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1 Towards Sobolev mappings

In order to introduce Sobolev maps, which are maps from a Riemannian manifolds
into another manifold whose weak derivative satisfies an integrability condition or for
which a fractional Gagliardo energy is finite, we first review the motivation, definition
and properties of the more classical linear Sobolev spaces.

1.1 Linear Sobolev spaces

1.1.1 Motivation

Linear Sobolev spaces appear classically in the variational construction of solutions of
elliptic boundary value problems. Let us consider the Dirichlet problem for the Laplace
equation: given a set Ω ⊂ Rd and a function g ∶ ∂Ω → R, we search for a function
u ∶ Ω → R that solves the problem

{
−∆u = 0 in Ω,

u = g on ∂Ω.
(1.1)

If u ∈ C2(Ω̄) and if v ∈ C1(Ω̄) is any function, then
ˆ

Ω
∣Dv∣2 =

ˆ
Ω
∣Du∣2 + 2

ˆ
Ω

Du ⋅D(u − v) +
ˆ

Ω
∣D(u − v)∣2.

By integration by parts (Gauß divergence theorem), we have
ˆ

∂Ω
(u − v) ∂νu =

ˆ
Ω

div ((u − v)∇u) =
ˆ

Ω
∇(u − v) ⋅ ∇u +

ˆ
Ω
(u − v)∆u,

and therefore, if u is a solution of (1.1) and if v = g on ∂Ω, then
ˆ

Ω
Du ⋅D(u − v) = 0.

In particular, we have
ˆ

Ω
∣Dv∣2 =

ˆ
Ω
∣Du∣2 +

ˆ
Ω
∣D(u − v)∣2 ≥

ˆ
Ω
∣Du∣2,

with equality if and only if u = v in Ω.
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1 Towards Sobolev mappings

This suggests constructing a solution u to (1.1) by minimizing the Dirichlet functional
defined for each v ∈ C1(Ω) by

E1,2(v) ≜
ˆ

Ω
∣Dv∣2 (1.2)

among the functions v ∈ C1(Ω)∩C(Ω̄) such that v = g on ∂Ω. We consider a minimizing
sequence, that is a sequence of functions (uj)j∈N in C1(Ω) ∩C(Ω̄) such that

lim
j→∞

ˆ
Ω
∣Duj∣2 = c ≜ inf

⎧⎪⎪⎨⎪⎪⎩

ˆ
Ω
∣Dv∣2 ∣ v ∈ C1(Ω) ∩C(Ω̄)

⎫⎪⎪⎬⎪⎪⎭
≥ 0. (1.3)

We have for each k, ` ∈ N, the parallelogram identityˆ
Ω
∣Duj −Dui∣2 +

ˆ
Ω
∣Duj +Dui∣2 = 2

ˆ
Ω
∣Duj∣2 + 2

ˆ
Ω
∣Dui∣2. (1.4)

We observe that ˆ
Ω
∣Duj +Dui∣2 = 4

ˆ
Ω
∣Dwj,i∣2 ≥ 4c, (1.5)

where wj,i ≜
uj+ui

2 on Ω, and hence wj,i = g on ∂Ω. Therefore by (1.3), (1.4) and (1.5)

lim
j,i→∞

ˆ
Ω
∣Duj −Dui∣2 = 0. (1.6)

This is a Cauchy condition for the sequence of functions (uj)j∈N in a certain seminorm:

∣v∣W1,2(Ω) ≜ ∥Dv∥L2(Ω) = (E1,2(v))
1
2 = (

ˆ
Ω
∣Dv∣2)

1
2 .

We still have a small issue now: the quantity ∣⋅∣W1,2 is not positive definite. We
consider another norm, defined for v ∈ C1(Ω̄) as

∥v∥W1,2(Ω) = (
ˆ

Ω
∣v∣2 + ∣Dv∣2)

1
2 . (1.7)

The Poincaré inequality, ensures that if the set Ω is bounded in one direction (or has
finite measure), then there exists a constant C > 0 such that for every v ∈ C1(Ω) ∩C(Ω̄)
such that v = 0 on ∂Ω, one has ˆ

Ω
∣v∣2 ≤ C

ˆ
Ω
∣Dv∣2.

In particular ˆ
Ω
∣uj − ui∣2 +

ˆ
Ω
∣Duj −Dui∣2 ≤ (C + 1)

ˆ
Ω
∣Duj −Dui∣2,

and thus by (1.6),

lim
j,i→∞

ˆ
Ω
∣uj − ui∣2 +

ˆ
Ω
∣Duj −Dui∣2 = 0.

