
CHAPTER 2

Construction of 2D Delaunay Triangulations

2.1 The Delaunay Kernel

Let DTn be the Delaunay triangulation of a point set Sn = {p1, . . . , pn} ΩR2 that are
in general position. We describe an incremental process allowing the insertion of a
given point pn+1 2≠(Sn) into DTn and to build the Delaunay triangulation DTn+1 of
Sn+1 = {p1, . . . , pn , pn+1}.

pn+1

C (DTi , pn+1)

Figure 2.1: Delaunay triangulation Tn (left) and the Delaunay cavity Cp (DTn , pn+1)
(right).

19

20 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

pn+1

æ1

æm

æ2

ker(ß)

Figure 2.2: A star shaped polygon ß and its kernel ker(ß). All the corners æ j , 1 ∑ j ∑
m of ß are visible from any x 2 ker(ß).

Definition: The Delaunay kernel is the following procedure

DTn+1 = DTn °C (DTn , pn+1)+B(DTn , pn+1). (2.1)

The Delaunay cavity C (DTn , pn+1) is the set of all triangles whose circumcircles con-
tain the new point pn+1 (see Figure 2.1) in consequense of what they are cannot be-
long to DTn+1. The Delaunay ball B(DTn , pn+1) is a set of triangles that fill the polyg-
onal hole that has been left empty while removing the Delaunay cavity C (DTn , pn+1)
from DTn .

In what follows, we will show that the Delaunay cavity C (DTn , pn+1) is star-
shaped and that pn+1 belongs to its kernel. Then, we will explain how to build
B(DTn , pn+1) in such a way that DTn+1 is a Delaunay triangulation.

2.1.1 Star shapeness

Consider a polygonßwith m cornersæ1, . . . ,æm that is bounded by m edgesæi ,æ(i+1)%m ,
1 ∑ i ∑ m.

Definition: The kernel ker(ß) is the set of point x 2R2 that are visible to every æ j
i.e. the line segment xæ j them do not intersect any edges of the polygon.

The kernel ker(ß) can be computed by intersection of the halfplanes that correspond
to all oriented edges of the polygon (see Figure 2.2).

2.1. THE DELAUNAY KERNEL 21

p6

pn+1

p1

p2

p3

p4

p5

CJ

CI

CK

Figure 2.3: The delaunay cavity is star shaped.

2.1.2 The Delaunay Cavity

Definition: The Delaunay cavity C (Tn , pn+1) is the set of m triangles ¢1, . . . ,¢m 2
DTn for which their circumcircle contains pn+1 (see Figure 2.1).

The Delaunay cavity contains the set of triangles that cannot belong to Tn+1. The
region covered by those invalid triangles should be emptied and re-triangulated in a
Delaunay fashion. The Delaunay cavity has some interresting properties.

Proposition 2.1.1 The Delaunay cavity C (Tn , pn+1) is a non empty connected set of
triangles which the union form a star shaped polygon with pn+1 in its kernel.

Proof The proof is very similar to the one of proposition 1.3.4. Consider point pn+1
of Figure 2.3. Assume that pn+1 belongs to the circumcircle CI of triangle p2p3p4.
Let’s draw a line between pn+1l and p3 which is the triangle that os the furthest
away from pn+1. If p3 is our point of view, pn+1 is on the other side of p2p4. Point
p5 is outside CI because triangle p2p4p5 is a Delaunay triangle. Then The part of
C J which is on the orther side of p2p4 contains the part of C J which is on the same
side. This implies that triangle p2p4p5 is invalid and is itself on the Delaunay cavity.
We can continue that kind of argument starting with p4, then p2. Finally, triangle
p1p5p6 contains pn+1 and is obviously on the Delaunay cavity. So, any vertex of the
boundary of the cavity can be seen by pn+1, which proves the proposition.

Property 2.1.1 The Delaunay cavity C (Tn , pn+1) does not contain any point of Sn.

22 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

p j

B(DTi , pn+1)

æ j+1æ j

pn+1

Figure 2.4: The Delaunay Ball.

Proof To do.

2.1.3 The Delaunay Ball B(DTp , pn+1)

The Delaunay cavity C (DTn , pn+1) is star shaped and pn+1 belongs to its kernel. So,
one possible solution for the Delaunay ball is to create m triangles æiæ(i+1)%m pn+1,
1 ∑ i ∑ m that all contain the new point pn+1. This procedure indeed produces the
desired Delaunay triangulation. DTn+1.

All triangles that are not in C (Tn , pn+1) remain in DTn+1. Those triangles (e.g.
æiæi+1, p j on Figure 2.4) are Delaunay triangles in DTn+1 because their circumcir-
cles neither contain any point of Sn (DTn is a Delaunay triangulation) nor contain
pn+1 because they do not belong to C (Tn , pn+1). This implies that edges æiæi+1 are
locally Delaunay because the circumcircle ofæiæi+1, p j do not contain pn+1. The lo-
cal Delaunaynesss being symetric, it implies that circumcircle of triangleæiæi+1, pn+1
do not contain p j which proves that every edge of DTn+1 is locally Delaunay. Then,
DTn+1 is the Delaunay triangulation.

