
Lecture Notes on
Geometric Robustness

Jonathan Richard Shewchuk
jrs@cs.berkeley.edu

April 15, 2013

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, CA 94720

Supported in part by the Natural Sciences and Engineering Research Council of Canada under a 1967 Science and Engineer-
ing Scholarship, in part by the National Science Foundationunder Awards CMS-9318163, ACI-9875170, CMS-9980063, CCR-
0204377, and CCF-0430065, in part by an Alfred P. Sloan Research Fellowship, and in part by a gift from the Okawa Foundation.
The claims in this document are those of the author. They are not endorsed by the sponsors or the U. S. Government.

Keywords: computational geometry, geometric robustness, geometricpredicates, geometric construc-
tors, geometric primitives, orientation test, incircle test

Contents

1 Geometric Robustness 1

2 Geometric Computations with Less Error 6

3 Some (Relatively) Accurate Formulae 9
3.1 Orientation of Points, Triangle Area, Tetrahedron Volume, Collinearity, and

Coplanarity 9
3.2 The InCircle and InSphere Predicates 11
3.3 Angles and Minimum Angles 12
3.4 Dihedral Angles and Minimum Dihedral Angles 13
3.5 Solid Angles 15
3.6 Intersection Points 15
3.7 Intersection Points with Vertical Lines 16
3.8 Altitudes and Orthogonal Projections of Points 17
3.9 Lines in Three Dimensions: Distance, Closest Points, and Intersection Points 18
3.10 The Minimum Aspect of a Tetrahedron 19
3.11 Circumcenters and Circumradii of Triangles and Tetrahedra 19
3.12 Orthocenters and Orthoradii of Triangles and Tetrahedra 20
3.13 Min-Containment Circles and Spheres of Triangles and Tetrahedra 22
3.14 Incenters and Inradii of Triangles and Tetrahedra 22
3.15 Power Functions 23

1 Geometric Robustness

Most geometric algorithms are not designed for numerical robustness; they are based on thereal RAM
model, in which quantities are allowed to be arbitrary real numbers, and all arithmetic is exact. There are
several ways a geometric algorithm that is correct within the real RAM model can go wrong in an encounter
with a modern microprocessor, in which floating-point operations are subject to roundoff error. The output
might be incorrect, but be correct for some perturbation of the input. The result might be usable yet not be
valid for any imaginable input. Or, the program may simply crash or fail to produce a result. I occasionally
hear of implementations where more than half the developers’ time is spent solving problems of roundoff
error. For surveys of geometric robustness, see Fortune [9]and Hoffmann [15].

There are two types of geometric calculations, orprimitives, found in geometric algorithms:predicates,
which make a two-way or three-way decision (does this point lie to the left of, to the right of, or on this
line?), andconstructors, which create a new geometric object (what is the intersection point of these two
lines?). Predicates usually make decisions based on the sign of an arithmetic expression—often a matrix
determinant. Some geometric algorithms produce output that is purely combinatorial, such as a convex hull
or an arrangement of hyperplanes, and rely exclusively on predicates. For example, a Delaunay triangulation
can be computed using only orientation and incircle tests (which are discussed in the next section). Algo-
rithms that use constructors are sometimes more difficult tomake robust, because the objects they construct
may take much greater numerical precision to represent thanthe input.

Geometric algorithms may be divided into several classes with varying amounts of robustness:exact
algorithms, which are always correct;robust algorithms, which are always correct for some perturbation
of the input;stable algorithms, for which the perturbation is small;quasi-robust algorithms, whose results
might be geometrically inconsistent, but nevertheless satisfy some weakened consistency criterion; and
fragile algorithms, which are not guaranteed to produce any usable output at all. The next several pages
are devoted to a discussion of representative research in each class, and of the circumstances in which
exact arithmetic and other techniques are or are not applicable. For more extensive surveys of geometric
robustness, see Fortune [10] and Hoffmann [15].

Exact algorithms. A geometric algorithm isexactif it is guaranteed to produce a correct result when given
an exact input. (Of course, the input to a geometric algorithm may only be an approximation of some real-
world configuration, but this difficulty is ignored here.) Exact algorithms use exact arithmetic in some form,
whether in the form of a multiprecision library or in a more disguised form.

There are several exact arithmetic schemes designed specifically for computational geometry; most are
methods for exactly evaluating the sign of a determinant, and hence can be used to perform the orientation
and incircle tests. These schemes are nearly always combined with afloating-point filter: each expression
is first evaluated with ordinary floating-point arithmetic (roundoff error and all), and forward error analysis
is used to compute an upper bound on the error of the expression. If the error bound is smaller than the
magnitude of the expression, then the sign of the expressionis known to be correct. Exact arithmetic is used
only if the error bound is too large.

Clarkson [5] proposes an algorithm for using floating-pointarithmetic to evaluate the sign of the deter-
minant of a small matrix of integers. A variant of the modifiedGram-Schmidt procedure is used to improve
the conditioning of the matrix, so that the determinant can subsequently be evaluated safely by Gaussian
elimination. The 53 bits of significand available in IEEE double precision numbers are sufficient to operate
on10× 10 matrices of 32-bit integers. Clarkson’s algorithm is naturally adaptive; its running time is small
for matrices whose determinants are not near zero.

2 Jonathan Richard Shewchuk

Avnaim, Boissonnat, Devillers, Preparata, and Yvinec [1] proposed an algorithm to evaluate signs of
determinants of2×2 and3×3 matrices ofp-bit integers using onlyp and(p+1)-bit arithmetic, respectively.
Surprisingly, this is sufficient even to implement the insphere test (which is normally written as a4 × 4 or
5× 5 determinant), but with a handicap in bit complexity: 53-bitdouble precision arithmetic is sufficient to
correctly perform the insphere test on points having 24-bitinteger coordinates.

Fortune and Van Wyk [13, 12] propose a more general approach (not specific to determinants, or even
to predicates) that represents integers using a standard extended precision technique, with digits of radix
223 stored as double precision floating-point values. Rather than use a general-purpose arbitrary precision
library, they have developed LN, an expression compiler that writes code to evaluate a specific expression
exactly. The size of the operands is arbitrary, but is fixed when LN is run; an expression can be used to
generate several functions, each for arguments of different bit lengths. Because the expression and the bit
lengths of all operands are fixed in advance, LN can tune the exact arithmetic aggressively, eliminating loops,
function calls, and memory management. The running time of afunction produced by LN depends on the bit
complexity of the inputs. Fortune and Van Wyk report an order-of-magnitude speed improvement over the
use of multiprecision libraries (for equal bit complexity). Furthermore, LN gains another speed improvement
by installing floating-point filters wherever appropriate,calculating error bounds automatically.

Karasick, Lieber, and Nackman [16] report their experiences optimizing a method for determinant evalu-
ation using rational inputs. Their approach reduces the bitcomplexity of the inputs by performing arithmetic
on intervals (with low precision bounds) rather than exact values. The determinant thus evaluated is also
an interval; if it contains zero, the precision is increasedand the determinant reevaluated. The procedure
is repeated until the interval does not contain zero (or contains only zero), and its sign is certain. Their
approach is thus somewhat adaptive, but it does not appear touse the results of one iteration to speed the
next.

None of the methods mentioned so far is suitable if an algorithm must use floating-point coordinates (and
cannot scale the inputs to be integers). Elsewhere [21], I propose a method for writing robust floating-point
predicates that relies on new algorithms for arbitrary precision arithmetic and a technique for adaptively
computing the value of a polynomial expression. As with Clarkson’s method, the amount of time required
for the computation depends on how close the value of the expression is to zero. The inputs may be ordinary
single or double precision (24- or 53-bit significand) IEEE floating-point numbers.

The Clarkson and Avnaim et al. algorithms are effectively restricted to low precision integer coordinates.
Floating-point inputs are more difficult to work with than integer inputs, partly because of the potential for
the bit complexity of intermediate values to grow more quickly. The Karasick et al. algorithm also suffers
this difficulty, and is too slow to be competitive with the other techniques discussed here, although it may
be the best existing alternative for algorithms that require rational numbers, such as those computing exact
line intersections.

Exact expression evaluation algorithms—especially thosethat accommodate inputs with only a limited
bit complexity—do not satisfy the needs of all applications. A program that computes line intersections
requires rational arithmetic; an exact numerator and exactdenominator must be stored. If the intersections
may themselves become endpoints of lines that generate moreintersections, then intersections of greater and
greater bit complexity may be generated. Even exact rational arithmetic is not sufficient for all applications.
A solid modeler, for instance, might need to determine the vertices of the intersection of two independent
solids that have been rotated through arbitrary angles. Yetexact floating-point arithmetic can’t even cope
with rotating a square45◦ in the plane, because irrational vertex coordinates result. The problem of con-
structed irrational values has been partly attacked by the implementation of “real” numbers in the LEDA
library of algorithms [3]. Values derived from square roots(and other arithmetic operations) are stored in

Geometric Robustness 3

symbolic form when necessary. Comparisons with such numbers are resolved with great numerical care,
albeit sometimes at great cost; separation bounds are computed where necessary to ensure that the sign of
an expression is determined accurately. Floating-point filters and another form of adaptivity (approximating
a result repeatedly, doubling the precision each time) are used as well.

