Lecture Notes on
Geometric Robustness

Jonathan Richard Shewchuk
jrs@cs.berkeley.edu

April 15, 2013

Department of Electrical Engineering and Computer Scignce
University of California at Berkeley
Berkeley, CA 94720

Supported in part by the Natural Sciences and Engineerirggdeh Council of Canada under a 1967 Science and Engineer-
ing Scholarship, in part by the National Science Foundatiotier Awards CMS-9318163, ACI-9875170, CMS-9980063, CCR-
0204377, and CCF-0430065, in part by an Alfred P. Sloan Resdgllowship, and in part by a gift from the Okawa Foundatio
The claims in this document are those of the author. Theyeatrendorsed by the sponsors or the U. S. Government.

Keywords: computational geometry, geometric robustness, geon@idicates, geometric construc-
tors, geometric primitives, orientation test, incirclstte

Contents

1 Geometric Robustness 1

2 Geometric Computationswith LessError 6

3 Some (Relatively) Accurate Formulae 9
3.1 Orientation of Points, Triangle Area, Tetrahedron Yiody Collinearity, and

Coplanarity e e e e e e 9

3.2 TheInCircle and InSphere Predicates cuu ... 11
3.3 Anglesand Minimum ANngles e e 12
3.4 Dihedral Angles and Minimum Dihedral Angles 13
3.5 SolidAngles. e 15
3.6 IntersectionPoints e e 15
3.7 Intersection Points with Vertical Lines 16
3.8 Altitudes and Orthogonal Projectionsof Points 17
3.9 Linesin Three Dimensions: Distance, Closest Poin@ lat@rsection Points 18
3.10 The Minimum Aspectofa Tetrahedron., 19
3.11 Circumcenters and Circumradii of Trianglesand Tetdah 19
3.12 Orthocenters and Orthoradii of Trianglesand Tetrethed 20
3.13 Min-Containment Circles and Spheres of Triangles atchfiedra 22
3.14 Incenters and Inradii of Triangles and Tetrahedra 22
3.15 Power FUunctions e e e 23

1 Geometric Robustness

Most geometric algorithms are not designed for numerichustness; they are based on teal RAM
mode] in which quantities are allowed to be arbitrary real nurshband all arithmetic is exact. There are
several ways a geometric algorithm that is correct withertsal RAM model can go wrong in an encounter
with a modern microprocessor, in which floating-point opierss are subject to roundoff error. The output
might be incorrect, but be correct for some perturbatiornefibput. The result might be usable yet not be
valid for any imaginable input. Or, the program may simplgsir or fail to produce a result. | occasionally
hear of implementations where more than half the develdfiers is spent solving problems of roundoff
error. For surveys of geometric robustness, see Forturen@®Hoffmann [15].

There are two types of geometric calculationspomitives found in geometric algorithmgredicates
which make a two-way or three-way decision (does this pantd the left of, to the right of, or on this
line?), andconstructors which create a new geometric object (what is the interseqibint of these two
lines?). Predicates usually make decisions based on theosign arithmetic expression—often a matrix
determinant. Some geometric algorithms produce outptiighmurely combinatorial, such as a convex hull
or an arrangement of hyperplanes, and rely exclusively edipates. For example, a Delaunay triangulation
can be computed using only orientation and incircle testédlware discussed in the next section). Algo-
rithms that use constructors are sometimes more difficultake robust, because the objects they construct
may take much greater numerical precision to representti&imput.

Geometric algorithms may be divided into several classéis vdrying amounts of robustnessxact
algorithms which are always correctpbust algorithmswhich are always correct for some perturbation
of the input;stable algorithmsfor which the perturbation is smalfjuasi-robust algorithmswzhose results
might be geometrically inconsistent, but neverthelessfyasome weakened consistency criterion; and
fragile algorithms which are not guaranteed to produce any usable output.alh# next several pages
are devoted to a discussion of representative researchc @ass, and of the circumstances in which
exact arithmetic and other techniques are or are not ajydicdor more extensive surveys of geometric
robustness, see Fortune [10] and Hoffmann [15].

Exact algorithms. A geometric algorithm igxactif it is guaranteed to produce a correct result when given
an exact input. (Of course, the input to a geometric algorithay only be an approximation of some real-

world configuration, but this difficulty is ignored here.) &t algorithms use exact arithmetic in some form,

whether in the form of a multiprecision library or in a moregliised form.

There are several exact arithmetic schemes designed sp#gifor computational geometry; most are
methods for exactly evaluating the sign of a determinard,f@nce can be used to perform the orientation
and incircle tests. These schemes are nearly always codhiiitie a floating-point filter each expression
is first evaluated with ordinary floating-point arithmetiondoff error and all), and forward error analysis
is used to compute an upper bound on the error of the expresHithe error bound is smaller than the
magnitude of the expression, then the sign of the expregslarown to be correct. Exact arithmetic is used
only if the error bound is too large.

Clarkson [5] proposes an algorithm for using floating-pairithmetic to evaluate the sign of the deter-
minant of a small matrix of integers. A variant of the modifléthm-Schmidt procedure is used to improve
the conditioning of the matrix, so that the determinant aalosequently be evaluated safely by Gaussian
elimination. The 53 bits of significand available in IEEE dtiprecision numbers are sufficient to operate
on 10 x 10 matrices of 32-bit integers. Clarkson'’s algorithm is natiyradaptive; its running time is small
for matrices whose determinants are not near zero.

2 Jonathan Richard Shewchuk

Avnaim, Boissonnat, Devillers, Preparata, and Yvinec [posed an algorithm to evaluate signs of
determinants of x 2 and3 x 3 matrices ofp-bit integers using only and(p+1)-bit arithmetic, respectively.
Surprisingly, this is sufficient even to implement the insgghtest (which is normally written asdax 4 or
5 x 5 determinant), but with a handicap in bit complexity: 53dmuble precision arithmetic is sufficient to
correctly perform the insphere test on points having 24nlbéger coordinates.

Fortune and Van Wyk [13, 12] propose a more general appraasttspecific to determinants, or even
to predicates) that represents integers using a standgedded precision technique, with digits of radix
223 stored as double precision floating-point values. Ratham tise a general-purpose arbitrary precision
library, they have developed LN, an expression compilerwhrdes code to evaluate a specific expression
exactly. The size of the operands is arbitrary, but is fixegmvhN is run; an expression can be used to
generate several functions, each for arguments of diffdriétengths. Because the expression and the bit
lengths of all operands are fixed in advance, LN can tune thet@xithmetic aggressively, eliminating loops,
function calls, and memory management. The running timdwfetion produced by LN depends on the bit
complexity of the inputs. Fortune and Van Wyk report an ommfemagnitude speed improvement over the
use of multiprecision libraries (for equal bit complexit{furthermore, LN gains another speed improvement
by installing floating-point filters wherever appropriatalculating error bounds automatically.

Karasick, Lieber, and Nackman [16] report their experiasra@imizing a method for determinant evalu-
ation using rational inputs. Their approach reduces thedoitplexity of the inputs by performing arithmetic
on intervals (with low precision bounds) rather than exadti®s. The determinant thus evaluated is also
an interval; if it contains zero, the precision is increaaed the determinant reevaluated. The procedure
is repeated until the interval does not contain zero (oraiostonly zero), and its sign is certain. Their
approach is thus somewhat adaptive, but it does not appeesetthe results of one iteration to speed the
next.

None of the methods mentioned so far is suitable if an algorinust use floating-point coordinates (and
cannot scale the inputs to be integers). Elsewhere [21hpgse a method for writing robust floating-point
predicates that relies on new algorithms for arbitrary jgien arithmetic and a technique for adaptively
computing the value of a polynomial expression. As with Kdan’s method, the amount of time required
for the computation depends on how close the value of theesgjm is to zero. The inputs may be ordinary
single or double precision (24- or 53-bit significand) IEE&afing-point numbers.

The Clarkson and Avnaim et al. algorithms are effectivestnieted to low precision integer coordinates.
Floating-point inputs are more difficult to work with tharteéger inputs, partly because of the potential for
the bit complexity of intermediate values to grow more glyicH he Karasick et al. algorithm also suffers
this difficulty, and is too slow to be competitive with the ethltechniques discussed here, although it may
be the best existing alternative for algorithms that regjuétional numbers, such as those computing exact
line intersections.

