strongerNDR is
achieved at θ = 1◦, compared to that obtained at θ =
12.7◦. In addition, on contrary with the effects of bar-
rier smoothness engineering on Fabry-Pérot reson-
ances, the NDR behavior is weakened when the bar-
rier smoothness is enlarged (when desceasingα). This
is simply due to the reduction of the above-discussed
tunneling transmission through the smooth barrier
as illustrated in figure 7(b). This reduction leads to
the reduction of current peak as seen in figure 8(a),
thus explaining the weakened NDR with small α as
observed.

Finally, it is worth noting again that experiments
of Klein tunneling and Fabry-Pérot interference in
the devices of pristine monolayer graphene have been
investigated and reported, for instance, in [7, 35, 40].
The simulation parameters (i.e. Fermi energy, bar-
rier height, barrier width, as well as barrier smooth-
ness parameter α) in this work were chosen to be
close to the experimental values. In particular, the
barrier height of 100 meV corresponds to the differ-
ence ∆n∼ 1012 cm−2 of carrier densities inside and
outside the barrier and the barrier width ∼100 nm
as obtained in [7]. In addition, the potential barrier
model with α= 2 is very close to the experimental
barrier and the smoothness parameterα can be tuned
by varying the gate-sample distance as reported in
[35]. These points suggest the experimental accessib-
ilities to confirm our predictions.

4. Conclusion

Using atomistic simulations, the effects of moiré
structure induced by an h-BN substrate on the elec-
tronic transport properties of graphene devices are
investigated. In the largely misaligned cases, h-BN
simply acts as a flat substrate, and all the elec-
tronic and transport properties previously observed
in pristine graphene are conserved in the considered
device. However, in nearly aligned graphene/h-BN
superlattices, the large moiré structure significantly

alters the electronic properties of graphene and,
therefore, its transport properties. In particular,
couplings with the B and N atoms break the sub-
lattice symmetry, leading to a bandgap opening in
graphene and, on this basis, the significant degrada-
tion of Klein tunneling is explored in the electronic
transmission through P-N junctions and potential
barriers. Instead of having a perfect unity value,
transmission through potential barriers in nearly
normal incident directions exhibits a strong Fabry-
Pérot effect. Accordingly, an enhanced quantum con-
finement of electrons is observed. Barrier smooth-
ness engineering is also investigated and found to
significantly strengthen the observed Fabry-Pérot
interference. Consequently, large conductance reson-
ant peaks (i.e. ∆G/Gpeak > 80%) can be obtained
in nearly aligned graphene/h-BN devices with a
smooth barrier. Finally, nonlinear I-V characterist-
ics with enhanced NDR behavior are also predicted
in the graphene/h-BN large-moiré device. Thus, the
present study clarifies the effects of h-BN subtrates
in graphene devices and suggests that controlling the
moiré structure could be a potential way to engineer
their corresponding transport properties.
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A. Electronic properties of graphene/h-BN system

In this section, the electronic properties of graphene/h-BN moiré superlattices obtained

by tight-binding calculations are presented. The band structures of three misalignment

angles (θ = 12.7◦, 1◦ and 0◦) are computed in Fig.S1. These results further emphasize

the negligible effect of moiré structure in largely misaligned systems (θ = 12.7◦) whereas

significant effects are obtained in the nearly aligned cases (θ = 1◦ and θ = 0◦). In particular,

at θ = 1◦ and θ = 0◦, a finite bandgap and the signature of superlattice Dirac points are

observed in the obtained bandstructures. Accordingly, the density of states (DOS) and local

density of states (LDOS) in these superlattices are also presented in Fig.S2. Remarkably,

the LDOS images at the bottom of Fig.S2 illustrate clearly the effects of moiré structure on

electronic properties of graphene, leading to the spatial variation as well as the sublattice

symmetry breaking in the nearly aligned cases. It is worth emphasizing that these features

are not obtained in largely misaligned systems as demonstrated for θ = 12.7◦, where all the

properties observed in pristine graphene are conserved.

