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Chapter 1.

Involutions and hermitian forms

In these notes, we will be working in the perspective that involutions on central simple
algebras are twisted forms of quadratic or alternating forms up to a scalar factor. To
motivate this point of view, we consider the basic, classical situation of linear algebra.

Let V be a finite-dimensional vector space over a field F' of characteristic different
from 2. A bilinear form b: V x V — F is called nonsingular if the induced map

b: V> V* = Homg(V, F)

defined by
z)(y) =blz,y) foralz,yeV

is an isomorphism of vector spaces. For any f € Endg(V) we may then define op(f) €
Endp(V) by:
on(f)=b""oftob

where f* € Endp(V*) is the transpose of f. Alternatively, o,(f) may be defined by
the following property:

b(z, f(y)) = blos(f)(z),y)  forallz,yeV. (1.1)

The map o3 : Endp(V) — Endg(V) is then an anti-automorphism of End(V'), which
is known as the adjoint anti-automorphism with respect to the nonsingular bilinear
form b. The map o, is clearly F-linear.

We denote by Antz(Endg(V)) the set of linear anti-automorphisms of Endg(V).
Anti-automorphisms ¢ such that ¢® = Id are called involutions. We also denote by
Bil(V) the F-vector space of bilinear forms on V and by Bil°(V) the subset of nonsin-
gular bilinear forms. The multiplicative group F'* acts naturally on Bil(V) and Bil®(V)
(by multiplication). Bilinear forms which are in the same orbit are called similar.

The basic result which motivates our approach and which will be generalized in
subsequent sections (see §1.4) is the following:
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6 CHAPTER 1. INVOLUTIONS AND HERMITIAN FORMS

(0.1) Theorem. The map which associates to each nonsingular bilinear form b on V
its adjoint anti-automorphism o}, induces a one-to-one correspondence

Bil®(V)/F* 5 Antz(Endg(V)).

Under this correspondence, F-linear involutions on Endr (V) correspond to nonsingular
bilinear forms which are either symmeiric or skew-symmetric.

Proof: From relation (1.1) it follows that for @ € F* the adjoint anti-automorphism
Oas With respect to the multiple ab of b is the same as the adjoint anti-automorphism
op. Therefore, the map b — o, induces a well-defined map from the set of nonsingular
bilinear forms on V up to similarity to the set of F-linear anti-automorphisms of
End(V).

To show that this map is one-to-one, note that if 4,5’ € Bil®(V) are nonsingular
bilinear forms on V, then the map v = b1 o &/ € GL(V) is such that

b(z,y) =b(v(z),y) forallz,yeV.

From this relation, it follows that the adjoint anti-automorphisms o, oy are related
by:
oo(f) =vooy(f)ov™!  forall f € Endp(V),

or equivalently
oy = Int(v) o oy,

where Int(v) is the inner automorphism of Endr(V') induced by v:
Int(v)(f) =vo fouv™! for f € Endp(V).

Therefore, if 0, = oy, then v € F* and b, are scalar multiples of each other.

Moreover, if b is a fixed nonsingular bilinear form on V' with adjoint anti-automor-
phism o3, then for ¢/ € Antp(Endp(V)) the compositum o3 o ¢’~' is an F-linear
automorphism of Endz(V). Since these automorphisms are inner, by the Skolem-
Noether theorem (see [18, Theorem 8.4.2]), there exists u € GL(V) such that gy00’ ™! =
Int(u). Then ¢’ is the adjoint anti-automorphism with respect to the bilinear form &

defined by:
b’(.’l),'y) = b(u(x)ay)

Thus, the first part of the Theorem is proved.

Observe also that if b is a nonsingular bilinear form on V with adjoint anti-
automorphism oy, then the bilinear form &' defined by

b(z,y) = b(y,x) forall z,y e V

has adjoint anti-automorphism oy = o, !. Therefore, o = Id if and only if b and '
are scalar multiples of each other; since the scalar factor € such that ¥’ = &b clearly
satisfies €2 = 1, this condition is equivalent to: b is symmetric or skew-symmetric.
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This shows that F-linear involutions correspond to symmetric or skew-symmetric
bilinear forms under the bijection above. ]

Our aim in this first chapter is to give an analogous interpretation of involutions
on arbitrary central simple algebras in terms of hermitian forms on vector spaces over
skew fields. We first review basic notions concerning central simple algebras.

§1. Central simple algebras

Unless otherwise mentioned, all the algebras we consider in this work are finite-dimen-
sional with 1. When we consider algebras with involutions, the base field F will be
assumed to have characteristic different from 2, but this assumption is not needed in
this first section. As a general rule, we will use the convention that homomorphisms
of modules will be written on the side opposite to scalars. Thus, we will use the usual
functional notation for homomorphisms of right modules, but for left modules we will
write homomorphisms on the right of the arguments and use the right-hand rule for
mapping composition!.

For any algebra A over a field F' and any field extension K/F, we denote by Ax
the K-algebra obtained from A by extending scalars to K:

Ax = AQr K.
We also define the opposite algebra A°P by:
A°? = {a? | a € A},
with the operations defined as follows:
a®® +b°° = (a + b)°® a®P.b% = (ba)®? «a.a® = (aa)® fora,be Aand a € F.

A central simple algebra over a field F is a (finite-dimensional) algebra A # {0} with
center F' (= F.1) which has no two-sided ideal except {0} and A. For instance, the
algebra M, (F) of n x » matrices over a field F is a central simple algebra. An algebra
A # {0} is a division algebra (or a skew field) if every non-zero element in A is invertible.

1.1. Wedderburn’s theorem

The structure of central simple algebras is determined by a well-known theorem of
Wedderburn:

(1.1) Theorem. (Wedderburn) For an algebra A over a field F, the following con-
ditions are equivalent:

! Among the funny consequences of this convention, note that if V is a right vector space over a
division ring D, then its dual V* is a left vector space over D and if f,g are endomorphisms of V,
then their transpose obey the rule: (f o g)t = ftogt.
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1. A is central simple.

2. The canonical map A ® A°® — Endp(A) which associates to a ® b°P the linear
map x — azxb is an isomorphism.

3. There is a field K containing F' such that Ax is isomorphic to a matriz algebra
over K :
A ~ M, (K) for somen.

4. If Q is an algebraically closed field containing F,
Aq ~ M, (Q2) for some n.

5. There is a finite-dimensional central division algebra D over F and an integer r
such that A ~ M,.(D).

Moreover, if these conditions hold, the division algebra D is uniquely determined up to
an algebra isomorphism as D = End (M) for any simple left A-module M.

For the proof, we refer to [18, Chapter 8] or [6, §3].

The fields K for which condition (3) holds are called splitting fields of A. Accord-
ingly, the algebra A is called split if it is isomorphic to a matrix algebra M, (F) (or to
Endg(V) for some vector space V over F).

Since the dimension of an algebra does not change under an extension of scalars,
it follows from the above theorem that the dimension of every central simple algebra
is a square: dimr A = n? if Ax ~ M,(K) for some extension K/F. The integer n is
called the degree of A and denoted by deg A. The degree of the division algebra D in
condition (5) is called the indez of A (or sometimes the Schur indez of A) and denoted
by ind A. Alternatively, the index of A can be defined by the relation:

deg A.ind A = dimp M

where M is a simple left module over A. This relation readily follows from the fact
that if A ~ M,.(D), then D7 is a simple left module over A.

In view of the uniqueness of the division algebra D in the preceding theorem, we
introduce the following definition:

(1.2) Definition. Let A, B be finite-dimensional central simple algebras over a field
F. Let A~ M.(D) and B ~ M,(FE) for some division algebras D, E over F. The alge-
bras A, B are called Brauer-equivalentif D ~ E. It then follows that M,(A) ~ M,(B).
Conversely, if M¢(A) ~ M,,(B) for some integers t,m, then M;+(D) = M, (E), hence
Wedderburn’s theorem shows D ~ E. The preceding definition may therefore be re-
phrased as follows: A and B are Brauer-equivalent if and only if M;(A) >~ M,(B) for
some integers {,m.
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Clearly, every central simple algebra is Brauer-equivalent to one and only one di-
vision algebra (up to isomorphism). If A and B are Brauer-equivalent central simple
algebras, then ind A = ind B and A ~ B if and only if deg A = deg B.

The tensor product endows the set of Brauer equivalence classes of central simple
algebras over F' with the structure of an abelian group, denoted Br(F) and called the
Brauer group of F. The unit element in this group is the class of F', which is also the
class of all the matrix algebras over F. The inverse of the class of a central simple
algebra A is the class of the opposite algebra A°P, as part (2) of Wedderburn’s theorem
shows.

1.2. One-sided ideals in central simple algebras

A fundamental result of the Wedderburn theory of central simple algebras is that all
the finitely generated left (resp. right) modules over a central simple algebra A over a
field F decompose into direct sums of simple left (resp. right) modules, and that the
simple left (resp. right) modules are all isomorphic. If A = M, (D) for some integer
r and some central division algebra D, then D" is a simple left A-module (with the
matrix multiplication, writing the elements of D™ as column vectors). Therefore, every
finitely generated left A-module M is isomorphic to a direct sum of copies of D":

M = (D7),

hence
dimp M = rt dimp D = tdeg Aind A.

(1.3) Definition. The rank of the left A-module M is defined by:

dimp M

tk M = degA

Observe from the preceding relation that the rank of a finitely generated left A-module
is always a multiple of ind A.

Since D" is a simple left A-module, we have D ~ End(D"); therefore, if M =~
(D7)}, then
Enda(M) ~ My(Enda(D")) ~ My (D).

This shows that End4(M) is a central simple algebra Brauer-equivalent to A of degree
rk M.

The preceding discussion of course applies also to right A-modules; writing the
elements of D" as row vectors, matrix multiplication also endows D" with a right
A-module structure, and D" is then a simple right A-module.
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Ideals and subspaces

Suppose now A = Endp(V) for some central division algebra D over F' and some
finite-dimensional vector space V over D. We aim to get an explicit description of the
one-sided ideals in A in terms of subspaces of V.

Let U C V be a subspace. Composing every linear map from V to U with the
inclusion U — V, we identify Homp(V,U) to a subspace of A = Endp(V):
Homp(V,U) = {f € Endp(V) | im f C U}.
This space is clearly a right ideal in A, of rank
rk Homp(V,U) = dimp U.deg D.

Similarly, composing every linear map from the quotient space V/U to V with the
canonical map V — V/U, we may identify Homp(V/U,V) to a subspace of A =
Endp(V):

Homp(V/U,V) = {f € Endp(V) | ker f D U}.

This space is clearly a left ideal in A of rank
rk Homp(V/U,V) = dimp(V/U). deg D.

(1.4) Proposition. The map U — Homp(V,U) defines a one-to-one correspondence
between subspaces in V and right ideals in A = Endp(V). Similarly, the map U —
Homp(V/U,V) defines a one-to-one correspondence between subspaces in V and left
ideals in A. Moreover, there are canonical isomorphisms of I'-algebras:

Enda(Homp(V,U)) ~ Endp(U) and Enda(Homp(V/U,V)) =~ Endp(V/U).

Proof: The last statement is clear: multiplication on the left (resp. right) defines
an F-algebra homomorphism Endp(U) < Ends(Homp(V,U)) (resp. Endp(V/U) —
End 4 (Homp(V/U,V))). Since rk(Homp(V,U)) = dimp U. deg D, we have

deg End 4(Homp(V, U)) = dimp U. deg D = deg Endp(U),

so the homomorphism Endp(U) < Ends(Homp(V, U)) is an isomorphism. Similarly,
the homomorphism Endp(V/U) — Enda(Homp(V/U,V)) is an isomorphism by di-
mension count.

For the first part, it suffices to show that every right (resp. left) ideal in A has the
form Homp(V, U) (resp. Homp(V/U,V)) for some subspace U C V. We first consider
a special case:

(1.5) Lemma. For f € A= Endp(V),
fA=Homp(V,im f) and Af=Homp(V/kerf,V).
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Proof: The inclusions fA C Homp(V,im f) and Af C Homp(V/ker f, V') are obvious.
To prove the converse inclusions, choose sections s and ¢ of the epimorphism f: V —
im f and of the monomorphism f : V/ker f — V induced by f. Thus, s and ¢ are
linear maps:

s:imf-V t:V-osV/ikerf

such that fos=Idiys and to f = Idy/kers, i-€. to f(z) = z+ker f for all z € V. For
all g € Homp(V,im f) we have g = fosog € fA, so Homp(V,im f) C fA. Similarly,
for g € Homp(V/ker f,V) we have g=goto f € Af, so Homp(V/ker f,V) C Af. m

End of the proof of Proposition 1.4: Let I C A be a right ideal. Let U = Y ;¢;im f C
V. Clearly, I € Homp(V,U). To prove the converse inclusion, pick f € I for which
im f is maximal. If we show im f = U, then we are done since the Lemma yields

Homp(V,U) = fAC I.

Suppose im f is properly contained in U. Then there exists g € I such that img ¢ im f.
Let u € (img) \ (im f) and choose a complementary subspace V’ to im f @ uD:

V=imfeuDoV'

If = is the projection on im f parallel to wD @ V’, then im7 = im f hence the Lemma
shows 7 € fA C I. Similarly, if n’/ is the projection on uD parallel to im f & V', then
im#’ C im g hence n’ € gA C I. Therefore, 7 + 7’ € I; but « + ' is the projection on
im f & uD parallel to V', so im(x 4+ 7’') = im f & uD properly contains im f. It follows
that im f is not maximal if im f # U. This completes the proof that every right ideal
in A has the form Homp(V, U) for some subspace U in V.

Similarly, if I is a left ideal in A, we set U = Nyerker f and we clearly have
I € Homp(V/U,V). Let f € I be such that ker f is minimal. If we show U = ker f,
then the Lemma yields Homp(V/U,V) = Af C I, and we are done.

Suppose U is properly contained in ker f. Then there exists g € I such that
ker f Nker g C ker f. Let V; (resp. V;) be a complementary subspace of ker f Nker g in
ker f (resp. in ker g) and let W be a complementary subspace of ker f + kerg in V, so
that

ker f = (ker fNkerg) ® Vi, kerg= (ker fNkerg)® V;

and

V=(kerfnNnkerg)@Vid Vo W.

Let 7 be the projection on Vo@W parallel to ker f and n’ be the projection on V] parallel
to (ker f Nkerg) ® Vo @ W. We have n(ker f) = 0, hence # € Homp(V/ker f,V) =
Af C I. Similarly, 7/(ker g) = 0 hence ' € Homp(V/ker g,V) = Ag C 1. Therefore,
7w+ 7' € I; but 7 + 7’ is the projection on V) @ Vo @ W parallel to ker f Nkerg so
ker(m + #') C ker f, contradicting the minimality of ker f. ]
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(1.6) Corollary. For every left (resp. right) ideal I C A there ezists an idempotent
e € A such that I = Ae (resp. I = eA). Then End,(I) = eAe.

Proof: If I = Homp(V/U,V) (resp. Homp(V, U)), choose a complementary subspace
U'in V, so that V = U&U’, and take for e the projection on U’ parallel to U (resp. the
projection on U parallel to U’). We then have I = Ae (resp. I = eA), by Lemma 1.5.

To prove the last part, observe that for a € A, multiplication on the right (resp.
left) by eae defines an endomorphism of left A-modules 7., : Ae — Ae (resp. an
endomorphism of right A-modules Zeqe : €A — eA):

(z€)reqe = TeQE Leqe(ex) = eaerx.

If this endomorphism is zero, then (e)reqse = eae = 0 (resp. leqe(e) = eae = 0).
Therefore, the map r : eAe — Ends(Ae) (resp. feqe : €eAe — Enda(eA)) is an
injective F-algebra homomorphism.

For any endomorphism f : Ae — Ae (resp. ¢ : eA — eA) of left (resp. right)
A-modules we have

(ze)f = ze.(e) f (resp. g(ex) = g(e).ex)
(e)f =e.(e)f € ede (resp. g(e) = g(e).e € eAe).
This shows that r : eAe — Enda(Ae) (resp. £ : eAe — Enda(eA)) is an isomor-
phism. [

Annihilators

For every left ideal 7 in a central simple algebra A over a field F', the annihilator I® is
defined by:

I°={zeA|Lz={0}}).
This set is clearly a right ideal. Similarly, for every right ideal I, the annihilator I? is

defined by:
P={zeA|xI={0}}

it is a left ideal in A.

(1.7) Proposition. For every left or right ideal I C A,
rkI4+1kI°=deg A

and 1% = I.

Proof: Let A = Endp(V). For any subspace U C V it follows from the definition of
the annihilator that

Homp(V,U)® = Homp(V/U,V) and Homp(V/U,V)°® = Homp(V,U).

Since every left (resp. right) ideal 7 C A has the form I = Homp(V/U,V) (resp.
I = Homp(V,U)), the Proposition follows. (]
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§2. Involutions

In this section, the characteristic of the base field F' is always assumed different from
2, although this hypothesis is not necessary for the basic definitions and observations.

