
CHAPTER 1
Delaunay triangulations in the plane

1.1 The Voronoi Diagram

Definition: Consider a finite set S = {p1, . . . , pn} µ R2 of n distinct points in the
plane. The Voronoi cell Vi of pi 2 S is the set of points x that are closer to pi than to
any other points of the set:

Vi =
©

x 2R2 |
∞∞x °pi

∞∞<
∞∞x °p j

∞∞ , 81 ∑ i ∑ n, i 6= j
™

where
∞∞x ° y

∞∞ is the euclidian distance between x and y .

Hi j

p j
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Figure 1.1: Points pi and p j , their perpendicular bissector (in dashed lines) and half-
plane Hi j .

Consider first the case where S = {pi , p j }. The perpendicular bisector of the line
segment pi p j is a line perpendicular to pi p j and passing through its midpoint. The
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perpendicular bissector of pi p j dividesR2 into two halfplanes Hi j and H j i :

Hi j =
©

x 2R2 |
∞∞x °pi

∞∞<
∞∞x °p j

∞∞™
.

Here, we have clearly Vi = Hi j . The perpendicular bissector of line segment pi p j is
the intersection of the closures of the two half planes: Hi j \H j i .

Let’s make the problem a little more complicated and consider a set S = {pi , p j , pk }
of 3 points. The Voronoi cell associated to pi is the intersection of half planes Hi j
and Hi k : Vi = Hi j \Hi k (see Figure 1.2).

Hi j

pk

Hi j \Hi k

Hi k

pi

p j

Figure 1.2: Points pi , p j and pk and their perpendicular bissectors.

In the general case, the Voronoi cell relative to pi is the intersection of all half
planes:

Vi =
\

1∑ j∑n, j 6=i
Hi j . (1.1)

By definition (1.1), each Voronoi cell Vi is the intersection of open half planes con-
taining vertex pi . The intersection of two convex polygon being itself a convex poly-
gon, Vi is therefore a convex polygon.

Definition: The Voronoi diagram V (S) is the unique subdivision of the plane into n
cells is the union of all Voronoi cells Vp :

V =
[

1∑i∑n
Vi . (1.2)

Each point x 2R2 having at least one closest point in S, the Voronoi diagram cov-
ers the entire plane. Different Voronoi regions are disjoint. Therefore, the Voronoi
diagram is unique.
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Figure 1.3: Voronoi Diagram. Voronoi cell Vi is closed because it correspond to point
pi that is not on≠(S). Voronoi cell Vl is open because pl 2≠(S).

Definition: The convex hull ≠(S) of a finite point set S is the smallest convex poly-
gon that contains S.

Voronoi cells are either closed or open. They can only be open for points (like pl in
see Figure 1.3) that are located on the convex hull≠(S) of the point set.

1.2 Triangulations

Definition: A triangulation T (S) of S is a set of non overlapping triangles that ex-
actly covers the convex hull≠(S) with all points of S being among the vertices of the
triangulation.

Different triangulations of the same point set S may exist (e.g. Figure 1.4), but we are
going to show that they all have the same number of edges and of triangles.
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Figure 1.4: Two triangulations of the same point set, both containing n f = 13 trian-
gles defined by a total of n = 12 points with nh = 9 points that lie on≠(S).

Figure 1.5: Commemorative stamp with Euler and its formula.

Property 1.2.1 Every triangulation T (S) contains exacltly n f = 2(n°1)°nh triangles
and ne = 3(n °1)°nh edges.

Proof The proof uses a very well know result of Euler that he proved in 1758. Here
is what Euler had to say: Consider any polyhedron and let n be the number of its
vertices, n f the number of its faces, and ne be the number of its edges. Then

n +n f °ne = 2. (1.3)

A commemorative stamp put out by the Swiss Post shows Euler together with that
very famous formula (Figure 1.5). David Eppstein gives 20 different proofs of Euler’s
formula in [?]. Here is one that is quick and elegant. The skeleton of any convex
polyhedron is a planar graph. This is geometrically easy to see: in order tu build such
a planar graph, dispose the polyhedron on one on a plane and dig a hole on one of
its face (an upper face). Then, enlarge this hole in order to unfold the polyhedron up
to the point it is completely flattened. The upper face then becomes “infinite” and
can be seen as the outer face of the graph. Figure 1.6 shows an example of such a
flattening procedure: a cube is shown with its corresponding skelton that is actually
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Figure 1.6: A cube (left) and its corresponding skelton ° (right, plain lines) and the
dual °0 of ° (right, dashed lines). Edges in bold correspond to a spanning tree T of °
and edges in bold and dashed correspond to a spanning tree of °0.

a planar graph °. Let °0 be the dual of ° i.e. a graph with its 6 nodes that correspond
to the faces of the cubes and its 12 edges that correspond to the edges of the cube.
Edges of both graphs have a one-to-one correspondance.