Exact expression evaluation algorithms—especially thibaeaccommodate inputs with only a limited
bit complexity—do not satisfy the needs of all applicatioms program that computes line intersections
requires rational arithmetic; an exact numerator and ed@ebminator must be stored. If the intersections
may themselves become endpoints of lines that generateimersections, then intersections of greater and
greater bit complexity may be generated. Even exact rdtaithmetic is not sufficient for all applications.
A solid modeler, for instance, might need to determine th#iaes of the intersection of two independent
solids that have been rotated through arbitrary angles . eXatt floating-point arithmetic can’t even cope
with rotating a squard5° in the plane, because irrational vertex coordinates re3ile problem of con-
structed irrational values has been partly attacked byrimementation of “real” numbers in the LEDA
library of algorithms [3]. Values derived from square rofdaad other arithmetic operations) are stored in

Geometric Robustness 3

symbolic form when necessary. Comparisons with such nusndaer resolved with great numerical care,
albeit sometimes at great cost; separation bounds are ¢dechpidnere necessary to ensure that the sign of
an expression is determined accurately. Floating-potetéiland another form of adaptivity (approximating
a result repeatedly, doubling the precision each time) see as well.

For the remainder of this discussion, | consider only athons that use only predicates, and not con-
structors.

Robust algorithms. There are algorithms that can be made correct with straighérd implementations

of exact arithmetic, but suffer an unacceptable loss ofgp@@ alternative is to relax the requirement of
a correct solution, and instead accept a solution that sstckenough” in some sense that depends upon
the application. Without exact arithmetic, an algorithmstnsomehow find a way to produce sensible
output despite the fact that geometric tests occasiorelllit ties. No general techniques have emerged yet,
although bandages have appeared for specific algorithraa/lygnsuring robustness or quasi-robustness
through painstaking design and error analysis. The lackeakgality of these techniques is not the only
limitation of the relaxed approach to robustness; theran®ee fundamental difficulty that deserves careful
discussion.

When disaster strikes and a real RAM-correct algorithm ennted in floating-point arithmetic fails to
produce a meaningful result, it is often because the alyuoritas performed tests whose results are mutually
contradictory. Figure 1 shows an error that arose in a tweedsional Delaunay triangulation program |
wrote. The program, which employs a divide-and-conquesrittyn presented by Guibas and Stolfi [14],
failed in a subroutine that merges two triangulations ime.oThe geometrically nonsensical triangulation
in the illustration was produced.

On close inspection with a debugger, | found that the failvete caused by a single incorrect result of the
incircle test. At the bottom of Figure 1 appear four nearlicear points whose deviation from collinearity
has been greatly exaggerated for clarity. The paints ¢, andd had been sorted by theircoordinates,
andb had been correctly established (by orientation testsetbéiow the lineic and above the lined. In
principle, a program could deduce from these facts éhednnot fall inside the circldcb. Unfortunately,
the incircle test incorrectly declared thatay inside, thereby leading to the invalid triangulation.

It is significant that the incircle test was not just wrong attiiese particular points; it was inconsistent
with the “known combinatorial facts.” A correct algorithrthét computes a purely combinatorial result)
will produce a meaningful result if its test results are wydnut are consistent with each other, because there
exists an input for which those test results are correctlowitg Fortune [8], an algorithm isbustif it
always produces the correct output under the real RAM madal,under approximate arithmetic always
produces an output that is consistent with some hypothetigat that is a perturbation of the true input; it
is stableif this perturbation is small. Typically, bounds on the pelation are proven by backward error
analysis. Using only approximate arithmetic, Fortune giae algorithm that computes a planar convex hull
that is correct for points that have been perturbed by aivelatror of at mos©O(e) (wheree is themachine
epsilonof the floating-point unit), and an algorithm that maintaartsiangulation that can be made planar by
perturbing each vertex by a relative error of at mOgh.%¢), wheren is the number of vertices. If it seems
surprising that a “stable” algorithm cannot keep a triaagjah planar, consider the problem of inserting a
new vertex so close to an existing edge that it is difficultiscern which side of the edge the vertex falls
on. Only exact arithmetic can prevent the possibility oftirey an “inverted” triangle.

One might wonder if my triangulation program can be made sbby avoiding any test whose result
can be inferred from previous tests. Fortune [8] explaias th

[a]n algorithm isparsimoniousf it never performs a test whose outcome has already been-det
mined as the formal consequence of previous tests. A pansim® algorithm is clearly robust,

4 Jonathan Richard Shewchuk

Figure 1:Top left: A Delaunay triangulation. Top right: An invalid triangulation created due to roundoff error.
Bottom: Exaggerated view of the inconsistencies that led to the problem. The algorithm “knew” that the
point b lay between the lines ac and ad, but an incorrect incircle test claimed that « lay inside the circle dcb.

Geometric Robustness 5

since any path through the algorithm must correspond to gometric input; making an al-
gorithm parsimonious is the most obvious way of making iustbIn principle it is possible to
make an algorithm parsimonious: since all primitive tesés@olynomial sign evaluations, the
guestion of whether the current test is a logical conseqefiprevious tests can be phrased as
a statement of the existential theory of the reals. Thisrthisaat least NP-hard and is decidable
in polynomial space [4]. Unfortunately, the full power okttheory seems to be necessary for
some problems. An example is tiee arrangement problemgiven a set of lines (specified
by real coordinateéa, b,), so thatax + by = ¢), compute the combinatorial structure of the
resulting arrangement in the plane. It follows from receatkwof Mnev [19] that the problem
of deciding whether a combinatorial arrangement is actuaklizable with lines is as hard as
the existential theory of the reals. Hence a parsimoniogsrdhm for the line arrangement
problem ...seems to require the solution of NP-hard problem

Because exact arithmetic does not require the solution gh&tE problems, an intermediate course
is possible: one could employ parsimony whenever it is efficto do so, and resort to exact arithmetic
otherwise. Consistency is guaranteed if exact tests acktodmootstrap the “parsimony engine.” | am not
aware of any algorithms in the literature that take this apph, although geometric algorithms are often
designed by their authors to avoid the more obviously rednohtksts.

Quasi-robust algorithms. The difficulty of determining whether a line arrangementeializable suggests
that, without exact arithmetic, robustness as defined abrayebe an unattainable goal. However, some-
times one can settle for an algorithm whose output might eotdalizable. | place such algorithms in a
bag labeled with the fuzzy termuasi-robust which | apply to any algorithm whose output is somehow
provably distinguishable from nonsense. Milenkovic [18¢(emvents the aforementioned NP-hardness re-
sult while using approximate arithmetic by constructingumo-line arrangementspaeudo-lings a curve
constrained to lie very close to an actual line. Fortune firggents a 2D Delaunay triangulation algorithm
that constructs, using approximate arithmetic, a triaagor that is nearly Delaunay in a well-defined sense
using the pseudo-line-like notion of pseudocircles. Utifioately, the algorithm’s running time 8(n?),
which compares poorly with thé@(nlogn) time of optimal algorithms. Milenkovic’'s and Fortune’s al-
gorithms are botlyuasi-stablehaving small error bounds. Milenkovic’s algorithm can heught of as a
guasi-robust algorithm for line arrangements, or as a taddgsrithm for pseudo-line arrangements.

Barber [2] pioneered an approach in which uncertaintyLidiclg the imprecision of input data, is a part
of each geometric entityBoxesare structures that specify the location and the unceytantocation of
a vertex, edge, facet, or other geometric structure. Boxasamise either as input or as algorithmic con-
structions; any uncertainty resulting from roundoff efiincorporated into their shapes and sizes. Barber
presents algorithms for solving the point-in-polygon peolv and for constructing convex hulls in any di-
mension. For the point-in-polygon problem, “can’t tell’asvalid answer if the uncertainty inherent in the
input or introduced by roundoff error prevents a sure defteaition. The salient feature of Barber’s Quick-
hull convex hull algorithm is that it merges hull facets tieahnot be guaranteed (through error analysis)
to be clearly locally convex. Thisox complexroduced by the algorithm is guaranteed to contain the true
convex hull, bounding it, if possible, both from within andtout.

The degree of robustness required of an algorithm is tylgickdtermined by how its output is used.
For instance, many point location algorithms can fail whamig a non-planar triangulation. For this very
reason, my triangulator crashed after producing the flawadgulation in Figure 1.