It remains to see how to obtain a space that has suitable completeness properties.
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1.1 Linear Sobolev spaces

1.1.2 Definitions linear Sobolev spaces

Let us now review the approaches that have been proposed and implemented to define
complete spaces of functions on which (1.7) defines a norm for smooth functions.

Absolutely continuous functions

If I ⊂ R is an interval, a function u ∶ I → Rn is absolutely continuous whenever for
every ε > 0, there exists δ > 0 such that for every ` ∈ N, if x1, . . . , xi, y1, . . . , yi ∈ I, if
x1 ≤ y1 ≤ x2 ≤ y2 ≤ ⋯ ≤ xi ≤ yi and if

`

∑
i=1

∣yi − xi∣ ≤ δ,

then
`

∑
i=1

∣u(yi) − u(xi)∣ ≤ ε.

In particular, any Lipschitz-continuous function is absolutely continuous and by tak-
ing ` = 1, any absolutely continuous function is uniformly continuous and hence
continuous.

If the function u ∶ I → Rm is absolutely continuous, then there exists a Lebesgue-
integrable function g ∈ L1(I, Rm) such that for every x, y ∈ I,

u(x) = u(y) +
ˆ y

x
g(t) dt. (1.8)

That is, a weak version of the fundamental theorem of calculus holds for absolutely
continuous functions. Conversely, by Lebesgue’s dominated convergence theorem, any
function u representable by (1.8) for some g ∈ L1(I, Rm) is absolutely continuous. In
such a case, we say that g is a weak derivative of u. By classical arguments in measure
theory, two weak derivatives g0, g1 ∈ L1(I, Rm) of a given function u coincide almost
everywhere on the set I.

The characterization of absolutely continuous functions does not carry on to functions
on higher-dimensional domains. For Ω ⊆ Rm and u ∶ Ω → Rn, one can however consider
the restrictions of the function u to straight lines that are parallel to a given direction
axis h ∈ Rm and define the function u to be weakly differentiable in the direction h
whenever the restriction of the function u to any straight line parallel to h is almost
everywhere equal to a weakly differentiable function whose directional derivative is
the restriction of some function ∂hu. It can then be proved that the directional weak
derivative ∂hu ∈ L1

loc(Ω, Rn) depends linearly on the direction h and a weak derivative
Du ∈ L1

loc(Ω, Lin(Rm, Rn)) ≃ Lin(Rm, L1
loc(Ω, Rn) can be defined in such a way that

∂hu = Du[h] almost everywhere on Ω.
The Sobolev space is defined then as the space of measurable functions u ∶ Ω → Rn

such that u ∈ Lp(Ω, Rn), u has a weak derivative Du and Du ∈ Lp(Ω, Lin(Rm, Rn)).
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1 Towards Sobolev mappings

This definition is appealing because it essentially relying on merely the fundamental
theorem of calculus; its drawback is its dependence a priori on the linear structure of
the domain Ω ⊂ Rm. A proof of the invariance under a smooth diffeomorphism of the
domain is quite technical. On the other hand, manipulations on the target-side are very
staightforward in the one-dimensional case, where Lipschitz functions are readily seen
to preserve the absolute continuity.

Distributional derivatives

Given a set Ω ⊂ Rm, a function g ∈ L1
loc(Ω, Lin(Rm, Rn)) is defined to be a weak derivative

of u ∈ L1
loc(Ω, Rn) whenever for every ϕ ∈ C1

c (Ω, Rm),ˆ
Ω

g[ϕ] = −
ˆ

Ω
u div ϕ

(where for each x ∈ Ω, g[ϕ](x) = g(x)[ϕ(x)], that is, the linear map g(x) ∈ Lin(Rm, Rn)
applied to the vector ϕ(x) ∈ Rm). If g0, g1 ∈ L1

loc(Ω, Rn) are both weak derivatives, then
g0 = g1 almost everywhere in Ω.

From the definition of weak derivative, one defines the Sobolev space W1,p(Ω) to
be the space of functions such that u ∈ Lp(Ω, Rn), u has a weak derivative Du and
Du ∈ Lp(Ω, Lin(Rn, Rm)).

The distributional theory has the advantage of being independent on the dimension
and to be quite stable under changes of variables in the domain.

