CHAPTER 1

Delaunay triangulations in the plane

1.1 The Voronoi Diagram

Definition: Consider a finite set $S=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$ of n distinct points in the plane. The Voronoi cell V_{i} of $p_{i} \in S$ is the set of points x that are closer to p_{i} than to any other points of the set:

$$
V_{i}=\left\{x \in \mathbb{R}^{2} \mid\left\|x-p_{i}\right\|<\left\|x-p_{j}\right\|, \forall 1 \leq i \leq n, i \neq j\right\}
$$

where $\|x-y\|$ is the euclidian distance between x and y.

Figure 1.1: Points p_{i} and p_{j}, their perpendicular bissector (in dashed lines) and halfplane $H_{i j}$.

Consider first the case where $S=\left\{p_{i}, p_{j}\right\}$. The perpendicular bisector of the line segment $p_{i} p_{j}$ is a line perpendicular to $p_{i} p_{j}$ and passing through its midpoint. The
perpendicular bissector of $p_{i} p_{j}$ divides \mathbb{R}^{2} into two halfplanes $H_{i j}$ and $H_{j i}$:

$$
H_{i j}=\left\{x \in \mathbb{R}^{2} \mid\left\|x-p_{i}\right\|<\left\|x-p_{j}\right\|\right\} .
$$

Here, we have clearly $V_{i}=H_{i j}$. The perpendicular bissector of line segment $p_{i} p_{j}$ is the intersection of the closures of the two half planes: $\overline{H_{i j}} \cap \overline{H_{j i}}$.

Let's make the problem a little more complicated and consider a set $S=\left\{p_{i}, p_{j}, p_{k}\right\}$ of 3 points. The Voronoi cell associated to p_{i} is the intersection of half planes $H_{i j}$ and $H_{i k}: V_{i}=H_{i j} \cap H_{i k}$ (see Figure 1.2).

Figure 1.2: Points p_{i}, p_{j} and p_{k} and their perpendicular bissectors.
In the general case, the Voronoi cell relative to p_{i} is the intersection of all half planes:

$$
\begin{equation*}
V_{i}=\bigcap_{1 \leq j \leq n, j \neq i} H_{i j} . \tag{1.1}
\end{equation*}
$$

By definition (1.1), each Voronoi cell V_{i} is the intersection of open half planes containing vertex p_{i}. The intersection of two convex polygon being itself a convex polygon, V_{i} is therefore a convex polygon.

Definition: The Voronoi diagram $V(S)$ is the unique subdivision of the plane into n cells is the union of all Voronoi cells V_{p} :

$$
\begin{equation*}
V=\bigcup_{1 \leq i \leq n} V_{i} . \tag{1.2}
\end{equation*}
$$

Each point $x \in \mathbb{R}^{2}$ having at least one closest point in S, the Voronoi diagram covers the entire plane. Different Voronoi regions are disjoint. Therefore, the Voronoi diagram is unique.

Figure 1.3: Voronoi Diagram. Voronoi cell V_{i} is closed because it correspond to point p_{i} that is not on $\Omega(S)$. Voronoi cell V_{l} is open because $p_{l} \in \Omega(S)$.

Definition: The convex hull $\Omega(S)$ of a finite point set S is the smallest convex polygon that contains S.

Voronoi cells are either closed or open. They can only be open for points (like p_{l} in see Figure 1.3) that are located on the convex hull $\Omega(S)$ of the point set.

1.2 Triangulations

Definition: A triangulation $T(S)$ of S is a set of non overlapping triangles that exactly covers the convex hull $\Omega(S)$ with all points of S being among the vertices of the triangulation.

Different triangulations of the same point set S may exist (e.g. Figure 1.4), but we are going to show that they all have the same number of edges and of triangles.

Figure 1.4: Two triangulations of the same point set, both containing $n_{f}=13$ triangles defined by a total of $n=12$ points with $n_{h}=9$ points that lie on $\Omega(S)$.

Figure 1.5: Commemorative stamp with Euler and its formula.