The reader should take three lessons from this discussit, [froblems due to roundoff can be severe
and difficult to solve. Second, even if the inputs are imgeand the user isn’t picky about the accuracy of
the output, internal consistency may still be necessanyyifautput is to be produced at all; exact arithmetic

6 Jonathan Richard Shewchuk

may be required even when exact results aren’t. Attemptslve problems by “tolerancing” (e.g., treating
nearly-collinear points as if they were collinear) are nengrally effective, because the use of tolerances
does not restore internal consistency. Third, neithertexathmetic nor clever handling of tests that tell
falsehoods is a universal balm. However, exact arithmstattractive when it is applicable, because it can
be plugged into a geometric algorithm with little effort.

2 Geometric Computationswith LessError

Here, | discuss how to write geometric primitives that inaarlittle error as possible if exact arithmetic is
not available or is too slow. The main principle is this: maygometric computations involve geometric
entities whose absolute coordinates (distance from tiggndiare much greater than their relative coordinates
(distance from each other). Furthermore, many common gi@nealculations are translation-invariant: if
we move the axes of the coordinate system, the answer is ithe. ddence, if the operands of a geometric
predicate or constructor are translated so that one of teara points lies at the origin, numerical precision
is freed, and the result is more accurate.

Many geometric expressions found in the literature areadlyeawritten as a function of differences of
points, and these typically perform well. As a bad exampieugh, consider a well-known expression for
the area of a polygon. I#, po, ..., p, are the vertices of a polygon listed in order around its bampndet
pi, andp; , be thex- andy-coordinates op;, and letp,, .1 = p;. The area of the polygon is

n

Z(pi,xpiJrl,y — DiyPi+1,2)] -
i=1

1

2

If the polygon’s dimensions are small compared to its distainom the origin, this formula can give a
terribly inaccurate result. To derive a better formulansiatep,, to the origin by replacing eagh with p,,
then substituting’, = p; — p,. The improved formula is

n—2

Z [(pi,x - pn,x)(pi+1,y — pn,y) - (pi,y - pn,y)(pi+1,:v - pn,x)] .
=1

1

2

One can use forward error analysis [22] to derive estimdtdsecerror (caused by floating-point roundoff)
after computing each of these two expressions. The anabygials that the error of the first expression is
a function of the sizes of the coordinates, whereas the efrtire second expression is a function only of
the distances between the points. If these distances asblpamaller than the absolute coordinates, the
second expression is much more accurate. The products isettmnd expression benefit from the extra
precision freed by the translation of points to near theiorignfortunately, the second formula uses more
floating-point operations. (With a little clever codingclalifference between points can be computed once
and used twice.) There is often a trade-off between numexczairacy and speed.

It is straightforward to show that the two expressions alareeequivalent, but if we believe the first
expression is correct, it suffices that we understand tlaastating a polygon does not change its area.
However, there are geometric calculations that are noskation-invariant.

The translation of points can often be done without roundfbr. Figure 2 demonstrates a toy problem:
suppose we compute the area of each triangle in a triangalétising the second formula above). An
interesting property of most floating-point systems (idahg the IEEE standard) is that if two numbers
have the same sign and differ by at most a factor of two, thein tlifference is computed with no roundoff

Geometric Computations with Less Error 7

N

Figure 2:Shaded triangles can be translated to the origin without incurring roundoff error. In most triangu-
lations, such triangles are the common case.

error. Hence, in Figure 2, any shaded triangle can be trisusto that one of its vertices lies at the origin
without roundoff error. The white triangles may or may noffesufrom roundoff during such translation.
In a large triangulation, only a small proportion of the tigges (those near a coordinate axis) will suffer
roundoff during the translation.

Two other important examples of these ideas are the orientatedicate, used in most geometric codes,
and the incircle predicate, used to construct Delaunapdtikations. Let, b, ¢, andd be four points in
the plane. Define a procedureR@&NT2D(a, b, c) that returns a positive value if the poinis b, andc
are arranged in counterclockwise order, a negative valtieeifpoints are in clockwise order, and zero if
the points are collinear. A more common (but less symmeitmigrpretation is that R ENT2D returns a
positive value ifa lies to the left of the directed linke; for this purpose the orientation test is used by many
geometric algorithms.

Define also a proceduralCIRCLE(a, b, ¢, d) that returns a positive value df lies inside the oriented
circle abe. By oriented circle | mean the unique (and possibly degenerate) circle thraughandec, with
these points occurring in counterclockwise order aboutitabe. (If these points occur in clockwise order,
INCIRCLE will reverse the sign of its output, as if the circle’s extenvere its interior.) NCIRCLE returns
zero if and only if all four points lie on a common circle ordéinBoth QRIENT2D and NCIRCLE have the
symmetry property that interchanging any two of their pagters reverses the sign of their result.

These definitions extend to arbitrary dimensions. To gdizerthe orientation test to dimensionalify
let uy, ug, ..., uq be the unit vectors. ENT is defined so that ENT(u, ug, ..., ug,0) = 1.

In any dimension, the orientation and incircle tests mayrbglémented as matrix determinants. For

8 Jonathan Richard Shewchuk

two dimensions:

ap ay 1

ORIENT2D(a,b,c) = | by b, 1 ()
cx ¢y 1

_ Qy — Cx Ay — Cy 2)

bx — Cy by - Cy

ay Gy a§+a§ 1

by by B2+02 1

e ¢y citc; 1

d, dy, d2+d2 1
ag —dy ay—dy (ag— d:c)2 + (ay — d?/)2

= | by—dy by—dy (by— dy)? + (by — dy)2 (4)
co—dy cy—dy (cz—dy)* + (cy — dy)*

(3)

INCIRCLE(a, b, c,d) =

These formulae generalize to other dimensions straighi#fiatly. See Sections 3.1 and 3.2 for the three-
dimensional versions.

Expressions (1) and (2) can be shown to be equivalent by sialgkbraic transformations, as can Ex-
pressions (3) and (4) with a little more effort. Expressippglso follows from Expression (1) by translating
each point by-c¢, and Expression (4) follows from Expression (3) by transtaeach point by-d.

Although Expressions (1) and (3) are faster to compute, &gions (2) and (4) tend to have much
smaller errors, and are strongly preferred if floating-poomputation with roundoff is used.

Once a determinant has been chosen for evaluation, theseaml methods to evaluate it. A number of
methods are surveyed by Fortune and Van Wyk [12], and only¢baclusion is repeated here. The cheapest
method of evaluating the determinant of & 5 or smaller matrix seems to be by dynamic programming
applied to cofactor expansion. Léte the dimensionality of the matrix. Evaluate t@e) determinants of
all 2 x 2 minors of the first two columns, then tH{) determinants of al§ x 3 minors of the first three
columns, and so on.

The principles governing numerical accuracy apply to aoesors as well as predicates. The main
difference is that the final result must be translated badtstcorrect location. For instance, the following
expressions compute the centeof a circle that passes through the three paints andc.

az — ¢y (ag — cz)? + (ay — ¢y)?
by — ¢z (by — cz)? + (by — ¢y)?

Ay — Cp Gy — Cy
by —ce by —cy

(b — Cx)z + (by — Cy)2 by — ¢y
Ay — Cp Gy — Cy
by —ce by —cy

' (a2 — c2)* 4 (ay — ¢y)* ay — ¢y

O, =cs +

2 2

In both of these expressions, all arithmetic operationsrian error which is a function of the relative
coordinates, until the final addition. Only this one final @gi®n incurs an error proportional to the absolute
coordinates.

Another advantage of these circumcenter expressionstishieya are only unstable in cases where in-
stability is unavoidable. Compare the common techniqueoafuting the circumcenter by finding the
intersections of the bisectors of two sides of the triangtéc. If Aabeis an isosceles triangle with angles
of 2°, 89°, and89°, and the bisectors of its two nearly-parallel sides are uedintersection computation

Some (Relatively) Accurate Formulae 9

Figure 3:A triangle and a tetrahedron, both having positive orientation.

is unstable. On the other hand, if the bisector of the shdetisiused, the intersection computation is stable.
A programmer might try to determine which two sides of thartgle will yield the most stable computa-
tion, but the expressions above achieve the same effecbwtitiny such decision. Unfortunately, finding
expressions like these is a bit of an art. These expressiersfaund by expressing the circumcenter as the
solution of a system of linear equations, then applying @@sRule from linear algebra.

The denominator of the fractions above is precisely theesgion computed by RENT2D. The com-
putation ofp is unstable ifa, b, andc are nearly collinear (i.e. the triangleabc has an angle very close
to 180°). In this case, the denominator is close to zero, and rotirdladr in the denominator can dramat-
ically change the result, or cause a division by zero. Thanisnstability that is unavoidable unless exact
arithmetic is used to compute the denominator. (The acgwkithie numerator is less critical.)