2.2 The Bowyer-Watson algorithm

The Bowyer-Watson algorithm is a method for computing the Delaunay triangula-
tion of a finite set of points S in any number of dimensions. It uses the Delaunay
kernel in an incremental fashion: starting with an initial triangulation DT0, points
of S are inserted one by one in the triangulation

DTi = DTi°1 °C (DTi°1, pi)+B(DTi°1, pi), i = 1, . . . ,n.

The choice of an initial triangulation DT0 has to be made.

2.2. THE BOWYER-WATSON ALGORITHM 23

2.2.1 Super-triangles

The initial Delaunay triangularion DT0 is composed of 1 or 2 or more “super-triangles”.
The super-triangles cover the entire convex hull≠(S). Super triangles contain points
S0 = {p°1, p°2, . . . , p°m} that do not belong to S (see Figure 2.5).

Points p j , 1 ∑ j ∑ n are inserted one after the other in the triangulation using the
Delaunay kernel (2.1). The final result is a Delaunay triangulation DT(S [S0) of

S [S0 = {p°1, p°2, . . . , p°m , p°1, p1, p2, . . . , pn}.

A naive way to recover DT(S) would be to remove from DT(S[S0) every triangle that
contains oints of S0. In reality, the remaining triangles do dot always form the DT(S).
On Figure 2.6, triangle pk p j pl should be present in DT(S). Yet, its circumcircle con-
tains point p°1 which does not belong to S.

The easiest way of addressing that problem is simply not to fix it. In many situa-
tions, DT(S[S0) is a valid input for further use. The is the case for mesh generation.

Yet, one may be interrested in building DT(S). In this case, some modifications
to the algorithm have to be made. On Figure 2.6, triangle pk p j pl has its circum-
circle that contains p°1 and so edge p j p°1 belongs to the Delaunay triangulation.
Disappointingly, triangle pk p j pl belongs to DT(S). Triangle pk p j pl would be a De-
launay triangle if p° j was sufficiently far i.e. out of the circumcircle of pk p j pl . In
this specific case, increasing slightly the size of the super-triangles would do the job
but it is not clear how to chose a priori the size of the super-triangles that would
ensure that any triangle that has an edge on the convex hull has its circumcircle that
do not contain any of the p° j ’s. Some triangles may be arbitrary flat and their cir-
cumcircle arbitrary large. it is indeed impossible to decide a priory the right size of
the super-triangles.

The easiest solution to recover DT(S) is to start from DT(S [S0) and to apply
edge flips in a specific fashion. Assume here that every point p° j is far enough
so that it does not fall into any circumcircle. Consider every edge p°i p j that con-
nectes a point of negative index to a point of positive index. Edge p°i p j is flippable
if it intersects pk pl . If p°i p j is flippable, then it should be flipped because triangle
pk p j pl ’s circumcircle does not contain p°1. The principle is to replace an edge of
inifinite length with points of finite lenhgth. Note that an edge like pi p°2 should
not be flipped because it would create another edge of infinite length. Applying flips
successively in that fashion, allows to recover DT(S).

Figure 2.5: A set of 9 points and the two “super-triangles” that contains them all
(left). Next Figures show the state of the triangulation after the insertion of 1, 2, 3
and 4 points.

24 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

p j

pi

pk

pl

≠(S)

p°1p°4

p°3 p°2

Figure 2.6: Left Figure shows the final triangulation DT(S0[S). The convex hull≠(S)
is shaded and triangles DT(S0 [S) do not cover it: DT(S) › DT(S0 [S).

2.2.2 What if pn+1 ›≠(Sn)?

TODO: explain gift wrapping stuff.

2.3 A robust implementation in O (n logn) complexity

Algorithm 1 describes a basic implementation of the Bowyer-Watson algorithm. It
has actually two major flaws.

Algorithm 1 is slow: it has a O (n2) complexity: at each iteration i , every trian-
gles of DTi°1 j is asked if pi is inside its circumcircle. There is about 2i triangles
at iteration i which leads to a O (n2) complexity. Centers of circumcircles could be
computed in advance and stored in the datastructure in order to accelerate the pro-
cess. Nevertheless, this approach remains quadratic in complexity.

Algorithm 1 suffers from another more subtle flaw that is essentially due to round-
off errors. We have assumed that points were in general positions so that no quadru-
plets of points are cocircular. This hypothesis is indeed not verified in practice: there
are numerous applications where circles are involved and where way more than 4
points sit on the same circle. Algorithm 1 could be in trouble because some point
may neither be inside nor outside a circulcircle. One solution is to randomly per-
turbate the position of the points in order to enforce them to be in general position.
Here, the question is what is the smallest perturbation that ensures the triangulation
process terminates with success.