For the remainder of this discussion, I consider only algorithms that use only predicates, and not con-
structors.

Robust algorithms. There are algorithms that can be made correct with straightforward implementations
of exact arithmetic, but suffer an unacceptable loss of speed. An alternative is to relax the requirement of
a correct solution, and instead accept a solution that is “close enough” in some sense that depends upon
the application. Without exact arithmetic, an algorithm must somehow find a way to produce sensible
output despite the fact that geometric tests occasionally tell it lies. No general techniques have emerged yet,
although bandages have appeared for specific algorithms, usually ensuring robustness or quasi-robustness
through painstaking design and error analysis. The lack of generality of these techniques is not the only
limitation of the relaxed approach to robustness; there is amore fundamental difficulty that deserves careful
discussion.

When disaster strikes and a real RAM-correct algorithm implemented in floating-point arithmetic fails to
produce a meaningful result, it is often because the algorithm has performed tests whose results are mutually
contradictory. Figure 1 shows an error that arose in a two-dimensional Delaunay triangulation program I
wrote. The program, which employs a divide-and-conquer algorithm presented by Guibas and Stolfi [14],
failed in a subroutine that merges two triangulations into one. The geometrically nonsensical triangulation
in the illustration was produced.

On close inspection with a debugger, I found that the failurewas caused by a single incorrect result of the
incircle test. At the bottom of Figure 1 appear four nearly collinear points whose deviation from collinearity
has been greatly exaggerated for clarity. The pointsa, b, c, andd had been sorted by theirx-coordinates,
andb had been correctly established (by orientation tests) to lie below the lineac and above the linead. In
principle, a program could deduce from these facts thata cannot fall inside the circledcb. Unfortunately,
the incircle test incorrectly declared thata lay inside, thereby leading to the invalid triangulation.

It is significant that the incircle test was not just wrong about these particular points; it was inconsistent
with the “known combinatorial facts.” A correct algorithm (that computes a purely combinatorial result)
will produce a meaningful result if its test results are wrong but are consistent with each other, because there
exists an input for which those test results are correct. Following Fortune [8], an algorithm isrobust if it
always produces the correct output under the real RAM model,and under approximate arithmetic always
produces an output that is consistent with some hypothetical input that is a perturbation of the true input; it
is stableif this perturbation is small. Typically, bounds on the perturbation are proven by backward error
analysis. Using only approximate arithmetic, Fortune gives an algorithm that computes a planar convex hull
that is correct for points that have been perturbed by a relative error of at mostO(ǫ) (whereǫ is themachine
epsilonof the floating-point unit), and an algorithm that maintainsa triangulation that can be made planar by
perturbing each vertex by a relative error of at mostO(n2ǫ), wheren is the number of vertices. If it seems
surprising that a “stable” algorithm cannot keep a triangulation planar, consider the problem of inserting a
new vertex so close to an existing edge that it is difficult to discern which side of the edge the vertex falls
on. Only exact arithmetic can prevent the possibility of creating an “inverted” triangle.

One might wonder if my triangulation program can be made robust by avoiding any test whose result
can be inferred from previous tests. Fortune [8] explains that

[a]n algorithm isparsimoniousif it never performs a test whose outcome has already been deter-
mined as the formal consequence of previous tests. A parsimonious algorithm is clearly robust,

4 Jonathan Richard Shewchuk

b

a

c

d

Figure 1:Top left: A Delaunay triangulation. Top right: An invalid triangulation created due to roundoff error.
Bottom: Exaggerated view of the inconsistencies that led to the problem. The algorithm “knew” that the
point b lay between the lines ac and ad, but an incorrect incircle test claimed that a lay inside the circle dcb.

Geometric Robustness 5

since any path through the algorithm must correspond to somegeometric input; making an al-
gorithm parsimonious is the most obvious way of making it robust. In principle it is possible to
make an algorithm parsimonious: since all primitive tests are polynomial sign evaluations, the
question of whether the current test is a logical consequence of previous tests can be phrased as
a statement of the existential theory of the reals. This theory is at least NP-hard and is decidable
in polynomial space [4]. Unfortunately, the full power of the theory seems to be necessary for
some problems. An example is theline arrangement problem: given a set of lines (specified
by real coordinates(a, b, c), so thatax + by = c), compute the combinatorial structure of the
resulting arrangement in the plane. It follows from recent work of Mnev [19] that the problem
of deciding whether a combinatorial arrangement is actually realizable with lines is as hard as
the existential theory of the reals. Hence a parsimonious algorithm for the line arrangement
problem . . . seems to require the solution of NP-hard problems.

Because exact arithmetic does not require the solution of NP-hard problems, an intermediate course
is possible: one could employ parsimony whenever it is efficient to do so, and resort to exact arithmetic
otherwise. Consistency is guaranteed if exact tests are used to bootstrap the “parsimony engine.” I am not
aware of any algorithms in the literature that take this approach, although geometric algorithms are often
designed by their authors to avoid the more obviously redundant tests.

Quasi-robust algorithms. The difficulty of determining whether a line arrangement is realizable suggests
that, without exact arithmetic, robustness as defined abovemay be an unattainable goal. However, some-
times one can settle for an algorithm whose output might not be realizable. I place such algorithms in a
bag labeled with the fuzzy termquasi-robust, which I apply to any algorithm whose output is somehow
provably distinguishable from nonsense. Milenkovic [18] circumvents the aforementioned NP-hardness re-
sult while using approximate arithmetic by constructing pseudo-line arrangements; apseudo-lineis a curve
constrained to lie very close to an actual line. Fortune [11]presents a 2D Delaunay triangulation algorithm
that constructs, using approximate arithmetic, a triangulation that is nearly Delaunay in a well-defined sense
using the pseudo-line-like notion of pseudocircles. Unfortunately, the algorithm’s running time isO(n2),
which compares poorly with theO(n log n) time of optimal algorithms. Milenkovic’s and Fortune’s al-
gorithms are bothquasi-stable, having small error bounds. Milenkovic’s algorithm can be thought of as a
quasi-robust algorithm for line arrangements, or as a robust algorithm for pseudo-line arrangements.

Barber [2] pioneered an approach in which uncertainty, including the imprecision of input data, is a part
of each geometric entity.Boxesare structures that specify the location and the uncertainty in location of
a vertex, edge, facet, or other geometric structure. Boxes may arise either as input or as algorithmic con-
structions; any uncertainty resulting from roundoff erroris incorporated into their shapes and sizes. Barber
presents algorithms for solving the point-in-polygon problem and for constructing convex hulls in any di-
mension. For the point-in-polygon problem, “can’t tell” isa valid answer if the uncertainty inherent in the
input or introduced by roundoff error prevents a sure determination. The salient feature of Barber’s Quick-
hull convex hull algorithm is that it merges hull facets thatcannot be guaranteed (through error analysis)
to be clearly locally convex. Thebox complexproduced by the algorithm is guaranteed to contain the true
convex hull, bounding it, if possible, both from within and without.

The degree of robustness required of an algorithm is typically determined by how its output is used.
For instance, many point location algorithms can fail when given a non-planar triangulation. For this very
reason, my triangulator crashed after producing the flawed triangulation in Figure 1.

The reader should take three lessons from this discussion. First, problems due to roundoff can be severe
and difficult to solve. Second, even if the inputs are imprecise and the user isn’t picky about the accuracy of
the output, internal consistency may still be necessary if any output is to be produced at all; exact arithmetic

6 Jonathan Richard Shewchuk

may be required even when exact results aren’t. Attempts to solve problems by “tolerancing” (e.g., treating
nearly-collinear points as if they were collinear) are not generally effective, because the use of tolerances
does not restore internal consistency. Third, neither exact arithmetic nor clever handling of tests that tell
falsehoods is a universal balm. However, exact arithmetic is attractive when it is applicable, because it can
be plugged into a geometric algorithm with little effort.

2 Geometric Computations with Less Error

Here, I discuss how to write geometric primitives that incuras little error as possible if exact arithmetic is
not available or is too slow. The main principle is this: manygeometric computations involve geometric
entities whose absolute coordinates (distance from the origin) are much greater than their relative coordinates
(distance from each other). Furthermore, many common geometric calculations are translation-invariant: if
we move the axes of the coordinate system, the answer is the same. Hence, if the operands of a geometric
predicate or constructor are translated so that one of the relevant points lies at the origin, numerical precision
is freed, and the result is more accurate.