Property 1.2.1 Every triangulation $T(S)$ contains exacltly $n_{f}=2(n-1)-n_{h}$ triangles and $n_{e}=3(n-1)-n_{h}$ edges.

Proof The proof uses a very well know result of Euler that he proved in 1758. Here is what Euler had to say: Consider any polyhedron and let n be the number of its vertices, n_{f} the number of its faces, and n_{e} be the number of its edges. Then

$$
\begin{equation*}
n+n_{f}-n_{e}=2 \tag{1.3}
\end{equation*}
$$

A commemorative stamp put out by the Swiss Post shows Euler together with that very famous formula (Figure 1.5). David Eppstein gives 20 different proofs of Euler's formula in [?]. Here is one that is quick and elegant. The skeleton of any convex polyhedron is a planar graph. This is geometrically easy to see: in order tu build such a planar graph, dispose the polyhedron on one on a plane and dig a hole on one of its face (an upper face). Then, enlarge this hole in order to unfold the polyhedron up to the point it is completely flattened. The upper face then becomes "infinite" and can be seen as the outer face of the graph. Figure 1.6 shows an example of such a flattening procedure: a cube is shown with its corresponding skelton that is actually

Figure 1.6: A cube (left) and its corresponding skelton Γ (right, plain lines) and the dual Γ^{\prime} of Γ (right, dashed lines). Edges in bold correspond to a spanning tree T of Γ and edges in bold and dashed correspond to a spanning tree of Γ^{\prime}.
a planar graph Γ. Let Γ^{\prime} be the dual of Γ i.e. a graph with its 6 nodes that correspond to the faces of the cubes and its 12 edges that correspond to the edges of the cube. Edges of both graphs have a one-to-one correspondance.

Let T be a spanning tree of Γ i.e. a subgraph $T \subset \Gamma$ that includes all of the vertices of Γ and that is a tree i.e. that contains no cycles. T does not contain any cycles, so it does not disconnect the plane. The co-tree T^{*} of T is the set of edges of the graph that are not in T. Consider now the set of edges $T^{\prime} \subset \Gamma^{\prime}$ that correspond to T^{*}. Set T^{\prime} contains no cycles: if one cycle exists in T^{\prime}, then the corresponding edges of Γ would create some isolated vertices in T, which is impossible because T is a spanning tree and it contains all vertices of $\Gamma . T^{\prime}$ contains all vertices (the faces of the polyhedron) of Γ^{\prime} because T does not contain any cycles. Then, T^{\prime} is a spanning tree of Γ^{\prime}.

The number of edges on a spanning tree can be computed in a general fashion. Let's construct a spanning tree in the following way: start with one random edge e of Γ and add it to T. This first edge e connects 2 vertices that are inserted in a stack. While this stack is not empty, we take the vertex v at the top of the stack and look for all edges $e_{i}\left(\nu, v_{i}\right)$ that are incident to v. We add e_{i} to T if neither v or v_{i} is not yet in T. So, each edge of T correspond to one vertex of Γ, except the first one that correspond to two. Then, a spanning tree has exactly $n-1$ vertices.

So T has n vertices and $k \equiv n-1$ edges. Similarly, T^{\prime} has n_{f} vertices and $k^{\prime} \equiv$ $n_{f}-1$ edges. Since $k+k^{\prime}=n_{e}$, we have $n-1+n_{f}-1=n_{e}$ and formula 1.3 follows.

Euler's formula applies to polyhedron i.e. meshes that are topologically equivalent to a sphere. Euler generalized its formula to general orientable manifolds as

$$
\begin{equation*}
n-n_{e}+n_{f}=\chi \tag{1.4}
\end{equation*}
$$

Here, χ is the Euler characteristic is a topological invariant: it is a number that de-

Sphere ($\chi=2$)
$n=4, n_{e}=6, n_{f}=4$

Sphere ($\chi=2$)
$n=8, n_{e}=12, n_{f}=6$

Torus ($\chi=0$)

Disk $(\chi=1)$
$=3, n_{e}=3, n_{f}=1$

Figure 1.7: Computation of Euler's characteristic χ for different manifold meshes.
scribes the topological structure of the domain. For a sphere, we have obviously $\chi=2$. In this section, we are essentially concerned by domains that are topologically equivalent to a disk i.e. when $\chi=1$. Figure 1.7 shows manifold meshes of different objects together with their Euler characteristic.