The first issue can be solved choosing some adequate datastructures and algo-
rithms. The second issue can be addressed by designing essentially two robust pred-

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 25

Algorithm 1: Bowyer and Watson’s algorithm that creates DT(S)

input : A set of n +4 points S = {p°4, p°3, p°2, p°1, p1, . . . , pn} ΩR2

output: The Delaunay triangulation DT(S)

initialize a triangulation data structure DT0 with 2 super-triangles
p°1, p°2, p°3 and p°2, p°1, p°4.;

for i = 1 to n do
for j = 1 to size(DTi°1) do

ø j is the j th triangle of DTi°1;
if ø j ’s circumcircle contains pi then

Add ø j to Delaunay cavity C (DTi°1, pi);
Remove ø j from DTi°1;

for j = 1 to size(C (DTi°1, pi)) do

ø j is the j th triangle of C (DTi°1, pi).;
for k = 1 to 3 do

e j k is the kth edge of the ø j . ;
if e j k is not shared by any other triangles of C (DTi°1, pi) then

Add a new triangle e j k , pi into DTi°1;

icates.

2.3.1 Robust predicates

Consider three points a(xa , ya), b(xb , yb) and c(xc , yc). The orientation test

O?(a,b,c)

determines whether a lies to the left of, to the right of, or on the line Lbc defined
by points b and c. The orientation test O? consist in computing the orientation of
triangle abc i.e. to compute:

O?(a,b,c) = sign
°
(xa °xc)(yb ° yc)° (ya ° yc)(xb °xc)

¢
.

The orientation test is useful in many situations. First, it allows to compute the
orientation of a triangle, which is useful by itself. It also allows to verify if two edges
ab and cd intersect, which is the case if

O?(a,b,c)£O?(a,b,d) < 0 and O?(c,d , a)£O?(c,d ,b) < 0.

The computation of the orientation test O?(a,b,c) looks very simple (7 opera-
tions). Some interresting issues appear yet when a is sufficiently close to line bc. As
an example [?], consider

b(12,12), c(24,24), and a(1/2+ i"),1/2+ j"),

26 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

Figure 2.7: Strange behavior of the orientation test. Left figure shows O?(a,b,c) for
b(12,12), c(24,24), and a(1/2+ i"),1/2+ j"), "= 2°53 and 0 ∑ i , j ∑ 28. Right figure
shows O?(c,b, a). .

" = 2°53 and 0 ∑ i , j ∑ 28. Note that 2°53 is the significand precision of a double-
precision.

In Figure 2.7 the 2562 results of the O? were reported on a 2D graph. Green
dots are for O?(a,b,c) = °1, red dots are for O?(a,b,c) = 1 and yellow dots are for
O?(a,b,c) = 0. We should only see yellow dots only on the diagonal of the square.
This is obviously not the case: the orientation test behaves randomly when points
are close to be aligned. The result of O? is wrong even for points that are at 20 times
the significand precision away from the diagonal. Even worse: results obtained with
O?(c,b, a) should be the same as the ones for O?(a,b,c). The second graph proves
that this is far from being true. This strange behavior is due to roundoffs. A robust
way of computing the orientation test requires more precise (and more expensive)
floating-point arithmetics. It is of course too expensive to compute every predicate
in an exact fashion. Static filtering consist in assuming that O? gives the right answer
if

|O?| > ≤£ (max(xa , ya , xb , yb , xc , yc))2.

In [?], authors show that ≤= 10°15 is considered as secure for the 2D orientation test.
This value is verified experimentally on Figure 2.7. If |O?| is too small, arbitrary preci-
sion arithmetic on floating-point numbers is applied (we use here the GNU Multiple
Precision Floating-Point Reliable Library [?] that allows to to choose the precision
of the computations). Double-precision floating point numbers have a precision
of 53 bits (16 significant digits). We have implemented O? using 200 bits i.e. with
about 60 significand digits! High precision floating point arithmetics coupled with
a static filter (≤= 10°15) allow to produce the excpected results (see Figure 2.8). The
strange behavior of the orientation test of Figure 2.7 has completely disappeared.
Only points on the diagonal of the square are considered to be on line bc.

There is another useful predicate for Delaunay triangulations: the incircle test.

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 27

Figure 2.8: O?(a,b,c) using a robust predicate. Right Figure is a zoom.

Consider three points a(xa , ya), b(xb , yb), c(xc , yc) and d(xd , yd). The incircle test

C?(a,b,c,d).

determines whether d lies inside the circle defined by points a, b, and c. The in-
circle test has the same robustness issues as the orientation test. Bowyer-Watson
algorithm 1 that uses a non robust circle test can possibly produce invalid meshes.