Many geometric expressions found in the literature are already written as a function of differences of
points, and these typically perform well. As a bad example, though, consider a well-known expression for
the area of a polygon. Ifp1, p2, . . . , pn are the vertices of a polygon listed in order around its boundary, let
pi,x andpi,y be thex- andy-coordinates ofpi, and letpn+1 = p1. The area of the polygon is

1

2

∣

∣

∣

∣

∣

n
∑

i=1

(pi,xpi+1,y − pi,ypi+1,x)

∣

∣

∣

∣

∣

.

If the polygon’s dimensions are small compared to its distance from the origin, this formula can give a
terribly inaccurate result. To derive a better formula, translatepn to the origin by replacing eachpi with p′i,
then substitutingp′i = pi − pn. The improved formula is

1

2

∣

∣

∣

∣

∣

n−2
∑

i=1

[(pi,x − pn,x)(pi+1,y − pn,y)− (pi,y − pn,y)(pi+1,x − pn,x)]

∣

∣

∣

∣

∣

.

One can use forward error analysis [22] to derive estimates of the error (caused by floating-point roundoff)
after computing each of these two expressions. The analysisreveals that the error of the first expression is
a function of the sizes of the coordinates, whereas the errorof the second expression is a function only of
the distances between the points. If these distances are notably smaller than the absolute coordinates, the
second expression is much more accurate. The products in thesecond expression benefit from the extra
precision freed by the translation of points to near the origin. Unfortunately, the second formula uses more
floating-point operations. (With a little clever coding, each difference between points can be computed once
and used twice.) There is often a trade-off between numerical accuracy and speed.

It is straightforward to show that the two expressions aboveare equivalent, but if we believe the first
expression is correct, it suffices that we understand that translating a polygon does not change its area.
However, there are geometric calculations that are not translation-invariant.

The translation of points can often be done without roundofferror. Figure 2 demonstrates a toy problem:
suppose we compute the area of each triangle in a triangulation (using the second formula above). An
interesting property of most floating-point systems (including the IEEE standard) is that if two numbers
have the same sign and differ by at most a factor of two, then their difference is computed with no roundoff

Geometric Computations with Less Error 7

Figure 2:Shaded triangles can be translated to the origin without incurring roundoff error. In most triangu-
lations, such triangles are the common case.

error. Hence, in Figure 2, any shaded triangle can be translated so that one of its vertices lies at the origin
without roundoff error. The white triangles may or may not suffer from roundoff during such translation.
In a large triangulation, only a small proportion of the triangles (those near a coordinate axis) will suffer
roundoff during the translation.

Two other important examples of these ideas are the orientation predicate, used in most geometric codes,
and the incircle predicate, used to construct Delaunay triangulations. Leta, b, c, andd be four points in
the plane. Define a procedure ORIENT2D(a, b, c) that returns a positive value if the pointsa, b, andc
are arranged in counterclockwise order, a negative value ifthe points are in clockwise order, and zero if
the points are collinear. A more common (but less symmetric)interpretation is that ORIENT2D returns a
positive value ifa lies to the left of the directed linebc; for this purpose the orientation test is used by many
geometric algorithms.

Define also a procedure INCIRCLE(a, b, c, d) that returns a positive value ifd lies inside the oriented
circleabc. By oriented circle, I mean the unique (and possibly degenerate) circle througha, b, andc, with
these points occurring in counterclockwise order about thecircle. (If these points occur in clockwise order,
INCIRCLE will reverse the sign of its output, as if the circle’s exterior were its interior.) INCIRCLE returns
zero if and only if all four points lie on a common circle or line. Both ORIENT2D and INCIRCLE have the
symmetry property that interchanging any two of their parameters reverses the sign of their result.

These definitions extend to arbitrary dimensions. To generalize the orientation test to dimensionalityd,
let u1, u2, . . . , ud be the unit vectors. ORIENT is defined so that ORIENT(u1, u2, . . . , ud, 0) = 1.

In any dimension, the orientation and incircle tests may be implemented as matrix determinants. For

8 Jonathan Richard Shewchuk

two dimensions:

ORIENT2D(a, b, c) =

∣

∣

∣

∣

∣

∣

ax ay 1
bx by 1
cx cy 1

∣

∣

∣

∣

∣

∣

(1)

=

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

(2)

INCIRCLE(a, b, c, d) =

∣

∣

∣

∣

∣

∣

∣

∣

ax ay a2x + a2y 1

bx by b2x + b2y 1

cx cy c2x + c2y 1

dx dy d2x + d2y 1

∣

∣

∣

∣

∣

∣

∣

∣

(3)

=

∣

∣

∣

∣

∣

∣

ax − dx ay − dy (ax − dx)
2 + (ay − dy)

2

bx − dx by − dy (bx − dx)
2 + (by − dy)

2

cx − dx cy − dy (cx − dx)
2 + (cy − dy)

2

∣

∣

∣

∣

∣

∣

(4)

These formulae generalize to other dimensions straightforwardly. See Sections 3.1 and 3.2 for the three-
dimensional versions.

Expressions (1) and (2) can be shown to be equivalent by simple algebraic transformations, as can Ex-
pressions (3) and (4) with a little more effort. Expression (2) also follows from Expression (1) by translating
each point by−c, and Expression (4) follows from Expression (3) by translating each point by−d.

Although Expressions (1) and (3) are faster to compute, Expressions (2) and (4) tend to have much
smaller errors, and are strongly preferred if floating-point computation with roundoff is used.

Once a determinant has been chosen for evaluation, there areseveral methods to evaluate it. A number of
methods are surveyed by Fortune and Van Wyk [12], and only their conclusion is repeated here. The cheapest
method of evaluating the determinant of a5 × 5 or smaller matrix seems to be by dynamic programming
applied to cofactor expansion. Letd be the dimensionality of the matrix. Evaluate the

(

d
2

)

determinants of

all 2 × 2 minors of the first two columns, then the
(

d
3

)

determinants of all3 × 3 minors of the first three
columns, and so on.

The principles governing numerical accuracy apply to constructors as well as predicates. The main
difference is that the final result must be translated back toits correct location. For instance, the following
expressions compute the centerO of a circle that passes through the three pointsa, b, andc.

Ox = cx +

∣

∣

∣

∣

(ax − cx)
2 + (ay − cy)

2 ay − cy
(bx − cx)

2 + (by − cy)
2 by − cy

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

, Oy = cy +

∣

∣

∣

∣

ax − cx (ax − cx)
2 + (ay − cy)

2

bx − cx (bx − cx)
2 + (by − cy)

2

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

.

In both of these expressions, all arithmetic operations incur an error which is a function of the relative
coordinates, until the final addition. Only this one final operation incurs an error proportional to the absolute
coordinates.

Another advantage of these circumcenter expressions is that they are only unstable in cases where in-
stability is unavoidable. Compare the common technique of computing the circumcenter by finding the
intersections of the bisectors of two sides of the triangle△abc. If △abc is an isosceles triangle with angles
of 2◦, 89◦, and89◦, and the bisectors of its two nearly-parallel sides are used, the intersection computation

Some (Relatively) Accurate Formulae 9

r s

c d

a b
a b

A

A

A

ut

A
l l l

l

l

l

v

c

l l

l
b

c

a
ad

ac

ab

bc

bd
cd

d

a
b

c

Figure 3:A triangle and a tetrahedron, both having positive orientation.

is unstable. On the other hand, if the bisector of the short side is used, the intersection computation is stable.
A programmer might try to determine which two sides of the triangle will yield the most stable computa-
tion, but the expressions above achieve the same effect without any such decision. Unfortunately, finding
expressions like these is a bit of an art. These expressions were found by expressing the circumcenter as the
solution of a system of linear equations, then applying Cramer’s Rule from linear algebra.

The denominator of the fractions above is precisely the expression computed by ORIENT2D. The com-
putation ofp is unstable ifa, b, andc are nearly collinear (i.e. the triangle△abc has an angle very close
to 180◦). In this case, the denominator is close to zero, and roundoff error in the denominator can dramat-
ically change the result, or cause a division by zero. This isan instability that is unavoidable unless exact
arithmetic is used to compute the denominator. (The accuracy of the numerator is less critical.)

3 Some (Relatively) Accurate Formulae

In these formulae, the norm| · | denotes the Euclidean length of a vector, and the operator× denotes the
vector cross product. Formulae for triangles (in two or three dimensions) govern a triangle with verticesa,
b, andc, and employ the vectorsr = a − c ands = b − c. Formulae for tetrahedra govern a tetrahedron
with verticesa, b, c, andd, and employ the vectorst = a− d, u = b− d, andv = c− d. These and other
notations are illustrated in Figure 3.