Let T be a spanning tree of ° i.e. a subgraph T Ω ° that includes all of the vertices
of ° and that is a tree i.e. that contains no cycles. T does not contain any cycles, so
it does not disconnect the plane. The co-tree T § of T is the set of edges of the graph
that are not in T . Consider now the set of edges T 0 Ω °0 that correspond to T §. Set T 0

contains no cycles: if one cycle exists in T 0, then the corresponding edges of °would
create some isolated vertices in T , which is impossible because T is a spanning tree
and it contains all vertices of °. T 0 contains all vertices (the faces of the polyhedron)
of °0 because T does not contain any cycles. Then, T 0 is a spanning tree of °0.

The number of edges on a spanning tree can be computed in a general fashion.
Let’s construct a spanning tree in the following way: start with one random edge e
of ° and add it to T . This first edge e connects 2 vertices that are inserted in a stack.
While this stack is not empty, we take the vertex v at the top of the stack and look
for all edges ei (v, vi ) that are incident to v . We add ei to T if neither v or vi is not
yet in T . So, each edge of T correspond to one vertex of °, except the first one that
correspond to two. Then, a spanning tree has exactly n °1 vertices.

So T has n vertices and k ¥ n ° 1 edges. Similarly, T 0 has n f vertices and k 0 ¥
n f °1 edges. Since k +k 0 = ne , we have n °1+n f °1 = ne and formula 1.3 follows.

Euler’s formula applies to polyhedron i.e. meshes that are topologically equiva-
lent to a sphere. Euler generalized its formula to general orientable manifolds as

n °ne +n f =¬. (1.4)

Here, ¬ is the Euler characteristic is a topological invariant: it is a number that de-
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Sphere (¬= 2) Sphere (¬= 2) Torus (¬= 0) Disk (¬= 1)
n = 4, ne = 6, n f = 4 n = 8, ne = 12, n f = 6 n = 16, ne = 32, n f = 16 n = 3, ne = 3, n f = 1

Figure 1.7: Computation of Euler’s characteristic ¬ for different manifold meshes.

scribes the topological structure of the domain. For a sphere, we have obviously
¬= 2. In this section, we are essentially concerned by domains that are topologically
equivalent to a disk i.e. when ¬ = 1. Figure 1.7 shows manifold meshes of different
objects together with their Euler characteristic.

Now let’s specialize Euler’s formula to triangulations. In the case of a triangu-
lation of a closed manifold (a sphere or a torus), every edge is is connected to 2
triangles and each triangle has 3 incident edges. We have then

2ne = 3n f .

This last result combined with Eulers’s formula gives, for a closed manifold

n f = 2(n °¬) and ne = 3(n °¬).

For planar triangulations, we consider domains that are topologically equivalent
to the a disk i.e. where ¬= 1. Those domains have one boundary and every edge of
the boundary of the domain of is connected to one single triangle. Assume that nh
is the number of edges (or of points) of the boundary. In this case, ne °nh edges
are internal with two adjacent triangles and nh edges and have only one adjacent
triangle. Every triangle being always incident to 3 edges, we get the following result

3n f = 2(ne °nh)+nh . (1.5)

Combining Euler’s formula (1.4) with (1.5) gives the result n f = 2(n ° 1)°nh and
ne = 3(n °1)°nh .

1.3 The Delaunay triangulation

The Delaunay triangulation DT(S) is the geometric dual of the Voroinoi diagram (see
Figure 1.8). The Voronoi diagram V is made of n Voronoi cells Vi that correspond to
the points pi , 1 ∑ i ∑ n of S. The line segments that form the boundaries of Voronoi
cells and are the Voronoi edges. Voronoi edges are orthogonal bissectors of neigh-
boring points in the diagram. The endpoints of the Voronoi edges are called Voronoi
vertices vI ,1 ∑ I ∑ N , N being the number of Voronoi vertices. Voronoi vertices vI
are those points that are equidistant to three or more vertices.
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Definition: Points of S are said to be in general position if there exist no quadruplet
of points of S that are co-circular.

When the points of S are in general position, Voronoi vertices are triple points i.e.
they are equidistant of three points of S. Consider a Voronoi Vertex vI that is equidis-
tant to points pi , p j and pk 2 S (see Figure 1.3). Voronoi point vI = Hi j \H j k \Hki
is the circumcenter of a triangle ¢I = pi p j pk .