2.1. Kinds and types

An involution on a central simple algebra A over a field F' is a map ¢ : A — A subject
to the following conditions:

l. o(z +y)=0(x) +o(y) for z,y € A.
2. o(zy) = o(y)o(z) for z,y € A.
3. c*(x) =z for x € A.

Note that the map o is not required to be F-linear. However, applying o to both sides of
the relation 1o(1) = o(1) yields ¢(1) = 1. Therefore, the center F' (= F.1) is preserved
under o, and the restriction of ¢ to F is either the identity or an automorphism of
period 2.

The involution ¢ is called of the first kindif o is the identity on F (i.e. o is F-linear);
otherwise it is said to be of the second kind. In the latter case, the subfield Fp C F
elementwise invariant under o is of codimension 2.

Occasionally?, we will be in a situation where the base field is the subfield Fg
rather than the field . Under scalar extension to an algebraic closure of Fp, the field
F, hence also the algebra A, decomposes into a direct product of two factors. It is
therefore convenient to extend our discussion of involutions of the second kind to semi-
simple Fy-algebras of the form A x B where A, B are central simple Fy-algebras. An
involution of the second kind is then an Fp-linear anti-automorphismo : AxB — AxB
of period 2 whose restriction to Fy x Fy is the twist: o(f,g) = (g, f). In particular, ¢
maps A x {0} = (4 x B)-(1,0) to {0} x B=(A x B)-(0,1).

If K is any extension of F, every involution of the first kind ¢ on A extends to an
involution of the first kind oy = 0 ® Idg on Ax = A ®p K. In particular, if K is
a splitting field of A, we may identify Ax = Endg (V) for some vector space V over
K of dimension n = deg A. The discussion in the introduction to this chapter shows
that ok is then the adjoint involution with respect to some nonsingular bilinear form
b on V, which is either symmetric or skew-symmetric. The involution o is said to be
of orthogonal type (or simply orthogonal) or of type +1 if ok is the adjoint involution
with respect to a symmetric bilinear form; otherwise it is called of symplectic type (or
simply symplectic) or of type —1.

To show that this definition does not depend on the choice of the splitting field
K, we give an alternative characterization of orthogonal and symplectic involutions in
terms of symmetric and skew-symmetric elements.

2Notably in the case of (even) Clifford algebras: see Theorem 2.6 of Chapter 2.
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For any involution & on a central simple algebra A, we denote by (4,0); and
(A, o)_ the sets of symmetric and skew-symmetric elements respectively:

(Ao} ={acAlo@=a} (Ao)-={acA|o(a)=—a}

If o is of the first kind, then (A, ), and (A, o)_ are vector spaces over the base field
F. If o is of the second kind, then they are vector spaces over the subfield Fy C F of
invariant elements under ¢. In both cases,

A= (A,Cf)+ &b (A,O')..
since every element a € A can be decomposed as a = }(a + o(a)) + 1(a—o(a)).

(2.1) Proposition. Let A be a central simple algebra of degree n over F' and let o be
an involution on A.

1. If o is of the first kind and orthogonal type, then

dimp(A,0), = "(”; D and dimp(A, o) = "("2‘ D,
2. If o is of the first kind and symplectic type, then
dimp(A,0)4 = n(nz— D and dimp(A,0)- = n(_n;ﬁ

Moreover, in this case n is necessarily even.

3. If o is of the second kind, let Fy C F be the subfield of invariant elements under

o; then
dimg,(4,0)+ = dimg, (4,0)- = n?

Proof: Suppose first that o is of the first kind. Since dimensions do not change under
scalar extension, we may extend scalars to a splitting field of A. Therefore, there is no
loss of generality if we assume A = M,,(F) = Endp(F").

Suppose ¢ is the adjoint involution with respect to some nonsingular bilinear form
bon F™ and let u € GL,(F) denote the Gram matrix of this form, so that

biz,y) =xtuy foralz,ye F",

and

u' = tu.
More precisely, we have ! = v if b is symmetric (i.e. ¢ is orthogonal) and u* = —u
if b is skew-symmetric (i.e. o is symplectic). If n is odd, then every skew-symmetric
matrix is singular, so the case u* = —u arises only when 7 is even.

Using the above expression for b, the relation b(z,a(y)) = b(o(a)(z),y) for all
z,y € F" yields

o(a) =uta'u  for all e € M,(F).
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Therefore, (A,0)y = v (M,(F),t), if u* = u (i.e. o is orthogonal) and (A,0); =
u~ (Mo (F),t)_ if u* = —u (i.e. o is symplectic). Since dimp(Mn(F),t); = 2ot
parts 7 and 2 are proved.

Suppose then that o is of the second kind and let z € F* be such that o(2) = —z.
Then

(A,0)+ = Z(A,U)_ and (A)U)- = Z(A,U')+,

so that dimg,(A,0);+ = dimg(A,0)-. Since A = (A,0)4 ® (A,0)—, the proof is
complete. n

2.2. Examples

Given an involution on a central simple algebra A, all the other involutions on A can
be obtained by the following Proposition:

(2.2) Proposition. Let A be a central simple algebra over a field F and let o be an
involution on A.

a) If o is of the first kind of type € (= x1) then for all unit u € A* such thai
o(u) = Au with A = £1, the map Int(u) oo is an involution of the first kind on A
of type eX. Moreover, for every involution o' of the first kind of type €’ (= 1)
there exists a unit u € A* such that o(u) = €€’ and o' = Int(u)oo. Ife = ¢,
then

(A,o)y =u(A,0) = (A,0)4u"! and (A0')- =u-(A0)-=(40)-u""
Ife' = —¢, then
(A,0')y =u-(A,0)- = (A,0)--u"" and (Ao')- =u(4,0)+=(A4,0)4u".

b) If o is of the second kind and Fy denotes the subfield of F' elementwise invariant
under o, then for all unit u € A* such that o(u) = Au with A € F and Aa(A) = 1,
the map Int(u) o o is an involution of the second kind on A which leaves Fo
elementwise invariant. Conversely, for every involution o' of the second kind
leaving Fy elementwise invariant, there exists a unit u € A such that o(u) = u
and o' = Int(u) oo. Then

(A,0)+ =u-(A,0)4 = (A,0)pu™" ond (A0). =u(Ao)-=(4A0)_u".

Proof: If o' = Int(u) o o with o(u) = tu, then a straightforward verification shows
that ¢’ is an involution, and that

(A:OJ)—P :’U.°(A,0')+ = (Aaa)-}-'u—l if O'(U)=U

(A,0')s =u-(A,0)- = (A4,0)--u™" if o(u) = —u

If o is of the first kind, Proposition 2.1 then allows us to compare the types of o and
o’'. On the other hand, if ¢’ is an involution on A which has the same restriction to F'
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as o, then ¢’ o 0 is an automorphism of A which leaves F' elementwise invariant. The
Skolem-Noether theorem (see for instance [18, Theorem 8.4.2]) then yields an element
u € A* such that ¢’ o 0 = Int(u), i.e.

o' = Int(u) o 0.

It follows that 62 = Int(uo(u)~'), hence the relation 02 = I yields a(u) = Au for
some A € F'*. Applying o to both sides of this relation and substituting Au for o(u)
in the resulting equation, we get u = Ao(A)u, hence

ro(d) = 1.

If o is of the first kind, it follows that A2 = 1, hence o(u) = u. If ¢ is of the second
kind, we get Ng/g(A) = 1, hence Hilbert’s theorem 90 yields A € F* such that
A = Xoo(Ao)~!. Substituting Aou for u, we may then assume o(u) = u. (]

(2.3) Example: Quaternion algebras. A quaternion algebra over a field F is a cen-
tral simple F-algebra of dimension 4. Since we assume that the characteristic of F' is
different from 2, it can be shown (see [18, §8.11]) that every quaternion algebra @ has
a basis 1,1, 7, k subject to the relations:

e F*, 2eF*, ij=k=—ji
Such a basis is called a quaternion basis; if i2 = a and j2 = b, the quaternion algebra
Q is denoted:
Q = (a: b)I‘
Conversely, for any a,b € F'* the 4-dimensional F-algebra @) with basis 1, %, j, £ where

multiplication is defined through the relations i2 = a, j2 = b, ij = k = —ji is central
simple and is therefore a quaternion algebra (a,b)r.

For every quaternion algebra (), an F-linear map v : @ — @ can be defined by:
Y(z) = Trdg(z) — for all z € Q

where Trdg is the reduced trace in @Q (see for instance [18, §11.5] for the definition of
the reduced trace on a central simple algebra). Explicitly,

Trdg(zo + z12 + 227 + x3k) = 220 for xo,x1, 22,23 € F,

hence
Y(xo + 1% + 227 + 23k) = Tp — 117 — 2] — T3k.

Direct computations show that « is an involution, called the guaternion conjugation or
the canonical involution and often denoted by ~: z — T = (z). Clearly, (Q,7)y+ = F
and (Q,~)- has dimension 3, so v is a symplectic involution. The elements in (@, 7)-
are called pure quaternions.

From Proposition 2.2, it follows that every involution of the first kind ¢ on @ has
the form o = Int(u) o~y where u is a unit such that y(u) = +u. If o is symplectic, then
v(u) = u, hence u € F* and o = .
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In conclusion, every quaternion algebra @ has a unique symplectic involution,
namely the canonical involution 7, and orthogonal involutions which are of the form
Int(u) o v where u is an invertible pure quaternion.

Involutions of the second kind on quaternion algebras also have a very particular
type:
(2.4) Proposition. (Albert) Let o be an involution of the second kind on a quater-

nion algebra Q) over a field F' and let Fy be the subfield of F elementwise invariant
under o. There erists a unique Fy-subalgebra Qo C Q such that

Q:Q0®F0F

and
oc=7%QRa

where 7o is the canonical involution on Qo and a = o|p is the non-trivial automorphism
of F over Fy. Moreover, the algebra Qo is uniquely determined by these conditions.

Proof: Let v be the canonical involution on Q. Then ¢ oy o ¢ is an involution of the
first kind and symplectic type on @, so ¢ oyo o = v since we have observed above that
the canonical involution is the unique involution of symplectic type on Q. From this
last relation, it follows that ¢ o v is an a-semilinear automorphism of period 2 of Q.
The Fo-subalgebra Qo of invariant elements then satisfies the required conditions. m

(The original proof of Albert is in [1, Theorem 10.21]).

Tensor products yield further examples of algebras with involution:

(2.5) Proposition. Let A,,..., A, be central simple algebras with involutions o4, ...,
on over a field F.

a) If for alli =1,...,n the involution o; is of the first kind and of type g; (= £1),
then 01 @ - - - ® o, s an involution of the first kind on A; ®p - - QF An, of type
€1...En.

b) If all the involutions o; are of the second kind and leave elementwise invariant
the same subfield Fy, of codimension 2 in F, then oy ® - - - ® 0, 1s an involution
of the second kind on A, Q@ - -+ ®p A, which leaves Fy invariant.

The proof, by induction on n, is straightforward.

Tensor products of quaternion algebras thus yield examples of central simple alge-
bras with involution. Merkurjev’s theorem [14] shows that every central simple algebra
with involution is Brauer-equivalent to a tensor product of quaternion algebras. How-
ever, there are examples of division algebras with involution of degree 8 which do not
decompose into tensor products of quaternion algebras, and there are examples of in-
volutions ¢ on tensor products of two quaternion algebras which are not of the form
o1®02 [2]. A necessary and sufficient decomposability condition for an involution on a
tensor product of two quaternion algebras has been given by Knus-Parimala-Sridharan
[13].
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§3. Existence of involutions

The aim of this section is to give a proof of the following Brauer-group characterization
of central simple algebras with involution:

(3.1) Theorem. Let A be a central simple algebra over a field F'.

a) There is an involution of the first kind on A if and only if AQF A splits.

b) Suppose F is a quadratic extension of some subfield Fy. There is an involution
of the second kind on A which leaves Fyy elementwise invariant if and only if the
norm® Np;r,(A) splits.

In particular, if A has an involution, then every central simple algebra Brouer-equi-
valent to A has an involution of the same type.

The first part is due to Albert [1, Theorem 10.19]. Albert also proved part (b) in the
case where A is a special kind of crossed product [1, Theorem 10.16]. Part (b) was
stated in full generality by Riehm [15] and proved by Scharlau [17](see also [18, §8.9]).

Each part requires a separate treatment. We shall follow an approach based on
ideas of Tamagawa (oral tradition — see [5, §2]), starting with the case of involutions
of the first kind.

3.1. Existence of involutions of the first kind

The fact that A ® A splits when A has an involution of the first kind is easy to see:

(3.2) Proposition. Every involution of the first kind o on a central simple algebra A
induces an isomorphism of F-algebras 0. : AQ®r A — Endp(A) by:

(x)o.(a ®b) = o(a)zb.

(Here, A is considered as a left F-vecior space, so that endomorphisms are written on
the right of the arguments).

Proof: 1t is straightforward to check that o, is an F-algebra homomorphism. It is
injective since A @ A is simple and therefore also surjective by dimension count. m

To prove the converse, we will need a special element in AQr A, called the Goldman
element (after Knus and Ojanguren [10, p. 112}).

3see (3.7) below for the definition of the norm of a central simple algebra.
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Goldman element

For any central simple algebra A over a field F' we may consider the F-linear map
Sand : A®r A — Endp(A)

defined by:
Sand(a ® b)(x) = axb.

(3.3) Lemma. The map Sand is an isomorphism of F-vector spaces.

Proof: Sand is the composite of the isomorphism A @ A ~ A @ A°® which maps
a®bto a®b°® and of the canonical F-algebra isomorphism A ® ¢ A°" ~ Endr(A) of
Wedderburn’s theorem (1.1). ]

Consider the reduced trace Trd4 : A — F. Composing this map with the inclusion
F — A, we may view Trd, as an element in Endg(A).

(3.4) Definition. The Goldman element in AQr A is the unique element g € AQr A
such that
Sand(g) = Trd4 .

(3.5) Proposition. The Goldman element g € A ®r A satisfies the following proper-
ties:

1. ¢?=1.
2. g(a®b)=(b®a).g for alla,be A.

3. If A is split: A = Endp(V), then under the canonical identification A ®p A =
Endg(V ®f V) the element g is defined by:

g1 Qua) =12 @0 Jorvy, v € V.

Proof: We first check (3) by using the canonical isomorphism Endr(V) =V @p V*. If
(es)1<i<n is a basis of V' and (e})1<i<. is the dual basis, consider the element

g=) e®€c;Re; Qe e VOV*®V ®V* =Endp(V) ®r Endr(V).
i3

For all f € Endp(V), we have

Sand(g)(f) = D_(e: ®ej) 0 fo(e; @ €]) = D _e:i ® e €5(f(es))-

Since 3 e; ® ¢f = Idy and 32; €} (f(e;)) = tr(f), the preceding equation shows that

Sand(g)(f) = tr(f) for all f € Endp(V),
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hence g is the Goldman element in Endp(V) ® Endg(V). On the other hand, for
1,v2 € V we have

g @) = 3 (e ®e)(v) ® (e; ®€])(va)

= (;6,'.6:('02)) ® (}; ej.e;f(vl))

v @ V1.

This completes the proof of (3).

In view of (8), parts (1) and (2) are easy to check in the split case A = End(V),
hence they hold in the general case also: indeed, for any splitting field K of A the
Goldman element g in A ®f A is also the Goldman element in Ax ®x Ak since the
sandwich map and the reduced trace map commute to scalar extensions. Since Ay is
split we have g2 = 1 in Ax ®k Ak, and g.(a ® b) = (b® a).g for all a,b € Ak, hence
also for all a,b € A. [

Involutions of the first kind and one-sided ideals

For any involution of the first kind o on a central simple algebra A, we define a map
o: AQrA— A

by

d'(a®b) = a(a)b.
This map is a homomorphism of right A ® A-modules, if A is endowed with the right
A ® A-module structure defined by: z.(a ® b) = o(a)zb. (Compare Proposition 3.2).
The kernel ker ¢’ is therefore a right ideal in A ®r A. Clearly, no non-zero element of
the form a ® 1 or 1 ® a is in the kernel of ¢’. Dimension count then shows that

(A®1) @kero' = AQr A=kerd’ ® (1@ A).

If the algebra A is split, let A = End(V) and let b be a nonsingular (symmetric or
skew-symmetric) form on V' such that ¢ is the adjoint involution with respect to b. We
may consider b as a linear map b: V®V — F and identify A A=End(V®V). We
claim that the map ¢’ is then defined by the relation:

bof=bo(ldy®d'(f)) forall fe End(VQV).

Since both sides are linear in f, it suffices to verify this relation for f = f; ® fo, where
N1, f2 € End(V). Then o'(f) = o(f1) f2, hence for z,y € V we have

bo (Idv @' (/))(z @) = b(x,0(f1) ° f2(4)) = b{f1 (), f2(y)) = bo f(z ®Y).

This proves the claim.
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This observation shows that in the split case
kero' = {f € End(V®V) | bo f = 0}.