Completion

For a given set Ω ⊂ Rm, the Sobolev space W1,p(Ω, Rn) can be defined as the completion
as a metric space of the set

{v ∈ C1(Ω, Rn) ∣
ˆ

Ω
∣Dv∣p + ∣v∣p < +∞}, (1.9)

under the Sobolev norm which is defined defined for each vC1(Ω, Rn) by

∥v∥W1,p(Ω) ≜
ˆ

Ω
∣Dv∣p + ∣v∣p.

In (1.9) the behavior of v on the boundary ∂Ω is not constrained by any continuity or
differentiabily assumption on the boundary but merely by the integrability condition.
Under this assumption, the space is equivalent to the distributional space [DL54a,
DL54b, MS64].

Fourier analysis

Given a function u ∈ L2(Rm, Rn), its Fourier transform û ∶ Rm → Rn is defined for each
ξ ∈ Rm by

û(ξ) =
ˆ

Rm
u(x) e−2πiξ⋅x dx.
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1.1 Linear Sobolev spaces

A function u ∈ L2(Rm, Rn) is in the Sobolev space W1,2(Rm, Rn) whenever
ˆ

Rm
(1+ ∣2πξ∣2) ∣û(ξ)∣2 dξ < +∞.

This approach has the advantage of relying on the standard machinery of the Fourier
transform and generalizing straightforwardly to higher-order and fractional derivatives.
The Fourier definition is more delicate to adapt to define W1,p(Ω, Rn) when Ω is not the
Euclidean space or p ≠ 2. The case where Ω is a rectangular parallelepiped or a torus
can be treated through Fourier series; other domains by the analysis of the spectrum
of the Laplacian operator −∆ on Ω. The case p ≠ 2 can be treated by Littlwood–Paley
theory which gives rise to the scale of Triebel–Lizorkin spaces Fs,p

q (Rm, Rn) [RS96,Tri78].

Potential theory

When p = 2, it can be proved that if the Bessel potential is defined by

Gα(x) = 1

(4π) α
2 Γ( α

2)

ˆ ∞

0

e−
π∣x∣2

δ
− δ

4π

δ1+m−α
2

dδ.

and if f ∈ L2(Rm, Rn), then
ˆ

Rn
∣D(G1 ∗ f )∣2 + ∣G1 ∗ f ∣2 =

ˆ
Rn

∣ f ∣2

(see [Ste70, §V.3]). This suggest then the following definition of Sobolev spaces

W1,2(Rm, Rn) = {G1 ∗ f ∣ f ∈ L2(Rm, Rn)}.

The advantage of this definition is that convolutions estimates can be readily applied
to study the properties of the function u ≜ G1 ∗ f . When p ≠ 2, one can still consider the
set

{G1 ∗ f ∣ f ∈ L2(Rm, Rn)}
which is then a Newton potential space which is slightly different from the Sobolev spaces
and corresponds to the Triebel–Lizorkin space F1,p

2 (Rm, Rn).

Metric definitions

Sobolev spaces can also be defined in a metric space setting. The starting observation is
that given u ∈ Lp(Rm), one has u ∈ W1,p(Rm, Rm) if and only if there exists a constant
C > 0 such that for every h ∈ Rn,

∥u(x + h) − u(x)∥Lp(Rm) ≤ C∣h∣

(see for example [Bre11, proposition 9.3]). Various approaches lead to definitions of
Sobolev functions and their energy (see [Chi07] for a synthesis of available approaches).
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1 Towards Sobolev mappings

The interest of the metric space approach is that it just relies on the structure of the
target as a metric space. The drawback is that the Sobolev energy depends on the
precise definition being used and the Sobolev energy density ∣Du∣p cannot be in general
written as powers of a given local derivative ∣Du∣. In other words, the derivative can
depend on the exponent p.

Equivalence

Under wide and reasonable assumptions, the definitions above are equivalent up to
redefinition of the function on null sets.

In order to avoid technical issues when we restrict functions to subsets, we shall
assume everywhere in the sequel that all the measurable functions are defined every-
where and Borel-measurable. That is, we do not consider equivalence classes and we
will be calling norms functions that are strictly speaking seminorms that vanish only
on functions vanishing almost everywhere. This attitude that differs from a classical
approach to Lp spaces and has been adopted by several authors, especially in the
study of nonlinear Sobolev spaces, has the advantage of woking directly with functions
without heavy circumlocutions or abuse of language and of removing the burden of
checking that low-level statement and identities do not depend on the choice of a
representative in an equivalence class1.

1.1.3 Properties

We review the properties of Sobolev spaces, with emphasis on the facts that will be the
most relevant in the nonlinear theory.