A strategy that couples static filtering (≤ = 10°11) and high precision floating
point arithmetics result in a robust incircle test.

2.3.2 More on Adjacencies

A triangulation is composed of a collection of “entities” (triangles, edges and points)
together with their adjacencies. Any entity bounds and/or is bounded by other ones
of higher and/or lower dimension. This adjacency information represents the graph
of a mesh. All these adjacency sets do not need to be present in a given representa-
tion. Moreover, some entities may simply not be present: the explcit representation
of the edges of a triangulation is not relevant in many situations (the Delaunay ker-
nel e.g.).

It is interesting at this point to gather some statistics about the average number
of adjacencies per entity that occurs in triangulations. With these statistics, we will
be able to compute the cost of a given representation i.e. its size in the memory of a
computer.

Consider a triangulation T (S) with S = {p1, . . . , pn} that have nh vertices on its
convex hull ≠(S). If n is the number of vertices in T , then we already know that
the number of triangles of T is n f = 2(n °1)°nh and the number of edges of T is
ne = 3(n °1)°nh . (see proposition 1.2.1). In many cases, algorithms that deal with
triangulation have to keep track of “upward adjacencies” i.e. the set of triangles or
of edges that are adjacent to a given vertex or the triangles that are adjacent to an

28 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

2

2

2

3

3

2

2

2

3 ! 4
7 ! 6

5 ! 6

6 ! 5

Figure 2.9: A triangulation T with n = 12 and nh = 9. The average number of trian-
gles adjacent to a vertex is (see (2.2)) nv f = 6° 3£9+6

12 = 3,25. This average can also be
computed explicitely: nv f = 39

12 = 3,25.

edge. The number of triangles and edges adjacent to a vertex are called respectively
nv f and nve .

Proposition 2.3.1 Consider a triangulation T with n points and nh points on its con-
vex hull≠(T). We claim here that a point of T has in average nv f = 6° 3nh+6

n adjacent

triangles and nve = 6° 2nh+6
n adjacent edges.

Proof A triangle is adjacent to three vertices and a vertex is adjacent to nv f triangles.
This leads to

nv f n = 3n f = 3(2(n °1)°nh)

and we have the result

nv f = 6° 3nh +6
n

. (2.2)

Similarly, nve that is the number of edges adjacent to a vertex can be computed as

nve n = 2ne = 2(3(n °1)°nh)

which gives

nve = 6° 2nh +6
n

. (2.3)

2.3.3 Choice of a datastructure

Figure 2.9 illustrate equation (2.2). The average number of adjacencies per entity in
the triangulation is know in advance. Yet, as it is seen on Figure (2.9), this number

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 29

varies from one vertex to another. This number may also change locally: an edge flip
removes one triangle of the adjacency of the two vertices of the edge that is flipped
and adds one triangle tho the adjacency of the two vertices of the new edge (see
Figure (2.9)). The number of upward adjacencies of a given vertex may change which
implies that datastructures that would keep track of such adjacencies should be of
variable size.

When the size of data may vary, memory allocation has to be used, which im-
plies indirect memory access and extra data storage. Datastructures of fixed size are
always preferred. Yet, some kind of upward adjacencies should exist in the datas-
tructure in order to accesss neighborhood of a mesh entity withoud traversing the
whole triangulation.

There exist one type of upward adjacency that is of fixed size: there is either 1 or 2
adjacent triangle to an edge. Note that this hypothesis implies that the triangulation
is manifold i.e. each edge is shared by no more than 2 faces. This is a common as-
sumption for many algorithms and we will assume the triangulation to be manifold
for now.

At this point, we’d like to choose how we will represent our triangulation on a
computer. The problem of choosing a datastructure is crucial. A good datastructure
is has a low memory footprint but allows to compute local adjacencies in constant
time.

Technically, an adjacency is implemented as a pointer (the address of the adja-
cent entity). Moreover, if a given entity (point, edge or face) is explicitely represented
in a datastructure, it also requires one pointer (the address of the entity).

It is interresting to cout the total amount of pointers Np that are required in a
given mesh representation (i.e. for a given datastructure). In what follows, we as-
sume that n ¿ nh and n ¿ 1 which implies that ne ' 3n, n f ' 2n, nve ' 6, nv f ' 6
and ne f ' 2.

A naive choice could be to store all entities and all their adjacencies. This datas-
tructure is said to be full for obvious reasons. The number of pointers that is required
is

Np = n(1+nve +nv f)+ne (2+1+ne f)+n f (3+3+1) ' 42n.

The full datastructure is clearly overkill in term of memory. Moreover, using such
a datatrsucture in algorithms requires complicated updates which makes that ap-
proach totally ininterresting.

Another choice is the bidirectional datastructure [?]. In this datastructure, ver-
tices keep track of their adjacent edges, edges know about their adjacent vertices and
faces and face know about their edges. This datastructure is complete in the sense
that all entities are represented explicitely and that any adjacency information can
be recovered using local searches. The number of pointers that is required is

Np = n(1+nve)+ne (2+1+ne f)+n f (3+1) ' 30n.