In particular, if g denotes, as above, the Goldman element: g(v; ® vz) = v2 ® v for
¥,v9 € V, it follows that 1 ~ g € kero’ if b is symmetric and 1 + g € kero’ if b is
alternating. The same property therefore holds in the general case: 1 — g € kero' if o
is orthogonal and 1 + g € ker ¢’ if ¢ is symplectic.

(3.6) Theorem. Let A be a central simple algebra over a field F and let g € A® A
denote its Goldman element. The map o +— kero’ defines a one-to-one correspondence
between the involutions of the first kind on A and right ideals I C A ®r A satisfying
the following conditions:

1. (A@1)®I=A®rA=I®(1® A).
2 I>1ly.

Under this correspondence, involutions of orthogonal (resp. symplectic) type correspond
to ideals containing 1 — g (resp. 1 + g).

Note that, for right ideals I C A®F A satisfying condition (2), any one of the equalities
in (1) implies the other one. Indeed, condition (2) implies that (1+ g)(a® 1)g € I for
all a € A; now, Proposition 3.5 shows that g(a ® 1)g = 1 ® a, hence

lxg)e®l)g=(a®1)g £ (1R a).

Therefore, if I contains a ® 1 for some a € A, it also contains 1 ® a. Similarly, if it
contains 1 ® a, it also contains a ® 1.

Proof of Theorem 3.6: It was shown above that for each involution o, the right ideal
ker o’ satisfies conditions (1) and (2). To prove that the map o +— kero’ is bijective,
we define an inverse map. Suppose I is a right ideal in A ® ¢ A satisfying conditions
(1) and (2). For every element a € A, we have

a®1 e AQrA=1d(1Q® A).
Therefore, there exists a unique element a7(a) € A such that
a®l1-1Q®os(a) €l

The map oy is clearly F-linear. We claim that o; is an involution on A. For a,b € A,
we have

(a®1—-1®0:(a)).b®1)el and (Bb®1-1®0;(})).(1®0/(a)) €]
since I is a right ideal. Adding these two relations, we get

ab®1-1®o;(b)oj(a) €1,
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which shows that o;(ab) = o;(b)or(a). On the other hand, from condition (2) it follows
that for every u € I,
(1xg)u—uel,

hence gu € I. Therefore, for all a € A we have g(a ® 1 — 1 ® o4(a))g € I, hence
o) ®1—-1®acl.

This shows 0%(a) = a and completes the proof of the claim that o; is an involution of
the first kind on A.

Let 0} : A®r A — A be the corresponding map, defined by o7(a ® b) = o(a)b.
letu=Yu,®@ul!c A® A. If u € kerot, then T o(u;)ui =0, hence

u=> (Ueu —1®o(u)ul) = (el -1®0r(u)).(1®u).

This shows that kero! is generated as a right ideal in ®A by elements of the form
a®1—1Qo;(a). Since these elements are all in I, by definition of oy, it follows that
ker o C I; but these ideals have the same dimension, hence kero; = I.

Conversely, if o is any involution of the first kind on A, then

a®1—1®0(a) ekero’ forall a € A,

hence oyeror = 0. Therefore, the maps o — kero’ and I — o are inverse bijections
between the set of involutions of the first kind on A and the set of right ideals in A®r A
satisfying conditions (1) and (2). |

We can now complete the proof of Albert’s theorem (case (a) of Theorem 3.1).
According to Wedderburn’s theorem (see 1.1), we may find a central division algebra
D over F such that

A~ M. (D) for some integer 7.

The condition that A ® 5 A is split implies that D & D is also split, hence minimal
right ideals in D ® D have dimension deg(D ®r D) = dimp D, and maximal right
ideals have dimension (dimp D)% —dimg D. Let I be a maximal right ideal containing
1 —g. Since D is a division algebra, D ® 1 and 1 ® D intersect I trivially; therefore,
dimension count shows that

(Del)®lI=DorD=1&(1®D).

It then follows from Theorem 3.6 that D has an (orthogonal) involution of the first
kind, which we denote by ~. An involution of the first kind o is then defined on M,.(D)
by

o{(ash<ig<r) = (@i i<r

and transported to A by the isomorphism A ~ M (D).
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3.2. Existence of involutions of the second kind

Before discussing involutions of the second kind, we recall the construction of the norm
of a central simple algebra, in the particular case of interest in this section.

The norm (or corestriction) of central simple algebras

Let K/L be a finite separable extension of fields. For every central simple K-algebra
A, there is a central simple L-algebra Nk, (A) of degree (deg AL called the norm
of A, defined so as to induce a homomorphism of Brauer groups

NK/L . BI‘(K) — BI‘(L)

which corresponds to the corestriction map in Galois cohomology.
In view of Theorem 3.1, we shall only discuss here the case where K/L is a quadratic
extension, referring to [6, §8] (and [21]) for a more general treatment along similar lines.

The case of quadratic extensions is particularly simple in view of the fact that
separable quadratic extensions are Galois. Let K/L be such an extension, and let

Gal(K/L) = {ldg, a}
denote its Galois group. For any K-algebra A, we define the conjugate algebra
*A={%]ac A}
with the following operations:
“a+%=%*a+b) “a.%b = *(ab) “(ka) = a(k)%a
for a,b € A and k € K. The switch map
s: AR A=Ak A

defined by
s("a®b)=“b®a

is a-semilinear over K and is an L-algebra automorphism.

(8.7) Definition. The norm Ng/ (A) of the K-algebra A is the L-subalgebra of
*A ®x A elementwise invariant under the switch map:

NK/L(A) = {u E*AQK A | s(u) = u}

Of course, the same construction can be used to define the norm Ng,r(V) of any
K-vector space V.

(3.8) Proposition. 1. For any K-algebra A,
Ng/L(A)k = “A Qg A.
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2. For any K-algebras A, B,
Ni/L(A ®k B) = Nk1(A) ®1 NkyL(B).
3. For any finite-dimensional K -vector space V,
Nk/L(Endg (V) = End(Nic/n(V))-

4. If A is a ceniral simple K-algebra, the norm N, (A) is ¢ central simple L-
algebra of degree
deg Nk/L(A) = (deg A)2.

Moreover, the norm induces a group homomorphism
Nk, : Br(K) — Br(L).
5. For any central simple L-algebra A,
Ng/(Ak) ~ A®y A

Proof: (1): Since Nk/L(A) is an L-subalgebra of *A ® ¢ A, there is a natural map
Nk/L(A) ®, K — *A ®k A induced by multiplication in *A ®x A. This map is
a homomorphism of K-algebras; it is bijective since if K = L(v/d) every element
a € *A ®g A can be written in a unique way as? a = a; + azv/d with a1, a, invariant
under the switch map s:

a= [%(a + s(a))] + [%(a - s(a))(\/c_l)‘l] Vd.

(2) is straightforward (see [6, p. 55] or {18, Lemma 8.9.7]). The canonical map
Ng/L(A) ®L NrjL(B) — Ng/(A ®k B) corresponds, after extending scalars to K,
to the map

(*A®Kx A)®x (*"B®k B) — *(A®x B) ®x (AQx B)

which carries “al Rax & ab] ® b2 to “(al & bl) ® (a2 ® bg)
(3): There is a natural isomorphism:

* Endg(V) = Endg(®V)

which identifies *f for f € Endg(V) to the endomorphism of *V mapping “v to
*(f(v)). We may therefore identify:

®Endg (V) ®k Endg(V) = Endg(°V ®k V),

1To get a proof valid in all characteristics, choose a; = (s{a)k — aa(k))}{(k — a(k))! and a3 =
(a - s(a)){(k — afk))~! forany k€ K\ L.
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and check that the switch map s is then identified to conjugation by sy, where sy :
*V ek V — *V ®k V is the a-linear map defined through:

sy(*vQw)=“w®v forv,wel.

The L-algebra N, (Endg(V)) of fixed elements under s is then identified to the L-
algebra of endomorphisms of the L-subspace elemntwise invariant under sy, i.e. to
EndL(NK/LV).

(4): If A is a central simple K-algebra, then *A ®k A also is central simple over
K, hence Nk, (A) is central simple over L, by the first part of this Proposition. If A’
is Brauer-equivalent to A, then we may find vector spaces V, V' over K such that

A®k Endg(V) ~ A’ @k Endg (V).
It then follows from parts (2) and (&) above that
NK/L(A) L EndL(NK/LV) o~ NK/L(A') L EndL(NK/LV'),

hence Ng/1(A) and Ng;(A’) are Brauer-equivalent. Part (2) above moreover shows
that the Braner-group map induced by Nk, is & homomorphism.

To prove (5), we first note that if A is an L-algebra, then ®(Ag) = Ax under the
identification *(a ® k) = a ® a(k). Therefore,

(Ax) Ok Ak ~AQL AQL K

and Ny (A) can be identified to the L-algebra elementwise invariant under the L-
algebra automorphism s’ of A ®;, A ®;, K defined through:

s'(a1 @ a2 ® k) = a; ® a; ® a(k).

On the other hand, A ®/, A can be identified to the algebra of fixed points under the
automorphism s” defined through:

s”(al Rar @ k) =a;Q0a2 a(k)

We aim to show that these F-algebras are isomorphic when A is central simple.
Let g € A®z A be the Goldman element (see (3.4)). By Proposition 3.5, we have

=1 and g(a; ®ay) = (a2 ®a1)g for all a;,a; € A,
hence forall z € AQ A, s'(z® 1) = gxg~! ® 1. In particular:
sg®l)=g®1,
and moreover

") =(g@1).8y).(g01)! forallye A®, A®, K.
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Let k € K be such that a(k) # & and let
u=k+(g@1)o(k) € A®L AR, K.
This element is invertible, since u.(k — (g ® 1)a(k)) = k% — a(k)? € K*; moreover,
s'(w) = alk) + (9@ Dk =u{g®1).
Therefore, forall z € AQL A®, K,
Suzu™) =u(g® 1)/ (z)(g®1) v = us"(z)u".

This equation shows that conjugation by « induces an isomorphism from the L-algebra
of invariant elements under s” onto the L-algebra of invariant elements under s’, hence

A®p A~ Ng/(Ak).

Remarks:

1. Property (5) in the Proposition above does not hold for arbitrary L-algebras.
For instance, one may check as an exercise that Ng/g(Cc) >~ R x R x C, whereas
CerCx~CxC.

2. The proof of property (5) above in [6, p. 55| is flawed: see the correction in [21].

We now come back to the proof of Theorem 3.1. As in the case of involutions of
the first kind, the necessary condition for the existence of an involution of the second
kind is easy to prove:

(3.9) Proposition. Let o be an involution of the second kind on a central simple F-
algebra A and let Fy denote the subfield of F' elementwise invariant under o. There is
a natural isomorphism of Fo-algebras:

0u: Nery(A) S Endpy((4,0)4).
Proof: Let a denote the non-trivial element of the Galois group of F over Fy. The map
o: “AQ®p A — Endp(A)

defined by

(z)o.(*a®b) = o(a)xdb
is an isomorphism of F'-algebras since *A®Fr A and Endr(A) have the same dimension
and *A ®r A is simple. We have

(0(2))0.(*b® a) = o(0.("a ® b)(2)),

so if u € *A®p A is invariant under the switch map s: *A®r A — *A Qp A, then
o«(u) maps (A,o)4+ to itself. Therefore, o, restricts to an injective homomorphism
of Fy-algebras o4 : Npyr(A) — Endg,((A,0)4). Dimension count shows that this
homomorphism is an isomorphism. ]
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Involutions of the second kind and one-sided ideals

As above, let o be an involution of the second kind on a central simple F-algebra
A and denote by Fp the subfield of F' elementwise invariant under ¢. The natural
isomorphism o, of the preceding Proposition endows (A, o) with a right Ng/g(A)-
module structure.

Let o' : Np/py(A) — (A, o) be defined by:

d'(w) = 1u (= (Vo.(u)).

Since 0.(Np/r(A)) = Endg,((A, 0)4), it is clear that the map o’ is surjective, hence
ker o’ is a right ideal of dimension n* — n?, where n = deg A. Extending scalars to F,
we have Np/r(A)r = *A ®r A and the map i : “A®F A — A induced by o' is:

or(a ®b) = a(a)b.
Therefore, (*a ® 1) Nkerof = {0} = kero’ N (1 ® A), hence
(CA®1)@keror = *AQr A=keror @ (1® A).

(3.10) Theorem. Let A be a central simple algebra over a field F. Suppose Fo C F
is a field of codimension 2. The map o v kero’ defines a one-to-one correspondence
between involutions of the second kind on A leaving Fy elementwise invariant and right
ideals I C Npyr(A) such that

(CAR ) B Ir="AQrA=Ir®(1® A).

Proof: We have already checked that for each involution o the ideal ker o’ satisfies the
condition above. Conversely, suppose I is a right ideal such that *AQrA = Ir®(1®A);
For each a € A, there is a unique element o;(a) € A such that

"‘a@l—l@o,(a)elp. (12)

The map o; : A — A is a-semilinear and the same arguments as in the proof of
Theorem 3.6 show that it is an anti-automorphism on A.

In order to check that o?(a) = a for all a € A, we use the fact that the ideal Ir is
preserved under the switch map s : *A®r A — *A®Fr A, since it is extended from an
ideal I in Ng/g (A). Therefore, applying s to relation (1.2) we get

1®a—"ci(a)®1 € IF,

hence o#(a) = a.

Let keroj be the ideal in Ng;g,(A) corresponding to the involution &;. Arguing
as in Theorem 3.6, we see that (kero})r = Ir, and conclude that kero} = I, since
I (resp. kero}) is the subset of invariant elements in Ir (resp. (kero})r) under the
switch map.

On the other hand, for any given involution & on A we have

“2a®1 —-1®0c(a) €keror  forall a € A,

hence oyeror = 0. [
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We may now complete the proof of Theorem 3.1. Suppose A =~ M, (D) for some
central division algebra D over F and some integer r. Since the norm map Np/p,
is defined on the Brauer group of F', the condition that Np,g,(A) splits implies that
Npr,(D) also splits. Let I be a maximal right ideal in Np/g,(D). We have dimg, I =
dimp, Np/p(D)—deg N/, (D) = (dimp D)?—dimp D. Moreover, since D is a division
algebra, it is clear that (*D ® 1) N Ip = {0} = Ir N (1 ® D), hence

(*DN)@lr="D@rD=Ir&(1®D),

by dimension count. The preceding Theorem then shows that D has an involution of
the second kind ~ leaving Fp elementwise invariant. An involution o of the same kind
can then be defined on M, (D) by

o({eis)1<iicr) = @h<igr
and transported to A by the isomorphism A =~ M, (D). ]

Part (b) of Theorem 3.1 can easily be extended to cover also the case of semi-simple
Fy-algebras A x B with A, B central simple over Fo. The norm Ng,xry/ s is defined
as follows:

Npoxpo/po(A x B) = A®g, B.

This definition is consistent with Definition 3.7, and it is easy to check that Proposi-
tion 3.8 extends to the case where F' = Fy x Fg.

Ifo: Ax B — A x B is an involution of the second kind, then the restriction of o
to A (= A x {0}) is an anti-isomorphism o4 : A — B. Therefore, A ®g, B splits.

Conversely, if A ® , B splits, then A and B are anti-isomorphic. Let 04 : A —» B
be an anti-isomorphism. We may then define an involution of the second kind o on
A x B by:

a(z,y) = (03 (), 04(2)).

§4. Hermitian forms

In this section, we set up a one-to-one correspondence between involutions on central
simple algebras and hermitian forms on vector spaces over division algebras.

If A is a central simple algebra over a field F and V is a simple left A-module, then
according to Theorem 1.1 the algebra D = End4(V) is a division algebra, V is a right
vector space over D and A may be identified to the algebra of D-endomorphisms of V:

A= El’ldD(V).

Since D is Brauer-equivalent to A, Theorem 3.1 shows that A has an involution if and
only if D has an involution. Therefore, in this section we will work from the point
of view that central simple algebras with involution are algebras of endomorphisms of
vector spaces over division algebras with involution.
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4.1. Adjoint involutions

Let D be a central division algebra over a field F' and let V' be a finite-dimensional
right vector space over D. Suppose ~: D — D is an involution on D and A € F is
such that AX = 1. (In particular, A = £1 if ~ is of the first kind). A A-hermitian form
on V (with respect to the involution ~ on D) is a bi-additive map

h:VxV—-D
such that, for z,y € V andd € D,
h(z,yd) = h(z,y)d  h(zd,y) = dh(z,y)
and L
h(y,z) = Ah(z,y).

Every A-hermitian form A induces a map

h:V — V* =Homp(V, D)

defined by A(z)(y) = h(z,y) for z,y € V. This map is D-linear if V* is endowed with
the right D-vector space structure defined by

pd=dyp foryeV*andde D,

i.e. (Y.d)(z) =dy(z) forz e V. )

The A-hermitian form h is called nonsinguler if h is bijective, which amounts to the
following condition: if z € V is such that h(z,y) = 0 for all y € V, then x = 0. If this
condition holds, then a map o5 : Endp(V) — Endp(V) may be defined by:

an(f)=h7"o floh.
Equivalently, o4(f) is defined by the following condition:

Mz, f¥)) = Mon(f)(2),y)  forallz,yeV.