Functional analysis

For every p ∈ [1,+∞], the Sobolev space W1,p(Ω, Rn) is a complete normed spaces.
When p = 2, W1,2(Ω, Rn) is a Hilbert space. When 1 < p < +∞, the space W1,p(Ω, Rn) is
reflexive.

The weak differentiation operator D is a bounded linear operator from W1,p(Ω, Rm)
to the space Lp(Ω, Lin(Rm, Rn)). The space W1,p(Ω, Rn) can be identified to the closed
subspace

{(u, g) ∣ g = Du weakly in Ω}

of the space Lp(Ω, Rn)⊕ Lp(Ω, Lin(Rm, Rn)). When 1 ≤ p < +∞, the space W1,p(Ω, Rn)
is separable (as a closed subset of the separable space Lp(Ω, Rn) ⊕ Lp(Ω, Lin(Rm, Rn)).

1At a logical level, it has the advantage of reducing multiple back-and-forth journey in equivalence
classes through the axiom of choice. (The axiom of choice is used to extract elements from equivalence classes
where they should never have been put in the first place. [BB85, p. 12])
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1.1 Linear Sobolev spaces

Removable point singularities

Sobolev functions need not be smooth. The next proposition provides a criterion for
functions that are smooth except at one point in a domain to be in a Sobolev space.

Proposition 1.1. Let Ω ⊂ Rm, a ∈ Ω and u ∶ Ω → Rm. If u ∈ W1,p(Ω ∖ {a}) and if

lim inf
r→0

1
r

ˆ
Br(a)

∣u∣ = 0,

then u ∈ W1,p(Ω).

In particular, if m > 1 and u ∈ L
m

m−1 (Ω), we have by the Hölder inequality

1
r

ˆ
Br(a)

∣u∣ ≤ C1
⎛
⎝

ˆ
Ω∩Br(a)

∣u∣
m

m−1
⎞
⎠

1− 1
m

,

and thus the condition holds by Lebesgue’s dominated convergence theorem.
As examples of applications of we get that the function x ∈ Bm ↦ 1

∣x∣α is in W1,p(Bm, R)
if and only if α < m

p − 1.

Proof of proposition 1.1. Let (rj)j∈N be a sequence such that

lim
j→∞

1
rj

ˆ
Brj(aj)

∣u∣ = 0.

We choose a function χ ∈ C1(Rm) such that χ = 1 in B1/2(0) and χ = 0 in Rm ∖ B1(0). We
define χj(x) = χ( x−a

rj
).

Given a test function ϕ ∈ C1
c (Ω, Rn), we have for every j ∈ N, χj ϕ ∈ C1

c (Ω, Rn) and
since, u∣Ω∖{a} is weakly differentiable in Ω ∖ {a},

ˆ
Ω

Du[χj ϕ] =
ˆ

Ω∖{a}
Du[χj ϕ] = −

ˆ
Ω∖{a}

u div(χj ϕ)

= −
ˆ

Ω∖{a}
χj u div(ϕ) −

ˆ
Ω∖{a}

u Dχj[ϕ].

We have for every j ∈ N,

∣
ˆ

Ω∖{a}
uDχj[ϕ]∣ ≤ C2

rj

ˆ
Ω∩Brj(a)

∣u∣,

and we have thus by Lebesgue’s dominated convergence theorem
ˆ

Ω
Du[ϕ] = −

ˆ
Ω

u div ϕ,

and Du is a weak derivative of u on Ω.
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1 Towards Sobolev mappings

The Sobolev mappings will be bounded functions, and so we can look at a criterion
for removing singularities for bounded Sobolev functions.

Proposition 1.2. Let Ω ⊂ Rm, F ⊂ Ω be a closed set and assume that there exists a sequence
(χj)j∈N in C1(Ω, [0, 1]) such that for every j ∈ N, χj = 0 on a neighbourhood of F, χj → 1
almost everywhere in Ω and

lim
n→∞

ˆ
Ω
∣Dχj∣ = 0.

If u ∈ L∞(Ω, Rn) and if u ∈ W1,p(Ω ∖ F, Rn), then u ∈ W1,p(Ω, Rn).

Proof of proposition 1.1. Given a test function ϕ ∈ C1
c (Ω, Rn), we have for every j ∈ N,

χj ϕ ∈ C1
c (Ω, Rn) and since, u∣Ω∖{a} is weakly differentiable in Ω ∖ {a},
ˆ

Ω
Du[χj ϕ] =

ˆ
Ω∖{a}

Du[χj ϕ] = −
ˆ

Ω∖{a}
u div(χj ϕ)

= −
ˆ

Ω∖{a}
χj u div(ϕ) −

ˆ
Ω∖{a}

u Dχj[ϕ].