3 Some (Relatively) Accurate Formulae

In these formulae, the norm | denotes the Euclidean length of a vector, and the opesatidenotes the
vector cross product. Formulae for triangles (in two or ¢hdenensions) govern a triangle with vertieces

b, andc¢, and employ the vectons = a — ¢ ands = b — ¢. Formulae for tetrahedra govern a tetrahedron
with verticesa, b, ¢, andd, and employ the vectots= a — d, u = b — d, andv = ¢ — d. These and other
notations are illustrated in Figure 3.

3.1 Orientation of Points, Triangle Area, Tetrahedron Volume, Collinearity, and
Coplanarity

The orientation test i dimensions establishes the orientation of a set @f 1 points. If the points are
affinely independent, there are two possible orientatioegatdless of the value @), which are distin-
guished by the sign of an expression (given below for the & three-dimensional cases). If the points
are not affinely independent, the expression evaluatesto Zhe orientation of a set of points is invariant
under rotation of the coordinate system, but is reversediirir image.

Given three points, b, andc in the plane, the expressiorREENT2D(q, b, ¢) is the signed area of the
parallelogram determined by the vectars= a« — ¢ ands = b — ¢. It is positive if the points occur in
counterclockwise order, negative if they occur in cloclenasder, and zero if they are collinear.

10 Jonathan Richard Shewchuk

az ay 1
ORIENT2D(a,b,c) = | by b, 1
cz ¢y 1
Qy — Cp Ay — Cy
by —cx by —cy

— |r s

As discussed in Section 2, the second (or equivalentlyhiing)tof these determinants is better for fixed
precision floating-point computation, because it loses &&uracy to roundoff error. The first expression
is faster if an exact arithmetic library is used. If exactharietic is used, | recommend coupling it with a
floating-point filter. The filter should use the second exgiges and the exact computation should used the
first expression. Public domain C code that does this, witlitaxhal levels of adaptivity (for greater speed),
is freely available from http://www.cs.cmu.edwfuake/robust.html.

The signed area of the triangle with vertiees, andc is half the area of the parallelogram,

= ORIENT2D(a, b, ¢)
= 5 .

The area of a triangle it is proportional to the length of an orthogonal vector fouyddking the
vector cross product of two sides of the triangle. This cpyssluct can be computed by three applications
of ORIENT2D. Given a point in E3, leta,. be a two-dimensional point whose coordinates areytrend
z-coordinates of: (in that order). Then

(a —c) x (b—c) = (ORIENT2D(ayz, by, ¢y-), ORIENT2D(a s, b2z, C2a), ORIENT2D(Ay, bay, Cay)) -

It is not accidental that the-coordinate precedes thecoordinate in the expression for thecoordinate of
the cross product. If the coordinates are not ordered thassign of they-coordinate will be wrong.

The unsigned area of a triangular facefif with verticesa, b, andc is

Ir x s|
Ay = ——
f 2
_ Ja—o)x (o)
2
V/ORIENT2D(ay:, by=, ¢y2)% + ORIENT2D(a2z, b2z, C2z)? + ORIENT2D(agy, bay,s Cay)?

2

If an accurate implementation of REENT2D is available, this expression takes advantage of it.

An expression for the unsigned area of the triangle that svorlany dimensionality > 2 (albeit with
less speed and accuracy than the foregoing expression) is

4y = VERE T F

This expression has two related pitfalls. First, floatirgap error can cause the computation|of|s|? —
|r - s|? to produce a negative value; it is usually necessary to @pltest for this possibility. Second, when
this difference is much smaller thari?|s|?, the relative accuracy of the result can be very bad.

Some (Relatively) Accurate Formulae 11

Given four pointss, b, ¢, andd in E3, the expression @ENT3D(a, b, ¢, d) is the signed volume of the
parallelepiped determined by the vectérs a — d, u = b — d, andv = ¢ — d. It is positive if the points
occur in the orientation illustrated in Figure 3, negativéhey occur in the mirror-image orientation, and
zero if the four points are coplanar. You can applgight-hand rule orient your right hand with fingers
curled to follow the circular sequended. If your thumb points toward, ORIENT3D returns a positive
value.

1
ORIENT3D(a, b, c,d) = 1
1

ay —dy ay—dy a,—d;
= by —dy by—dy, b,—d,
Cog—dy cy—dy c;—d;

:‘tuv|.

As with ORIENT2D, the second (or equivalently, the third) of these deteamis is more accurate for
floating-point computation with roundoff, and the first istier for computation with an exact arithmetic
library.

The signed volume of the tetrahedron with vertieg$, ¢, andd is one-sixth the volume of the paral-
lelepiped,
ORIENT3D(a, b, ¢, d)
V= 5

Higher-dimensional @IENT tests are easy to derive by generalizingienT2D and QRIENT3D in
the obvious way. The measure (higher-dimensional analtg@eea and volume) of thé-dimensional
parallelepiped determined by a setdofectors (all emanating from a single point) is the determiird the
matrix whose column vectors are the vectors in question. masure of a-simplex equals the measure
of the parallelepiped divided byl.

ORIENT2D reveals whether three vertices in the plane are colligaat about the collinearity of three
vertices in three or more dimensions? Vertiee$, andc are collinear if and only ifA; = 0. In three
dimensions, there are two ways to testlif = 0: test ifr x s = 0, or test if|r|?|s|*> = |r - s|2. The first test
can take advantage of a robust implementation of tRee@QT2D sign test, if one is available. The second
test (only) works in any dimensionality.

3.2 ThelnCircleand InSphere Predicates

The insphere test id dimensions establishes whether a vertex lies inside, dmjtser on a sphere passing
throughd + 1 other points. These possibilities are distinguished bystge of an expression (given below
for the two- and three-dimensional cases).

Let a, b, ¢, andd be four points in the plane, and suppose the first three asnted so that
ORIENT2D(a, b, ¢) is positive. The expressiomMCIRCLE(a, b, ¢, d) is positive if d lies inside the cir-
cle passing through, b, andc; negative ifd lies outside the circle; and zerodflies on the circle. (If
ORIENT2D(a, b, ¢) is negative, the sign returned by CIRCLE is reversed.)

12 Jonathan Richard Shewchuk

Qg Gy a%—l—a; 1

2
INCIRCLE(a, b, ¢, d) = by by by +b 1
1

§

Cx Cy ci + Cy
dy dy di + d;

ay —dy ay—dy (az —dy)? + (ay — dy)?
= | by—dy by—dy (by—dy)?®+ (by—dy)?
Co—dy Cy—dy (Cz— dz)? + (cy — aiy)2

The second of these expressions is more accurate for flegiimg computation with roundoff, and the
first is faster for computation with an exact arithmeticdiby.

Let a, b, ¢, d, and e be five points inE3, and suppose the first four are oriented so that
ORIENT3D(a, b, ¢, d) is positive. The expressiolNBPHEREa, b, ¢, d, e) is positive if e lies inside the
sphere passing through b, ¢, andd; negative ife lies outside the sphere; and zere ifies on the sphere.
(If ORIENT3D(a, b, ¢, d) is negative, the sign returned by $PHEREIS reversed.)

a; ay a, a2+ a?/ +a? 1
by by b, b24b5+02 1
INSPHEREa, b, c,d,e) = | ¢z ¢y ¢ c§+c§+cg 1
dy dy d, d2+d5+d? 1
€x €y € e + e% +e2 1
Ay — €y Qy—e€y a,—e; (ap— er)? + (ay — ey)2 + (a; —e)?
B by —ex by—ey br—es (by—ex)?+ (by —ey)?+ (b —e,)?
Tl e—er cy—ey ci—er (co—ex)?+(cy —ey)? + (e —er)?
de —eg dy—ey d,—e; (dy— ex)? + (dy — ey)2 +(d, —e,)?

3.3 Anglesand Minimum Angles

Letr ands be two vectors with a common origin. The angle separatingéogors isf, where

2, and sinf = ﬁ,

Ir|ls| Ir|ls|

andA is the area of the triangle with sidesinds. These formulae work equally well in two, three, or many
dimensions. (In three or more dimensions, replaceith the unsignedd,.) Only the tangent formula
computed) accurately over its entire range; the sine and cosine faenate not generally recommended
for calculating itself, although at leagineof the two is accurate for any given valuetf

tanf = ——, cosf =
r-s

The quadrant in which falls is determined by the signs df andr - s (which is another argument for
using the tangent formula, or perhaps the cosine formulanvalngles are not signed). A positive value of
A indicates tha# is in the rang€0°, 180°), meaning thas is counterclockwise frons; whereas a negative
value indicates the rande-180°, 0°), meaning thas is clockwise fromr. This distinction between positive
and negative angles is only meaningful in two-dimensiopats. A positive value af - s indicates that
is in the rang& —90°, 90°), whereas a negative value indicates the rg9ge, 180°) or (—180°, —90°).