Direct verifications show that oy, is an involution on Endp(V) such that on(z) = T for
all z € F. 1t is called the adjoint involution with respect to the A-hermitian form h.

The following Theorem is the expected generalization of the result proven in the
introduction to this chapter:

(4.1) Theorem. The map h — o), defines a one-to-one correspondence between non-
singular A-hermitian forms on V' (with respect to the involution — on D) up to e factor
in F'* and involutions o on Endp(V) such that o(z) =T for allz € F.

If~ is of the first kind and type € (= £1), the adjoint involution with respect to a
A-hermitian form is of type €.
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Proof: If h and h’ are nonsingular A-hermitian forms on V, then the map v = h-loh' €
GLp(V) is such that
W(z,y) = h(v(z),y) forallz,yeV.
Therefore, the adjoint involutions oy, 05 are related by:
op = Int(v) o op.

Therefore, if o, = oy, then v € F* and the forms A, h’ differ by a factor in F'*.

On the other hand, if h is a nonsingular A-hermitian form on V' with adjoint in-
volution o, and if ¢’ is an arbitrary involution on Endp(V) such that o'(z) = T

(= on(z)) for all x € F, then o, 0 ¢~ is an inner automorphism of Endp(V'), by the
Skolem-Noether theorem. Let

onoo’ ' =Int(u)  for some u € GLp(V).
Then ¢’ is the adjoint involution with respect to the A-hermitian form 4’ defined by
b(z,y) = h(u(z),y) forz,yeV.
This shows that the correspondence between nonsingular A-hermitian forms on V' up

to a factor in F'* and involutions on Endp(V') is bijective.

Suppose now that the involution ~ on D is of the first kind and type € (= £1). If
dimp V = r, we identify V to D", hence also Endp(V) to M, (D), by means of a basis
(ei)1<i<r Of V. Let 7 be the involution on M,.(D) defined by

T((dij)lsi.jsr) = (@)19‘.19-
Symmetric matrices under 7 have arbitrary entries d;; for ¢ < j and diagonal entries
which are symmetric under ~; therefore,
rir—1)
2
It then follows from Proposition 2.1 that 7 is of type €.
Let now h be a nonsingular A-hermitian form on V with respect to the involution

~on D (so A = *1, since " is of the first kind), and let k. denote the matrix of 4 with
respect to the basis (e;)1<i<r:

dimp(M.(D),7)+ = dimpg D + r dimp (D, 7).

he = (h{e:, e5)1<ii<r

The condition h(e;, e;) = A h{ej, e;) yields he = A 7(h.). Moreover, for z,y € D™ (= V)
we have
h(z,y) = T".h..y,

and the adjoint involution o, on M,.(D) (= Endp(V)) is therefore given by
ah(f) = T(hefh’e_l) = h'e_lT(f)h’e’

or, equivalently,
on = Int(h 1) o

By Proposition 2.2(a), it follows that o, is of type €}, since 7(h') = A 1. ]
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4.2. The Witt index

Using the correspondence set up in the preceding Theorem, we can transfer to invo-
lutions various notions defined for hermitian forms, provided they are invariant under
the similarity relation. As a first case, we consider here the Witt index. The following
results are taken from [4].

If h is a nonsingular A-hermitian form on a vector space V over a central division
F-algebra D, then for every subspace W the orthogonal subspace W+ is defined by

Wt = {zeV|h(z,y)=0forall y € W}
{xeV|h(y,z)=0forall y € W}.
A vector v € V is called isotropic if h(v,v) = 0; a subspace W C V is called totally
isotropic if W € W+ or, equivalently, if every vector in W is isotropic. The Witt index
w(V, h) is the maximum of the dimensions of totally isotropic subspaces in V (or the

dimension of a maximal totally isotropic subspace in V, since they all have the same
dimension).

Using the correspondence between subspaces of V' and right ideals in Endp(V'), we
may define corresponding notions for central simple algebras with involution:

(4.2) Definition. For every right ideal I in an algebra with involution (A4, a), the
orthogonal I+ is defined by:

It={zcAloxy=0foralyel}.
Equivalently, /1 can be defined as the annihilator of the left ideal o(I):
I* = o(I)%
therefore, I is a right ideal.
(4.3) Proposition. For every right ideal I C A,
rk7+1kIt =deg A

and It = I. Moreover, if (A,0) = (Endp(V),as) end I = Homp(V, W) for some
subspace W C V, then
I* = Homp(V, W),

Proof: Since rk o(I) = rk I, the first relation follows from the corresponding statement
for annihilators (Proposition 1.7). This first relation implies that rk 1+ = rk I. Since
the inclusion 7 C It is obvious, we get I = 1. Finally, suppose I = Homp(V, W)
for some subspace W C V. For every f € Endp(V), g € I we have

gy)eW  and  A(f(z),9(y)) = h(z,0(f) o g(y)) forallz,yeV.
Therefore, o(f) o g = 0 if and only if f(x) € W, hence
It = Homp(V,W1).
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In view of the Proposition above, the following definitions are natural:

(4.4) Definitions. An ideal I in a central simple algebra with involution (A,0) is
called isotropic if I C It. The Witt indez of the algebra with involution (A,o) (or
simply of the involution o) is defined by:

w(A,o) =max{rkI | I C I*}.

If I is an isotropic ideal, then rk I < rk I+, hence by the preceding Proposition rk I <
1 deg A. Moreover, the (Schur) index ind A divides rk I for every right ideal I (see
§ 1.2), hence

deg A

ind A divides w(A,0) and w(A,o) < 5

In particular, if w(A, o) is small (but non-zero!), then ind A is also small.

The algebra with involution (A, o) is called isotropic if w(A, o) > 0 or, equivalently,
if there exists a non-zero element x € A such that o(z)z = 0. (The right ideal zA is
then isotropic). It is called hyperbolic if w(A, o) = 1 deg A. Of course, if A is a division
algebra, then necessarily w(A,s) = 0, i.e. (4, 0) is anisotropic.
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Exercises for Chapter 1.

1.

Let (A, o) be a central simple F-algebra with involution of the first kind and let
K C A be a subfield containing F. Suppose K consists of symmetric elements,
so that the restriction o/ = o|c,k of o to the centralizer of K is of the first kind.
Show that o and ¢’ are of the same type.

Let (A,0) be a central simple algebra with involution and let e be a symmetric
idempotent in A. Show that the restriction of o to eAe is of the same kind and
of the same type as o.

Let (A, o) be a central simple F-algebra with involution of the first kind. Under
the isomorphism ¢, : A ®r A — Endp(A), the involution ¢ ® o is transported
to the adjoint involution o}, with respect to some nonsingular bilinear form b on
A. Find b.

(Rowen - Saltman [16]) Let V be a vector space of dimension 7 over a field F’ and
let o be an involution of the first kind on End(V'). Prove that o is orthogonal if
and only if there exist n symmetric orthogonal® idempotents in End(V). Prove
that o is symplectic if and only if there exist n = 2m skew-symmetric elements
ei, fi € End(V) (where i = 1,...,m) subject to:

€i€j = f‘ifj =0 for all 'L,];
e,-f,-:fjei=0 for a.llz;éj;
eifi: and fie; are idempotents such that Y _(e:f; + fie;) = Idy .
i=1

Let K/L be a quadratic extension of fields of characteristic different from 2, and
let a € L, b € K. Prove the “projection formula” for the norm of the quaternion
algebra (a,b)k:

Nii(a,b)k =~ (a, Nk1(b)) L.

. (Notation as in the preceding exercise). Show that if (a, Nk, ()L is split, then

there exists an element b’ € F'* such that (a,b)x ~ (a,b')L ®L K.

Let (A, o) be a central simple algebra with involution and let 7, J be right ideals
in A. Prove: (I +J)t=I*NnJtand INJ)* =T+ JL.

Use the preceding exercise to show that all the maximal isotropic right ideals in
a central simple algebra with involution have the same rank.

[Hint: If J is an isotropic ideal and I is an arbitrary right ideal, show that
tkJ —rk(Jt N J) <tk I —rk(I N J). If I is also isotropic and rk I < rk J, use
this relation to show I+ NJ ¢ I, and conclude that I + (I N J) is an isotropic
ideal which strictly contains 7.]

5Two idempotents e, f are called orthogonal if ef = fe = 0.
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9.

10.

11.
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(Bayer-Fluckiger - Shapiro - Tignol [4]) Let 7 be a right ideal in a central simple
algebra A with an involution g. Prove that the following conditions are equiva-
lent:

(a) InIt={0}.
(b) I = eA for some symmetric idempotent e € A.

Moreover, if these conditions hold, the symmetric idempotent e such that I = eA
is unique and satisfies: (1 —e)A = It

(Bayer-Fluckiger - Shapiro - Tignol [4]) Let (A, o) be a central simple F-algebra
with orthogonal involution. Prove that the following conditions are equivalent:

(a) o is hyperbolic.
(b) There exists an idempotent e € A such that o(e) =1 —e.

(c) A contains a split subalgebra Ao of degree 2 (i.e. Ao ~ Ma(F)), stable
under ¢ and such that the restriction of o to Ao is the adjoint involution
with respect to a hyperbolic 2-dimensional quadratic form.

Prove corresponding statements for symplectic involutions and for involutions of
the second kind.

Let (A,0), (B,7) and (C,v) be central simple F-algebras with involutions of the
first kind. If (A,0) ®F (B,7) ~ (A,0) ®F (C,v) (as algebras with involution),
does it follow that (B,7) ~ (C,v)? [Hint: Use the preceding exercise].



Chapter 2.
Clifford theory

In this chapter, we develop two invariants of orthogonal involutions on central simple
algebras: the discriminant and the (even) Clifford algebra. Our method of investigation
is mostly based on scalar extension: after setting the definitions, the main properties are
proved by extending scalars to a splitting field of the central simple algebra. The given
orthogonal involution is then the adjoint involution with respect to some nonsingular
bilinear symmetric form, and one may then use known properties of the Clifford algebra
of quadratic forms. Occasionally, we will need to use a splitting field which is not too
“disruptive”, in the sense that the group of square classes of the base field injects into
the group of square classes of the splitting field:

Fact: For every central simple algebra A over a field F', there exists a splitting field K in
which F is algebraically closed. In particular, the natural homomorphism F* [F*2 —
K*/K*? is injective.

One may for instance take for K the function field of the Severi-Brauer variety of A.

§1. The discriminant

The notion of discriminant of an orthogonal involution goes back to Jacobson’s work
on Clifford algebras [8]. The definition we present here is more direct; it is due to
Knus-Parimala-Sridharan [12].

Let (A, o) be a central simple algebra with involution of the first kind over a field F
(of characteristic different from 2). It will be convenient to use the following definition:

(1.1) Definition.

(A,o)4 if o is symplectic.

Alt(o) = { (A,o0)- if o is orthogonal.

The elements in Alt(c) are called alternating' (even though they are actually symmetric

'In a characteristic-free approach, it would be more convenient to define Alt(c) = {z —ea(z) |z €
A} where ¢ = %1 is the type of o, following [11].

35
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if o is symplectic). We also let Alt(o)* denote the set of invertible elements in Alt(o):
Alt(o)* = Alt(a) N A,
A direct application of Proposition 2.2 yields:
Alt(Int(u) 0 6) = u- Alt(o) = Alt(o) - u~!  for all u € A such that o(u) = u.

This formula displays the advantage of the definition above: in contrast to Propo-
sition 2.2, it is not necessary here to consider separately the cases o(u) = +u and
o(u) = —u.

The definition of the discriminant of an (orthogonal) involution is based on the
following crucial result:

(1.2) Proposition. If deg A is even, then Alt(s)* # @. Moreover, for any a,b €
Alt(o)*,

Nrda(a) = Nrda(b) mod F*2.
In particular, if o is symplectic, then Nrda(a) € F*2 for all a € Alt(o)*.

Proof: The invertible elements form a Zariski-open subset in Alt(c) (defined by the
relation Nrd4(X) # 0). If deg A is even, then scalar extension to a splitting field shows
that this subset is non-empty, hence Alt(c)* is a dense open subset in Alt(s).

Let K be a splitting field of A in which F' is algebraically closed. Fix an isomor-
phism:

[ Ak = Ma(K)
and let o/ = fo (0 ® Idk) o f~! be the transport to M, (K) of the involution o. We
have
o =Int(u)ot

(where ¢ is the transposition involution) for some v € GL,(K) such that u* = fu. If
a,b € Alt(c), then f(a®1), f(b® 1) € Alt(c’) = u - Alt(2). Let

fe®l)=ud fOb®1)=ub

for some a’, b’ € Alt(t)*. Since the determinant of every skew-symmetric matrix of even
order is a square (namely, the square of the pfaffian: see [3, Theorem 3.27]), we have
deta’,det b’ € K*? and therefore

det(f(a® 1)) = detu = det(f(b®1)) mod K*%
Since Nrd4(a) = det(f(a ® 1)) (and similarly for b), it follows that
Nrda(ab™") € F* N K*2,

hence Nrda(ab~!) € F*2 since F is algebraically closed in K. This completes the
proof, since we may take b = 1 when o is symplectic. |
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The Proposition above makes it possible to set the following definition:

(1.3) Definition. (Knus-Parimala-Sridharan) Let o be an involution of the first
kind on a central simple algebra A of even degree over a field F. The discriminant of
o is the square class of the reduced norm of any invertible element:

disco = Nrd4(a)- F*?> € F*/F*? for any a € Alt(o)*.

If ¢ is symplectic, then necessarily disco = 1 since we may take a = 1 in the defini-
tion above. Therefore, the discriminant is a meaningful invariant only for orthogonal
involutions. It is however useful to define it for arbitrary involutions, so as to avoid
exceptions in the following list of properties:

(1.4) Proposition. Let (A,o) be a central simple algebra of even degree with involu-
tion of the first kind over a field F.

1. For allu € A* such that o(u) = Fu,
disc(Int(u) o o) = Nrd 4 (u) - disco.

2. If A is split: A = Endp(V) and 0 = oy is the adjoint involution with respect to
some nonsingular bilinear form b on V, then

disc op = discb.
3. If (B, 7) is another central simple F-algebra with involution of the first kind, then

disco if deg B is odd.

disc(c ® 7) = { 1 if deg B is even.

Proof: (1) follows from the fact that Alt(Int(u) o o) = u - Alt(o).

(2): Let n = dimV and identify A to M,,(F) by means of a basis e of V. Let also
be € GLy(F) denote the Gram matrix of the bilinear form b with respect to the chosen
basis e. The involution o, is then given by:

oy =Int();1) o ¢,

where t is the transposition involution. It is easily seen that disct = 1, hence the first
part of the Proposition yields:

discop = det(b;!) - F*? = disc(b).
(8): If a € Alt(0)*, then a ® 1 € Alt(o ® 7)* if T is orthogonal. Since
Nrdagp(a®1) = Nl‘dA(a)degB (2.1)

we get the required relation in the case where 7 is orthogonal. If 7 is symplectic (which
implies that deg B is even, by Proposition 2.1 of Chapter 1), let a € A* be such
that o(a) = €a, where ¢ is the type of o. (The existence of such an element can be
proved by the same argument as in Proposition 1.2). Then a ® 1 € Alt(c ® 7), hence
disc(oc ® 7) = Nrdsgp(a ® 1) - F*? and equation (2.1) yields disc(c ® 7) = 1. =
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§2. The Clifford algebra

Since the Clifford algebra of a quadratic form is not invariant when the quadratic
form is multiplied by a scalar, it is not possible to define a corresponding notion for
involutions. However, the even Clifford algebra is indeed an invariant for quadratic
forms up to similarity, and our aim in this section is to generalize its construction to
algebras with orthogonal involutions. The first definition of the (generalized, even)
Clifford algebra of an algebra with orthogonal involution was given by Jacobson (8],
using Galois descent. Our approach is based on Tits’ “rational” definition [22], with
some simplifications due to the fact that we exclude fields of characteristic different
from 2.

Since our main tool will be scalar extension to a splitting field, we first discuss the
case of a quadratic space.

2.1. The split case

Let (V,q) be a nonsingular quadratic space over a field F' of characteristic different
from 2. We denote by b, the symmetric bilinear form

be(z,y) = 3(a(z +¥) — a(z) — 9(®)),
which we call the polar of ¢, by by : V 5 V* = Homp(V, F) the adjoint of by, defined

by: )
be(z)(y) = by(=, )
and by o4 the adjoint involution on Endp(V) with respect to b, (see Chapter 1). Using

~

bq, we may identify Endp(V) =V ®@p V* with VQp V:
Idy ®b,: Endp(V)=VRV* 3 VeV
Under this identification, v @ w € V ® V is identified to the linear map:
vQw: x> vhy(w,x).