This is again a very heavy datastructure that requires complex updates while used in
algorithms.

In many cases, the only information that is required in a representation is the list
of vertices of a triangle. This is the case in most of the finite element formulations or

30 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

⌥
struct Vertex {

double x , y , z ;
Vertex (double X , double Y , double Z) :

x (X) , y (Y) , z (Z) { }
} ;⌦⌃ ⇧

Listing 2.1: Vertex Datastructure

to draw the mesh. Here, the number of pointers that is required is

Np = n +n f (3+1) ' 9n.

This is clearly the minimum amount of information possible. No upward adjacenci
is available here so that it is impossible to devise efficient meshing algorithms with
such a datastructure.

Most popular data structures for storing adjacency information of polygonal meshes
are edge-based. Winged-edge [?] and half-edge [?] datastructures apply to manifold
meshes while Winged-edge and half-edge data structure uses edges to keep track
almost everything. In a winged-edge datastructure, each edge stores 8 pointers to
neighboring edges, faces and points. Faces and points store one pointer, so that the
number of pointers that is required is

Np = n(1+1)+ne (1+8)+n f (1+1) = 33n.

The advantage of such a datatrsucture is that it is easy to update when local opera-
tions are performed. Yet, it is quite heavy.

Those datastructures are suboptimal for algorithms like the Delaunay triangula-
tion. Representing edges explicitely is not mandatory here and edges are the entities
that are the most numerous in a triangulation. In this text, we use a datastructure
that is face-based: each triangle knowns about its 3 vertices and its 3 neighboring tri-
angles. Each vertex knows about its coordinates. That’s pretty much all. The number
of pointers that is required is

Np = n +n f (1+6) = 15n.

This datastructure is way lighter than edge-based ones. With 8 bytes pointers, the
memory footprint of a mesh with n = 106 is 120 Mb. Another advantage is that it can
be extended in 3D, which is not the case for edge-based datastructures.

Vertex datastructure

The vertex datastructure is quite simple: a vertex knows about its coordinates (see
Listings 2.1.

Edge datastructure

Even though we do not maintain edges of the triangulation in our algorithms, it is
sometimes necessary to build edges for a subset of triangles of the triangulation.

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 31

⌥
struct Edge {

Vertex *vmin , * vmax ;
Edge (Vertex *v1 , Vertex * v2)

vmin = std : : min (v1 , v2) ;
vmax = std : : max (v1 , v2) ;

}
bool operator < (const Edge &other) const {

i f (vmin < other . vmin) return true ;
i f (vmin > other . vmin) return f a l s e ;
i f (vmax < other . vmax) return true ;
return f a l s e ;

}
} ;⌦⌃ ⇧

Listing 2.2: Edge Datastructure

The edges that we consider are nort oriented: they are equal if they connect the
same two vertices. The datastructure shown in Listings 2.2 allows to construct an
edge with two vertices and to compare two edges (edges are compared comaring
their vertex pointers in a lexicographic manner).

Face datastructure

The triangles are maintained in the triangulation. Each triangle maintains its three
vertices and its three neighbors. We assume that neighbor F[k] is the triangle that is
on the other side of edge with vertices V[k] and V[(k+1)%3]. We also assume that
we have a function inCircle that predicts if vertex V is inside the circumcircle of
the Face and a function centroid that computes the centroid of the face. The Face
datastructure is shown in Listings 2.3.

2.3.4 Algorithms

A local mesh modification works as follows. A cavity of triangles is removed from the
mesh (see Figure 2.10). The cavity is remeshed and mesh datastructures are updated
in order to take into account the modification. More specifically, each new Face of
the remeshed cavity has to be connected to its neighboring faces. Those neighboring
faces may be new as well or may be neighboring triangles of the cavity.

Algorithm depicted in Listings 2.4 is the building block of all other algorithms
that are performing local mesh modifications: computeAdjacencies computes ad-
jacencies of a list of N triangles. It has a O (N log N) complexity (one search/insert on
a std::map per triangle). We use here some associative containers from the stan-
dard template library.

Another important building block in our implementation is the computation of
the Delaunay cavity. We assume here that one initial triangle t has been found that
has its circumcircle containing a given vertex. Algorithm in Listings 2.5 allows to

32 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

⌥
struct Face {

Face *F [3] ;
Vertex *V [3] ;
bool deleted ;
Face (Vertex *v0 , Vertex *v1 , Vertex * v2) {

V[0] = v0 ; V[1] = v1 ; V[2] = v2 ;
F [0] = F [1] = F [2] = NULL;
deleted = f a l s e ;

}
Edge getEdge (int k) {

return Edge (V[k] ,V [(k+1) %3]) ;
}
bool i n C i r c l e (Vertex * c) ;
Vertex centroid () ;

} ;⌦⌃ ⇧
Listing 2.3: Face Datastructure

Figure 2.10: A cavity (left figure in light pink) is removed from the meh. It is remeshed
(left figure in light pink). Adjacencies (double arrows) are updated (red double ar-
rows) for all new triangles (light pink) as well as for all neighboring triangles of the
cavity (dark pink).