3.1 Orientation of Points, Triangle Area, Tetrahedron Volume, Collinearity, and
Coplanarity

The orientation test ind dimensions establishes the orientation of a set ofd + 1 points. If the points are
affinely independent, there are two possible orientations (regardless of the value ofd), which are distin-
guished by the sign of an expression (given below for the two-and three-dimensional cases). If the points
are not affinely independent, the expression evaluates to zero. The orientation of a set of points is invariant
under rotation of the coordinate system, but is reversed in amirror image.

Given three pointsa, b, andc in the plane, the expression ORIENT2D(a, b, c) is the signed area of the
parallelogram determined by the vectorsr = a − c ands = b − c. It is positive if the points occur in
counterclockwise order, negative if they occur in clockwise order, and zero if they are collinear.

10 Jonathan Richard Shewchuk

ORIENT2D(a, b, c) =

∣

∣

∣

∣

∣

∣

ax ay 1
bx by 1
cx cy 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

=
∣

∣ r s
∣

∣ .

As discussed in Section 2, the second (or equivalently, the third) of these determinants is better for fixed
precision floating-point computation, because it loses less accuracy to roundoff error. The first expression
is faster if an exact arithmetic library is used. If exact arithmetic is used, I recommend coupling it with a
floating-point filter. The filter should use the second expression, and the exact computation should used the
first expression. Public domain C code that does this, with additional levels of adaptivity (for greater speed),
is freely available from http://www.cs.cmu.edu/∼quake/robust.html.

The signed area of the triangle with verticesa, b, andc is half the area of the parallelogram,

A =
ORIENT2D(a, b, c)

2
.

The area of a triangle inE3 is proportional to the length of an orthogonal vector found by taking the
vector cross product of two sides of the triangle. This crossproduct can be computed by three applications
of ORIENT2D. Given a pointa in E3, let ayz be a two-dimensional point whose coordinates are they- and
z-coordinates ofa (in that order). Then

(a− c)× (b− c) = (ORIENT2D(ayz, byz, cyz), ORIENT2D(azx, bzx, czx), ORIENT2D(axy, bxy, cxy)) .

It is not accidental that thez-coordinate precedes thex-coordinate in the expression for they-coordinate of
the cross product. If the coordinates are not ordered thus, the sign of they-coordinate will be wrong.

The unsigned area of a triangular face inE3 with verticesa, b, andc is

Af =
|r× s|

2

=
|(a− c)× (b− c)|

2

=

√

ORIENT2D(ayz, byz, cyz)2 + ORIENT2D(azx, bzx, czx)2 + ORIENT2D(axy, bxy, cxy)2

2
.

If an accurate implementation of ORIENT2D is available, this expression takes advantage of it.

An expression for the unsigned area of the triangle that works in any dimensionalityd ≥ 2 (albeit with
less speed and accuracy than the foregoing expression) is

Af =

√

|r|2|s|2 − |r · s|2
2

.

This expression has two related pitfalls. First, floating-point error can cause the computation of|r|2|s|2 −
|r · s|2 to produce a negative value; it is usually necessary to explicitly test for this possibility. Second, when
this difference is much smaller than|r|2|s|2, the relative accuracy of the result can be very bad.

Some (Relatively) Accurate Formulae 11

Given four pointsa, b, c, andd in E3, the expression ORIENT3D(a, b, c, d) is the signed volume of the
parallelepiped determined by the vectorst = a − d, u = b − d, andv = c − d. It is positive if the points
occur in the orientation illustrated in Figure 3, negative if they occur in the mirror-image orientation, and
zero if the four points are coplanar. You can apply aright-hand rule: orient your right hand with fingers
curled to follow the circular sequencebcd. If your thumb points towarda, ORIENT3D returns a positive
value.

ORIENT3D(a, b, c, d) =

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz
bx − dx by − dy bz − dz
cx − dx cy − dy cz − dz

∣

∣

∣

∣

∣

∣

=
∣

∣ t u v
∣

∣ .

As with ORIENT2D, the second (or equivalently, the third) of these determinants is more accurate for
floating-point computation with roundoff, and the first is faster for computation with an exact arithmetic
library.

The signed volume of the tetrahedron with verticesa, b, c, andd is one-sixth the volume of the paral-
lelepiped,

V =
ORIENT3D(a, b, c, d)

6
.

Higher-dimensional ORIENT tests are easy to derive by generalizing ORIENT2D and ORIENT3D in
the obvious way. The measure (higher-dimensional analogueto area and volume) of thed-dimensional
parallelepiped determined by a set ofd vectors (all emanating from a single point) is the determinant of the
matrix whose column vectors are the vectors in question. Themeasure of ad-simplex equals the measure
of the parallelepiped divided byd!.

ORIENT2D reveals whether three vertices in the plane are collinear. What about the collinearity of three
vertices in three or more dimensions? Verticesa, b, andc are collinear if and only ifAf = 0. In three
dimensions, there are two ways to test ifAf = 0: test ifr× s = 0, or test if|r|2|s|2 = |r · s|2. The first test
can take advantage of a robust implementation of the ORIENT2D sign test, if one is available. The second
test (only) works in any dimensionality.

3.2 The InCircle and InSphere Predicates

The insphere test ind dimensions establishes whether a vertex lies inside, outside, or on a sphere passing
throughd + 1 other points. These possibilities are distinguished by thesign of an expression (given below
for the two- and three-dimensional cases).

Let a, b, c, and d be four points in the plane, and suppose the first three are oriented so that
ORIENT2D(a, b, c) is positive. The expression INCIRCLE(a, b, c, d) is positive if d lies inside the cir-
cle passing througha, b, andc; negative ifd lies outside the circle; and zero ifd lies on the circle. (If
ORIENT2D(a, b, c) is negative, the sign returned by INCIRCLE is reversed.)

12 Jonathan Richard Shewchuk

INCIRCLE(a, b, c, d) =

∣

∣

∣

∣

∣

∣

∣

∣

ax ay a2x + a2y 1

bx by b2x + b2y 1

cx cy c2x + c2y 1

dx dy d2x + d2y 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

ax − dx ay − dy (ax − dx)
2 + (ay − dy)

2

bx − dx by − dy (bx − dx)
2 + (by − dy)

2

cx − dx cy − dy (cx − dx)
2 + (cy − dy)

2

∣

∣

∣

∣

∣

∣

.

The second of these expressions is more accurate for floating-point computation with roundoff, and the
first is faster for computation with an exact arithmetic library.

Let a, b, c, d, and e be five points inE3, and suppose the first four are oriented so that
ORIENT3D(a, b, c, d) is positive. The expression INSPHERE(a, b, c, d, e) is positive if e lies inside the
sphere passing througha, b, c, andd; negative ife lies outside the sphere; and zero ife lies on the sphere.
(If ORIENT3D(a, b, c, d) is negative, the sign returned by INSPHEREis reversed.)

INSPHERE(a, b, c, d, e) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az a2x + a2y + a2z 1

bx by bz b2x + b2y + b2z 1

cx cy cz c2x + c2y + c2z 1

dx dy dz d2x + d2y + d2z 1

ex ey ez e2x + e2y + e2z 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

ax − ex ay − ey az − ez (ax − ex)
2 + (ay − ey)

2 + (az − ez)
2

bx − ex by − ey bz − ez (bx − ex)
2 + (by − ey)

2 + (bz − ez)
2

cx − ex cy − ey cz − ez (cx − ex)
2 + (cy − ey)

2 + (cz − ez)
2

dx − ex dy − ey dz − ez (dx − ex)
2 + (dy − ey)

2 + (dz − ez)
2

∣

∣

∣

∣

∣

∣

∣

∣

.

3.3 Angles and Minimum Angles

Let r ands be two vectors with a common origin. The angle separating thevectors isθ, where

tan θ =
2A

r · s , cos θ =
r · s
|r||s| , and sin θ =

2A

|r||s| ,

andA is the area of the triangle with sidesr ands. These formulae work equally well in two, three, or many
dimensions. (In three or more dimensions, replaceA with the unsignedAf .) Only the tangent formula
computesθ accurately over its entire range; the sine and cosine formulae are not generally recommended
for calculatingθ itself, although at leastoneof the two is accurate for any given value ofθ.

The quadrant in whichθ falls is determined by the signs ofA andr · s (which is another argument for
using the tangent formula, or perhaps the cosine formula when angles are not signed). A positive value of
A indicates thatθ is in the range(0◦, 180◦), meaning thats is counterclockwise fromr; whereas a negative
value indicates the range(−180◦, 0◦), meaning thats is clockwise fromr. This distinction between positive
and negative angles is only meaningful in two-dimensional space. A positive value ofr · s indicates thatθ
is in the range(−90◦, 90◦), whereas a negative value indicates the range(90◦, 180◦) or (−180◦,−90◦).

Again, the tangent formula is an accurate way to computeθ. However, it does require a check for
division by zero. Ifr · s = 0, θ is 90◦ or −90◦, according to the sign ofA. Otherwise, most computer

Some (Relatively) Accurate Formulae 13

arctangent functions return an angle in the range(−90◦, 90◦), and it is necessary to correct the result if
r · s < 0 by adding or subtracting180◦.