Moreover, it is straightforward to check that the involution o, is given by the twist:

g(v@w)=wu,
the trace Tr : Endp(V) — F by the polar of ¢:

Tr(v ® w) = by(v, w)
and the multiplication by:

(v@w) o (v @ w') = vby(w,v') @ w'.
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Note that every orthogonal involution on a split central simple algebra is the adjoint
involution with respect to some nonsingular quadratic form (see the introduction of
Chapter 1). Henceforth, we will often consider split central simple algebras with or-
thogonal involutions

(A,0) = (Endp(V),04)

as A = V @ V with the involution, multiplication and (reduced) trace defined above.
We call this identification A = V ® V the standard identification (even if it is not
completely canonical, since the quadratic form g, hence also b, and by, is determined
by the involution o, only up to a scalar factor).

Let C(V,q) = Co(V,q) ® C1(V, q) denote the Clifford algebra of (V,q). We denote
by 7 the canonical involution of C(V,q), which is the identity on V, as well as its
restriction to Co(V,q). If not explicitly mentioned, we shall always view C(V,q) and
Co(V, q) as algebras with involution, taking 7 as the natural involution. Our first result
is a description of the even Clifford algebra Co(V,q) “by generators and relations”
(compare [22, p. 32)):

(2.1) Lemma. In the tensor algebra T(V ® V), consider the following 2-sided ideals:
o I,(q) is the ideal generated by all the elements of the form
vuv—qv), forveV.
e I5(q) is the ideal generated by all the elements of the form
uRUvRUVw—qv)u®w, foru,v,weV.
Then

T(VeV)
5Ii(g) + I2(q)

and the canonical involution 7 on Co(V, q) is induced by the twist: v w— w®v.

CO(V7 Q) =

Proof: There is a canonical epimorphism

TV ®V)
Ii(q) + I2(q)

Calculations with an orthogonal basis of V easily show

— Co(V:‘I)-

. TVeV) .
dimp (m) < dimp C'o(V, q).

Therefore, the canonical epimorphism is injective. [}
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We also recall the following structure theorem for even Clifford algebras:

(2.2) Theorem. Let (V,q) be a nonsingular quadratic space.

1. If dimV is odd: dmV = 2m + 1, then Co(V,q) is central simple F-algebra
of degree 2™. The canonical involution T on Co(V,q) is of the first kind; it is
orthogonal if m = 0 or 3 mod 4 and symplectic if m =1 or 2 mod 4.

2. If dimV is even: dimV = 2m, the center of Co(V,q) is an étale quadratic F-
algebra A isomorphic to F[X]|/(X? — 6(q)) where §(q) € F* is such that

discg = (—1)™6(q) - F*2.

Moreover,

(a) If A is a field (i.e. if discq # 1), then Co(V,q) is a central simple A-algebra
of degree 2™ 1.

(b) If A ~ Fx F (ie. if discq = 1), then Co(V, q) is a direct product of two
central simple F-algebras of degree 2™.

The canonical involution T on Co(V,q) is of the first kind if m is even and of
the second kind if m is odd; it is of orthogonal type if m = 0 mod 4 and of
symplectic type if m = 2 mod 4. (In the case where discq = 1, this means that 7
is orthogonal or symplectic on each factor of Co(V, q)).

The proof can be found for instance in (18, Theorem 9.2.10].

2.2. Definition of the Clifford algebra

Let (A,o) be a central simple algebra with orthogonal involution over a field F' of
characteristic different from 2. Our goal is to define an algebra C(A4, ¢) in such a way
that in the split case C(Endr(V'),0,) reduces to the even Clifford algebra Co(V,g).

Let A denote A viewed as an F-vector space. The canonical map A — A is denoted
by a — a. We recall the “sandwich” isomorphism:

Sand: A® A5 Endp(A)

such that Sand(e ® b)(z) = azb for a,b,x € A (see Lemma 3.3 in Chapter 1). We use
this isomorphism to define a map

0'2‘A®A_’A®A

as follows: for fixed u € A ® A the map A — A defined by: z — Sand(u)(o(z)) is
linear and therefore of the form Sand(o2(u)) for a certain oa(u) € A. In other words,
the map o is defined by the condition:

Sand(o2(u))(a) = Sand(u)(o(a)) foralue A@ Aand a € A.
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(2.3) Lemma. If A is split: (A,0) = (EndrV,0,), then under the standard identifi-
cation A=V ®V, we have

02(T1 RT3 QTy) =21 ®T3 QL2 x4 for x1,%2,%3,T4 € V.
Proof: Tt suffices to see that, for x,, 2, z3,24,v,w €V,

Sand(z; @ T3 @ T2 @ 24) (v ® w) = Sand(z; @ 2 ® z3 @ 24)(w @ V).
This follows from a straightforward computation:

Sand(z) @23 R 12 QT4 )(v QW) = T1 QT30 vQWoTy Ty
z1 ® 24.0(z3, v)b(w, 2)
21 Q@Taow@UoT3 Ty
= 21 ® T4.b(x9, w)b(v, 23).

Sand(z; ® 2o ® T3 ® z4)(w @ v)

We denote by p: A® A — A the multiplication map:
nla ® b) = ab,

so that in the split case (A4, o) = (Endr V, 04) we have under the standard identification
A=VQRV:
p(r1 ® 22 @ T3 ® x4) = 1 @ Ta.bg(x2, T3).

(2.4) Definition. For any central simple F-algebra with orthogonal involution (4, o),
the Clifford algebra C(A, o) is defined as a quotient of the tensor algebra T(A):

_ T(A)
Cl49) = 77+ =@

where

e Ji(o) is the ideal generated by the elements of the form s —Trd4(s), forall s € A
such that o(s) = s.

e Jo(0o) is the ideal generated by the elements of the form u— u(u), forallu € AQA
such that o2(u) = u.

Note that we have in particular 1 = (deg A).1 mod J;(o); therefore
1#1 in C(A, o).
Let ¢ : T(A) — T(A) denote the involution on the (infinite-dimensional) F-algebra
T(A) induced by the involution ¢ on A; namely,
ﬂﬂ®m®&hﬂﬁﬁ®m®ﬂﬂ}

Direct computations show that the ideals J;(s) and J2(o) are preserved under the
involution g. Therefore, this involution induces an involution on the quotient algebra

C(A, o), which we also denote by g.
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(2.5) Proposition. If (A,0) = (Endp(V),0,) is a split algebra, then the standard
identification Idy ®b, : V ®p V — V ®p V* = Endp(V) induces a “standard identifi-
cation” of Clifford algebras

g : (Co(V,9),7) S (C(Endp(V),04),2)-

Proof: The map induced by Idy ®13q on tensor algebras maps the ideals I;(g) and I»(g)
of Lemma 2.1 into J;(c,) and Ja(o,4) respectively. Calculations with an orthogonal
basis of V show that J;(o,) and Ja(g,) are actually the images of I;(¢) and I3(g), and
the Proposition follows. ]

Although the degree of A is arbitrary in the discussion above, the case where deg A
is odd does not yield anything beyond the even Clifford algebras of quadratic spaces,
since central simple algebras of odd degree with involutions of the first kind are split
(see [6, §9, Corollary 7]). Therefore, we shall henceforth assume that A is a central
simple algebra of even degree n = 2m.

Using scalar extension to a splitting field, we obtain the following structure theorem
for Clifford algebras:

(2.6) Theorem. Let A be a central simple F-algebra of even degree n = 2m with an
orthogonal involution o and let C(A, o) be its Clifford algebra, with canonical involution
.

1. The center of C(A, o) is an élale quadratic F-algebra A which is isomorphic to

F[X)/(X? - §(c)), where §(c) € F* is such that
disco = (=1)™6(c) - F*2.

2. If A is a field (i.e. if disco # 1), then C(A,0) is a central simple A-algebra of
degree 2™ 1; if A ~ F x F (i.e. disco = 1), then C(A,0) is a direct product
of two central simple F-algebras of degree 2™~'. So, in both cases C(A, o) is an
Azumaya algebra over A.

3. The involution g on C(A, o) is of the first kind if m is even and is of the second
kind if m is odd; it is of orthogonal type if m = 0 mod 4 and of symplectic type
ifm=2mod 4. (If A~ F x F, this means that the involution is of orthogonal
or symplectic type on both factors of C(A,0)).

Proof: Let K be a splitting field of A in which F is algebraically closed. We have
(A®rK,0Qldk) =~ (Endk(V), o) for some quadratic space (V, g) over K, of dimension
n = deg A and discriminant discq = disc(c ® Idk), by Proposition 1.4. If é(¢) is a
representative in F* of disc o, we then have discq = §(c) - K*2 € K*/K*2. It is clear
from the definition that the construction of the Clifford algebra commutes with scalar
extension:
C(A,0)®r K =C(A®F K,o0 ® Idx) =~ Co(V, q).

In particular, it follows that the center A of C(A, o) is a quadratic étale extension which
becomes isomorphic over K to K[X]/(X? — 6(c)). Since F is algebraically closed in
K, it follows that A ~ F[X]/(X2 — 6(c)). The other statements also follow from the
structure theorem for even Clifford algebras of quadratic spaces: see Theorem 2.2. =
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2.3. Lie algebra structures

We continue with the same notation as in the preceding section; in particular, (4, o)
is a central simple F-algebra with orthogonal involution and C(A,¢) is its Clifford
algebra.

Since C(A, o) is defined as a quotient of the tensor algebra T'(A), the canonical
map A — A — T(A) yields a canonical map

c: A->C(A5o0)

which is F-linear but not injective (since c(s) = Trds(s) for all s € (A,0)4) and does
not map 1€ Atole C(A4,0):
¢(1) = deg A.

We aim to show that this map has nice properties anyway, with respect to Lie algebra
structures.

Let £(A) be A viewed as a Lie-algebra with the bracket operation [z,y] = zy — y=.
The vector space (A,0)_ = Alt(c) of skew-symmetric elements is stable under the
bracket operation and may therefore be viewed as a Lie subalgebra of £(A).

In the split case (A,0) = (Endp(V),04), we have
Alt(o) = {f € Endp(V) | by(fz,y) + bo(z, fy) =0 forallz,y € V}.

This is the Lie algebra of the orthogonal group O(V, q). We denote it simply by £(V, g).

It turns out that this Lie algebra can be identified to a (Lie-)subalgebra of the Clifford

algebra C(V, q), as we now show. (Compare [9, pp. 231-232]).

(2.7) Lemma. For x,y,z € V we have in C(V,q):
[[z,y], z] = 4(z be(y, 2) — ybg(, 2)) € V.

Proof: This is a direct computation based on the fact that for v,w € V,
be(v,w)=3(v-w+w-v) inC(V,q).

For z,y,z € V, we compute:

[[z,9,2] = (z-y-2+tz-2-y+y-z2-x+z-y )
—(yz-z+y-z-x+z-2-y+z-z-y)
4z bo(y, 2) — ybe(,2)) € V.
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Let [V, V] € C(V,q) be the subspace spanned by the brackets [z,y]|=z-y—y-z
for z,y € V. In view of the Lemma, we may define a linear map

p: [V,V] — Endr(V)
by: p(€)(z) = 3[€,2] for £ € [V,V] and z € V. The Lemma above yields:
oz y)) =2 @b(y) —y®@by(z) forz,yeV. (2.2)

(2.8) Lemma. a) The following diagram is commutative:

P g
End(V) —= C(End(V),a,)
where ¢ is the canonical map and 7, is the canonical identification of Proposi-
tion 2.5.

b) The subspace [V, V] is a Lie subalgebra of £(Co(V,q)), and p induces an isomor-
phism of Lie algebras:
p: [V,V] = £(V,q).

¢) The restriction of the canonical map c to £(V,q) is en injective Lie-algebra ho-

momorphism:
c: £(V,q) — L(C(End(V), 0q)).

Proof: (a) follows from equation (2.2) and from the definitions of ¢ and 7,.
(b): Jacobi’s identity yields, for z,y,u,v € V:
([, ], [z, 9] = {llz, ), v}, ul = [[[=, 9], ul, v].

Since Lemma (2.7) shows that [[z,y],2] € V for all z,y,z € V, it follows that
[z, 2], [z,9]] € [V, V]. Therefore, [V, V]is a Lie subalgebra of £(C(V, q)) (or £(Co(V,))).
Jacobi’s identity also yields:

p(l&;n) = [p(€),p(m)]  for &,n € [V, V],

hence p is a Lie-algebra homomorphism. From equation (2.2), we get for z,y,u,v € V:
be(p(lz,y])(w),v) = (be(x,v)be(y, u) — be(y, v)be(z, u))
= _bQ(uap(lxa y])(v)),
hence p([z,y]) € £(V, q). Therefore, we may consider p as a map:
p: [V,V] - £(V,q).

It only remains to prove that this map is bijective. Let n = dim V. Using an orthogonal
basis of V, it is easily verified that dim[V, V] = n(n—1)/2 = dim £(V, q). On the other
hand, since 1, is an isomorphism, (a) shows that p is injective; it is therefore also
surjective.
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(¢): Using 5, to identify [V, V] to a Lie subalgebra of C(End(V),d,), we derive from
(a) and (b) that the restriction of ¢ to £(V,q) is the inverse of p. Therefore, c is
injective on £(V,q) and is a Lie-algebra homomorphism. |

(2.9) Proposition. Let (A,0o) be a central simple algebra with orthogonal involution
and let
c: A= C(A, o)

denote the canonical map. Let also @ be the canonical involution on C(A, o).
a) The resiriction of ¢ to Alt(c) is an injective Lie-algebra homomorphism
c: Alt(o) — (C(A,0),0)-.

b) c(A) = F-1&c(Alt(o)).
c) c(Alt(o)) generates C(A, o) as an (associative) F-algebra.

Proof: (a): By definition of g, we have g(c(a)) = c(o(a)) for a € A, so c(Alt(g)) C
(C(A,0),a)-. The rest follows by descent from part (¢} of the Lemma.

To prove (b) we first observe that the sum of F - 1 and ¢(Alt(o) is direct, since the
image of Alt(o) consists of skew-symmetric elements. Since A = (A, o)+ @ Alt(e) and
c(s) = Trd a(s) - 1 for all s € (A,0)4, we get (b). Finally, (c) follows from (b) since the
definition of C(A, o) shows that this algebra is generated by c(A). [

In relation with (c) of the Proposition above, note that Alt(c) generates A as an
(associative) F-algebra if deg A > 2. This is easily seen by descent: extending the
scalars, we may assume ¢ is the transposition involution on A = M,,(F). Denoting by
ei; the usual matrix units, we have

eii = (€ij — €ji)% (e — exs)® if 4,7,k are pairwise distinct

and
€ij = e,-,-(e,-j — Cj,').

(Compare [9, p.304]; an alternative proof without descent can be found in [7, Theo-
rem 2.2, p. 28]).

(2.10) Example. Let A = @Q; ® @2, where @, and Q. are quaternion algebras over
F, and let ¢ = 7 ® 72, the tensor product of the canonical involutions on @, and
Q2. By Proposition 1.4, we have disco = 1, hence Theorem 2.6 shows that C(A, o) =
C x C; for some quaternion algebras Cy, C2. Moreover, the canonical involution ¢ is
symplectic, hence it is the quaternion conjugation on C; and C2. We claim that C}
and C, are isomorphic to ¢, and Q.
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Let Q) = (Q1,7)- denote the Lie algebra of pure quaternions in @1, and define
similarly Q5, C} and C}. A direct computation yields

Alt(e) = (Q, 1)@ (10 Qh) ~ Q) x Q5.

On the other hand, by Proposition 2.9, there is an injective Lie-algebra homomorphism
induced by the canonical map c:

c: Qyx Q= CixC,

which is readily seen to be an isomorphism, by dimension count. Since Lie algebras of
pure quaternions are easily seen to be simple and since the decomposition of a semi-
simple Lie algebra into a direct product of simple Lie algebras is unique, it follows that
@, and @} are isomorphic to C] and Cj. Since the Lie algebra of pure quaternions
uniquely determines the quaternion algebra (see exercise ??7), it follows that Q; and Q.
are isomorphic to C; and C; (as associative algebras). In conclusion, we have shown:

C(Q1®Q2,m ®7) Q1 X Qa.

§3. The Clifford bimodule

Although the odd part Cy(V,q) of the Clifford algebra of a quadratic space (V,q) is
not invariant under similarities, it turns out that the tensor product V ® C1(V,q) is
invariant, and therefore an analogue can be defined for a central simple algebra with
orthogonal involution (A4, ). This will be the aim of this section. This construction will
be used at the end of this section to obtain fundamental relations between the Clifford
algebra C(A, o) and the algebra A (see Theorem 3.11); it will also be an indispensable
tool in the definition of spin groups in the next Chapter.

We first review the basic properties of the vector space V ® C(V, ¢) that we want
to generalize.