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 33

⌥
void computeAdjacencies (std : : vector <Face*> &cavity) {

std : : map < Edge , std : : pair < int , Face * > >edgeToFace ;
for (int iFace=0 ; iFace < cavi ty . s i z e () ; iFace++) {

for (int iEdge=0 ; iEdge < 3 ; iEdge ++) {
Edge edge = cavity [iFace]°>getEdge (iEdge) ;
std : : map < Edge , std : : pair < int , Face * > > : : i t e r a t o r i t =

edgeToFace . find (edge) ;
i f (i t == edgeToFace . end ()) {

/ / edge has not y e t been touched , so c r e a t e an entry
edgeToFace . i n s e r t (std : : make_pair (edge ,

std : : make_pair (iEdge , cavi ty [iFace]))) ;
}
else {

/ / Connect the two neighboring t r i a n g l e s
cavity [iFace]°>F [iEdge] = i t °>second . second ;
i t °>second . second°>F [i t °>second . f i r s t] = cavi ty [iFace] ;

/ / Erase edge from the map
edgeToFace . erase (i t) ;

}
}

}
}⌦⌃ ⇧

Listing 2.4: An algorithm for connecting triangles in a cavity

compute the Delaunay cavity using a depth-first search technique. The theory en-
sures that the Delaunay cavity is simply connected: triangles that form the Delaunay
cavity are neighbors of t , neighbors of the neighbors of t and so on. The neighbor-
hood of t is searched recursively until a triangle is found that is valid i.e. that does
not violate the empty circumcircle property. Triangles that have been checked are
marked as deleted to avoid infinite loops. Two other outputs are computed that will
serve us in constructing the Delaunay ball and in computing adjacencies. The set
of edges that form the boundary of the cavity is also computed. The corresponding
valid triangles that are on the other side of the boundary of the Delaunay cavity are
also computed.

Computing the Delaunay cavity requires a seed triangle i.e. a triangle t of the
triangulation that is invalid. The last bit algorithm that is provided here allows to
perform a search in a mesh along a given direction and find the desired triangle.
Triangulations we are dealing with cover the convex hull ≠(S) of the set of points
S. So, if c is the centroid of a given triangle t and if p 2 S is a target point, line cp
is entirely inside the triangulation and it is possible to find a path of triangles that
connect t to the triangle t 0 that contains p. Algorithm in Listings 2.6 strats from a
given triangle and traverses the mesh until an invalid triangle is found. It assumes
that a robust orientation test O? function is available. Assume a triangulation with n f
triangles, the complexity of algorithm lineSearch is at most linear. Asymptotically,
it is not absurd to guess that only O (

p
nh) triangles will be touched by lineSearch

34 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

⌥
void delaunayCavity (Face * f , Vertex *v , std : : vector <Face*> &cavity ,

std : : vector <Edge> &bnd , std : : vector <Face*>
&otherSide) {

i f (f°>deleted) return ;
f°>deleted = true ; / / Mark the t r i a n g l e
cavity . push_back (f) ;
for (int iNeigh =0; iNeigh <3 ; iNeigh ++) {

i f (f°>F [iNeigh] == NULL) {
bnd . push_back (f°>getEdge (iNeigh)) ;

}
else i f (! f°>F [iNeigh]°> i n C i r c l e (v)) {

bnd . push_back (f°>getEdge (iNeigh)) ;
i f (! f°>F [iNeigh]°>deleted) {

otherSide . push_back (f°>F [iNeigh]) ;
f°>F [iNeigh]°>deleted = true ;

}
}
else delaunayCavity (f°>F [iNeigh] , v , cavity , bnd , otherSide) ;

}
}⌦⌃ ⇧

Listing 2.5: An algorithm for computing the Delaunay cavity

⌥
Face * lineSearch (Face * f , Vertex * v) {

while (1) {
i f (f == NULL) return NULL; / / we should NEVER return here
i f (f°>i n C i r c l e (v)) return f ;
Vertex c = f°>centroid () ;
for (int iNeigh =0; iNeigh <3 ; iNeigh ++) {

Edge e = f°>getEdge (iNeigh) ;
i f (orientationTest (&c , v , e . vmin) *

orientationTest (&c , v , e . vmax) < 0 &&
orientationTest (e . vmin , e . vmax, &c) *
orientationTest (e . vmin , e . vmax, v) < 0) {

f = f°>F [iNeigh] ;
break ;