By assumption, we have

∣
ˆ

Ω∖{a}
uDχj[ϕ]∣ ≤ C3

rj

ˆ
Ω∩Brj(a)

∣u∣,

and we have thus by Lebesgue’s dominated convergence theorem
ˆ

Ω
Du[ϕ] = −

ˆ
Ω

u div ϕ,

and Du is a weak derivative of u on Ω.

Restrictions to generic subsets

Sobolev functions can be restricted to lower dimensional linear subsets.

Proposition 1.3. Let Ω ⊂ Rm. If u ∈ W1,p(Ω, Rn), then for almost every affine subspace
W ⊂ Rm, u∣Ω∩W ∈ W1,p(Ω ∩W, Rn), and D(u∣Ω∩W) = (Du)∣Ω∩W×W .

Here Ω∩W is an open subset of W ≃ R`, with ` = dim W. The restriction (Du)∣Ω∩W×W
is applied to the map Du ∶ Ω ×Rm → Rn defined for (x, h) ∈ Ω ×Rm by Du(x, h) =
Du(x)[h].

We will need a slightly more refined version of proposition 1.3.

Proposition 1.4. If Ω ⊂ Rm is convex and bounded and u ∈ W1,1(Ω), then for almost every
x, y ∈ Ω, the function t ∈ [0, 1] ↦ Du((1− t)x + ty)) is summable and

u(y) = u(x) +
ˆ 1

0
Du((1− t)x + ty)[y − x] dt.
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1.1 Linear Sobolev spaces

In comparison proposition 1.3 implies that for almost every x and y the function is
equal almost everywhere on almost every line segment to an absolutely continuous
function but there is no guarantee that the function behaves nicely at x and y on this
segment.

In particular, we have for almost every x, y ∈ Ω

∣u(y) − u(x)∣ ≤
ˆ 1

0
∣Du((1− t)x + ty)∣∣y − x∣ dt.

The proof of proposition 1.4 relies on the next lemma.

Lemma 1.5. If Ω ⊂ Rm is convex and bounded and if f ∶ Ω → [0,+∞) is measurable then for
every α such that α +m > 1,

ˆ
Ω

ˆ
Ω

ˆ
[0,1]

f ((1− t)x + ty)∣y − x∣α dy dx ≤ C
ˆ

Ω
f .

Proof. Since Ω is convex, by applying the substitution y = x + (z − x)/t, we obtain

ˆ
Ω

ˆ
Ω

ˆ
[0,1]

f ((1− t)x + ty) dt∣y − x∣α dy dx =
ˆ

Ω

ˆ
Ω

ˆ
Ix,z

f (z)∣z − x∣α
tα+m dx dt dz,

where
Ix,z = {t ∈ [0, 1] ∣ z − x

t
∈ A − x}.

In particular we have

Ix,z ⊂ [ ∣z − x∣
diam(Ω) ,+∞),

and thus since α +m > 1
ˆ

Ω

ˆ
Ω

ˆ
[0,1]

f ((1− t)x + ty) dt∣y − x∣α dy dx

≤
ˆ

Ω

ˆ
Ω

ˆ +∞

∣z−x∣
diam(Ω)

f (z)∣z − x∣α
tα+m dx dt dz

≤ C4 diam(Ω)m+α−1
ˆ

Ω

ˆ
Ω

f (z)
∣z − x∣m−1 dx dz

≤ C5 diam(Ω)m+α

ˆ
Ω

f ,

which ends the proof.

Proof of proposition 1.4. Let (uj)j∈N be a sequence of smooth functions that converges to
u in W1,1(Ω, Rn). Up to a subsequence, we can assume that there exists a set E ⊂ Ω,
such that Lm(E) = 0 and for every x ∈ Ω ∖ E, (uj(x))j∈N converges to u(x).

13



1 Towards Sobolev mappings

Let α > 1−m. By lemma 1.5, we have

lim
j→∞

ˆ
Ω

ˆ
Ω

ˆ
[0,1]

∣Duj((1− t)x + ty) −Du((1− t)x + ty)∣ dt∣y − x∣α dy dx = 0.

Up to a subsequence, there exists a set F ⊂ Ω ×Ω such that L2m(E) = 0, and for every
x, y ∈ (Ω ×Ω) ∖ E,

lim
j→∞

ˆ
[0,1]

∣Duj((1− t)x + ty) −Du((1− t)x + ty)∣ dt = 0.