3.1. The split case

Let (V,q) be a quadratic space over a field F' (of characteristic different from 2). Let
C1(V,q) be the odd part of the Clifford algebra C(V,q). Multiplication in C(V,q)
endows C;(V,q) with a Cy(V,g)-bimodule structure. Since V is in a natural way
a left End(V)-module, the tensor product V ® C,(V,q) is at the same time a left
End(V)-module and a Cy(V, ¢q)-bimodule: for f € End(V), v € V, ¢ € Co(V,q) and
a € C1(V,q) we set

F-@®a)=f)®a c*x{@®a)=v®c0 (v®c)-co=v®cico.

The various actions clearly commute.
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Henceforth, we assume that the dimension of V is even:
dimV =n=2m.

This is the main case of interest for generalization to central simple algebras with
involution, since central simple algebras of odd degree with involution of the first kind
are split: see [6, §9, Corollary 7]. In this case the center of Co(V/, q) is an étale quadratic

extension of F:
A = F(y/(-1)™discq).

(This is a slight abuse of notation, since discq € F* /F*2). Let ¢ denote the non-trivial
automorphism of A/F. In the Clifford algebra C(V, ¢) we have

z-v=v-1(z2) forveVand z € A,
hence
z2x(v®c)=@W®c) z) forveV,c €Ci(V,q)and z€A. (2.3)
We summarize the basic properties of V ® C}(V, ¢q) in the following Proposition:
(3.1) Proposition. Let dimV =n = 2m.

1. The vector space VQCi(V, q) carries natural structures of left End(V')-module and
Co(V, q)-bimodule. Moreover, the various actions commulte, so that V ® C1(V, q)
is a left End(V) ®r Co(V, q) @ Co(V, ¢)°P- module. In view of equation (2.3), it
is also a left End(V') ®p Co(V, q) @a *Co(V, q)°P-module.

2. The standard identification End(V) = V ®V induced by the quadratic form q and
the embedding V' — Cy(V,q) define a canonical map d : End(V) - V@ C1(V,q)
which is an injective homomorphism of left End(V)-modules.

3. dimp(V @ C1(V,q)) =n2""1.
The proof follows from straightforward verifications.
Let us consider V®Ci(V, q) as a right A-module through the right action of Co(V ¢):
(v®a) - z=v®acz forveV,c € Ci(V,q) and z € A.

We want to define on V®C;(V, ¢) a canonical hermitian form with values in A, in order
to obtain an involution on Enda(V ® Cy(V, q). The definition involves the involution 7
on C(V, ¢q) which is the identity on V. Recall the restriction of 7 to A (see Theorem 2.2):

rla = Ida if mis even
a= ¢ if mis odd.
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(3.2) Lemma. The form on C,(V,q)
(c1,¢2) = Trdgy(v,g)(T(c1)e2) € A

is hermitian relatively to the involution of A given by the restriction of T to A, and is
nonsingular. Moreover,

Trdey(v,q)(7(c1)e2) = ¢ (Trdayv,g(car(r)))  for allci,cz € Ci(V,9)-
Proof: The first claim is obvious. We now check nonsingularity. Let v € V be such that
g(v) # 0. Multiplication on the left by v in C(V,q) defines an F-linear isomorphism
between Co(V, q) and C,(V, q), hence every element ¢ € C;(V,q) is of the form vc’ for
some ¢ € Co(V, q). For all ¢},c, € Cy(V, q) we have
Trdgy(v,q) (T(v€}) - v63) = q(v) - Trdgy(vie) (T(ch)ca)- (2.4)
Therefore, if vc] is in the radical of the form Trdg,(v,q)(T(c1)c2), then

Trdco(v,e)(T(c))ch) =0
for all ¢, € Co(V, q). Since Co(V, q) is an Azumaya algebra over A, the quadratic form
Trdgy(v,q)(2?) is nonsingular on Co(V, q), hence the preceding relation forces 7(c}) = 0,
hence vc] = 0. This shows that the hermitian form Trdgyv,q)(7(c1)c2) is nonsingular
on C1(V,q).
To complete the proof, observe that, for ¢}, ¢, € Co(V, q):
uc - 7(uc)) = vehr(e} ) = veyr(ch)v" - g(o).

Since the restriction of the inner automorphism Int(v) to Co(V,¢q) is t-semilinear, we
have:

Trdey(v,) (ves()v™") = ¢ (Trdoyv,g (7)) -
Since Trdgy(v,q) (T(c})5) = Trdey(v,q)(ch7(c})) for ¢}, & € Co(V, g), it follows that
Trdco(vie) (v - 7(v6h)) = q(v) - ¢ (Trdey(v,a)(T(c)) ) -
Comparing with equation (2.4), we get the required relation. =

We then define a nonsingular hermitian form on V' @ C,(V,q) (relatively to the
involution 7|a on A) by:

H(v1®c1,v2®c¢2) = bg(v1,v2) Trdeyv,q)(T(c1)cz) for v1,v2 € V and ¢1,¢; € Ci(V, q).
(3.3) Proposition. For&,& € V@ Ci(V,q), f € End(V) and u1,uz € Co(V, q),
H(61, f - [u1 * &2 - ug]) = H(og(f) - [T(w1) * & - T(u2)], &2)-

Proof: The Proposition follows from a direct computation. It suffices to consider the
case where §; = v1 @ ¢, €2 = v2 @ c2. Then f- [ug * & - ug] = f(v2) ® uscoua, hence

H(&y, f - [ur * &2 - ug]) = by(v1, £ (v2)) Trdey(v.g)(T(c1)u1cous).
Similarly,

H(oq(f) - [1(u1) * &1 - T(u2)], &2) = bg(oq(f)(v1), v2) Trdgy(v,q)(uar(c1)uics).
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3.2. Definition of the Clifford bimodule

In order to define an analogue of V ® C1(V,q) for a central simple algebra with or-
thogonal involution (A, o), we first define a canonical representation of the symmetric
group Segn, on AX™.

Representation of the symmetric group

As above, we denote by A the underlying vector space of the F-algebra A. For any
integer n > 2, we define a generalized sandwich map

Sand, : A®" — Homp(4%""1, A)
by the condition:
Sandn(21 @ ®an) (b1 ® -+ @ bp—1) = a1bragbz ... bn_10x.
(So, Sand; is the map denoted simply Sand in section 3.1 of Chapter 1).

(3.4) Lemma. For any central simple F-algebra A, the map Sand,, is an isomorphism
of vector spaces.

Proof: The case n = 2 was proved before: see Lemma 3.3. For n > 3, we use bijectivity
of Sand,. First, we observe that it suffices to prove surjectivity of Sand,, since A®"
and Hom F(A‘g’"“l ,A) have the same dimension over F. Let a,,...,a, be a basis of A.
We construct a basis of Homp(A4%"~!, A) as follows: for any sequence i = (4y,...,in)
of indices with 1 < ix < m, let f;: A®""! — A be the linear map such that

0 if (usernsdncs) % Gtyer vy inet)
i, if (jl)'-- 1jn—l) = (il)“' )in—l)~

The maps f; thus defined form a basis of Homz(4%®""?, A), when i runs over the set
of all sequences (,...,%,). Therefore, it suffices to show that each of the maps f; is
in the image of Sand,,.

For any fixed sequence i = (i;,...,i,) and any £ = 1,...,n — 1, we may find
ce € A®? such that

fl(ﬁ®...®a1’n-l) = {

0 if je # e
S L) = AR,
anda (c)(az) { LTy
because Sand; is surjective. Let c = Xrey, tex ® ve. Then
Z (81,50 @5y U1,k ) (U2 02 By V2 ky) - -+ (Unmd fipoy By Ve ky) =

k]EIh---,kn—leln—l
_ [0 Gy nma) # Gty yinm)
1if (Giy ey dnet) = (i1, - - imt)

hence

Sandn ( Z Lin Wy ® Dk U2,k Q- ® Un—2,k,_32Un—1,kn ® vn—l.kn"l) - fi-
kieh,...kn 1€y
|
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(3.5) Proposition. Let (A,0) be a central simple F-algebra with involution of orthog-
onal type. For alln > 1 there is a canonical representation p, : Szn — GL(A®™) of
the symmetric group Son, such that in the split case A=V @V,

Pr(m) (1 ® - ®V2n) = Ug-11) @+ * @ Un-1(2n) forallwe Sa, and vy,...,v2n €V.

Proof: We first define the image of the transpositions 7(7) = (¢,i+1) fori = 1,...,2n—1.
Ifiisodd, i =20+ 1, let

pr(T(@)) =14 @ - @I QaQ@I4 @ ® Iy,

where ¢ is in £ + 1-st position. In the split case, o corresponds to the twist under the
standard identification A = V ® V; therefore

Pa(T(20+ 1)) (1) @ - - Q@ Uopy1 B V242D - QUop) =11 Q- QUgpt0 QU1 Q@+ @ Vg
If 7 is even, i = 2¢, we define p,(7(¢)) by the condition:

Sand,(7(8)(u))(z) = Sand,(u)([A® - Q@I @RI, ® - ® I4(x))
forue A*" and z € A*™!

where g is in ¢-th position. The same computation as in Lemma 2.3 shows that in the
split case

pn('r(%))('vl Q- QU ®vge®---®v2n) =N Q- QUapy1 QU Q-+ ® Vg,

as required.
In order to define p,(7) for arbitrary 7 € So,,, we use the fact that 7(1),...,7(2n—1)
generate So,: we fix some factorization

mn=mno0---07,  wherem,...,7 € {7(1),...,7(2n - 1)}
and define pp(7) = pn(71) © - - © pn(7s). Then, in the split case A=V QV,
pn(r)(vl Q- ®’U2n) =Up1(1) Q- ® Ur-1(2n) forall # € S5, and v1,...,v2, € V,

hence p, is a homomorphism in the split case. Extending scalars to a splitting field,
we see that p, also is a homomorphism in the general case. Therefore, the definition
of pn(m) does not actually depend on the factorization of 7. (]

The definition

As above, let (A, o) be a central simple F-algebra with orthogonal involution. For all
n > 1, let 1 = pa((1,2,...,20)" ") € GL(A®"), where p, is as in Proposition 3.5,
and let v = ®&vn : T(A4) — T(A) be the induced linear map. Thus, in the split case
(A,0) = (Endp(V), 04), we have, under the identification A = V ® V induced by 13.,:

Y1 ® - QUan) = 1(1 Q@ - Q) =12 Q- Vs, Y.
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Let also Ty (A) = ®n>14%". The vector space Ty (A) carries a natural structure of left
and right module over the tensor algebra T'(A). We define a new left module structure
* as follows: for u € T(A) and v € T (A) we set

uxv=7""(u®Y(v)).
Thus, in the split case A=V ® V, o = g, the product * avoids the first factor:
(m® Qua)*(1N @ Quzj) =11 QU Q QU QU2 ® -+~ B V.
(Compare the definition of * in section 3.1).
(3.6) Definition. The canonical Clifford bimodule of (A, o) is defined as:

T, (A)
[J1(o) * T (A)] + [T (4) - J1(o)]

where Ji(o) is the 2-sided ideal of T'(4) which is involved in the definition of the
Clifford algebra C(A, o). (See definition 2.4).

D(A,0) =

The map a — a € T4(A) induces a canonical F-linear map
d: A— D(A, o).

(3.7) Theorem. Let (A,0) be a central simple F-algebra with an orthogonal involu-
lion.

1. The F-vector space D(A, o) carries a natural C(A, o)-bimodule structure, where
action on the left is through *, and a naturel left A-module structure. Moreover,
the various actions commute, so that D(A, o) is a left AQpC(A,0)RrC(A, 0)°P-
module.

2. In the split case (A,0) = (Endp(V),04), the standard identification Idy ®I3,, :
VRV S Endr(V) = V ®V* induces a standard identification of Clifford bi-
modules V @r C1(V,q) = D(A,0), with the obvious Co(V, q)-bimodule and left
Endp(V)-module operations.

3. The canonical map d : A — D(A,o0) is an injective homomorphism of left A-
modules.

4. dimp D(A, 0) = (deg A).2(dec )1,
Proof: Extending scalars to split A, it is easy to verify that
J2(0) * Ty (4) € T4(A) - Ji(o) and Ty(4)- J2(0) € Ji(o) x T1(A).

Therefore, the actions of T'(A) on T4 (A) on the left through * and on the right through
the usual product induce a C(A, o)-bimodule structure on D(A, o).
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We define on T (A) a left A-module structure by using the multiplication map
p: A®% — A which carries a®b to gb. Explicitly, fora€ Aandu=u;®---u; € A®,
we set

a-u=ay QU @ - O U;.
Thus, in the split case (4,0) = (Endr(V),0,), we have, under the standard identifi-
cation A=VQ@V:

a-(‘u1®°-'®v2.-) =a(U1)®’U2®"'®'Uzi-

It is then clear that the left action of A on T (A) commutes with the left and right
actions of T((A). Therefore, the subspace [J1(c) * T+ (4)] + [T+ (4) - J1(0)] is preserved
under the action of A, and it follows that D(A, o) inherits this action from T’y (4).

In the split case, the map Idy ®b;': A=V ®V* — V ®V induces a linear map
from D(A, ¢) onto V& C1(V, q). Using an orthogonal basis of (V, ), one can show that

dimp D(A,0) < dimp V.dimg Cy(V, q).

Therefore, the induced map is an isomorphism. This proves (1) and (2), and (4) follows
by counting dimensions. Now, (&) is clear in the split case (see Proposition 3.1), and
the Theorem follows. ]

The canonical involution

We now use the involution ¢ on A to define an involutorial F-linear operator w on
D(A, ). As above, g denotes the involution of C(A,o) induced by o and 7 is the
involution on C(V,q) which is the identity on V.

(3.8) Lemma. There exists an involutorial F-linear operator w on D(A, ) such that
Jora€ A, c,c2 € C(A,0) and x € D(A,0),

wlar *x-¢3) = g(ee) *w(z)-alar), wla-z)=a-w(x) and w(d(a))=d(a).

Moreover, in the split case (A,0) = (Endp(V),0,) we have w = Idy ®7 under the
standard identifications A=V QV, D(A,0) =V ®C,(V,q).

Proof: Let @ =v"'og: Ty (A) — T, (A), where g is the involution on T'(4) induced
by ¢. Thus, in the splitcase A=V QV, 0 =0y

DV @ QUan) =1 QU2 QUsn-1 Q-+ QU3 ® V2.

Extending scalars to a splitting field of A, it is easy to check that for a € A, u;,u; €
T(4) and v € T4(4),

W(uy *v-ug) = g(ug) *w(v) - g(wy), @(a-v)=a-@(v) and @(a)=a.
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It follows from the first relation that
0(h(o) * T4 (A)) = Ty (4) - a(1(0)) € T+ (A - Ji(0))

and
(T4 (4) - J1(0)) = a(J1(0)) * T+(4) € J1(0) * T (A),

hence @ induces an involutorial F-linear operator w on D(A, o) which satisfies the
required conditions. ]

The canonical hermitian form

For the next Proposition, observe that multiplication in A and C(A, o) endow the
tensor product A ® r C(A, o) with natural structures of A- and C(A, g)-bimodules: for
a1,a2,% € A and ¢, ¢,y € C(A, o), we set:

a1 (z®y)-a2=a1za2 ®y and ¢ (zQyY) c2 =z ryce.
(3.9) Proposition. There ezists an isomorphism of C(A, o)-bimodules
¥ : D(A,0) ®cia,e) D(A,0) > A®r C(A,0)
such that in the split case (A, o) = (Endp(V),0,4) we have
Y(n ®c1) @ (12 @) = (11 @w) Barc

through the standard identifications A=V ®V and D(A,0) =V C1(V,q). Moreover
i satisfies

P((a1 - 1) ® (a2 - T2)) = a1 - Y(z1 ® x2) - 7(az)

and
Y(w(z1) @ w(rz)) = (0 ® ) o YP(T2 ® T1)

for ai,a2 € A and z1,z2 € D(A,0).

Proof: We define a map 9 : T} (A) x T+ (4) = AR T(A) by:

P, v) = (pir3((1,2)) 077 (@@ (v)) = pirs((1,2)) (urv) for u e A* and v € A%,
Straightforward verifications show that the map 9 induces an isomorphism % with the
required properties. (Note that it suffices to prove the additional properties of 1 when

A is split.) =

We now use the isomorphism % to define a canonical hermitian form H on D(A, o).
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As observed before, there is no significant loss if we restrict our attention to the
case where the degree of A is even, since A is split if its degree is odd. Henceforth,
we shall assume deg A = n = 2m. According to Theorem 2.6, the center A of C(A4,0)
is then a quadratic étale F-algebra. We let ¢ denote the non-trivial automorphism of
A/F. The restriction of g to A is determined in (3) of Theorem 2.6:

ola = Ida if m is even
fa—19 if m is odd.