}
}

}⌦⌃ ⇧
Listing 2.6: An algorithm that finds a invalid triangle

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 35

⌥
void delaunayTrgl (std : : vector <Vertex *> &S , std : : vector <Face*> &T) {

for (int iP=0 ; iP < S . s i z e () ; iP++) {
Face * f = lineSearch (T[0] , S [iP]) ;
std : : vector <Face*> cavi ty ;
std : : vector <Edge> bnd ;
std : : vector <Face*> otherSide ;
delaunayCavity (f , S [iP] , cavity , bnd , otherSide) ;
i f (bnd . s i z e () != cavi ty . s i z e () + 2) throw ;
for (int i =0; i < cavi ty . s i z e () ; i ++) {

/ / reuse memory s l o t s of invalid elements
cavity [i]°>deleted = f a l s e ;
cavi ty [i]°>F [0] = cavi ty [i]°>F [1] = cavi ty [i]°>F [2] = NULL;
cavi ty [i]°>V[0] = bnd[i] . V [0] ;
cavi ty [i]°>V[1] = bnd[i] . V [1] ;
cavi ty [i]°>V[2] = S [iP] ;

}
unsigned int cSize = cavi ty . s i z e () ;
for (int i =cSize ; i <cSize +2; i ++) {

Face *newf = new Face (bnd[i] . V[0] , bnd[i] . V[1] , S [iP]) ;
T . push_back [newf] ;
cavi ty . push_back (newf) ;

}
for (int i =0; i <otherSide . s i z e () ; i ++)

i f (otherSide [i]) cavi ty . push_back (otherSide [i]) ;
computeAdjacencies (cavi ty) ;

}
}⌦⌃ ⇧

Listing 2.7: An algorithm for computing the Delaunay triangulation

which reduce its complexity in practice.

Algorithm in Listings 2.7 is a C++ version of 1. It has clearly a worst complexity
of O (n2) but could possibly behave better i.e. like O (n3/2). It starts with an initial tri-
angulation made of some super triangles that cover the convex hull of S and inserts
the points incrementally.

The code that is provided here is actually working as is. We have used it to com-
pue Delaunay triangulations of random points. The following table presents results
of the algorithm for a set of n random points in the plane that have been inserted in
a random order.

In Table 2.1, Nsear ch is the average number of serarches that have been per-
formed in lineSearch and Ncavi t y is the average size of the Delaunay cavity. Even
though this implementation may not be optimal, it shows the basic features of the
algorithm. First, the average cavity size is asymptotically optimal: a cavity of size 4
produce 6 new triangles adjacent to a vertex which is what the theory predicts. Then
the number of walks that the lineSearch algorithm increases approximatively like
the square root of n: 56.8£

p
10 = 179.6 which is close to 161. The complexity of the

36 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

n 103 104 105 106

Nsear ch 19.8 56.8 161 503
Ncavi t y 3.85 3.97 3.99 3.99
t (sec) 0.012 0.198 4.85 172

Table 2.1: Results of the delaunayTrgl algorithm applied to random points.

algorithm written as is is close to O (n3/2). For large meshes, the O? predicate takes
about 50% of the CPU time so that the most significant part if the time is spend in
searching for an initial triangle.

The bottleneck of the Delaunay triangulation as it is written in delaunayTrgl

is the increasing effort that has to be done at each point insertion to find a triangle
seed for building the Delaunay cavity.

Assume now that we are able to sort the set of points S in such a way that two suc-
cessive points in the list would be close to each other. In Algorithm delaunayTrgl,
we take as initial guess the first triangle of the list and search into the domain. We
could chage that by choosing one of the triangles of the cavity that is associated to
the vertex that was inserted previously in the list.

2.3.5 Hilbert Curves

A curve x(t) is defined as the mapping

x(t), [0,1] ! x 2R3.

Curves are perceived as one dimensional objects. Yet, it can be shown that a contin-
uous curve can pass through every point of a unit square. The Hilbert space filling
H (t) curve is a one dimensional curve which visits every point within a two dimen-
sional space. It may be thought of as the limit

H (t) = lim
k!1

Hk (t)

of a sequence of curves Hk . Curves H1 and H2 are depicted on Figure 2.11. There
are lots of references that show how to actually draw Hilbert curves: this is a distrac-
tion from the essential property of the curve, and its importance to mesh generation.

Hilbert curves provide an ordering for points on a plane. Forget about how to
connect adjacent sub-curves, and instead focus on how we can recursively enumer-
ate the quadrants.

A local frame is associated to each quadrant: it consist in its center x0 two or-
thogonal vectors b and r (see Figure 2.11). At the root level, enumerating the points
is simple: proceed around the four quadrants, numbering them

(0) = x0 °
b + r

2
(1) = x0 +

b ° r
2

(2) = x0 +
b + r

2
(3) = x0 °

b ° r
2

.