Now let's specialize Euler's formula to triangulations. In the case of a triangulation of a closed manifold (a sphere or a torus), every edge is is connected to 2 triangles and each triangle has 3 incident edges. We have then

$$
2 n_{e}=3 n_{f}
$$

This last result combined with Eulers's formula gives, for a closed manifold

$$
n_{f}=2(n-\chi) \text { and } n_{e}=3(n-\chi)
$$

For planar triangulations, we consider domains that are topologically equivalent to the a disk i.e. where $\chi=1$. Those domains have one boundary and every edge of the boundary of the domain of is connected to one single triangle. Assume that n_{h} is the number of edges (or of points) of the boundary. In this case, $n_{e}-n_{h}$ edges are internal with two adjacent triangles and n_{h} edges and have only one adjacent triangle. Every triangle being always incident to 3 edges, we get the following result

$$
\begin{equation*}
3 n_{f}=2\left(n_{e}-n_{h}\right)+n_{h} . \tag{1.5}
\end{equation*}
$$

Combining Euler's formula (1.4) with (1.5) gives the result $n_{f}=2(n-1)-n_{h}$ and $n_{e}=3(n-1)-n_{h}$.

1.3 The Delaunay triangulation

The Delaunay triangulation $\mathrm{DT}(S)$ is the geometric dual of the Voroinoi diagram (see Figure 1.8). The Voronoi diagram V is made of n Voronoi cells V_{i} that correspond to the points $p_{i}, 1 \leq i \leq n$ of S. The line segments that form the boundaries of Voronoi cells and are the Voronoi edges. Voronoi edges are orthogonal bissectors of neighboring points in the diagram. The endpoints of the Voronoi edges are called Voronoi vertices $v_{I}, 1 \leq I \leq N, N$ being the number of Voronoi vertices. Voronoi vertices v_{I} are those points that are equidistant to three or more vertices.

Definition: Points of S are said to be in general position if there exist no quadruplet of points of S that are co-circular.

When the points of S are in general position, Voronoi vertices are triple points i.e. they are equidistant of three points of S. Consider a Voronoi Vertex v_{I} that is equidistant to points p_{i}, p_{j} and $p_{k} \in S$ (see Figure 1.3). Voronoi point $v_{I}=H_{i j} \cap H_{j k} \cap H_{k i}$ is the circumcenter of a triangle $\Delta_{I}=p_{i} p_{j} p_{k}$.

Definition: The Delaunay triangulation $\mathrm{DT}(S)$ is the triangulation of S that consist in the union of the N triangles $\Delta_{I}, 1 \leq I \leq N$ that correspond to the triple points of the Voronoi diagram (see Figure 1.8).

Figure 1.8: Voronoi Diagram (in dashed lines) and Delaunay triangulation. White points are points of S and blue points are Voronoi vertices that are the circumcenters of the triangles.

We should now show that the set of triangles in question is a triangulation in the sense of Definition 1.2. If this is the case, then Property 1.2.1 applies and $N=2$ ($n-$ 1) $-n_{h}$. The fact that DT is a triangulation will be the consequense of the following properties of the Delaunay triangles. The fact that DT is a triangulation will be the consequence of the two following properties.

Figure 1.9: Illustration of why the empty circle property is true.

1.3.1 The empty circumcircle property

We will first demonstrate the following remarkable result that is called the empty circumcircle property.

Property 1.3.1 The empty circumcircle of any triangle in the Delaunay triangulation is empty i.e. it contains no point of S.