Again, the tangent formula is an accurate way to computédowever, it does require a check for
division by zero. Ifr - s = 0, 8 is 90° or —90°, according to the sign ofi. Otherwise, most computer

Some (Relatively) Accurate Formulae 13

arctangent functions return an angle in the rafig80°,90°), and it is necessary to correct the result if
r - s < 0 by adding or subtractin§80°.

The cosine formula produces an an@ie the rangd0°, 180°]. This makes it the simplest formula to use
when signed angles are not desired. (If signed angles amedgan extra computation of is necessary.)
Unfortunately, the value df may be quite inaccurate; férvery near)° or 180°, the calculated value of
loses about half its bits of accuracy. The formula is quitiaate ford € [45°, 135°], though. If the vectors
r ands are known to be nonzero, there is no need to check for divisjomero; however, for extreme
values off, floating-point roundoff sometimes produces a value o&/(|r||s|) slightly greater than 1 or
slightly less than-1, which may cause exceptions in arccosine libraries. Ati@kfest for this possibility
is usually necessary.

The sine formula produces an anglén the rangg—90°,90°]. If # might be obtuse, an extra test is
needed to see if - s < 0, in which case the result must be corrected by subtractifrigrit 180° or from
—180°. Forf near90° or —90°, the calculated value ¢floses about half its bits of accuracy, and the value
of 2A/(|r||s|) computed with roundoff may be slightly greater than 1 ortgligless than-1. The formula
is quite accurate fof € [—45°,45°] (including the range where the cosine formula is unrelipble

To find the minimum angle of a triangle (on the assumption &mafles are never interpreted as being
negative), there is no need to compute all three angleseddsuse the fact that the sine of the minimum
angle of the triangle is the minimum sine of the angles oftiamgle, and by the Law of Sines, the minimum
sine is found opposite the shortest edge. Hence, if the edggtls of the triangle amuin, ied, aNdlmyax
in order from shortest to longest, then

2|A]

sin Opin = minsin§; = .
? gmaxgmed
Because the minimum angle of a triangle is never greater@barthe arcsine operation that computes
fmin IS reasonably accurate.

3.4 Dihedral Anglesand Minimum Dihedral Angles

Let c andd be two points inE?, and suppose that two planar facets meet at the edigeet a be a point
lying on one of the facets, and Iebe a point lying on the other. What is the dihedral angle ssjay the

two facets? It is helpful to imagine the tetrahedrdied, because the tetrahedron’s volume and face areas
appear in the formulae. The dihedral angle in question s¢gathe facetacd and Abed.

Let V be the signed volume of the tetrahedrdad. Let A,, Ay, A, andA, be the unsigned areas of the
faces of the tetrahedron opposite vertiaes, ¢, andd, respectively. Leh; be an outward-directed vector
orthogonal to face. The vectors; are produced as a by-product of computiig becaused; = |n;|/2. If
the vertices are oriented as depicted in Figure 3, then ttveand-facing vectors are

n, = (¢c—d)x(b—d)=vxu,

n = (a—d)x(c—d)=txv

ne. = (b—d)x(a—d)=uxt, and
ng = (a—c)x(b-oc).

See Section 3.1 for advice on using an accurate implementafi ORIENT2D to compute these cross
products. An alternative formula for the last vectonjs= —n, — n;, — n., but this loses a few more bits
of accuracy.

14 Jonathan Richard Shewchuk

Let (i, 5, k, 1) be a permutation of the verticesb, ¢, d. Let/;; be the length of the edge connecting
verticesi andj, and letd;; be the dihedral angle at which faceijk meets face\ijl. For exampleg,;, is
the dihedral angle at edgé, and/,;, = |a — b|. As with planar angles, there are three formulae by which
dihedral angles may be computed,

GV&j 9 ng -1
cosf:; = —
ng - n; ’ " 4AkAl ’

3‘/&]'
2ALA;

tan Qij = — and sin Hij =

As in two dimensions, only the tangent formula compu#tgsaccurately over its entire range. The sine
and cosine formulae are not generally recommended for ledileg ¢;; itself, although at least one of the
two is accurate for any given value @f;.

The quadrant in whicl;; falls is determined by the signs &f andn,, - n;. By convention, a dihedral
angled;; is negative if the signed volunié is negative (and signed angles are desired). A negative wdlu
n; -1, indicates tha#; is in the rangg—90°, 90°), whereas a positive value indicates the raf#e, 180°)
or (—180°, —90°).

The tangent formula is an accurate way to comglife It requires a check for division by zero. If
n; -n; = 0, 0;5 1s 90° or —90°, according to the sign df. Otherwise, most computer arctangent functions
return an angle in the range-90°,90°), and it is necessary to correct the resutijf- n; > 0 by adding or
subtractingl 80°.

The cosine formula produces an angjgin the rangg0°, 180°]. This makes it the simplest formula to
use when signed angles are not desired. (If signed angleteanm®d, an extra computation Bfis neces-
sary.) Unfortunately, the value @f; may be quite inaccurate; f@; very near0° or 180°, the calculated
value off;; loses about half its bits of accuracy. The formula is quiteuaate forg;; € [45°,135°]. If the
vectorsn,; andn; are known to be nonzero, there is no need to check for divisyarero; however, for ex-
treme values of);;, floating-point roundoff sometimes produces a valuewsf);; slightly greater than 1 or
slightly less than-1, which may cause exceptions in arccosine libraries. Ati@kpest for this possibility
is usually necessary.

The sine formula produces an angle in the rangg—90°, 90°]. If 6;; might be obtuse, an extra test is
needed to see if; - n; > 0, in which case the result must be corrected by subtractiingrit 180° or from
—180°. For6;; near90° or —90°, the calculated value df;; loses about half its bits of accuracy, and the
value ofsin #;; computed with roundoff may be slightly greater than 1 ortdligless than-1. The formula
is quite accurate fof;; € [—45°,45°] (including the range where the cosine formula is unrelijable

To find the minimum sine of the dihedral angles of a tetrahedsometimes used as a quality measure
for mesh smoothing), under the assumption that angles aex mgerpreted as being negative, compute the

value
minsin6;; = M min bj
1 ij 2 ikl distinet Ap Ay

Unfortunately, unlike with triangles, it is not always trtfeat sin 6,,;, = min;; sin 6;;, because the
dihedral angle that minimizes the sine might be an obtuskeaktpwever, the smallest dihedral angle of a
tetrahedron is always less than53°, sof.,;, can be found by minimizing over the acute dihedral angles.

. —li;] 3V . 0
tanfOpim = 6|V] min —2 and sin by, = M i
npm <0 My -1y 2 n,m<0 AR
,5,k,l distinct ,5,k,l distinct

Becausd,,;, does not exceet).53°, the arcsine operation that compufgs, is reasonably accurate. The
arctangent formula is slightly more accurate, though. @ewthough, that the computationwf, n;, A,
andA; might not be stable.)

Some (Relatively) Accurate Formulae 15

3.5 Solid Angles

Let abcd be a non-inverted tetrahedron. Each vertex of the tetramedran endpoint of three edges. The
solid angle at any vertex of the tetrahedron is the sum oftttextdihedral angles at those three edges minus
180°, and ranges frorfi° to 360°.

However, Eriksson [7] offers a faster and more accurate waypitnpute a solid angle. Leét= a — d,
u=>b—d,andv = ¢ — d. The solid angle af is ¢, where

6|V
t 2) = .
an(0/2) = eI+ Tola-v + [av -t Ve -u

The arctangent should be computed so thas in the range0°, 360°] (and not[—180°,180°]). If the
denominator is zerap = 180°; be careful to avoid a division by zero or overflow. If the demioator is
negative,¢ > 180°. For degenerate tetrahedra (whéfe= 0), ¢ = 0° if the denominator is positive,
and¢ = 360° if the denominator is negative. When both the numerator amdwohinator are zero, the solid
angle is undefined: an arbitrarily small perturbation of emstex of the tetrahedron could g&to any value.