The cosine formula produces an angleθ in the range[0◦, 180◦]. This makes it the simplest formula to use
when signed angles are not desired. (If signed angles are desired, an extra computation ofA is necessary.)
Unfortunately, the value ofθ may be quite inaccurate; forθ very near0◦ or 180◦, the calculated value ofθ
loses about half its bits of accuracy. The formula is quite accurate forθ ∈ [45◦, 135◦], though. If the vectors
r and s are known to be nonzero, there is no need to check for divisionby zero; however, for extreme
values ofθ, floating-point roundoff sometimes produces a value ofr · s/(|r||s|) slightly greater than 1 or
slightly less than−1, which may cause exceptions in arccosine libraries. An explicit test for this possibility
is usually necessary.

The sine formula produces an angleθ in the range[−90◦, 90◦]. If θ might be obtuse, an extra test is
needed to see ifr · s < 0, in which case the result must be corrected by subtracting itfrom 180◦ or from
−180◦. Forθ near90◦ or−90◦, the calculated value ofθ loses about half its bits of accuracy, and the value
of 2A/(|r||s|) computed with roundoff may be slightly greater than 1 or slightly less than−1. The formula
is quite accurate forθ ∈ [−45◦, 45◦] (including the range where the cosine formula is unreliable).

To find the minimum angle of a triangle (on the assumption thatangles are never interpreted as being
negative), there is no need to compute all three angles. Instead, use the fact that the sine of the minimum
angle of the triangle is the minimum sine of the angles of the triangle, and by the Law of Sines, the minimum
sine is found opposite the shortest edge. Hence, if the edge lengths of the triangle areℓmin, ℓmed, andℓmax

in order from shortest to longest, then

sin θmin = min
i

sin θi =
2|A|

ℓmaxℓmed

.

Because the minimum angle of a triangle is never greater than60◦, the arcsine operation that computes
θmin is reasonably accurate.

3.4 Dihedral Angles and Minimum Dihedral Angles

Let c andd be two points inE3, and suppose that two planar facets meet at the edgecd. Let a be a point
lying on one of the facets, and letb be a point lying on the other. What is the dihedral angle separating the
two facets? It is helpful to imagine the tetrahedronabcd, because the tetrahedron’s volume and face areas
appear in the formulae. The dihedral angle in question separates the faces△acd and△bcd.

LetV be the signed volume of the tetrahedronabcd. LetAa, Ab,Ac, andAd be the unsigned areas of the
faces of the tetrahedron opposite verticesa, b, c, andd, respectively. Letni be an outward-directed vector
orthogonal to facei. The vectorsni are produced as a by-product of computingAi, becauseAi = |ni|/2. If
the vertices are oriented as depicted in Figure 3, then the outward-facing vectors are

na = (c− d)× (b− d) = v × u,

nb = (a− d)× (c− d) = t× v,

nc = (b− d)× (a− d) = u× t, and

nd = (a− c)× (b− c).

See Section 3.1 for advice on using an accurate implementation of ORIENT2D to compute these cross
products. An alternative formula for the last vector isnd = −na − nb − nc, but this loses a few more bits
of accuracy.

14 Jonathan Richard Shewchuk

Let 〈i, j, k, l〉 be a permutation of the verticesa, b, c, d. Let ℓij be the length of the edge connecting
verticesi andj, and letθij be the dihedral angle at which face△ijk meets face△ijl. For example,θab is
the dihedral angle at edgeab, andℓab = |a − b|. As with planar angles, there are three formulae by which
dihedral angles may be computed,

tan θij = − 6V ℓij
nk · nl

, cos θij = −nk · nl

4AkAl

, and sin θij =
3V ℓij
2AkAl

.

As in two dimensions, only the tangent formula computesθij accurately over its entire range. The sine
and cosine formulae are not generally recommended for calculating θij itself, although at least one of the
two is accurate for any given value ofθij .

The quadrant in whichθij falls is determined by the signs ofV andnk · nl. By convention, a dihedral
angleθij is negative if the signed volumeV is negative (and signed angles are desired). A negative value of
nk ·nl indicates thatθij is in the range(−90◦, 90◦), whereas a positive value indicates the range(90◦, 180◦)
or (−180◦,−90◦).

The tangent formula is an accurate way to computeθij . It requires a check for division by zero. If
nk · nl = 0, θij is 90◦ or−90◦, according to the sign ofV . Otherwise, most computer arctangent functions
return an angle in the range(−90◦, 90◦), and it is necessary to correct the result ifnk · nl > 0 by adding or
subtracting180◦.

The cosine formula produces an angleθij in the range[0◦, 180◦]. This makes it the simplest formula to
use when signed angles are not desired. (If signed angles aredesired, an extra computation ofV is neces-
sary.) Unfortunately, the value ofθij may be quite inaccurate; forθij very near0◦ or 180◦, the calculated
value ofθij loses about half its bits of accuracy. The formula is quite accurate forθij ∈ [45◦, 135◦]. If the
vectorsnk andnl are known to be nonzero, there is no need to check for divisionby zero; however, for ex-
treme values ofθij , floating-point roundoff sometimes produces a value ofcos θij slightly greater than 1 or
slightly less than−1, which may cause exceptions in arccosine libraries. An explicit test for this possibility
is usually necessary.

The sine formula produces an angleθij in the range[−90◦, 90◦]. If θij might be obtuse, an extra test is
needed to see ifnk · nl > 0, in which case the result must be corrected by subtracting itfrom 180◦ or from
−180◦. For θij near90◦ or −90◦, the calculated value ofθij loses about half its bits of accuracy, and the
value ofsin θij computed with roundoff may be slightly greater than 1 or slightly less than−1. The formula
is quite accurate forθij ∈ [−45◦, 45◦] (including the range where the cosine formula is unreliable).

To find the minimum sine of the dihedral angles of a tetrahedron (sometimes used as a quality measure
for mesh smoothing), under the assumption that angles are never interpreted as being negative, compute the
value

min
ij

sin θij =
3|V |
2

min
i,j,k,l distinct

ℓij
AkAl

.

Unfortunately, unlike with triangles, it is not always truethat sin θmin = minij sin θij , because the
dihedral angle that minimizes the sine might be an obtuse angle. However, the smallest dihedral angle of a
tetrahedron is always less than70.53◦, soθmin can be found by minimizing over the acute dihedral angles.

tan θmin = 6|V | min
nk·nl<0

i,j,k,l distinct

−ℓij
nk · nl

and sin θmin =
3|V |
2

min
nk·nl<0

i,j,k,l distinct

ℓij
AkAl

.

Becauseθmin does not exceed70.53◦, the arcsine operation that computesθmin is reasonably accurate. The
arctangent formula is slightly more accurate, though. (Beware, though, that the computation ofnk, nl, Ak,
andAl might not be stable.)

Some (Relatively) Accurate Formulae 15

3.5 Solid Angles

Let abcd be a non-inverted tetrahedron. Each vertex of the tetrahedron is an endpoint of three edges. The
solid angle at any vertex of the tetrahedron is the sum of the three dihedral angles at those three edges minus
180◦, and ranges from0◦ to 360◦.

However, Eriksson [7] offers a faster and more accurate way to compute a solid angle. Lett = a − d,
u = b− d, andv = c− d. The solid angle atd is φ, where

tan(φ/2) =
6|V |

|t||u||v|+ |t|u · v + |u|v · t+ |v|t · u .

The arctangent should be computed so thatφ is in the range[0◦, 360◦] (and not[−180◦, 180◦]). If the
denominator is zero,φ = 180◦; be careful to avoid a division by zero or overflow. If the denominator is
negative,φ > 180◦. For degenerate tetrahedra (whereV = 0), φ = 0◦ if the denominator is positive,
andφ = 360◦ if the denominator is negative. When both the numerator and denominator are zero, the solid
angle is undefined: an arbitrarily small perturbation of anyvertex of the tetrahedron could setφ to any value.

Liu and Joe [17] provide an alternative formula. Letφi be the solid angle at vertexi, wherei is one of
a, b, c, or d. Let ℓij be the length of the edge connecting verticesi andj. Then

sin(φi/2) =
12|V |

√

∏

i 6=j<k 6=i(ℓij + ℓik + ℓjk)(ℓij + ℓik − ℓjk)
.

Unfortunately, this formula does not distinguish between the cases whereφi is less than or greater
than180◦. These cases may be distinguished by checking the sign of thedenominator of the formula for
tan(φi/2) above.

Liu and Joe suggest usingmini sin(φi/2) as a quality measure for tetrahedra. For this purpose, thereis
no need for a sign check, and their formula is convenient.