an empty line

FIG. S1: Electronic bandstructures of graphene/h-BN moiré superlattice: tight-binding calcula-

tions for different misalignment angles θ.
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FIG. S2: (Top) Densities of states of graphene/h-BN moiré superlattices for three misalignment

angles θ. (Bottom) Local densities of states at E = 50 meV presents their spatial variation at

θ = 0◦ (large moiré superlattice), compared to the case of 12.7◦ (small moiré structure). The zoom

images of LDOS in bottom illustrate the sublattice symmetry at θ = 12.7◦ and the corresponding

breaking at θ = 0◦.

In Fig.S3, the electronic bandstructures and transport are computed and presented for the

2



FIG. S3: (Left) Bandstructures and (right) electronic transmission through a potential barrier in

the normal direction: a comparison of unrelaxed and relaxed cases. θ = 1◦ and other simulation

parameters are as given in Fig.4(a).

FIG. S4: Fermi surface and transmission angle ϕ illustrated for the θ = 1◦ - graphene/hBN

superlattice. Picture on the right presents the momentum dependent density of states DOS(E, k⃗)

at E = EF , thus visualizing the Fermi surface E(k⃗) = EF .

devices of both unrelaxed and relaxed superlattices. Obviously, when the atomic relaxation

3



is not taken into account, calculation results are strongly affected, i.e., the bandgap at the

charge-neutrality point closes and the resonant peaks in transmission disappear. In Fig.S4,

the Fermi surface and determination of transmission angle ϕ is illustrated. In particular,

the energy dispersion around the Dirac point can be expressed as E(k⃗) =
√
ℏ2v2Fk2 + E2

g/4

with the bandgap Eg in graphene/hBN superlattices. On this basis, the Fermi surface

E(k⃗) = EF is still isostropic and accordingly the transmission angle ϕ is simply determined

by sinϕ = ℏvFky/
√
E2

F − E2
g/4.

B. Degradation of Klein tunneling with the sublattice symmetry breaking

Here, a simple demonstration of the degradation of Klein tunneling is presented, when the

sublattice symmetry of graphene is broken. To model this problem, the Dirac Hamiltonian

in graphene is written as

Ĥ = ℏvF (σ̂xkx + σ̂yky) + σ̂z∆+ U(x)

with the Pauli matrices σ̂x,y,z, the Fermi velocity vF and a 1D potential energy U(x) as

investigated in the main text. The term ∆ is added to mimic the sublattice symmetry

breaking induced by the electronic couplings between graphene and h-BN lattices.

The velocity operator in the Ox -direction is defined by

v̂x = − i

ℏ
[x̂, Ĥ] = vF σ̂x

Its time evolution is given by the Heisenberg equation of motion

˙̂vx = − i

ℏ
[v̂x, Ĥ] = 2

vF
ℏ
(ℏvFkyσ̂z −∆σ̂y)

Note that because of the translational invariance along the Oy-direction, the momentum ky

is a conserved quantity as k̇y = −i[ky, Ĥ]/ℏ = 0, leading to ky(t) = ky(0). On this basis,

˙̂vx = −2vF∆σ̂y/ℏ is obtained for ky = 0.

If ∆ = 0, the velocity (or the pseudo-spin) along Ox for ky = 0 is a constant of the

motion, i.e., ˙̂vx = 0 or ⟨ψ(t)| v̂x |ψ(t)⟩ = ⟨ψ(0)| v̂x |ψ(0)⟩, indeed implying the absence of

backscattering (observation of Klein tunneling) in pristine graphene [1] and largely mis-

aligned graphene/h-BN devices.

When the sublattice symmetry of graphene is broken (i.e., ∆ ̸= 0), the above-described

properties are no longer obtained, which essentially explains the degradation of Klein tun-

neling as reported in the main text.
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