Liu and Joe [17] provide an alternative formula. Iggtbe the solid angle at verteéxwherei is one of
a, b, c, ord. Let/;; be the length of the edge connecting verticaadj. Then

12V

sin(gi/2) = .
\/ IListjcnri(Cig + Lie + L) (Cij + Li — L)

Unfortunately, this formula does not distinguish betwel@ tases where; is less than or greater
than180°. These cases may be distinguished by checking the sign afetheminator of the formula for
tan(¢;/2) above.

Liu and Joe suggest usingin; sin(¢;/2) as a quality measure for tetrahedra. For this purpose, ibere
no need for a sign check, and their formula is convenient.

Liu and Joe also show that the smallest solid angle of a tetraim never exceeds

4arcsin \/ (9 — 5v/3)/18 = 31.59°,

and the solid angles of an equilateral tetrahedron havdlgxthis value.

3.6 Intersection Points

The intersection of a lineb with a linecd in the plane is

p=a+a(b—a),

where
Cr— Qg Cy— Gy
dy —ay dy —ay ORIENT2D(c, d, a)
a = = .

by —az by —ay by —az by —ay
dy —cp dy—cy dy —cz dy—cy

The denominator is exactly zero if and onlyif is parallel tocd. If both the numerator and denominator
are zeroab = cd.

16 Jonathan Richard Shewchuk

If pis very close t@, ¢, ord, the numerical accuracy can often be improved by repedtimgalculation
with the points appropriately swapped so thé the point nearegt If « is close to one, thepis close tah.
Swappingz with b simply flips the sign of the denominator, and only the nunoenateds to be recomputed
from scratch.

The expression faw is numerically unstable when the denominator is close to.Z&xact arithmetic is
sometimes necessary to compute the denominator with suffiaccuracy. Note that the denominator is not
equivalent to an orientation test. However, the numeratat is twice the signed area dfcda.

A related question is whether two line segmeritaindcd intersect. The segments intersect if both of the
following are true: RIENT2D(c, d, a)-ORIENT2D(c, d, b) < 0 and QRIENT2D(a, b, ¢)-ORIENT2D(a, b, d)
< 0. In words, the points andb lie on opposite sides afd (or one of them lies ond), andc andd lie on
opposite sides afb (or one of them lies onb). If an exact orientation test is available, an exact ansaar
be given.

For the intersection of two lines iA*, see Section 3.9.

The intersection (i2?) of a lineab with a plane passing throughd, ande is

p=a+alb—a),

where
Ay —Cp Gy —Cy Gy —Cy
dy —cy dy—cy d,—c;
Cles—c oey—cy ez—c | Orient3Da, d, e, ¢)
“= ay — by ay—0by a.,—"0b, N ay — by ay—0by a.,—"0b,
dy —cg dy—cy d,—c; dy —cg dy—cy d,—c;
€r —Cp €y —Cy €;—C, €r —Cp €y —Cy €;—C,

The denominator is exactly zero if and only:i#f is parallel to the plane through d, ande. If both the
numerator and denominator are zerblies in that plane.

If pisvery close ta (i.e. « is close to one), the numerical accuracy can often be imprbyeepeating
the calculation withu andb swapped. Swapping with b simply flips the sign of the denominator, and only
the numerator needs to be recomputed from scratch.

The forgoing comments about the stability of the line inéetin calculation apply here as well. The
numerator is six times the signed volume of tetrahedudsz.

3.7 Intersection Pointswith Vertical Lines

Computing the intersection of a vertical line with a hypar@ is simpler than general intersection compu-
tation. In the plane, the intersection of a limewith a vertical line withz-coordinates,, hasy-coordinate

(ex — bz)(ay — by).

ey = by + p—
T T

In £3, the intersection of a plane through the point$, andc with a vertical line with coordinates,

Some (Relatively) Accurate Formulae 17

ande, hasz-coordinate

p —Cp Ay —Cy Az —Cy Ay —Cz Ay —Cy Gy —Cy
by —cx by—cy b.—c, by —cx by—cy b.—cs
€r —Cp €y —Cy 0 €r — Cpx €y —Cy 0
€, = Cy — =c, —
Uy — Cx Ay — Cy 2A

by —cx by —cy

In E4, call the fourth coordinate axis the-axis. The formula generalizes to

Ay —dy ay —dy a;—d; ay—dy
by —dy by—dy b,—d, by —dy
Co—dy cy—dy c;—d; cy—dy
ex —dy ey—dy e,—d, 0

Cw = dw_
ay —dy ay—dy a,—d;
by —dy by—d, b,—d.
Cx—dy cy—dy c;—d;
ay —dy ay—dy a;—d; ay—dy
by —dy by—dy b,—d, by —dy
Co—dy cy—dy c;—d; cy—dy
p erx —dy ey—dy e,—d, 0

To compute the intersection of a non-vertical axis-paréifie with a hyperplane, simply swap the two
appropriate coordinates axes so that the axis-paralkeblecomes vertical, apply the formulae above, and
swap the axes back again.

3.8 Altitudes and Orthogonal Projections of Points

In d-dimensional space for any> 2, leta be a point and let be a line through two distinct pointsandc.
Letr = ¢ — cands = b — ¢. The point onL nearest the point—in other words, the orthogonal projection
of ¢ onto L—is

If p is much closer td than toc, the numerical accuracy can often be improved by repealiag t
calculation withb andc swapped. Only the numerator needs to be recomputed; svappimdc does not
change the denominator.

The distance betweenand L (in other words, betweemand its projection) is

24 _ 24
B |s| Sl

where A is the area of the trianglebc. The quantityh is also known as the altitude afin the triangle
ANabe. If d = 2, A may be signed, in which case the sigmaé the same as the sign df and thus indicates
the orientation of the vertices b, andc. The signed altitude is useful in some triangle quality mees. In
three dimensions or abovd, is naturally unsigned. Formulae fdrappear in Section 3.1.

18 Jonathan Richard Shewchuk

The minimum-magnitude altitude of a triangle is

24
T

In three-dimensional space, letbe a point and lef be a plane through three poiritsc, andd. Let
t =a—d,u=0b-—d,andv = ¢ — d. The point onP nearest the point—in other words, the orthogonal
projection ofa onto P—is

(uxv)-(txv) (uxv) - (uxt)

q=d+

lu x v|? lu x v|?

If ¢ is much closer t@ or ¢ than tod, the numerical accuracy can often be improved by repeatiag t
calculation withd swapped with the point nearest

The distance betweenand P (in other words, betweesmand its projection) is

_ v 3V
Cjuxv] A’

whereV is the volume of the tetrahedrarbed, and A, is the unsigned area of the triangleébcd. The
guantity i is also known as the altitude afin the tetrahedrombcd. V' may be signed, in which case the
sign of h is the same as the sign bf, and thus indicates the orientation of the vertiags, ¢, andd. The
signed altitude is useful in some tetrahedron quality messsurormulae fol” and A, appear in Section 3.1.

The expressions far andh are numerically unstable when their denominators are ¢togero. These
denominators are exactly zero if and onlyifs parallel tov (and thug, ¢, andd are not affinely indepen-
dent). Exact arithmetic is sometimes necessary to compatdgnominator with sufficient accuracy.

The minimum-magnitude altitude of a tetrahedron is

L8
e Amax'

3.9 Linesin Three Dimensions: Distance, Closest Points, and | nter section Points

Consider two linesb andcd in three-dimensional space. Let=a — b, v = c—d, andu = b — d. The
point onab nearestd (which is the intersection point ifb intersects:d) is

(Wxv)-(vxu)

=b
p=o+ |lw x v|?

The denominator is exactly zero if and only:if is parallel tocd. If v x u = 0 as well, therub = cd.

If pis much closer ta than tob (i.e. if the fraction is close to one), the numerical accyrean often be
improved by repeating the calculation withandb swapped. Only the numerator needs to be recomputed;
swappinge with b does not change the denominator.

The point orncd nearestid is

q:d+(wxv)-(wxu)

|w x v|2 v

Some (Relatively) Accurate Formulae 19

If ¢ is much closer te@ than tod (i.e. if the fraction is close to one), the numerical accyreen often be
improved by repeating the calculation wittandd swapped. Only the numerator needs to be recomputed;
swappinge with d does not change the denominator.

The linesab andcd intersect if and only if

ORIENT3D(a, b, ¢,d) = 0.

The signed distance betweehandcd (at their closest points) is

6V ORIENT3D(a, b, ¢, d)

:|WXV|: |w X v

)

whereV is the signed volume of the tetrahedrdied. The sign ofh indicates the orientation of the vertices
a, b, ¢, andd. The signed distance is useful in some tetrahedron quabgsores.