Liu and Joe also show that the smallest solid angle of a tetrahedron never exceeds

4 arcsin

√

(9− 5
√
3)/18

.
= 31.59◦,

and the solid angles of an equilateral tetrahedron have exactly this value.

3.6 Intersection Points

The intersection of a lineab with a linecd in the plane is

p = a+ α(b− a),

where

α =

∣

∣

∣

∣

cx − ax cy − ay
dx − ax dy − ay

∣

∣

∣

∣

∣

∣

∣

∣

bx − ax by − ay
dx − cx dy − cy

∣

∣

∣

∣

=
ORIENT2D(c, d, a)
∣

∣

∣

∣

bx − ax by − ay
dx − cx dy − cy

∣

∣

∣

∣

.

The denominator is exactly zero if and only ifab is parallel tocd. If both the numerator and denominator
are zero,ab = cd.

16 Jonathan Richard Shewchuk

If p is very close tob, c, ord, the numerical accuracy can often be improved by repeating the calculation
with the points appropriately swapped so thata is the point nearestp. If α is close to one, thenp is close tob.
Swappinga with b simply flips the sign of the denominator, and only the numerator needs to be recomputed
from scratch.

The expression forα is numerically unstable when the denominator is close to zero. Exact arithmetic is
sometimes necessary to compute the denominator with sufficient accuracy. Note that the denominator is not
equivalent to an orientation test. However, the numerator is; it is twice the signed area of△cda.

A related question is whether two line segmentsab andcd intersect. The segments intersect if both of the
following are true: ORIENT2D(c, d, a)·ORIENT2D(c, d, b)≤ 0 and ORIENT2D(a, b, c)·ORIENT2D(a, b, d)
≤ 0. In words, the pointsa andb lie on opposite sides ofcd (or one of them lies oncd), andc andd lie on
opposite sides ofab (or one of them lies onab). If an exact orientation test is available, an exact answercan
be given.

For the intersection of two lines inE3, see Section 3.9.

The intersection (inE3) of a lineab with a plane passing throughc, d, ande is

p = a+ α(b− a),

where

α =

∣

∣

∣

∣

∣

∣

ax − cx ay − cy az − cz
dx − cx dy − cy dz − cz
ex − cx ey − cy ez − cz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax − bx ay − by az − bz
dx − cx dy − cy dz − cz
ex − cx ey − cy ez − cz

∣

∣

∣

∣

∣

∣

=
Orient3D(a, d, e, c)

∣

∣

∣

∣

∣

∣

ax − bx ay − by az − bz
dx − cx dy − cy dz − cz
ex − cx ey − cy ez − cz

∣

∣

∣

∣

∣

∣

.

The denominator is exactly zero if and only ifab is parallel to the plane throughc, d, ande. If both the
numerator and denominator are zero,ab lies in that plane.

If p is very close tob (i.e.α is close to one), the numerical accuracy can often be improved by repeating
the calculation witha andb swapped. Swappinga with b simply flips the sign of the denominator, and only
the numerator needs to be recomputed from scratch.

The forgoing comments about the stability of the line intersection calculation apply here as well. The
numerator is six times the signed volume of tetrahedronadec.

3.7 Intersection Points with Vertical Lines

Computing the intersection of a vertical line with a hyperplane is simpler than general intersection compu-
tation. In the plane, the intersection of a lineab with a vertical line withx-coordinateex hasy-coordinate

ey = by +
(ex − bx)(ay − by)

ax − bx
.

In E3, the intersection of a plane through the pointsa, b, andc with a vertical line with coordinatesex

Some (Relatively) Accurate Formulae 17

andey hasz-coordinate

ez = cz −

∣

∣

∣

∣

∣

∣

ax − cx ay − cy az − cz
bx − cx by − cy bz − cz
ex − cx ey − cy 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

= cz −

∣

∣

∣

∣

∣

∣

ax − cx ay − cy az − cz
bx − cx by − cy bz − cz
ex − cx ey − cy 0

∣

∣

∣

∣

∣

∣

2A
.

In E4, call the fourth coordinate axis thew-axis. The formula generalizes to

ew = dw −

∣

∣

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz aw − dw
bx − dx by − dy bz − dz bw − dw
cx − dx cy − dy cz − dz cw − dw
ex − dx ey − dy ez − dz 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz
bx − dx by − dy bz − dz
cx − dx cy − dy cz − dz

∣

∣

∣

∣

∣

∣

= dw −

∣

∣

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz aw − dw
bx − dx by − dy bz − dz bw − dw
cx − dx cy − dy cz − dz cw − dw
ex − dx ey − dy ez − dz 0

∣

∣

∣

∣

∣

∣

∣

∣

6V
.

To compute the intersection of a non-vertical axis-parallel line with a hyperplane, simply swap the two
appropriate coordinates axes so that the axis-parallel line becomes vertical, apply the formulae above, and
swap the axes back again.

3.8 Altitudes and Orthogonal Projections of Points

In d-dimensional space for anyd ≥ 2, leta be a point and letL be a line through two distinct pointsb andc.
Let r = a− c ands = b− c. The point onL nearest the pointa—in other words, the orthogonal projection
of a ontoL—is

p = c+
r · s
|s|2 s.

If p is much closer tob than toc, the numerical accuracy can often be improved by repeating the
calculation withb andc swapped. Only the numerator needs to be recomputed; swapping b andc does not
change the denominator.

The distance betweena andL (in other words, betweena and its projection) is

h =
2A

|s| =
2A

ℓa
,

whereA is the area of the triangleabc. The quantityh is also known as the altitude ofa in the triangle
△abc. If d = 2, A may be signed, in which case the sign ofh is the same as the sign ofA, and thus indicates
the orientation of the verticesa, b, andc. The signed altitude is useful in some triangle quality measures. In
three dimensions or above,A is naturally unsigned. Formulae forA appear in Section 3.1.

18 Jonathan Richard Shewchuk

The minimum-magnitude altitude of a triangle is

amin =
2A

ℓmax

.

In three-dimensional space, leta be a point and letP be a plane through three pointsb, c, andd. Let
t = a − d, u = b− d, andv = c − d. The point onP nearest the pointa—in other words, the orthogonal
projection ofa ontoP—is

q = d+
(u× v) · (t× v)

|u× v|2 u+
(u× v) · (u× t)

|u× v|2 v.

If q is much closer tob or c than tod, the numerical accuracy can often be improved by repeating the
calculation withd swapped with the point nearestq.

The distance betweena andP (in other words, betweena and its projection) is

h =
6V

|u× v| =
3V

Aa

,

whereV is the volume of the tetrahedronabcd, andAa is the unsigned area of the triangle△bcd. The
quantityh is also known as the altitude ofa in the tetrahedronabcd. V may be signed, in which case the
sign ofh is the same as the sign ofV , and thus indicates the orientation of the verticesa, b, c, andd. The
signed altitude is useful in some tetrahedron quality measures. Formulae forV andAa appear in Section 3.1.

The expressions forq andh are numerically unstable when their denominators are closeto zero. These
denominators are exactly zero if and only ifu is parallel tov (and thusb, c, andd are not affinely indepen-
dent). Exact arithmetic is sometimes necessary to compute the denominator with sufficient accuracy.

The minimum-magnitude altitude of a tetrahedron is

amin =
3V

Amax

.

3.9 Lines in Three Dimensions: Distance, Closest Points, and Intersection Points

Consider two linesab andcd in three-dimensional space. Letw = a − b, v = c − d, andu = b − d. The
point onab nearestcd (which is the intersection point ifab intersectscd) is

p = b+
(w × v) · (v × u)

|w × v|2 w.

The denominator is exactly zero if and only ifab is parallel tocd. If v × u = 0 as well, thenab = cd.

If p is much closer toa than tob (i.e. if the fraction is close to one), the numerical accuracy can often be
improved by repeating the calculation witha andb swapped. Only the numerator needs to be recomputed;
swappinga with b does not change the denominator.

The point oncd nearestab is

q = d+
(w × v) · (w × u)

|w × v|2 v.

Some (Relatively) Accurate Formulae 19

If q is much closer toc than tod (i.e. if the fraction is close to one), the numerical accuracy can often be
improved by repeating the calculation withc andd swapped. Only the numerator needs to be recomputed;
swappingc with d does not change the denominator.

The linesab andcd intersect if and only if

ORIENT3D(a, b, c, d) = 0.

The signed distance betweenab andcd (at their closest points) is

h =
6V

|w × v| =
ORIENT3D(a, b, c, d)

|w × v| ,

whereV is the signed volume of the tetrahedronabcd. The sign ofh indicates the orientation of the vertices
a, b, c, andd. The signed distance is useful in some tetrahedron quality measures.

The expressions forp, q, andh are numerically unstable when|w×v| is close to zero. Exact arithmetic
is sometimes necessary to compute the denominator with sufficient accuracy.