Proof Consider the Delaunay triangle $\Delta_{I}=p_{i} p_{j} p_{k}$ (see Figure 1.9). Assume now that point $p_{l} \in C_{I}$ where C_{I} is the circumcircle of Δ_{I}. By definition, the triple point v_{I} is at equal distance to p_{i}, p_{j} and p_{k} and no other points of S are closer to v_{I} than those three points. Then, if a point like p_{l} exist in S, v_{I} is not a triple point and triangle Δ_{I} cannot be a Delaunay triangle.

1.3.2 Delaunay Edges

It is useful at that point to look at some geometrical properties of circle bundles that share two points p_{i} and p_{j}. The centers of such circles lie on the perpendicular bissectors of line segment $p_{i} p_{j}$ (see Figure 1.10). Edge $p_{i} p_{j}$ divides disk C_{1} into two disk sectors and one of the two sectors completely lies inside C_{2}. On the Figure, the pink sector of C_{1} is inside C_{2} and the yellow sector of C_{2} lies inside C_{1}.

Definition: An edge $p_{i} p_{j}$ of a triangulation is a Delaunay edge if there exist a circle that contains p_{i} and p_{j} and that is empty i.e. that contain no point of S.

Property 1.3.2 A mesh is a Delaunay Triangulation if and only if all its edges are Delaunay edges.

Proof Let us first show that a Delaunay triangulation has only Delaunay edges. Assume a Delaunay triangulation $T(S)$ and an edge $p_{i} p_{j}$ that is not Delaunay. This means that there exist no circle passing through p_{i} and p_{j} that is empty. Consider

Figure 1.10: Two circles C_{1} and C_{2} sharing an edge $p_{i} p_{j}$. The centers of the circles c_{1} and c_{2} lie on the perpendicular bissector of segment $p_{i} p_{j}$ (in dashed lines).

Delaunay triangle $\Delta_{I}=p_{i} p_{j} p_{k}$ that contains edge $p_{i} p_{j}$. Its circumcircle is empty by definition because T is a Delaunay triangulation. This is in contradiction with the hypothesis that there exist no circle passing through p_{i} and p_{j} and that is not empty.

Now let's proof that if every edge of a triangulation is Delaunay, then every triangle is Delaunay as well. Assume that triangle $\Delta_{I}=p_{i} p_{j} p_{k}$ is not Delaunay, but all its 3 edges $p_{i} p_{j}, p_{i} p_{k}$ and $p_{j} p_{k}$ are Delaunay. Figure 1.11 shows a configuration whith a non Delaunay triangle $\Delta_{I}=p_{i} p_{j} p_{k}$ which circumcircle contains p_{l}. Because we deal with triangulations as defined in Definition 1.2, p_{l} cannot be inside triangle Δ_{I}. It is then situated inside one of the three circular sectors delimited by p_{i}, p_{j} and p_{k}. Assume that p_{l} and p_{j} are on opposite sides of $p_{i} p_{k}$ like in Figure 1.11. By hypothesis, there exist a circle passing through p_{i} and p_{k} and that is empty. The center of such a circle lies on the orthogonal bissector of $p_{i} p_{k}$. Any circle like C_{1} with its center c_{1} that is below c_{I} contains p_{j} any circle C_{2} that is above c_{I} contains p_{l}, which is in contradiction with the hypothesis that there exist a circle passing through $p_{i} p_{k}$ and that is empty.

1.3.3 Local Delaunayhood

Definition: Given a triangulation $T(S)$ and an edge $p_{i} p_{j}$ in the triangulation that is adjacent to two triangles $\Delta_{I}=p_{i} p_{j} p_{k}$ and $\Delta_{J}=p_{i} p_{l} p_{j}$. We call edge $p_{i} p_{j}$ locally Delaunay if p_{l} lies on or outside the circumcircle of Δ_{I}.

Figure 1.12 gives an illustration of an edge $p_{i} p_{j}$ that is not locally Delaunay: point p_{l} lies inside circle C_{I}. It is easy to see that this condition is symmetric: if point p_{l} lies inside circle C_{I}, then point p_{k} lies inside circle C_{J}. We'll prove that below.

Figure 1.11: Two circles C_{1} and C_{2} sharing an edge $p_{i} p_{j}$. The centers of the circles c_{1} and c_{2} lie on the perpendicular bissector of segment $p_{i} p_{j}$.