Definition: The Delaunay triangulation DT(S) is the triangulation of S that consist
in the union of the N triangles ¢I ,1 ∑ I ∑ N that correspond to the triple points of
the Voronoi diagram (see Figure 1.8).

Figure 1.8: Voronoi Diagram (in dashed lines) and Delaunay triangulation. White
points are points of S and blue points are Voronoi vertices that are the circumcenters
of the triangles.

We should now show that the set of triangles in question is a triangulation in the
sense of Definition 1.2. If this is the case, then Property 1.2.1 applies and N = 2(n °
1)°nh . The fact that DT is a triangulation will be the consequense of the following
properties of the Delaunay triangles. The fact that DT is a triangulation will be the
consequence of the two following properties.
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Figure 1.9: Illustration of why the empty circle property is true.

1.3.1 The empty circumcircle property

We will first demonstrate the following remarkable result that is called the empty
circumcircle property.

Property 1.3.1 The empty circumcircle of any triangle in the Delaunay triangulation
is empty i.e. it contains no point of S.

Proof Consider the Delaunay triangle ¢I = pi p j pk (see Figure 1.9). Assume now
that point pl 2 CI where CI is the circumcircle of ¢I . By definition, the triple point
vI is at equal distance to pi , p j and pk and no other points of S are closer to vI
than those three points. Then, if a point like pl exist in S, vI is not a triple point and
triangle ¢I cannot be a Delaunay triangle.

1.3.2 Delaunay Edges

It is useful at that point to look at some geometrical properties of circle bundles that
share two points pi and p j . The centers of such circles lie on the perpendicular
bissectors of line segment pi p j (see Figure 1.10). Edge pi p j divides disk C1 into two
disk sectors and one of the two sectors completely lies inside C2. On the Figure, the
pink sector of C1 is inside C2 and the yellow sector of C2 lies inside C1.

Definition: An edge pi p j of a triangulation is a Delaunay edge if there exist a circle
that contains pi and p j and that is empty i.e. that contain no point of S.

Property 1.3.2 A mesh is a Delaunay Triangulation if and only if all its edges are
Delaunay edges.

Proof Let us first show that a Delaunay triangulation has only Delaunay edges. As-
sume a Delaunay triangulation T (S) and an edge pi p j that is not Delaunay. This
means that there exist no circle passing through pi and p j that is empty. Consider
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Figure 1.10: Two circles C1 and C2 sharing an edge pi p j . The centers of the circles
c1 and c2 lie on the perpendicular bissector of segment pi p j (in dashed lines).

Delaunay triangle¢I = pi p j pk that contains edge pi p j . Its circumcircle is empty by
definition because T is a Delaunay triangulation. This is in contradiction with the
hypothesis that there exist no circle passing through pi and p j and that is not empty.

Now let’s proof that if every edge of a triangulation is Delaunay, then every trian-
gle is Delaunay as well. Assume that triangle ¢I = pi p j pk is not Delaunay, but all its
3 edges pi p j , pi pk and p j pk are Delaunay. Figure 1.11 shows a configuration whith
a non Delaunay triangle ¢I = pi p j pk which circumcircle contains pl . Because we
deal with triangulations as defined in Definition 1.2, pl cannot be inside triangle¢I .
It is then situated inside one of the three circular sectors delimited by pi , p j and pk .
Assume that pl and p j are on opposite sides of pi pk like in Figure 1.11. By hypoth-
esis, there exist a circle passing through pi and pk and that is empty. The center of
such a circle lies on the orthogonal bissector of pi pk . Any circle like C1 with its cen-
ter c1 that is below cI contains p j any circle C2 that is above cI contains pl , which
is in contradiction with the hypothesis that there exist a circle passing through pi pk
and that is empty.

1.3.3 Local Delaunayhood

Definition: Given a triangulation T (S) and an edge pi p j in the triangulation that is
adjacent to two triangles ¢I = pi p j pk and ¢J = pi pl p j . We call edge pi p j locally
Delaunay if pl lies on or outside the circumcircle of ¢I .

Figure 1.12 gives an illustration of an edge pi p j that is not locally Delaunay: point
pl lies inside circle CI . It is easy to see that this condition is symmetric: if point pl
lies inside circle CI , then point pk lies inside circle C J . We’ll prove that below.
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Figure 1.11: Two circles C1 and C2 sharing an edge pi p j . The centers of the circles
c1 and c2 lie on the perpendicular bissector of segment pi p j .