Since uj is smooth, for every (x, y) ∈ Ω ×Ω

uj(y) = uj(x) +
ˆ 1

0
Duj((1− t)x + ty)[y − x] dt. (1.10)

We conclude by observing that if (x, y) ∈ Ω ×Ω ∖ (E ×Ω ∪Ω × E ∪ F), then all the terms
in the identity (1.10) converge and bring us to the conclusion.

Embeddings

The presence of a weak derivative gives improves several properties of Sobolev func-
tions.

Poincaré inequality The Poincaré inequality relates controls mean oscillations of a
function by an integral of the derivative:

Proposition 1.6. For every m ∈ N and p ∈ [1,+∞), C > 0, such that if A ⊂ Ω ⊂ Rm is convex
and open, then

ˆ
A

ˆ
A
∣u(y) − u(x)∣p dy dx ≤ Cm

diam(A)p+m

p +m − 1

ˆ
A
∣Du(z)∣p dz.

The Poincaré inequality is usually written as

ˆ
A
∣u(x) −

 
A

u(y) dy∣
p

dx ≤ C
diam(A)p+m

∣A∣

 
A
∣Du∣p;

by Jensen’s and Minkowski’s inequalities, the latter inequality is equivalent to (1.11),
with equivalent constants.

In particular, by proposition 1.6 for some a ∈ Ω and r > 0 and if u ∈ W1,p(Ω, Rn), then
 

Br(a)

 
Br(a)

∣u(y) − u(x)∣p dy dx ≤ C rp
 

Br(a)
∣Du∣p. (1.11)

14



1.1 Linear Sobolev spaces

Proof of proposition 1.6. By proposition 1.4, for almost every x, y ∈ A, we have since the
set A is convex

∣u(y) − u(x)∣ ≤
ˆ 1

0
∣Du((1− t)x + ty)∣∣y − x∣ dt,

and thus by Jensen’s inequality, we deduce that

ˆ
A

ˆ
A
∣u(y) − u(x)∣p dy dx ≤

ˆ 1

0

ˆ
A

ˆ
A
∣Du((1− t)x + ty)∣p∣y − x∣p dy dx dt.

Since A is convex, by applying the substitution y = x + (z − x)/t, we obtain

ˆ
A

ˆ
A
∣u(y) − u(x)∣p dy dx ≤

ˆ
A

ˆ
A

ˆ
Ix,z

∣Du(z)∣p∣z − x∣p
tp+m dx dt dz,

where
Ix,z = {t ∈ [0, 1] ∣ z − x

t
∈ A − x}.

In particular we have

Ix,z ⊂ [ ∣z − x∣
diam A

,+∞),

and thus
ˆ

A

ˆ
A
∣u(y) − u(x)∣p dy dx ≤

ˆ
A

ˆ
A

ˆ +∞

∣z−x∣
diam A

∣Du(z)∣p∣z − x∣p
tp+m dt dx dz

≤ diam(A)p+m−1

p +m − 1

ˆ
A

ˆ
A

∣Du(z)∣p
∣z − x∣m−1 dx dz

≤ Cm
diam(A)p+m

p +m − 1

ˆ
A
∣Du(z)∣p dz.

Sobolev embedding When p < m, the Sobolev embedding states that there exists a
constant C ∈ (0,+∞) such that for every u ∈ W1,p(Rm, Rn),

(
ˆ

Rm
∣u∣

mp
m−p )

1
p−

1
m

≤ C
ˆ

Rm
∣Du∣p. (1.12)

The exponent in (1.12) is chosen in such a way that both sides behave similary under
scalings (homotheties) in the domain Rm. When Ω ⊂ Rm is a nice domain, then the
Sobolev inequality (1.12) transports to the domain Ω with an additional zeroth-order
term ∥u∥Lp(Ω).
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1 Towards Sobolev mappings

Sobolev–Morrey embedding

Proposition 1.7. Let Ω ⊂ Rm, p > m and u ∈ W1,p(Ω). For almost every x ∈ Ω, for every
convex set A ⊂ Ω such that x ∈ A one has

ˆ
A
∣u(y) − u(x)∣ dy ≤ C diam(A)1+m(1− 1

p ) (
ˆ

A
∣Du∣p)

1
p .

Proof. Since the set A is convex, for almost every x, y ∈ A, we have by proposition 1.4

∣u(y) − u(x)∣ ≤
ˆ 1

0
∣Du((1− t)x + ty)∣∣y − x∣ dt,

and thus, we deduce that for almost every x ∈ A, we have

ˆ
A
∣u(y) − u(x)∣ dy ≤

ˆ 1

0

ˆ
A
∣Du((1− t)x + ty)∣∣y − x∣ dy dt.