1.3.4 Edge Flip

Consider again the situation of two triangles adjacent to edge $p_{i} p_{j}$ as depicted in Figure 1.12. Flipping edge $p_{i} p_{j}$ consist in replacing triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{i} p_{l}$ by triangles $p_{l} p_{k} p_{i}$ and $p_{k} p_{l} p_{j}$. Edge $p_{i} p_{j}$ has been flipped and replaced by edge $p_{k} p_{l}$.

The edge flip operator can only be applied to a pair of triangles that form a convex quadrilateral. If it is concave, then flipping the edge leads to an invalid configuration with two overlapping triangles (see Figure 1.13).

Property 1.3.3 An edge that is not locally Delaunay is flippable and the new edge resulting of the flip operation is locally Delaunay.

Proof Let us first shwow that any edge that is not locally Delaunay is flippable. Consider Figure 1.12. Edge $p_{i} p_{j}$ is not locally Delaunay because $p_{k} \in C_{J}$ and $p_{l} \in C_{I}$. A simple way of checking wether edges $p_{i} p_{j}$ and $p_{k} p_{l}$ can be flipped is to verify that they actually intersect. Consider triangle $p_{j} p_{k} p_{i}$ on Figure 1.12. The fact that p_{l} is on the opposite side of $p_{i} p_{j}$ than p_{k} and that it lies inside C_{I} ensures that $p_{k} p_{l}$ in-

Figure 1.12: An edge $p_{i} p_{j}$ that is not locally Delaunay.

Figure 1.13: Invalid edge flip configurations.
tersects $p_{i} p_{j}$ which proves that edge $p_{i} p_{j}$ is flippable if $p_{i} p_{j}$ is not locally Delaunay. Move now to Figure 1.14. and prove that, if $p_{i} p_{j}$ is not locally Delaunay, then $p_{k} p_{l}$ is locally Delaunay. In other words, we'd like to prove that, provided that p_{l} is inside C, then p_{i} is outside C^{\prime}.

Circles C and C^{\prime} share edge $p_{k} p_{j}$ and points p_{i} and p_{l} are on the same sides of edge $p_{k} p_{j}$. Edge $p_{i} p_{j}$ is not Delaunay by hypothesis. Then point p_{l} is inside C, as well as the whole arc $\widehat{p_{k} p_{l} p_{j}}$ (in dashed line on Figure 1.14) of C^{\prime}. Point p_{i} belongs to C and is on the same side of $p_{k} p_{j}$ as p_{l}, it is then outside C^{\prime} and edge $p_{k} p_{l}$ is locally delaunay.

Figure 1.14: If $p_{i} p_{j}$ is not locally Delaunay, then $p_{k} p_{l}$ is locally Delaunay.

1.3.5 Locally Delaunay vs. Globally Delaunay

Property 1.3.4 If all edges of triangulation $T(S)$ are locally Delaunay, then T is the Delaunay triangulation $D T(S)$.

The fact that a specific edge is locally Delaunay does not imply that both its two adjacent triangles are Delaunay triangles. Yet, if all edges are locally Delaunay, then the resulting triangulation is Delaunay.

Proof We prove property 1.3.4 by contradiction. Assume all edges of a triangulation to be locally Delaunay. Assume that triangle $\Delta_{I}=p_{i} p_{j} p_{k}$ has its circumcircle C_{I} that contains point $p_{l} \in S$. The situation is summarized on Figure 1.15. Assume that point p_{l} and p_{i} are on opposite sides of $p_{j} p_{k}$. Edge $p_{j} p_{k}$ is locally Delaunay but triangle $p_{i} p_{j} p_{k}$ is not Delaunay because its circumcircle is not empty (it actually contains point p_{l}). Consider triangle $p_{k} p_{j} p_{m}$. Points p_{i} and p_{m} are on opposite sides of $p_{j} p_{k}$ and and p_{m} is outside C_{I}. This implies that C_{J} contains p_{l} as well. We can continue that and show that C_{K} and C_{L} both contain p_{l} as well. Yet, edge $p_{0} p_{n}$ is supposed to be locally Delaunay which means that p_{l} should be outside C_{L}. This is indeed a contradiction.