1.3.4 Edge Flip

Consider again the situation of two triangles adjacent to edge pi p j as depicted in
Figure 1.12. Flipping edge pi p j consist in replacing triangles pi p j pk and p j pi pl
by triangles pl pk pi and pk pl p j . Edge pi p j has been flipped and replaced by edge
pk pl .

The edge flip operator can only be applied to a pair of triangles that form a con-
vex quadrilateral. If it is concave, then flipping the edge leads to an invalid configu-
ration with two overlapping triangles (see Figure 1.13).

Property 1.3.3 An edge that is not locally Delaunay is flippable and the new edge
resulting of the flip operation is locally Delaunay.

Proof Let us first shwow that any edge that is not locally Delaunay is flippable. Con-
sider Figure 1.12. Edge pi p j is not locally Delaunay because pk 2C J and pl 2CI . A
simple way of checking wether edges pi p j and pk pl can be flipped is to verify that
they actually intersect. Consider triangle p j pk pi on Figure 1.12. The fact that pl is
on the opposite side of pi p j than pk and that it lies inside CI ensures that pk pl in-
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Figure 1.12: An edge pi p j that is not locally Delaunay.
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Figure 1.13: Invalid edge flip configurations.

tersects pi p j which proves that edge pi p j is flippable if pi p j is not locally Delaunay.
Move now to Figure 1.14. and prove that, if pi p j is not locally Delaunay, then pk pl
is locally Delaunay. In other words, we’d like to prove that, provided that pl is inside
C , then pi is outside C 0.

Circles C and C 0 share edge pk p j and points pi and pl are on the same sides of
edge pk p j . Edge pi p j is not Delaunay by hypothesis. Then point pl is inside C , as
well as the whole arc ‹pk pl p j (in dashed line on Figure 1.14) of C 0. Point pi belongs
to C and is on the same side of pk p j as pl , it is then outside C 0 and edge pk pl is
locally delaunay.
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Figure 1.14: If pi p j is not locally Delaunay, then pk pl is locally Delaunay.

1.3.5 Locally Delaunay vs. Globally Delaunay

Property 1.3.4 If all edges of triangulation T (S) are locally Delaunay, then T is the
Delaunay triangulation DT(S).

The fact that a specific edge is locally Delaunay does not imply that both its two
adjacent triangles are Delaunay triangles. Yet, if all edges are locally Delaunay, then
the resulting triangulation is Delaunay.

Proof We prove property 1.3.4 by contradiction. Assume all edges of a triangulation
to be locally Delaunay. Assume that triangle ¢I = pi p j pk has its circumcircle CI
that contains point pl 2 S. The situation is summarized on Figure 1.15. Assume that
point pl and pi are on opposite sides of p j pk . Edge p j pk is locally Delaunay but
triangle pi p j pk is not Delaunay because its circumcircle is not empty (it actually
contains point pl ). Consider triangle pk p j pm . Points pi and pm are on opposite
sides of p j pk and and pm is outside CI . This implies that C J contains pl as well. We
can continue that and show that CK and CL both contain pl as well. Yet, edge p0pn
is supposed to be locally Delaunay which means that pl should be outside CL . This
is indeed a contradiction.

1.3.6 The Flip Algorithm

Result 1.3.4 is of high importance. Combined with the flip algorithm, we can forsee
a simple algorithm that would start with any triangulation T (S) and would produce
the Delaunay triangulation DT(S) using edge successive flips. The algorithm could
be summarized as follows

• Insert all the internal edges of T (S) in a stack.

• Do while the stack is not empty



1.3. THE DELAUNAY TRIANGULATION 17

p

j

C

K

C

L

p

o

p

n

p

i

p

l

p

k

p

m

C

J

C

I

Figure 1.15: An edge pi p j that is locally Delaunay (point pm is outside CI ) but with
triangle pi p j pk that is not Delaunay.

– Take edge pi p j at the top of the stack. This edge is adjacent to triangles
pi p j pk and p j pi pl . If pi p j is not locally Delaunay, then flip it and add
edges pi pk ,pk p j , p j pl and pl pi in the stack. If one of those edges was
already present in the stack, update its neighbors.

– Remove pi p j from the stack.

Two questions should be asked at that point: (i) does this algorithm produce the De-
launay triangulation of S and (ii) if it achieves to create DT(S), what is its complexity?

Proposition 1.3.1 The edge flip algorithm converges to DT(S) in at most O (n2) flips.

Proof Consider an edge pi p j that is not Delaunay (Figure 1.16) with its two adja-
cent triangles pi p j pk and p j pi pl and their respective circumcircles CI and C J , with
pl 2 C 0

J and pk 2 C 0
I . Edge flip will produce triangles p j pk pl and pi pl pk and their

respective circumcircles C 0
I and C 0

J . Edge pk pl is locally Delaunay i.e. pi › C 0
I and

p j ›C 0
J .