The expressions fqr, ¢, andh are numerically unstable whéw x v| is close to zero. Exact arithmetic
is sometimes necessary to compute the denominator witltiguffiaccuracy.

3.10 TheMinimum Aspect of a Tetrahedron

The minimum aspect of a tetrahedron is the smallest distaat@een two parallel planes such that the
tetrahedron fits between the planes. It is either an altinidbe tetrahedron or the distance between two
opposite edges of the tetrahedron. (Two edges of a tetrahadeoppositdf they do not share an endpoint.
The six edges of a tetrahedron consist of three pairs of djgoedges.) A tetrahedron has four altitudes, for
which Section 3.8 prescribes the form@éle/|u x v|, whereu andv represent two edges of a face of the
tetrahedron. A tetrahedron has three pairs of oppositesedigewhich Section 3.9 prescribes the formula
6V/|w x v|, wherew andv represent opposite edges of the tetrahedron.

Hence, the minimum aspect of a tetrahedron is

6V

hmin =
maxyy |X X y|

wherex andy vary over all the edges of the tetrahedron. However, it isneatessary to test all pairs of
edges, because some pairs are redundant; any two edgescefaillayield the same altitude. Just seven
pairs of edges must be tested, corresponding to the fous tawthe three opposite pairs of edges.

Note that the minimum aspect of a triangle—the smallesadist between two parallel lines such that
the triangle fits between the lines—is always its minimuriae.

3.11 Circumcentersand Circumradii of Trianglesand Tetrahedra

The following expressions compute the certiey;. of a circle that passes through the three points and
c in the plane. This circle is known as thizcumscribing circle or circumcircle of the triangleabe.

‘ |r|z Ty (az — C:c)z + (ay — Cy)22 Ay — Cy
Is[® sy (b —cz) 4 (by —cy)” by — ¢y
O = ot — Y1 —c, +

* * 4A * Ay — Cy Ay — ¢y

2

by —ce by —cy

20 Jonathan Richard Shewchuk

Ty ‘I'P az — ¢z (az — cw)z + (ay o Cy)2 ‘
2 2 2
s s by — ¢ by —cz)?+ (by — ¢
Oy — Cy + x | | — Cy _"_ x x (Zz 93) (Yy y)
4A Qg — Cp Gy —Cy

2

by —ce by —cy

These expressions are numerically unstable when the deatonis close to zero (i.e. for a triangle that
is nearly degenerate). An accuratel@nT12D implementation should be used to calculate the denoorinat
if one is available.

Although the circumradius of a triangle can be computed bypmating O.;,c — ¢ with the formulae
above, then the distan¢@.i,.c|, a slightly more accurate formula is
lalple |b—cl|lc—alla—b]

Tcirc =)
4A 9| Gz —Ca Ay = ¢y

by —cz by —cy

where/,, ¢, and/. are the edge lengths of the triangle. Because square rodtopes are expensive and
introduce error, the numerator above is best computeg|as- c[2|c — a|2|a — b]2.

The following expressions compute the smallest sphere ghases through the vertices of a two-
dimensional triangle 3. The centeO,,. of the sphere is coplanar with the triangle.

(Jr*s — [s|?r) x (r x s)

Ocirc = SA?
oy [|a—c|2(b—c)—]b—c\z(a—c)] X [(a—c) x (b—c)]
2/(a —c) x (b—¢)|? '
(s) < rxs)
C1rc - 8A2 .

f

The following expressions compute the sphere that passasgi four pointsy, b, ¢, andd in E3. This
sphere is known as th@rcumscribing sphereor circumsphereof the tetrahedronbcd.

[t)?u x v + [u’v x t + |v|*t x u
Ocire = d+ 12V
d+|a—d]2(b—d)><(c—d)+]b—d|2(c—d)x(a—d)—i—\c—d!z(a—d)x(b—d)
ay —dy ay—dy a,—d;
2| by —dy by—d, b,—d;
Ceg—dy cy—dy c,—d;

|[6[2u x v + [uf?>v x t + |[v[*t x u
T'circ oV .

These expressions, like the two-dimensional formula, araerically unstable when the denominator
is close to zero (i.e. for a tetrahedron that is nearly deggéee An accurate ENT3D implementation
should be used to calculate the denominator if one is availab

3.12 Orthocentersand Orthoradii of Trianglesand Tetrahedra

Suppose the poinis, b, andc are assigneweightsw,, wy, andw,; or heightsh,, hy, andh.. The height
of a vertex is ther,1-coordinate to which it is lifted by the parabolic lifting maf Seidel [20, 6]. In a

Some (Relatively) Accurate Formulae 21

weighted Delaunay triangulation or power diagram, the Wesignd heights are related by = |a|? — w,.
Imagine a circle around each vertexvith radiusw,, and similar circles for the other two vertices. The
orthocircle of the trianglebc is the circle that is orthogonal to the circles around, andc. In the special
case where all three weights are zero, the orthocircle anditbumcircle are the same.

The numerically best-behaved expressions for computiagtthocircle depend on whether the input
includes the heights or the weights. (Either one can be ctadgtom the other, but the bit length increases.)

If the weights are given, use the following expressions far drthcentep,,, and orthoradiugy, .
Note that a triangle with vertex weights can have an imagioahoradius.

v + (we —wa) 7y

B ‘bﬁum—w>%
Op = Cy i

(a2 — cz)® + (ay — Cy)2 + (We —wa) ay —cy

‘ (bz — co)? + (by — ¢y)* + (we —wp) by — ¢y

o| G —Cx ay—cy
by —cz by —cy
Tz ‘I"Q + (wc - wa)
Sz ’S|2 + (wc - wb)
% = T A
az — oz (az — cz)? + (ay — cy)? + (we — wy)
by — o (by —) + (by — ¢y)* + (we — wyp)
— Cy —|.—
5| G = Cx ay—cy
by —cx by —cy
P+ (we—wa) vy [P | e P (e~ wa) [
2 2 [s]? + (we —wp) sy e |8|? 4 (we — wy)
Torth — loorthcl — We = 1642 — We.

For the last formula, do not computg,.;, directly fromo,,;,. The value ofo,,,.c|? can be computed much
more accurately, as shown.

If the heights are given, use the following expressions.

he —he 1y ha —he ay —cy
hb—hc Sy hb—hc by—cy
0p = =)
v 4A Ay — Cp Ay — ¢y
2
by —cz by —cy
Tz ha — he Ay — Ccz hg — he
Sy hb—hc bx—cx hb—hc
(@) = fry
Y 4A Ay — Cp Ay — Cy
2
by —ce by —cy
7/‘grth = loorthc|2 + (hc - |C|2)'

In this casery,,1, is computed directly frona,,(;,. The parentheses indicate that it is wise to perform the
subtraction before the addition.

The following formulae compute the orthosphere of a tetiabie.

([6]2 + (wa — wa)) u x v + (Jul? 4+ (wg — wp)) v x t + (|v[* + (wg — wp)) t x u
12V

Oorth = d+

22 Jonathan Richard Shewchuk

(ha—hd)uXV+(hb—hd)V Xt—|—(hc—hd)t X u
12V)
Totn = |0ortnd|” — wa

Ot + (wa = wa)) wx v + (Juf + (wa = wp) v x b+ ([v[2+ (wg — wp)) £ x u® o

144V?2
= |oortnd|® + (ha — |d?).

Again, the value of-,.;1, must be computed directly from,.y, if the heights are given, but if the weights
are giveny .., should be computed without usileg,;, as an intermediate expression.

3.13 Min-Containment Circles and Spheres of Triangles and Tetrahedra

Let O, andry,. denote the center and radius of the smallest circle or sghateencloses a triangle or
tetrahedron.

To find the min-containment circle of a triangle, first detavenwhether the triangle has an angle of
90° or greater. This is quickly accomplished by checking thesigf the dot products of each pair of edge
vectors. If one of the angles98° or greater, thew,,,. is the midpoint of the opposite edge ang is half its
length (and there is no need to test the remaining angleall.tHree angles are acute, the min-containment
circle is the circumcircle and the min-containment radauhe circumradius; see Section 3.11.