1.3.6 The Flip Algorithm

Result 1.3.4 is of high importance. Combined with the flip algorithm, we can forsee a simple algorithm that would start with any triangulation $T(S)$ and would produce the Delaunay triangulation $\mathrm{DT}(S)$ using edge successive flips. The algorithm could be summarized as follows

- Insert all the internal edges of $T(S)$ in a stack.
- Do while the stack is not empty

Figure 1.15: An edge $p_{i} p_{j}$ that is locally Delaunay (point p_{m} is outside C_{I}) but with triangle $p_{i} p_{j} p_{k}$ that is not Delaunay.

- Take edge $p_{i} p_{j}$ at the top of the stack. This edge is adjacent to triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{i} p_{l}$. If $p_{i} p_{j}$ is not locally Delaunay, then flip it and add edges $p_{i} p_{k}, p_{k} p_{j}, p_{j} p_{l}$ and $p_{l} p_{i}$ in the stack. If one of those edges was already present in the stack, update its neighbors.
- Remove $p_{i} p_{j}$ from the stack.

Two questions should be asked at that point: (i) does this algorithm produce the Delaunay triangulation of S and (ii) if it achieves to create $\mathrm{DT}(S)$, what is its complexity?
Proposition 1.3.1 The edge flip algorithm converges to $D T(S)$ in at most $\mathcal{O}\left(n^{2}\right)$ flips.

Proof Consider an edge $p_{i} p_{j}$ that is not Delaunay (Figure 1.16) with its two adjacent triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{i} p_{l}$ and their respective circumcircles C_{I} and C_{J}, with $p_{l} \in C_{J}^{\prime}$ and $p_{k} \in C_{I}^{\prime}$. Edge flip will produce triangles $p_{j} p_{k} p_{l}$ and $p_{i} p_{l} p_{k}$ and their respective circumcircles C_{I}^{\prime} and C_{J}^{\prime}. Edge $p_{k} p_{l}$ is locally Delaunay i.e. $p_{i} \notin C_{I}^{\prime}$ and $p_{j} \notin C_{J}^{\prime}$.

Consider now the set of all possible point-triangle relations in a mesh T and a function $F(T)$ that counts how many of those relations violate the Delaunay empty circle property. There is at most $\mathscr{O}\left(n^{2}\right)$ point-triangle pairs in a mesh (see property 1.2.1). So, F 's magnitude is not bigger than $\mathscr{O}\left(n^{2}\right)$. Assume now that edge $p_{i} p_{j}$ is

Figure 1.16: Edge flip: $C_{I} \cup C_{J} \subset C_{I}^{\prime} \cup C_{J}^{\prime}$.
flipped, leading to a new triangulation T^{\prime}. Flipping an edge always leads to $F\left(T^{\prime}\right)<$ $F(T)$. Figure 1.16 shows visually that

$$
C_{I} \cup C_{J} \subset C_{I}^{\prime} \cup C_{J}^{\prime},
$$

the colored zone in the Figure representing

$$
R=\left(C_{I} \cup C_{J}\right) \backslash\left(C_{I}^{\prime} \cup C_{J}^{\prime}\right)
$$

If some points of S were inside circumcenters of triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{i} p_{l}$ in T, then edge flip will not increase that number because those points will not be anymore invalid. If R contains no points of S, then $F\left(T^{\prime}\right)=F(T)-2$ because the two point-triangle relations associated to points p_{l} and p_{k} and triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{i} p_{l}$ disappear from F. In conclusion, we have

$$
F\left(T^{\prime}\right) \leq F(T)+2
$$

Figure 1.17: Building an angle-optimal triangulation using swaps.
which means that F decreases at each edge flip.
F is bounded by above by $\mathscr{O}\left(n^{2}\right)$. It is also bounded by below: only the Delaunay triangulation has empty circumcircles, $F(\mathrm{DT})=0$. The edge flip algorithm converges to the Delaunay triangulation and its complexity is $\mathcal{O}\left(n^{2}\right)$ in the worst case.