Restricting to A the actions of C(A,a) on D(A, ), we may consider D(A, o) as a left
and right module over A. Inspection of the split case (see equation 2.3) shows that

zxx=2x-1(z) for z€ A and z € D(A,0). (2.5)
Consider the A-linear form
it= Tl'dA®rD‘dC(A’a) : AQ®p C(A,O’) — A

(when A = F x F and C(A,0) = C) x Cy, then Trdga,ey = Trdg, X Trdg,, i.e.
Trdc(a,e) is the reduced trace of C(A, o) as an Azumaya algebra over A) and define
H: D(A,o0) x D(A,0) — A by:

H(z,y) = top(w(z) @ y).

(3.10) Proposition. The map H is a nonsingular hermitian form on D(A, o), viewed
as a right A-module, relative to the restriction g|a of @ to A. (It is therefore a symmet-
ric bilinear form if gla = I, i.e. if m is even). In the split case (A,o0) = (Endp(V),04)
we have, under the standard identifications A=V ®V and D(A,0) =V ®Cy(V,q):

H(v1®c¢1,12Q¢2) = bg(vy,v2)- Trdgyv,q)(T(c1)c2)  forvi,va € V and ¢y,c2 € Ci(V, q).

(2.6)
Moreover H satisfies:
H(z,a-[uxy-v]) = H(o(a) [e(u) *z-2(v)],y)
forz,y € D(A,0), u,ve C(A,o) anda € A,
H(w(:r),w(y)) ZQOL(H(m:y)) fOT z,y€ D(A,O‘) (27)
and, if deg A =2m > 4,
H(d(a1),d(as)) = 2™ Trda(o(a1)az)  for ar,aq € A, (2.8)

whered: A — D(A, o) is the canonical map.

Proof: Proposition 3.9 shows that

P(w(y) @2) = (0 @ g) o P(w(z) ®Y),
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hence
H(y,z) = g(H(z,y)) forall z,y € D(4,0).

Moreover, since 7 is an isomorphism of C(A, o)-bimodules, we have for all z € A:
H(IE, yz) = H(x’y)z'

Therefore, H is a hermitian form on D(A, o).

In the split case (A,0) = (Endr(V),0,) we have, under the identifications A =
V ®r V induced by b,:

Ti‘d,q(’l]l ® 'U2) = bq(’lJ1,U2).

Therefore, the definition of ¢ and the description of 3 in the split case (Proposition 3.9)
yield relation (2.6), which shows that the form H is the same as the form H of §3.1.

In order to prove that H is nonsingular and to verify the additional properties of
H, it suffices to consider the split case. In this case, nonsingularity was proven in
Lemma 3.2 and relation (2.7) in Proposition 3.3. In order to prove relation (2.7), we
let z; = v; ® ¢; with v; € V and ¢; € C,(V,q) for i = 1,2. Then

H(w(z1),w(2)) = be(vr,v2) - Trdgyv,g)(cr17(c2))
whereas
H(za,71) = bg(v2,v1) - Trdeo(vigy (T(c2)cr)-
The preceding Lemnma then yields
H(w(xl),w(wz)) = L(H({L‘z,.'l,‘])),

and the proof of relation (2.7) is complete since H is hermitian relative to g.

In order to prove relation (2.8) when deg A(= dim V) > 4, we pick an orthogonal
basis (e1,. . .,e5) of (V,q). Since both sides of the relation we want to prove are bilinear
over F, it suffices to prove it when a;, as run over the basis (e; ® €;)1<:,j<n of A. We
have

H(d(e; @ e;),d(er ®er)) = t{(e: @ex) ® ejee)
= byl(ei, ex) - Trdcy(v,q)(ejee)
whereas
Trda(o(e; ®@e;)-exr®@e) = Trda(bglei,ex) e; D ee)
= bqles, ex) - bele;, o).
Therefore, it suffices to show:
']}dCo(V»Q) (e.‘ief) = 2m_lb‘1(ej: ee) forj=1,...,n

This is clear if j = £, since then eje, = by(ej,e¢). If § # £, pick a basis element e,
distinct from e; and e;. The element eje, € Co(V, q) is invertible and anticommutes
with ejeg, hence

'Icho(v,q)(e,-eg) =0= bq(ej,eg).
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3.3. The fundamental relations

In this section, (A, o) denotes a central simple F-algebra of even degree n = 2m with
orthogonal involution. Letting the Clifford algebra C(A, o) act on itself and on the
canonical bimodule D(A, o), we will prove the following fundamental relations:

(3.11) Theorem. Let A = F(,/(—1)mdisco) be the center of the Clifford algebra
C(A, o).

1. Ifdeg A=0mod 4 (i.e. if m is even), then

[C(A,0))* = 0 inBr(A). (2.9)
Na/r[C(A,0)] = [A] in Br(F). (2.10)
2. Ifdeg A=2mod 4 (i.e. if m is odd), then
[C(A,0)]2 = [Aa] in Br(A). (2.11)
Nasr[C(A,0)] = 0 in Br(F). (2.12)

(If A = F x F, the norm Na,r is defined as at the end of §3.2 of Chapter 1:
Npxr/r(Cr x C2) = C1 ®F Cy.)

Relations (2.9) and (2.12) follow, by Theorem 3.1, from the fact that the canonical
involution g on C(A, o) is of the first kind when deg A = 0 mod 4 and of the second
kind when deg A = 2 mod 4. More explicitly, the proof of Theorem 3.1 shows that
these relations follow from the isomorphism

g, : C(A,0) ®a C(A,0) = Enda(C(A, 0)).

Relation (2.10) was first proved by Jacobson [8, Theorem 4] in the case where A =
F x F. In the same special case, proofs of (2.10) and (2.11) have been given by Tits
[22, Proposition 7], [23, 6.2]. In the general case, these relations have been established
by Tamagawa [19] and by Tao [20].

The proof we present below derives from the action of C(A4, ) on D(A,¢); we will
in fact prove a more precise result, taking the various involutions into account.

In order to describe the more precise result, we let E(A, o) = D(A,0)“ denote the
F-subspace of w-invariant elements in D(A,¢). If deg A = 0 mod 4, then o|a = Ida,
hence Lemma 3.8 and relation (2.5) show that

w(zz) = w(z)e(z) for x € D(A,0) and z € A.

Therefore, the mltiplication map E(A,o) ® A — D(A, o) is an isomorphism of A-
modules. Moreover, relation (2.7) shows that H(e,,e;) € F for all e;,e; € E(A,0),
hence H restricts to a symmetric bilinear form B on E(A, ¢), and

(E(A,O’),B) ®rF A= (D(A,O’),H)

In particular the form B is nonsingular.
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(3.12) Theorem. The A®p C(A,0) ®a “C(A,0)°P-module structure on D(4,0) in-
duces the following canonical isomorphisms of algebras with involution:

o Ifdeg A= 0 mod 4:
(A,0) ®r Nasr(C(A,0),0) ~ (Endr(E(A, 0)),0B)-
o Ifdeg A =2mod 4:
(A,0) ®F (C(A,0),0) ®a (C(A,0),2) = (* Enda(D(4,0)),0x)-

Proof: Suppose first that m is even. We define a left C(A,0) ®p ‘C(4,0)-module
structure on D(A, o) by:

(a®‘c)-z=cr*x-a(c:) forcy,co € C(A, o) and z € D(A,0).
In particular, since g|a = I, we have for z € A and z € D(A4,0):
(z@‘1)-z=z+x and [1®(z-‘1)]-z=[1®((2)] - z=1z-(2).
Relation (2.5) then shows
(z@l)-z=[18(z-‘1)] =,

hence D(A, o) carries an induced structure of left module over C(A,0) ®a *C(A,0).
From Lemma 3.8, we derive:

w((e2®‘c1) - x) = 1 *w(x) - a(c2) = (a1 ® ‘c2) - w(x),

for ¢1,¢3 € C(A,0) and & € D(A, ). Therefore, the F-subspace E(A, o) of w-invariant
elements carries a structure of left module over Na,r(C(A,d)).

On the other hand, the left action of A on D(A, o) induces an action on E(A,0),
hence E(A,0) is a left module over A ®fr Na;r(C(A,0)). This left module structure
yields a homomorphism of FF-algebras:

A®p NA/F(C(A,O')) — EndF(E(A,a)).
Since
dimgp E(A,0) = $dimp D(A,0) = m - 2*™7}

and
deg(A ®F Na,r(C(A,0))) = deg A- deg C(A, o) = 2m - 222

this homomorphism is an isomorphism. It only remains to check that this isomorphism
transports the involution c® Na/r(g) to the adjoint involution with respect to B. This
follows from relation (2.7) in Proposition 3.10.
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Suppose then that m is odd. We define a left C(A4, o) ®r C(A, 0)-module structure
on D(A, o) by:

(a1 ®c) z=c *x-a(cy) for¢,c2 € C(A,0) and x € D(A,0).
Since g|a = ¢, relation (2.5) yields:
(z®1)-z=z-t(z)=(1®2) -z for z€ A and z € D(A,0). (2.13)

Therefore, there is an induced C(A, o) ®a C(A, o)-module structure on D(A, o). Since
the left action of A on D(A, ) commutes with the action of C(A,0) ®a C(A,0), we
get an F-algebra homomorphism:

A®r C(A,0) ®a C(A,0) — Endz(D(A,0)).

Counting dimensions over F', we see that this homomorphism is an isomorphism.
Note that, by relation (2.13), this isomorphism is not linear over A but ¢-semilinear.
Therefore, it yields an isomorphism of A-algebras:

A®r C(A,0) ®a C(A,0) = *Endz(D(4,0)).

To complete the proof, it suffices to check that this isomorphism transports the invo-
lution ¢ ® ¢ ® g to the adjoint involution with respect to the bilinear form H; this
follows from relation (2.7) in Proposition 3.10. =
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Exercises for Chapter 2

1. Let (A, o) be a central simple F-algebra with involution of the first kind and let
K C A be a subfield containing F. Suppose K consists of symmetric elements, so
that the restriction o’ = o|c,k of o to the centralizer of K in A is an involution
of the first kind. Prove:

disco = NK/F(diSCO").

2. Let Q be a quaternion algebra with canonical involution <y and let Q' = (Q,v)-
denote the space of pure quaternions. Show that @' is a simple Lie subalgebra

of £(Q)-

3. (Notations as in the previous exercise). Let @ and Q. be two quaternion alge-
bras over a field F. Show that the Lie algebras Q}, Q% of pure quaternions are
isomorphic if and only if the associative algebras @1 and Q2 are isomorphic.



60

CHAPTER 2. CLIFFORD THEORY



Chapter 3.
Similarities

In this chapter, we investigate the groups of similarities for algebras with involution.
The quotient of such a group by its center is the group of automorphism of the algebra
with involution, and is a twisted form of the projective orthogonal, symplectic or
unitary group. Our study is more detailed (or rather, less incomplete) in the orthogonal
case, where relations with the Clifford algebra can be obtained and an analogue of the
special Clifford group can be defined.

§1. Definitions

To motivate our definition of a similarity for an algebra with involution, we first consider
the case of a quadratic space (V,q) over a field F' (of characteristic different from 2).
A similarity in this case is a linear map f: V — V for which there exists a constant
A € F* such that

g(f(v)) = Aq(v) forallveV.

This condition can be linearized to:
be(f(v), f(w)) = Abg(v,w) for all v, we V
and can be rephrased as follows, using the adjoint involution o,:
bo(aq(f) o f(v),w) = be(Iv, w) for all v, weV.

Therefore, a similarity is an element f € Endg(V) for which there exists A € F* such
that a4(f)o f = A.

(1.1) Definition. Let (A, o) be a central simple F-algebra with involution. A simi-
larity of (A, o) is an element a € A such that

o(a)a € F*.

61
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The scalar ¢(a)a is called the similarity factor of a and denoted by p(a). The set of
all similarities of (A, o) is a subgroup of A* which we denote by Sim(A, ), and the
map p is a group homomorphism

i : Sim(A,0) — F*.

We will also use more specific notations for the group Sim(A, o) according to the
kind and type of o:

GO(A,o) if o is of orthogonal type.
Sim(A, o) =< GSp(A,o) if o is of symplectic type.
GU(A, o) if o is of the second kind.

Similarities with similarity factor 1 are called isometries and denoted

Sp(A, o) if o is of symplectic type.

O(A, o) if ¢ is of orthogonal type.
kerp =
U(A, o) if o is of the second kind.

The above definitions extend in a straightforward way to the case of involutions of the
second kind on semi-simple algebras with center F' x F.

Similarities can also be characterized in terms of automorphisms of the algebra with
involution: an automorphism of (A, ¢) is an F-algebra automorphism which commutes
with o:

Autp(A,0) ={a € Autr(A) |coa=caoc}.

(1.2) Theorem. Autp(A,c) = {Int(a) | a € Sim(A,0)}. There is therefore an exact
sequence:
1 — F* — Sim(A, o) It Autp(A, ) — 1.

Proof: By the Skolem-Noether theorem, every automorphism of A over F has the form
Int(a) for some a € A*. Since

o o Int(a) = Int(o(a)~') o o,
the automorphism Int{a) commutes with o if and only if ¢(a)™! = ¢ mod F¥*, i.e.

of{a)a € F*. [ ]

(1.3) Examples. 1. For every quadratic space (V,q), the discussion before defini-
tion 1.1 shows that
GO(Endr(V), a5) = GOV, q).

Similarly, if & is a nonsingular skew-symmetric form on a vector space V, then

GSp(Endr(V),05) = GSp(V, b).
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2. Let A be a quaternion algebra with canonical involution <. Since y(a)a € F for
all a € A, we have

Sim(4,7) (= GSp(4,7)) = 4.

Let ¢ be an orthogonal involution on A; by example 2.3 we have
o=Int(g)oy

for some invertible pure quaternion ¢. Since <y is canonical, it commutes with all
automorphisms of A. Therefore, an inner automorphism Int(ez) commutes with
o if and only if it commutes with Int(q), i.e. ag = ga mod F*. If A € F* is such
that ag = Aqa, then taking the reduced norm of both sides of this equation we
get A2 = 1, hence ag = *qa. The group of similarities of (A, o) therefore consists
of the invertible elements which commute or anticommute with ¢. If A is any
invertible element which anticommutes with g, we thus have:

GO(A,0) =F(¢)* UF(q)™ - h.

3. Let A = Q,®r @2 be a tensor product of two quaternion algebras and o = v; ®7,,
the tensor product of the canonical involutions. As observed in example 2.10 of
Chapter 2, the Lie algebra Alt(c) decomposes in a unique way as a direct sum
of the (Lie-) algebras of pure quaternions in @ and Qq:

Alt(o) = (@@ 1) ® (1 ® Q5).

Therefore, every automorphism a € Autg(A, o) must preserve the pair of sub-
algebras {Q1,Q2}. If @1 # Q., then a restricts to automorphisms of @, and of
Q2. Let 1 € @, g2 € Q5 be such that

aIQl = Int((h) a‘Qz = Int(‘h)'

Then a = Int(q; ® gq2); so

GO(A,0)={q1 ®q| ¢ € Q1,92 € @3}

If @1 >~ Q2, then we may assume for the convenience of notations that A =
Q ®r @, where Q is a quaternion algebra isomorphic to @; and @,. Under
the isomorphism «v, : A — Endz(Q) such that v,(q; ® ¢2)(z) = qzy(gs) for
1,92, € Q, the involution ¢ = v ® v is transported to the adjoint involution
with respect to the reduced norm quadratic form; therefore

GO(A, o) = GO(Q, Nrdo).
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Odd degree case

If (A,0) is a central simple F-algebra of odd degree with involution of the first kind,
then A is split: A = Endr(V) and o = o, for some quadratic space (V,q). If f € A
is a similarity of (V,q) with similarity factor A € F'*, then taking the determinant of
both sides of the relation

A-g~g

we get A € F*2. If A = A2, then A['! f is an isometry. Therefore,
GO(4,0) = GO(V,q) = O(V,q) - F* = O(V,q) x F*.

Direct similarities

Suppose (A, o) is a central simple F-algebra of even degree with involution of the first
kind:
degA=n=2m.

Taking the reduced norm of both sides in the equality
o(a)a = u(a) € F* for a € Sim(A, o),
we get
Nrda(a)® = p(a)®™,

hence
Nrda(a) = £u(a)™.

The element a € Sim(A, o) is called a direct (resp. indirect) similarity if Nrda(a) =
+u(a)™ (resp. Nrda(a) = —p(a)™).
(1.4) Proposition. If o is symplectic, all the similarities of (A, o) are direct.

Proof: Since direct and indirect similarities are preserved under scalar extension, we
0 Im ot
I. 0

where ¢ is the transpose involution and I,,, is the unit matrix of order m. The condition
for a € A* = GL,(F) to be a similarity with similarity factor p(a) = A € F* is then:

0 Im i 0 _Im _
(5 &) (0 0 )omn
t 0 "Im _ 0 —Im

a(Im 0 )a—)\(Im 0 )

Taking the pfaffian of both sides we get, by known formulas for pfaffians (see [3, The-

orem 3.28]):
(deta)pf(lm 0 )—A pf(Im 0 ),

hence deta = A\™. u

may assume that the algebra A is split: let A = M,(F) and 0 =Int|{

or
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In the case of orthogonal involutions, it is clear that direct similarities form a
subgroup of index at most 2 in the group of all similarities; we denote this subgroup
by GO4+(A,a), and we denote by GO_(A, o) the coset of indirect similarities, which
may be empty!. We also denote:

0+(A,0) = GO4(A,0)NO(A,0) = {a € A|o(a)a = Nrda(a) = 1}
and
0-(A,0) =GO_(A,0)NO(A,0) = {a € A|o(a)a=1= —Nrda(a)}.
The elements in Q4 (A, o) are the direct isometries.