Since A is convex, by applying the substitution y = x + (z − x)/t, we obtain

ˆ
A
∣u(y) − u(x)∣ dy ≤

ˆ
A

ˆ
Ix,z

∣Du(z)∣∣z − x∣
tm+1 dt dz,

where
Ix,z = {t ∈ [0, 1] ∣ z − x

t
∈ A − x}.

In particular we have

Ix,z ⊂ [ ∣z − x∣
diam A

,+∞),

and thus
ˆ

A
∣u(y) − u(x)∣p dy ≤

ˆ
A

ˆ +∞

∣z−x∣
diam A

∣Du(z)∣∣z − x∣p
tm+1 dt dz

≤ diam(A)m

m

ˆ
A

∣Du(z)∣
∣z − x∣m−1 dz.

By Hölder’s inequality, we have, since p > m,

ˆ
A
∣u(y) − u(x)∣ dy ≤ C6 diam(A)m(

ˆ
A
∣Du∣p)

1
p ⎛
⎝

ˆ
A

1

∣x − z∣
(m−1)p

p−1

dz
⎞
⎠

1− 1
p

≤ C7 diam(A)1+m(1− 1
p )(

ˆ
A
∣Du∣p)

1
p ,

which is the conclusion.
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1.1 Linear Sobolev spaces

In particular when p > m, proposition 1.7 implies the Sobolev–Morrey embedding
states that there exists a constant such that for almost every x, y ∈ Br(a) ⊂ Rm and
u ∈ W1,p(Br(a), Rn), then

∣u(y) − u(x)∣ ≤ C (
ˆ

Br(a)
∣Du∣p)

1
p ∣y − x∣1−

m
p . (1.13)

The right hand side is a sublinear function of the distance between y and x; the inequal-
ity implies that the function u is in the space C0,α(Br(a), Rm) of Hölder-continuous
functions with exponent α ≜ 1− m

p . Again the exponent in the Sobolev–Morrey inequal-
ity (1.13) is chosen in such a way that both sides scale similarly. In contrast with the
Sobolev inequality (1.12), the Morrey–Sobolev inequality is local in nature on both
sides of the inequality.

As a consequence we have the following

Proposition 1.8. If u ∈ Ẇ1,p(Br(a), Rν) with p > m and if x ∈ Br(a),

ess sup
Br(a)

∣u(x)∣ ≤ ess inf
Br(a)

∣u∣ +C r1−m
p (
ˆ

Br(a)
∣Du∣p)

1
p .

Proof. We observe that by proposition 1.7 for almost every x, y ∈ Br(a), we have by the
triangle inequality

∣u(x)∣ ≤ ∣u(y)∣ + ∣u(x) − u(y)∣ ≤ ∣u(y)∣ +C8 r1−m
p (
ˆ

Br(a)
∣Du∣p)

1
p .

The critical case Sobolev inequality (1.12) and (1.13) have left open the critical case
p = m. When I ⊂ R is an interval, one has for almost every x, y ∈ I, the inequality

∣u(y) − u(x)∣ ≤ C
ˆ
[y,x]

∣Du∣,

which relates the modulus of continuity of u to the modulus of integrability of Du.
When m ≥ 2, it can be observed that if η ∈ C1(Rm) and η = 0 in Rm ∖ B1/2(0)) and if

the function uγ ∶ Rm → R is defined for x ∈ Rm ∖ {0} by

uγ(x) = η(x) (ln
1
∣x∣ )

γ
,

then uγ ∈ W1,m(Rm, R) if and only if γ < 1 − 1
m . In particular, when m ≥ 2, uγ can be

chosen to be discontinuous. (When m = 1, the same example shows that can fail to be
Hölder continuous.)

Compactness properties

If (ui)i∈N is a bounded sequence in W1,p(Ω, Rn), then there exists u ∈ W1,p(Ω, Rn) is a
subsequence (uij)j∈N such that every compact set K ⊂ Rm,

lim
j→∞

ˆ
K
∣uj − u∣p = 0.
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1 Towards Sobolev mappings

Chain rule

If f ∈ C1(Rn, R`) and if D f is bounded, then for every u ∈ W1,p(Rm, Rn) we have
f ○ u ∈ W1,p(Rm, R`) and D( f ○ u) = D f (u)[Du] almost everywhere on Rm.