We want to determine the order we visit the sub-quadrants while maintaining the
overall adjacency property. Examination reveals that each of the sub-quadrants

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 37

(3)

b

r

x0

(1)

(0)

(2)

(0,3)

(0,0) (0,1)

(0,2)

Figure 2.11: Curves H1 and H2.

curves is a simple transformation of the original pattern. Figure 2.11 illustrate the
first level of that recursion.

Quadrant (0) is itself divided into four quadrants (0,0), (0,1), (0,2) and (0,3). Its
center is simply set to (0) and two vectors b and r are changed as

b √ r /2 and r √ b/2.

For quadrant (0,1) and (0,2) we have

b √ b/2 and r √ r /2.

and finally for quadrant (0,3):

b √°r /2 and r √°b/2.

creates 4 sub quadrants. If we consider a maximal recursion depth of d , each of the
final subquadrants will be assigned to a set of d “coordinates” i.e. (k0,k1, . . . ,kd), k j
being 0,1,2 or 3.

Algorithm in Listings 2.8 compute the Hilbert coordinates of a given point x, y ,
starting from an initial quadrant define by its center x0, y0 and two orthogonal di-
rections. Each point x ofR2 has its coordinates on the Hilbert curve. Sorting a point
set with respect to Hilbert coordinates allow to ensure that two successive points of
the set are close to each other. In the context of the Bowyer-Watson algorithm, this
kind of data locality could potentially decrease the number of local searches Nsear ch
that were required to find the next invalid triangle.

Algorithm 2.8 was used to sort sets of 1000 and 10000 points. The results are
presented on Figure 2.12. On the Figure, two successive points in the sorted list are
linked with a line.

The main cost of sorting points is on the sorting algorithm itself and not on the
computation of the Hilbert curve coordinates: sorting over a million points takes

38 CHAPTER 2. CONSTRUCTION OF 2D DELAUNAY TRIANGULATIONS

⌥
void HilbertCoord (double x , double y , double x0 , double y0 ,

double xRed , double yRed , double xBlue , double yBlue ,
int d , int b i t s []) {

for (int i = 0 ; i <d ; i ++) {
double coordRed = (x°x0) * xRed + (y°y0) * yRed ;
double coordBlue = (x°x0) * xBlue + (y°y0) * yBlue ;
xRed/=2; yRed/=2; xBlue /=2; yBlue /=2;
i f (coordRed <= 0 && coordBlue <= 0) { / / quadrant 0

x0 °= (xBlue+xRed) ; y0 °= (yBlue+yRed) ;
swap (xRed , xBlue) ; swap (yRed , yBlue) ;
b i t s [i] = 0 ;

}
else i f (coordRed <= 0 && coordBlue >= 0) { / / quadrant 1

x0 += (xBlue°xRed) ; y0 += (yBlue°yRed) ;
b i t s [i] = 1 ;

}
else i f (coordRed >= 0 && coordBlue >= 0) { / / quadrant 2

x0 += (xBlue+xRed) ; y0 += (yBlue+yRed) ;
b i t s [i] = 2 ;

}
else i f (coordRed >= 0 && coordBlue <= 0) { / / quadrant 3

x0 += (°xBlue+xRed) ; y0 += (°yBlue+yRed) ;
swap (xRed , xBlue) ; swap (yRed , yBlue) ;
xBlue = °xBlue ; yBlue = °yBlue ;
xRed = °xRed ; yRed = °yRed ;
b i t s [i] = 3 ;

}
}

}⌦⌃ ⇧
Listing 2.8: An algorithm for computing Hilbert coordinates

2.3. A ROBUST IMPLEMENTATION IN O (N LOG N) COMPLEXITY 39

n 103 104 105 106

Nsear ch 2.34 2.46 2.50 2.50
Ncavi t y 4.06 4.13 4.16 4.17
t (sec) 0.0097 0.090 0.92 9.2

Table 2.2: Results of the delaunayTrgl algorithm applied to random points. Points
were initially sorted through using a Hilbert sort.

less than a second on a standard laptop. Table 2.2 present timings and statistics for
the same point sets as in table 2.1, but while having sorted the points S using the
Hilbert curve. The number of serarches is not increasing anymore with the size of
the set. This is important: the complexity of the Delaunay triangulation algorithm
now is linear in time. Of course, sorting points has a n logn complexity so that the
overall process is in n logn as well. Yet, the relative cost of sorting the points is neg-
ligible with respect to the cost of the triangulation itself.

Figure 2.12: Hilbert sort of sets of 1000 and 10000 random points.

Explain brio : The trick is to organize the point set in random buckets of increas-
ing sizes, Hilbert sort being used only inside a bucket. I observe that this is useless in
my implementation that do not really care a lot of memory allocation optimization
strategies.

2.3.6 Edge flip

TODO: rite the edge flip algorithm and write the algorithm that recovers the Delau-
nay triangulation DT(S) starting from DT(S0 [S).