(1.5) Examples. 1. Hyperplane reflections in a quadratic space (V, ¢) are indirect
similarities (in fact, indirect isometries). Therefore, GO, (V,q) is a subgroup of
index 2 in GO(V, q) and 0, (V,q) is a subgroup of index 2 in Q(V, g).

2. Let A be a quaternion algebra with canonical involution v and let ¢ = Int(g) oy
for some invertible pure quaternion ¢. Let also & € A be an invertible pure quater-
nion which anticommutes with q. The group GO(A, o) has been determined in
example 1.3 (2); straightforward norm computations show that

GO4+(A,0) = F(g9)* and GO_(A,0)=F(¢)* - h.
However, no element in F(q)* - h has norm 1 unless A is split, so
0+(A,0) =0(A,0) = {z € F(q) | Nrqy/r(z) = 1} if A is not split.

3. Let A = Q) ®r @2, a tensor product of two quaternion algebras, and ¢ = v, ® ¥

where 7y, 72 are the canonical involutions on @; and Q».
If Q1 # @2, then we know from example 1.3 (3) that all the similarities of (A, o)
are of the form ¢; ® g» for some q; € Qf, g2 € Q5. We have

1@ ® g2) = n{@)@r @ 12(g2)g2 = Nrdg, (q1) - Nrdg,(g2)
and
Nrda(g:1 ® g2) = Nrdg, (g1)**8?* - Nrdg, (92)** %" = u(g1 ® 2)°,
so all the similarities are direct:
GO(A,0) = GO4+(A,0) and  O(A,0) = 0+(4,0).

On the other hand, if @; >~ @2, then the algebra A is split and the first example
above shows that GO4.(A, o) is a subgroup of index 2 in GO(A, o).

'From the viewpoint of linear algebraic groups, one would rather say that this coset may have
no rational point. Over a splitting field of A however, we get GO_(A,¢) = GO_(V,q) # @&. The
subgroup GO, (A, o) is the connected component of the identity in GO(A, 7).
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§2. Relation with the Clifford algebra

In this section, (A, o) denotes a central simple F-algebra of even degree with orthogonal
involution:
deg A =n=2m.

Since the Clifford algebra C(A, o) is canonically associated to (A, ), every automor-
phism a € Autg(A, o) induces an automorphism

C(a) € Autp(C(A,0),a).
Explicitly, C(a) can be defined as the unique automorphism of C(A, ¢) such that
C(a)(c(a)) = c(ala)) for a € A,
where ¢: A — C(A, o) is the canonical map. The map
C: Autp(A,0) = Autp(C(4,0),a)

is a group homomorphism. Slightly abusing notations, we also denote by C' the homo-
morphism
C: GO(A,0) — Autp(C(A,0),a)

obtained by composing the preceding map with the epimorphism Int : GO(A,s) —
Autp(A, o) of Theorem 1.2. Thus, for g € GO(A,0) and a € A,

C(g)(c(a)) = c(gag™).

(2.1) Proposition. Suppose A is split: (A,0) = (Endp(V),0,) for some quadratic
space (V,q). Then, under the standard identifications GO(A,0) = GO(V,q) and
C(A,0) = Co(V,q), the canonical map

C: GO(V,q) — Co(V,q)
is defined by
Clg)vr- -+ -var) = p(g) ™" g(v1) - -+ - glvar)
Jor g € GO(V,q) and vy,... v € V.

Proof: 1t suffices to check the formula above on generators v - w of Co(V,q). For
v,w € V, the product v-w in C(V, ¢q) is the image of v ® w under the canonical map c:

vow=clv®w),

hence
Clg)(v-w)=clgo(v®w)og™).
Let A = u(g); then o(g9)~! = A~1g hence, for z € V,
(9o (v@w)og™")(z) = g(v) be(w, g7 () = g(v) bg(A™'g(w), ).
Therefore, (go (v @ w) o g~ ') (z) = (A\"1g(v) ® g(w))(x), which shows:
go(wew)og™ =A"g(v) ® g(w),

hence ¢(go (v®@ w) o g7) = A~ g(v) - g(w). ]
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Note that, for g € GO(A, ¢), the automorphism C(g) of C(A,0) is F-linear but
does not necessarily leave the center A of C(A, o) elementwise invariant. This condition
in fact characterizes the direct similarities:

(2.2) Proposition. A similarity g € GO(A, o) is direct if and only if C(g) leaves the
center A of C(A, o) elementwise invariant.

Proof: 1t suffices to check the split case: (A,¢) = (Endp(V),04). We then use the
standard identifications and the Proposition above. Let (e,...,es,) be an orthogonal
basis of (V, q). For g € GO(A, o) = GO(V,q), we have

Clgier - -+ - eam) = u(g)™™gler) - -+ - gleam)-
On the other hand, calculations in the Clifford algebra show:

g(el) e e g(ezm) = det(g) €1+ * E2m;

hence e; - -+ - ez is invariant under C(g) if and only if det(g) = u(g)™. (]

The image of the canonical map C has been determined by Wonenburger:

(2.3) Proposition. If deg A > 2, the canonical homomorphism C : Autp(A,0) —
Autp(C(A,0),a) is injective; its image consists of the automorphisms of (C(A4,0),a)
which preserve the image c(A) of A under the canonical map c: A — C(A,0).

Proof: From the definition of C(a) for @ € Autp(A, o), it is clear that this auto-
morphism preserves the image c¢(A) of A. Conversely, suppose § € Autr(C(4,0),a)
preserves c¢(A). By Proposition 2.9 of Chapter 2, ¢ is injective on Alt(c), hence 3
induces a bijective linear map?

g : Alt(c) — Alt(o).

Since Alt{c) generates A as an associative algebra (see the comments following Propo-
sition 2.9 of Chapter 2), #' extends to at most one automorphism £” of A; if it exists,
this automorphism 3" then has the property that C(8"”) = 8. If 8 = 1d, then g’ = Id
and therefore 8" = Id; this shows that C is injective. To show the existence of 5"
in the general case, we may extend scalars to a splitting field of A; the property then
follows from [24, Theorem 4]. ]

Remarks:

1. The preceding Proposition also holds for central simple algebras of odd degree
with orthogonal involution: see [24, Theorem 4].

2. If char F' = 0 and deg A > 10, Lie algebra techniques can be used to prove that
the Lie-algebra automorphism ' extends to an associative algebra automorphism
B": see (9, p. 307].

2In fact, a Lie-algebra automorphism of Alt(c).
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§3. The special Clifford group

Recall that for a quadratic space (V,q), the special Clifford group I'.(V, q) is defined
by:
Iv(V,g) ={ceCo(V,9)* |c-V-c' cV}

where the product ¢-V -¢~! is computed in the Clifford algebra C(V, q) (see for instance
18, §9.3]*). Conjugation by ¢ € I'(V, q) induces a direct isometry of V', denoted x(c):

x(cw)=c-v-cteV forveV,
and there is an exact sequence:
1 - F* 5 T4(V,q) = 04+(Vig) — 1 (3.1)

(see [18, Theorem 3.3]).

Although there is no analogue of the (full) Clifford algebra for an algebra with
involution, we show in this section that the canonical Clifford bimodule may be used
to define an analogue of the special Clifford group.

As in the preceding section, (A, o) denotes a central simple F-algebra of even degree
with an orthogonal involution:

deg A =n=2m.

As the Clifford algebra C(A, g), the bimodule D(A, ¢) also is canonically associated to
(A, o). Therefore, every automorphism o € Autp(A, o) induces a bijective linear map

D(a): D(A,o) — D(A,0)

such that
D(a)(d(a)) = d(a(a)) forae A

and
D(e)(a- [c1 * z - c2]) = a(a) - [C(a)(c1) * D(a)(z) - C(a)(c2)]

for a € A, ¢1,c2 € C(A,0) and z € D(A, o). (Explicitly, D(a) is induced by the map
a: T (A) — T (A) such that

2@ ® - ®a) = aa) ® - ®alar).)
As in the preceding section, we extend this definition to the group GO(A, o), by letting
D(g) = D(Int(g)) for g € GO(A, o).
For g € GO(A, o), we also define a map
8, D(A,0) — D(A,0)
3In [18], the group I'y(V, q) is denoted SI'(V, ¢) and O+ (V, ¢} is denoted SO(V, q).
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by
8s(x) =g~'-D(g)(x) for z € D(A,o0).

The map 8, is a homomorphism of left A-modules, since for a € A and z € D(4, g),

Sg(a-z) =g~ - (gag™") - D(g)(z) = a - by(x).

In the split case (A, o) = (Endr(V), a4), the same arguments as in Proposition 2.1 show
that, under the standard identifications GO(A,0) = GO(V,q), D(A,0) =V &C1(V,q),

D(g)(v®@wi - -+ - war—1) = p(g) " g(v) @ g(wr) - - -- - g(war—1)

and
bg(v@wr - -+ ~war1) = p(g) v @ g(wr) - -+ - g(war—1)
for g € GO(A,0) and v,w,,...,wer—1 € V.
(3.1) Theorem. For all g € O4+(A,0), there exists c € C(A,o)* such that
8g(z) =cxz-c? for allz € D(A, o).

Proof: We first check the split case (A,0) = (Endr(V),0,). By (3.1), for all g €
04+(V, q) we can find ¢ € Co(V, q)* such that x(c) = g. Then, for v,w;,...,wer—1 €V,

1 1

= 'U®C'1U]' e Wop—q c
= U@(c.wl.c—l).....(C.w2r_1.c_l).

cx(vQ@wy oot s Wapmy) €T

Since ¢c- w- ¢! = x(c)(w) = g(w) for w € V, and since u(g) = 1, we get:

c*(v®wl Ceee 'W?r—l)‘c-1=6g(v®w] “ves 'w2r—1)~

This proves the claim in the split case.

In the general case, recall the homomorphism
A®rC(A,o)®r‘C(A,0)® — Endr(D(A,0))

induced by the C(A, o)-bimodule and left A-module structure on D(A, o). Let A de-
note the center of C(A, ¢); considering D(A, o) as a left A-module, the homomorphism
above yields an isomorphism

®: C(A,0) ®a ‘C(A,0)® = Endaea(D(4,0))

such that ®(c; ® ‘c5¥)(z) = ¢, ¥z - ¢ for ¢1,¢0 € C(A,0) and z € D(A, o).

For g € 04+(A, g), Proposition 2.2 shows that C(g) leaves A elementwise invariant,
hence 6, is an A ® A-endomorphism of D(A,0). By the isomorphism above, there
exists a unique element § € C(A,0) ®a “C(A,0)°" such that ®(£) = §,.

The beginning of the proof shows that over a splitting field of A the element £ takes
the form ¢ ® *(c!)°P, where c € Cp(V, q) is such that x(c) = g. Since the minimal
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number of terms in a decomposition of an element of a tensor product is invariant under
scalar extension, it follows that £ = ¢; ® ‘c3P for some ¢;,cp € C(A,0). Moreover, if
s: C(A, o) ®a *C(A,0)°? — C(A,0) ®a *C(A,0)° denotes the switch map, defined
by

s(c@'CPY = ®@c® fored € C(A,0),

then s(€)€ = 1, since £ = ¢ ® *(c™!)°P over a splitting field. Therefore, the elements
¢1,¢2 € C(A,0)* are subject to:

cce=A€A with NA/F(/\) =1.

By Hilbert’s Theorem 90, there exists A\; € A such that A = Ae(X)~!. Then £ =
ca ® *(c3!)°P for c3 = AT'cy, hence

bg(x) =caxxz-c3' forz € D(A,o0).

(3.2) Definition. The Clifford group T'(A, o) is defined by
I'(A,0) = {ce C(A,a)* | c*xd(A)-c' Cc d(A)}.

Since the C(A, o)-bimodule actions on D(A, o) commute with the left A-module action
and since the canonical map d : A — D(A, o) is a homomorphism of left A-modules,
the condition defining the Clifford group is equivalent to:

cxd(1)-c7! € d(A).
For ¢ € I'(4, 7), define x(c) € A by the relation:
c*d(1)- ¢! = d(a(x(c)))-

(The element x(c) is uniquely determined by this relation, since the canonical map d
is injective: see Theorem 3.7).

(3.3) Proposition. In the split case (A,0) = (Endg(V), 04), the standard identifica-
tions C(A,0) = Co(V,q), D(A,0) =V Q C1(V,q) induce an identification T'(A,0) =
I'1(V,q), and the map x defined above is the same as the map x of (3.1). In particular,
x(c) € 04(A,0) for all c € T'(A, o).

Proof: Under the standard identifications, we have A=V @V and d(A) =V @V C
V ® Ci(V, q). Moreover, for c € C(A,o) = Co(V,q) and v,w € V,

crxdv@w) - cl=vQc-w-c. (3.2)
Therefore, the condition ¢ * d(A4) - ¢! C d(A) amounts to:

vQc-w-cleVeV foralvwelV,
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or ¢-V-¢~! ¢ V. This proves the first claim.
Suppose now e*d(1) -¢~! = d(o(g)). Since d is a homomorphism of left A-modules,
we then get for all v,w € V:

crdw®w)-c! = (v@w)-(cxd(l)-c")
= d((v@w)eoa(g))

Now, forx € V,
(vew)oa(g)(x) = vby(w,o(g)(z)

= vby(g(w),z)
= (v®g(w))(z),

hence (v ® w) o 0(g) = v ® g(w) and
cxdlv@w)-c ! =d(v® g(w)).

In view of equation (3.2), this shows: g(w) =c-w-c~L. .

(3.4) Proposition. The following sequence is ezact:
1— F* 5 T(A,0) 5 04(4,0) = 1.

Proof: The fact that kery = F* follows by scalar extension to a splitting field from
exact sequence (3.1). Surjectivity of x follows from Theorem 3.1. [

We conclude by mentioning two extra properties of the group I'(A, o). The second
one will allow us to define the spin group Spin(4, o).

(3.5) Proposition. The triangle
P(A’ 0’) -J'_) O+(A$ 0)

Int C
Autp(C(A, o))
commutes.

Proof: 1t suffices to check the split case. If ¢ € I'(V, q) and x(c) = g, thenforv,w € V,

Clg)(v-w) = g(v)-g(w)
(c-v-ct) (crw-ch)

c-(w-w)-cL.
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(3.6) Proposition. I'(A,0) C Sim(C(A4, ¢),a); more precisely, for c € (A, o),
u(c) = g{c)c € F*.

Proof: This may be seen by extending scalars to a splitting field of A. Alternatively,
one may argue “rationally” as follows: since ¢ = d(1) - ¢™! € d(A), this element is
invariant under the involution w on D(A,¢):

wle*xd(l) - ¢ =cxd(1)-c".
By Lemma 3.8 of Chapter 2, we have
wlcxd(1)-c™') = g(e)™! xd(1) - g(c).
Combining these two relations, we get:
(e(c)e) xd(1) - (a(c)e)~! =d(1),

hence g(c)c € kerx = F*. |

(3.7) Definition. The spin group Spin(A, o) is the group of elements in I'(4, ) with
similarity factor 1:

Spin(A, o) = {ce T'(A,0) | g(c)c=1}.
In the split case (A, o) = (Endp(V), 0,) the standard identifications yield Spin(4, ) =
Spin(V, q).

Using the last Proposition above, we may also define a spinor norm for direct
isometries:

(3.8) Definition. The spinor norm NS : O4(A,¢) — F*/F*? is the map which
completes the following commutative diagram:

1 > fx >I"(A,a)—x—)0+(A, og)—> 1

21 lu NS

1 > %2 > % YFX [ FX2— 1
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Exercises for Chapter 3.

L.

Let Q be a quaternion F-algebra with canonical involution v, andlet A = Q®rQ
with involution o = v ® 7. Prove that GO,.(A,0) = {q1 ® ¢2 | 1,92 € @*} and
determine the group of similarity factors u(GO4 (A, 0)).

Let (A, o) be a central simple F-algebra with involution of the first kind and let
a € Autp(A). Prove that the following statements are equivalent:

(a) a € Autp(A,o).

(b) a[(A,0)+] = (4,0),.
(c) al(A,0)-]=(4,0)_.

Let (A,0) be a central simple F-algebra with orthogonal involution and degree
a power of 2, and let B C A be a proper subalgebra with center F'. Prove that
every similarity f € GO(A, o) such that fBf~! = B is direct.

Let B be a central simple F-algebra and let A = B x B°P, with the involution &
(of the second kind) defined by:

a(by, ") = (b2, ")

Describe the group of similarities GU(A, o).
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