3.10 The Minimum Aspect of a Tetrahedron

The minimum aspect of a tetrahedron is the smallest distancebetween two parallel planes such that the
tetrahedron fits between the planes. It is either an altitudeof the tetrahedron or the distance between two
opposite edges of the tetrahedron. (Two edges of a tetrahedron areoppositeif they do not share an endpoint.
The six edges of a tetrahedron consist of three pairs of opposite edges.) A tetrahedron has four altitudes, for
which Section 3.8 prescribes the formula6V/|u × v|, whereu andv represent two edges of a face of the
tetrahedron. A tetrahedron has three pairs of opposite edges, for which Section 3.9 prescribes the formula
6V/|w × v|, wherew andv represent opposite edges of the tetrahedron.

Hence, the minimum aspect of a tetrahedron is

hmin =
6V

maxx,y |x× y|

wherex andy vary over all the edges of the tetrahedron. However, it is notnecessary to test all pairs of
edges, because some pairs are redundant; any two edges of a face will yield the same altitude. Just seven
pairs of edges must be tested, corresponding to the four faces and the three opposite pairs of edges.

Note that the minimum aspect of a triangle—the smallest distance between two parallel lines such that
the triangle fits between the lines—is always its minimum altitude.

3.11 Circumcenters and Circumradii of Triangles and Tetrahedra

The following expressions compute the centerOcirc of a circle that passes through the three pointsa, b, and
c in the plane. This circle is known as thecircumscribing circle, or circumcircle, of the triangleabc.

Ox = cx +

∣

∣

∣

∣

|r|2 ry
|s|2 sy

∣

∣

∣

∣

4A
= cx +

∣

∣

∣

∣

(ax − cx)
2 + (ay − cy)

2 ay − cy
(bx − cx)

2 + (by − cy)
2 by − cy

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

.

20 Jonathan Richard Shewchuk

Oy = cy +

∣

∣

∣

∣

rx |r|2
sx |s|2

∣

∣

∣

∣

4A
= cy +

∣

∣

∣

∣

ax − cx (ax − cx)
2 + (ay − cy)

2

bx − cx (bx − cx)
2 + (by − cy)

2

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

.

These expressions are numerically unstable when the denominator is close to zero (i.e. for a triangle that
is nearly degenerate). An accurate ORIENT2D implementation should be used to calculate the denominator
if one is available.

Although the circumradius of a triangle can be computed by computingOcirc − c with the formulae
above, then the distance|Ocircc|, a slightly more accurate formula is

rcirc =
ℓaℓbℓc
4A

=
|b− c||c− a||a− b|

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

,

whereℓa, ℓb, andℓc are the edge lengths of the triangle. Because square root operations are expensive and
introduce error, the numerator above is best computed as

√

|b− c|2|c− a|2|a− b|2.
The following expressions compute the smallest sphere thatpasses through the vertices of a two-

dimensional triangle inE3. The centerOcirc of the sphere is coplanar with the triangle.

Ocirc = c+

(

|r|2s− |s|2r
)

× (r× s)

8A2
f

= c+

[

|a− c|2(b− c)− |b− c|2(a− c)
]

× [(a− c)× (b− c)]

2|(a− c)× (b− c)|2 .

rcirc =

∣

∣

(

|r|2s− |s|2r
)

× (r× s)
∣

∣

8A2
f

.

The following expressions compute the sphere that passes through four pointsa, b, c, andd in E3. This
sphere is known as thecircumscribing sphere, or circumsphere, of the tetrahedronabcd.

Ocirc = d+
|t|2u× v + |u|2v × t+ |v|2t× u

12V

= d+
|a− d|2(b− d)× (c− d) + |b− d|2(c− d)× (a− d) + |c− d|2(a− d)× (b− d)

2

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz
bx − dx by − dy bz − dz
cx − dx cy − dy cz − dz

∣

∣

∣

∣

∣

∣

.

rcirc =

∣

∣|t|2u× v + |u|2v × t+ |v|2t× u
∣

∣

12V
.

These expressions, like the two-dimensional formula, are numerically unstable when the denominator
is close to zero (i.e. for a tetrahedron that is nearly degenerate). An accurate ORIENT3D implementation
should be used to calculate the denominator if one is available.

3.12 Orthocenters and Orthoradii of Triangles and Tetrahedra

Suppose the pointsa, b, andc are assignedweightswa, wb, andwc; or heightsha, hb, andhc. The height
of a vertex is thexd+1-coordinate to which it is lifted by the parabolic lifting map of Seidel [20, 6]. In a

Some (Relatively) Accurate Formulae 21

weighted Delaunay triangulation or power diagram, the weights and heights are related byha = |a|2 − wa.
Imagine a circle around each vertexa with radiuswa, and similar circles for the other two vertices. The
orthocircle of the triangleabc is the circle that is orthogonal to the circles arounda, b, andc. In the special
case where all three weights are zero, the orthocircle and the circumcircle are the same.

The numerically best-behaved expressions for computing the orthocircle depend on whether the input
includes the heights or the weights. (Either one can be computed from the other, but the bit length increases.)

If the weights are given, use the following expressions for the orthcenteroorth and orthoradiusrorth.
Note that a triangle with vertex weights can have an imaginary orthoradius.

ox = cx +

∣

∣

∣

∣

|r|2 + (wc − wa) ry
|s|2 + (wc − wb) sy

∣

∣

∣

∣

4A

= cx +

∣

∣

∣

∣

(ax − cx)
2 + (ay − cy)

2 + (wc − wa) ay − cy
(bx − cx)

2 + (by − cy)
2 + (wc − wb) by − cy

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

.

oy = cy +

∣

∣

∣

∣

rx |r|2 + (wc − wa)
sx |s|2 + (wc − wb)

∣

∣

∣

∣

4A

= cy +

∣

∣

∣

∣

ax − cx (ax − cx)
2 + (ay − cy)

2 + (wc − wa)
bx − cx (bx − cx)

2 + (by − cy)
2 + (wc − wb)

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

.

r2orth = |oorthc|2 − wc =

∣

∣

∣

∣

|r|2 + (wc − wa) ry
|s|2 + (wc − wb) sy

∣

∣

∣

∣

2

+

∣

∣

∣

∣

rx |r|2 + (wc − wa)
sx |s|2 + (wc − wb)

∣

∣

∣

∣

2

16A2
− wc.

For the last formula, do not computerorth directly fromoorth. The value of|oorthc|2 can be computed much
more accurately, as shown.

If the heights are given, use the following expressions.

ox =

∣

∣

∣

∣

ha − hc ry
hb − hc sy

∣

∣

∣

∣

4A
=

∣

∣

∣

∣

ha − hc ay − cy
hb − hc by − cy

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

.

oy =

∣

∣

∣

∣

rx ha − hc
sx hb − hc

∣

∣

∣

∣

4A
=

∣

∣

∣

∣

ax − cx ha − hc
bx − cx hb − hc

∣

∣

∣

∣

2

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

.

r2orth = |oorthc|2 + (hc − |c|2).
In this case,rorth is computed directly fromoorth. The parentheses indicate that it is wise to perform the
subtraction before the addition.

The following formulae compute the orthosphere of a tetrahedron.

oorth = d+

(

|t|2 + (wd − wa)
)

u× v +
(

|u|2 + (wd − wb)
)

v × t+
(

|v|2 + (wd − wb)
)

t× u

12V

22 Jonathan Richard Shewchuk

=
(ha − hd)u× v + (hb − hd)v × t+ (hc − hd)t× u

12V
.

r2orth = |oorthd|2 − wd

=

∣

∣

(

|t|2 + (wd − wa)
)

u× v +
(

|u|2 + (wd − wb)
)

v × t+
(

|v|2 + (wd − wb)
)

t× u
∣

∣

2

144V 2
− wd

= |oorthd|2 + (hd − |d|2).

Again, the value ofrorth must be computed directly fromoorth if the heights are given, but if the weights
are given,rorth should be computed without usingoorth as an intermediate expression.

3.13 Min-Containment Circles and Spheres of Triangles and Tetrahedra

Let Omc andrmc denote the center and radius of the smallest circle or spherethat encloses a triangle or
tetrahedron.

To find the min-containment circle of a triangle, first determine whether the triangle has an angle of
90◦ or greater. This is quickly accomplished by checking the signs of the dot products of each pair of edge
vectors. If one of the angles is90◦ or greater, thenOmc is the midpoint of the opposite edge andrmc is half its
length (and there is no need to test the remaining angles). Ifall three angles are acute, the min-containment
circle is the circumcircle and the min-containment radius is the circumradius; see Section 3.11.