Consider now the set of all possible point-triangle relations in a mesh T and a
function F (T ) that counts how many of those relations violate the Delaunay empty
circle property. There is at most O (n2) point-triangle pairs in a mesh (see property
1.2.1). So, F ’s magnitude is not bigger than O (n2). Assume now that edge pi p j is
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R = (CI [C J ) \ (C 0
I [C 0

J )

CI
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Figure 1.16: Edge flip: CI [C J ΩC 0
I [C 0

J .

flipped, leading to a new triangulation T 0. Flipping an edge always leads to F (T 0) <
F (T ). Figure 1.16 shows visually that

CI [C J ΩC 0
I [C 0

J ,

the colored zone in the Figure representing

R = (CI [C J ) \ (C 0
I [C 0

J ).

If some points of S were inside circumcenters of triangles pi p j pk and p j pi pl in
T , then edge flip will not increase that number because those points will not be
anymore invalid. If R contains no points of S, then F (T 0) = F (T )°2 because the two
point-triangle relations associated to points pl and pk and triangles pi p j pk and
p j pi pl disappear from F . In conclusion, we have

F (T 0) ∑ F (T )+2
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Figure 1.17: Building an angle-optimal triangulation using swaps.

which means that F decreases at each edge flip.
F is bounded by above by O (n2). It is also bounded by below: only the Delaunay

triangulation has empty circumcircles, F (DT) = 0. The edge flip algorithm converges
to the Delaunay triangulation and its complexity is O (n2) in the worst case.

This result is outmost importance. It means that every triangulation T (S) is con-
nected to the Delaunay triangulation DT(S) by at most O (n2) flips. It also means
that any two triangulations T and T 0 are flip connected. Both T and T 0 being con-
nected to DT, it is therefore possible to go from T to DT using flips and then from
DT to T 0 using “back flipping”. The flip-connectness of 2D triangulations allows to
generate meshes of arbitrary domains with low complexity. This will be developped
in further chapters. Figure 1.17 illustrate the edge flip procedure.

1.3.7 The MaxMin property

Let us first recall a very old geometry theorem from Thales.

Proposition 1.3.2 Let C A and CB be two circumcircles of edge pi p j (see Figure 1.18).
Let b1 and b2 be two points on CB on the same side of pi p j . Then, b1 and b2 see the
edge pi p j with the same angle Ø. Consider now point a on the same side of pi p j as
b1 and b2 but on circle C A. Assume that b1,b2 are inside C A. Then, Æ<Ø.

Consider a triangulation T (S) with n f triangles. This triangulation has 3n f inter-
nal angles (3 angles per triangle). Consider the vector of angles A(T ) = (Æ1, . . . ,Æ3n f )
sorted by increasing values. We can define such a vector for any triangulation. Each
triangulation T (S) has the same number of triangles so each vector A(T ) has the
same length and it is therefore possible to compare them, e.g. lexicographically. We
say that one given triangulation T is angle-optimal if A(T ) ∑ A(T 0), 8T 0.

Property 1.3.5 The Delaunay triangulation DT(S) is angle-optimal: it maximizes
the minimum angle among all possible triangulations.
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Figure 1.18: Thales theorem (left) and MaxMin property illustrated (right)

Proof Consider two triangulations T and T 0, where T 0 differs from T by one edge
flip. Let us proove that A(T 0) ∑ A(T ). The edge flip procedure consist in replacing
triangles pi p j pk and p j pl pk by triangles pk pl pi (see Figure 1.18). The angles of the
old configuration are respectively

∑1 +∑2,∞2, ∂1, ∂2,∞1 and ∏1 +∏2.

The angles of the old configuration are respectively

∂1 + ∂2,∑1,∏1,∑2,∏2 and ∞1 +∞2.

Our aim is to bound by above all angles of the old configuration. Two of the 6 rela-
tions are obvious: ∞1,∞2 < ∞1 +∞2 and ∂1, ∂1 < ∂1 + ∂2. We use Thales Theorem 1.3.2 for
the last four ones. Thales Theorem applied respectively to segments pi pl (blue and
yellow circles), p j pk (red and green circles), pi pk (blue and red circles) and pl p j
(yellow and green circles) gives

∞1 < ∑1, ∂1 <∏2, ∞2 <∏1 and ∞1 < ∑1

which are the four relations that were needed. Successive edge flips lead to the De-
launay triangulation and each flip does not increase the minimum angle. The De-
launay triangulation is therefore angle-optimal.