To find the min-containment sphere of a tetrahedraml, first compute its circumcentél.;... Next, test
whetherO.,. is in the tetrahedron by checking it against each triandalee. If ORIENT3D(O.irc, b, ¢, d),
ORIENT3D(Ov¢ire, @, d, ¢), ORIENT3D(Ociyc, d, a, b), and QRIENT3D(Ogirc, ¢, b, a) are all nonnegative, then
Ome = Ocire andrye. = reire. If €xactly one orientation test returns a negative valhentD,,. andr,.
are the center and radius of the min-containment circle efdbrresponding triangular face. If two of
the volumes are negative, théh,. andr,, are the center and half the length of the edge where the two
corresponding triangular faces meet.

In the case wheré,,,. is a circumcenter of one of the faces, it may be slightly fatet slightly less
accurate, to find the circumcenter of the triangular facertyogionally projecting).i.. onto the face using
the formula in Section 3.8, instead of using the face circamber formula in Section 3.11.

3.14 Incentersand Inradii of Trianglesand Tetrahedra

The center of the smallest circle in the plane that intessalttthree sides of a triangle (also known as the
inscribed circlg is
0. = Z?:l givi
m — Zg g 9
=171
2A

Tin = 3

Zi:l gi'

The center of the smallest spherefin that intersects all four faces of a tetrahedron (also knosvihe
inscribed sphergis

and its radius is

O — Yoisy Aivi
in = 1)
>im1 Ai

Some (Relatively) Accurate Formulae 23

and its radius is
3V

Z?:1 Ai ‘

Tin =

3.15 Power Functions

For a circle or spheré, the power functionrgs(p) maps a poinp to a number such thay/ws(p) is the
radius of the circle or sphere centeregahat is orthogonal t&. Let maqu.(p) denoterg(p) wheresS is
the orthosphere or circumspheredtbe (see Section 3.12).

Consider the two-dimensional case. Suppose the pejitsandc are assignedeightsw,, wy, andw,
andheightsh, = |a|?> — wq, hy = |b* — wy, andh, = |c[? — w.. Define thelifted pointa™ € E3 to be
(az, ay, hq), and likewise fob™ andc™. Let H be the plane i3 that contains: ™, b™, andc™. Let H(p)
be a function that maps any pointe E? to thez-coordinate such thap., p,, H(p)) € H. Observe that
computingH (p) is equivalent to computing the intersection of a vertiaag lwith /, which is addressed in
Section 3.7.

The power function obeys the identitys(p) = |p|> — H(p). As with computing orthospheres, the
numerically best-behaved way to compute(p) depends on whether the input includes the heights or the
weights of the vertices that defirte If the heights are provided, one may comp#éiép) as described in
Section 3.7, treating each height as an extra coordinae,dhlculaters(p) = |p|> — H(p). If the weights
are provided, the following formulae are preferable.

For a trianglezbc in the plane,

ay —cx ay—cy (az —cx)® + (ay — ¢y)* + (we — w,)
by —co by —cy (b —cz)?+ (by — ¢y)* + (we. — wp)
€z —Cx €y —Cy (ex — co)? + (ey — ¢y)?
7"'Aabc(e) = — We.
Uy — Cp Ay — Cy
by —cz by —cy

If all the weights are zero (i.era 4. is determined by the circumcircle of the triangle), thigioita reduces

to
_ INCIRCLE(a, b, e,)

7TA(I,I)C (6) - 2A *

For a tetrahedronbed in E?,

ay —dy ay—dy a,—d, (az— de)? + (ay — aly)2 + (ay — d2)? + (wg — wy)
by —dy by—dy by—d, (by—dy)?+ (by—dy)?+ (by — d)? + (wg — wp)
Co—dy Cy—dy c;—dy (cp— dg)? + (cy — dy)2 +(cz — dy)? + (wg — we)
ex —dy ey —d, e,—d, (ex —dyp)? + (ey — dy)? + (es — d)?
Wabcd(e) = — Wq.

y —dy ay—dy ay—d,
by —dy by —dy, by, —d,
Cr—dy cy—dy cy—d,

If all the weights are zero (i.etaq IS determined by the circumsphere of the tetrahedron) ftnaula
reduces to
INSPHEREa, b, ¢, €, d)

6V

Tabed (6) =

24 Jonathan Richard Shewchuk

References

[1] Francis Avnaim, Jean-Daniel Boissonnat, Olivier Diar#$, Franco P. Preparata, and Mariette Yvinec.
Evaluating Signs of Determinants Using Single-Precisioithfnetic Algorithmica17(2):111-132,
February 1997.

[2] C. Bradford BarberComputational Geometry with Imprecise Data and Arithmefiib.D. thesis, De-
partment of Computer Science, Princeton University, Ratioe, New Jersey, October 1992. Available
as Technical Report CS-TR-377-92.

[3] Christoph Burnikel, Jochen #emann, Kurt Mehlhorn, Stefanaler, Stefan Schirra, and Christian
Uhrig. Exact Geometric Computation in LEDAEleventh Annual Symposium on Computational
Geometry (Vancouver, British Columbia, Canada), pages-C18. Association for Computing Ma-
chinery, June 1995.

[4] John Canny.Some Algebraic and Geometric Computations in PSRAZIEh Annual Symposium on
the Theory of Computing (Chicago, lllinois), pages 460-4&3sociation for Computing Machinery,
May 1988.

[5] Kenneth L. ClarksonSafe and Effective Determinant Evaluati@3rd Annual Symposium on Founda-
tions of Computer Science (Pittsburgh, Pennsylvania)ep@87—-395. IEEE Computer Society Press,
October 1992.

[6] Herbert Edelsbrunner and Raimund Seidebronoi Diagrams and Arrangement®iscrete & Com-
putational Geometr{:25-44, 1986.

[7] F. Eriksson.On the Measure of Solid AngleBlathematics Magazing3(3):184-187, 1990.

[8] Steven Fortune.Stable Maintenance of Point Set Triangulations in Two Disi@ms 30th Annual
Symposium on Foundations of Computer Science, pages 494+8BE Computer Society Press,
1989.

. Progress in Computational GeometrRirections in Geometric Computing (R. Martin, edi-
tor), chapter 3, pages 81-128. Information Geometers 1893.

[9]

[10] . Progress in Computational Geometriirections in Geometric Computing (R. Martin, edi-
tor), chapter 3, pages 81-128. Information Geometers 1893.
[11] . Numerical Stability of Algorithms for 2D Delaunay Triangtibns International Journal of

Computational Geometry & Applicatiori§1-2):193-213, March—June 1995.

[12] Steven Fortune and Christopher J. Van Wigfficient Exact Arithmetic for Computational Geometry
Proceedings of the Ninth Annual Symposium on Computati@eimetry, pages 163-172. Associa-
tion for Computing Machinery, May 1993.

[13] . Static Analysis Yields Efficient Exact Integer Arithmetic@omputational GeometryACM

Transactions on Graphid$(3):223—-248, July 1996.

[14] Leonidas J. Guibas and Jorge StoRrimitives for the Manipulation of General Subdivisionslahe
Computation of VororidDiagrams ACM Transactions on Graphieg2):74-123, April 1985.

REFERENCES 25

[15] Christoph M. HoffmannThe Problems of Accuracy and Robustness in Geometric CatigutCom-
puter22(3):31-41, March 1989.

[16] Michael Karasick, Derek Lieber, and Lee R. NackmEfficient Delaunay Triangulation Using Ratio-
nal Arithmetic ACM Transactions on Graphid®(1):71-91, January 1991.

[17] Anwei Liu and Barry JoeRelationship between Tetrahedron Shape Meas®8534:268—287, 1994.

[18] Victor Milenkovic. Double Precision Geometry: A General Technique for CaltintaLine and Seg-
ment Intersections using Rounded Arithme86th Annual Symposium on Foundations of Computer
Science, pages 500-505. IEEE Computer Society Press, 1989.

[19] N. E. Mnev. The Universality Theorems on the Classification Problemaifiguration Varieties and
Convex Polytopes VarietieJopology and Geometry - Rohlin Seminar (O. Ya. Viro, edithecture
Notes in Mathematics, volume 1346, pages 527-543. Sprivigrtag, 1988.

[20] Raimund SeideMoronoi Diagrams in Higher DimensionBiplomarbeit, Institutir Informationsver-
arbeitung, Technische Univer&itGraz, 1982.

[21] Jonathan Richard Shewchukdaptive Precision Floating-Point Arithmetic and Fast RebGeomet-
ric Predicates Discrete & Computational Geometi3(3):305-363, October 1997.

[22] James Hardy WilkinsonRounding Errors in Algebraic ProcesseBrentice-Hall, Englewood Cliffs,
New Jersey, 1963.