This result is outmost importance. It means that every triangulation $T(S)$ is connected to the Delaunay triangulation $\mathrm{DT}(S)$ by at most $\mathscr{O}\left(n^{2}\right)$ flips. It also means that any two triangulations T and T^{\prime} are flip connected. Both T and T^{\prime} being connected to DT , it is therefore possible to go from T to DT using flips and then from DT to T^{\prime} using "back flipping". The flip-connectness of 2D triangulations allows to generate meshes of arbitrary domains with low complexity. This will be developped in further chapters. Figure 1.17 illustrate the edge flip procedure.

1.3.7 The MaxMin property

Let us first recall a very old geometry theorem from Thales.
Proposition 1.3.2 Let C_{A} and C_{B} be two circumcircles of edge $p_{i} p_{j}$ (see Figure 1.18). Let b_{1} and b_{2} be two points on C_{B} on the same side of $p_{i} p_{j}$. Then, b_{1} and b_{2} see the edge $p_{i} p_{j}$ with the same angle β. Consider now point a on the same side of $p_{i} p_{j}$ as b_{1} and b_{2} but on circle C_{A}. Assume that b_{1}, b_{2} are inside C_{A}. Then, $\alpha<\beta$.

Consider a triangulation $T(S)$ with n_{f} triangles. This triangulation has $3 n_{f}$ internal angles (3 angles per triangle). Consider the vector of angles $A(T)=\left(\alpha_{1}, \ldots, \alpha_{3 n_{f}}\right)$ sorted by increasing values. We can define such a vector for any triangulation. Each triangulation $T(S)$ has the same number of triangles so each vector $A(T)$ has the same length and it is therefore possible to compare them, e.g. lexicographically. We say that one given triangulation T is angle-optimal if $A(T) \leq A\left(T^{\prime}\right), \forall T^{\prime}$.

Property 1.3.5 The Delaunay triangulation $D T(S)$ is angle-optimal: it maximizes the minimum angle among all possible triangulations.

Figure 1.18: Thales theorem (left) and MaxMin property illustrated (right)

Proof Consider two triangulations T and T^{\prime}, where T^{\prime} differs from T by one edge flip. Let us proove that $A\left(T^{\prime}\right) \leq A(T)$. The edge flip procedure consist in replacing triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{l} p_{k}$ by triangles $p_{k} p_{l} p_{i}$ (see Figure 1.18). The angles of the old configuration are respectively

$$
\kappa_{1}+\kappa_{2}, \gamma_{2}, \iota_{1}, \iota_{2}, \gamma_{1} \text { and } \lambda_{1}+\lambda_{2}
$$

The angles of the old configuration are respectively

$$
\iota_{1}+\iota_{2}, \kappa_{1}, \lambda_{1}, \kappa_{2}, \lambda_{2} \text { and } \gamma_{1}+\gamma_{2} .
$$

Our aim is to bound by above all angles of the old configuration. Two of the 6 relations are obvious: $\gamma_{1}, \gamma_{2}<\gamma_{1}+\gamma_{2}$ and $\iota_{1}, \iota_{1}<\iota_{1}+\iota_{2}$. We use Thales Theorem 1.3.2 for the last four ones. Thales Theorem applied respectively to segments $p_{i} p_{l}$ (blue and yellow circles), $p_{j} p_{k}$ (red and green circles), $p_{i} p_{k}$ (blue and red circles) and $p_{l} p_{j}$ (yellow and green circles) gives

$$
\gamma_{1}<\kappa_{1}, \iota_{1}<\lambda_{2}, \gamma_{2}<\lambda_{1} \text { and } \gamma_{1}<\kappa_{1}
$$

which are the four relations that were needed. Successive edge flips lead to the Delaunay triangulation and each flip does not increase the minimum angle. The Delaunay triangulation is therefore angle-optimal.