To find the min-containment sphere of a tetrahedronabcd, first compute its circumcenterOcirc. Next, test
whetherOcirc is in the tetrahedron by checking it against each triangularface. If ORIENT3D(Ocirc, b, c, d),
ORIENT3D(Ocirc, a, d, c), ORIENT3D(Ocirc, d, a, b), and ORIENT3D(Ocirc, c, b, a) are all nonnegative, then
Omc = Ocirc andrmc = rcirc. If exactly one orientation test returns a negative value, thenOmc andrmc

are the center and radius of the min-containment circle of the corresponding triangular face. If two of
the volumes are negative, thenOmc andrmc are the center and half the length of the edge where the two
corresponding triangular faces meet.

In the case whereOmc is a circumcenter of one of the faces, it may be slightly faster, but slightly less
accurate, to find the circumcenter of the triangular face by orthogonally projectingOcirc onto the face using
the formula in Section 3.8, instead of using the face circumcenter formula in Section 3.11.

3.14 Incenters and Inradii of Triangles and Tetrahedra

The center of the smallest circle in the plane that intersects all three sides of a triangle (also known as the
inscribed circle) is

Oin =

∑

3

i=1
ℓivi

∑3

i=1
ℓi

,

and its radius is

rin =
2A

∑3

i=1
ℓi
.

The center of the smallest sphere inE3 that intersects all four faces of a tetrahedron (also known as the
inscribed sphere) is

Oin =

∑4

i=1
Aivi

∑4

i=1
Ai

,

Some (Relatively) Accurate Formulae 23

and its radius is

rin =
3V

∑4

i=1
Ai

.

3.15 Power Functions

For a circle or sphereS, thepower functionπS(p) maps a pointp to a number such that
√

πS(p) is the
radius of the circle or sphere centered atp that is orthogonal toS. Let π△abc(p) denoteπS(p) whereS is
the orthosphere or circumsphere of△abc (see Section 3.12).

Consider the two-dimensional case. Suppose the pointsa, b, andc are assignedweightswa, wb, andwc

andheightsha = |a|2 − wa, hb = |b|2 − wb, andhc = |c|2 − wc. Define thelifted pointa+ ∈ E3 to be
〈ax, ay, ha〉, and likewise forb+ andc+. LetH be the plane inE3 that containsa+, b+, andc+. LetH(p)
be a function that maps any pointp ∈ E2 to thez-coordinate such that〈px, py, H(p)〉 ∈ H. Observe that
computingH(p) is equivalent to computing the intersection of a vertical line withH, which is addressed in
Section 3.7.

The power function obeys the identityπS(p) = |p|2 − H(p). As with computing orthospheres, the
numerically best-behaved way to computeπS(p) depends on whether the input includes the heights or the
weights of the vertices that defineS. If the heights are provided, one may computeH(p) as described in
Section 3.7, treating each height as an extra coordinate, then calculateπS(p) = |p|2 −H(p). If the weights
are provided, the following formulae are preferable.

For a triangleabc in the plane,

π△abc(e) =

∣

∣

∣

∣

∣

∣

ax − cx ay − cy (ax − cx)
2 + (ay − cy)

2 + (wc − wa)
bx − cx by − cy (bx − cx)

2 + (by − cy)
2 + (wc − wb)

ex − cx ey − cy (ex − cx)
2 + (ey − cy)

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax − cx ay − cy
bx − cx by − cy

∣

∣

∣

∣

− wc.

If all the weights are zero (i.e.π△abc is determined by the circumcircle of the triangle), this formula reduces
to

π△abc(e) =
INCIRCLE(a, b, e, c)

2A
.

For a tetrahedronabcd in E3,

πabcd(e) =

∣

∣

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz (ax − dx)
2 + (ay − dy)

2 + (az − dz)
2 + (wd − wa)

bx − dx by − dy bz − dz (bx − dx)
2 + (by − dy)

2 + (bz − dz)
2 + (wd − wb)

cx − dx cy − dy cz − dz (cx − dx)
2 + (cy − dy)

2 + (cz − dz)
2 + (wd − wc)

ex − dx ey − dy ez − dz (ex − dx)
2 + (ey − dy)

2 + (ez − dz)
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax − dx ay − dy ay − dz
bx − dx by − dy by − dz
cx − dx cy − dy cy − dz

∣

∣

∣

∣

∣

∣

− wd.

If all the weights are zero (i.e.π△abc is determined by the circumsphere of the tetrahedron), thisformula
reduces to

πabcd(e) =
INSPHERE(a, b, c, e, d)

6V
.

24 Jonathan Richard Shewchuk

References

[1] Francis Avnaim, Jean-Daniel Boissonnat, Olivier Devillers, Franco P. Preparata, and Mariette Yvinec.
Evaluating Signs of Determinants Using Single-Precision Arithmetic. Algorithmica17(2):111–132,
February 1997.

[2] C. Bradford Barber.Computational Geometry with Imprecise Data and Arithmetic. Ph.D. thesis, De-
partment of Computer Science, Princeton University, Princeton, New Jersey, October 1992. Available
as Technical Report CS-TR-377-92.

[3] Christoph Burnikel, Jochen K̈onemann, Kurt Mehlhorn, Stefan Näher, Stefan Schirra, and Christian
Uhrig. Exact Geometric Computation in LEDA. Eleventh Annual Symposium on Computational
Geometry (Vancouver, British Columbia, Canada), pages C18–C19. Association for Computing Ma-
chinery, June 1995.

[4] John Canny.Some Algebraic and Geometric Computations in PSPACE. 20th Annual Symposium on
the Theory of Computing (Chicago, Illinois), pages 460–467. Association for Computing Machinery,
May 1988.

[5] Kenneth L. Clarkson.Safe and Effective Determinant Evaluation. 33rd Annual Symposium on Founda-
tions of Computer Science (Pittsburgh, Pennsylvania), pages 387–395. IEEE Computer Society Press,
October 1992.

[6] Herbert Edelsbrunner and Raimund Seidel.Voronoi Diagrams and Arrangements. Discrete & Com-
putational Geometry1:25–44, 1986.

[7] F. Eriksson.On the Measure of Solid Angles. Mathematics Magazine63(3):184–187, 1990.

[8] Steven Fortune.Stable Maintenance of Point Set Triangulations in Two Dimensions. 30th Annual
Symposium on Foundations of Computer Science, pages 494–499. IEEE Computer Society Press,
1989.

[9] . Progress in Computational Geometry. Directions in Geometric Computing (R. Martin, edi-
tor), chapter 3, pages 81–128. Information Geometers Ltd.,1993.

[10] . Progress in Computational Geometry. Directions in Geometric Computing (R. Martin, edi-
tor), chapter 3, pages 81–128. Information Geometers Ltd.,1993.

[11] . Numerical Stability of Algorithms for 2D Delaunay Triangulations. International Journal of
Computational Geometry & Applications5(1–2):193–213, March–June 1995.

[12] Steven Fortune and Christopher J. Van Wyk.Efficient Exact Arithmetic for Computational Geometry.
Proceedings of the Ninth Annual Symposium on ComputationalGeometry, pages 163–172. Associa-
tion for Computing Machinery, May 1993.

[13] . Static Analysis Yields Efficient Exact Integer Arithmetic for Computational Geometry. ACM
Transactions on Graphics15(3):223–248, July 1996.

[14] Leonidas J. Guibas and Jorge Stolfi.Primitives for the Manipulation of General Subdivisions and the
Computation of Voronöı Diagrams. ACM Transactions on Graphics4(2):74–123, April 1985.

REFERENCES 25

[15] Christoph M. Hoffmann.The Problems of Accuracy and Robustness in Geometric Computation. Com-
puter22(3):31–41, March 1989.

[16] Michael Karasick, Derek Lieber, and Lee R. Nackman.Efficient Delaunay Triangulation Using Ratio-
nal Arithmetic. ACM Transactions on Graphics10(1):71–91, January 1991.

[17] Anwei Liu and Barry Joe.Relationship between Tetrahedron Shape Measures. BIT 34:268–287, 1994.

[18] Victor Milenkovic. Double Precision Geometry: A General Technique for Calculating Line and Seg-
ment Intersections using Rounded Arithmetic. 30th Annual Symposium on Foundations of Computer
Science, pages 500–505. IEEE Computer Society Press, 1989.

[19] N. E. Mnev.The Universality Theorems on the Classification Problem of Configuration Varieties and
Convex Polytopes Varieties. Topology and Geometry - Rohlin Seminar (O. Ya. Viro, editor), Lecture
Notes in Mathematics, volume 1346, pages 527–543. Springer-Verlag, 1988.

[20] Raimund Seidel.Voronoi Diagrams in Higher Dimensions. Diplomarbeit, Institut f̈ur Informationsver-
arbeitung, Technische Universität Graz, 1982.

[21] Jonathan Richard Shewchuk.Adaptive Precision Floating-Point Arithmetic and Fast Robust Geomet-
ric Predicates. Discrete & Computational Geometry18(3):305–363, October 1997.

[22] James Hardy Wilkinson.Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs,
New Jersey, 1963.