Fine properties

A measurable function u ∶ Ω → Rn is approximately continuous at almost every point
of its domain [EG92, theorem 1.7.3]: for every a ∈ Ω and for every ε > 0,

lim
δ→0

Ln(Bδ(a) ∖ f −1(Bε( f (a)))
Ln(Bδ(a))

= 0.

If moreover, u ∈ Lp(Ω, Rn), then for almost every a ∈ Ω [EG92, corollary 1.7.1],

lim
δ→0

 
Bδ(a)

∣ f − f (a)∣p = 0. (1.14)

Sobolev functions have a better behavior: if u ∈ W1,p(Rn, Rn), then (1.14) holds
outside a Borel-measurable set of vanishing p–capacity and is equal almost everywhere
to a p–quasicontinuous function u∗ ∶ Rm → Rn [EG92, theorem 4.8.1].

Trace theory

In view of the solution of the Dirichlet problem for the Laplacian (1.1), it is natural to
ask which boundary values g ∶ ∂Ω → R extend to some Sobolev function u ∶ W1,p(Ω, R).
This question is treated in trace theory.

For the half-space Ω = Rm
+ ≜ Rm−1 × [0,+∞), there exists a linear, continuous and

bijective trace operator tr ∶ W1,p(Rm−1
+ , Rn) → W1− 1

p ,p(Rm, Rn) that coincides with the
restriction operator on Rm ≃ Rm × {0} for smooth Sobolev functions. The codomain of
the trace operator is a fractional Sobolev space, defined for by

Ws,p(R`) = {u ∈ Lp(R`, Rn) ∣ E s,p(u) < +∞},

where the Gagliardo fractional Sobolev energy is defined by

E s,p(u) ≜
ˆ

R`

ˆ
R`

∣u(y) − u(x)∣p
∣y − x∣`+sp dy dx. (1.15)

By the construction, there exist constants c, C > 0 such that

c E1− 1
p ,p(u) ≤ inf{E1,p(U) ∣ tr U = u} ≤ C E1− 1

p ,p(u).

When Ω ⊂ Rm is a domain with a reasonably smooth boundary, the same theory
holds with additional Lp norms appearing in the estimates.
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1.1 Linear Sobolev spaces

Fractional Gagliardo–Nirenberg interpolation inequality

Proposition 1.9. If the set Ω ⊂ Rm is open and convex, then for every s ∈ (0, 1) and p ∈
(1,+∞) such that sp > 1, there exists a constant C > 0 such that for every u ∈ W1,sp(Ω, Rn) ∩
L∞(Ω, Rn), one has

ˆ
Ω

ˆ
Ω

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx ≤ C∥u∥(1−s)p

L∞

ˆ
Ω
∣Du∣sp.

Proof of proposition 1.9. For every x, y ∈ Rm, we have by the triangle inequality and by
the discrete Hölder inequality

∣u(y) − u(x)∣p ≤ 2p−1⎛
⎝

RRRRRRRRRRR
u(y) −

 
B∣y−x∣/2(

x+y
2 )

u(z) dz
RRRRRRRRRRR

p

+
RRRRRRRRRRR

 
B∣y−x∣/2(

x+y
2 )

u(z) dz − u(x)
RRRRRRRRRRR

p
⎞
⎠

,

and thus by integrating over Rm ×Rm and by symmetry

ˆ
Rm

ˆ
Rm

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx

≤ 2p
ˆ

Rm

ˆ
Rm

1
∣y − x∣m+sp

RRRRRRRRRRR

 
B∣y−x∣/2(

x+y
2 )

u(z) dz − u(x)
RRRRRRRRRRR

p

dy dx

≤ C9

ˆ
Rm

ˆ
Rm

1
∣y − x∣m+sp

⎛
⎝

 
B∣y−x∣(x)

∣u(z) − u(x)∣ dz
⎞
⎠

p

dy dx

= C10

ˆ
Rm

ˆ +∞

0

1
r1+sp

⎛
⎝

 
Br(x)

∣u(z) − u(x)∣
⎞
⎠

p

dr dx.

Next, we have for every x ∈ Rm and r ∈ (0,+∞),

 
Br(x)

∣u(z) − u(x)∣ dz ≤ C11

ˆ
Br(x)

∣Du(z)∣( 1
∣z − x∣m−1 −

1
rm−1

⎞
⎠

dz

= C12

ˆ r

0

1
ρm

ˆ
Bρ(x)

∣Du∣

≤ C12 r sup
r>0

1
ρm

ˆ
Bρ(x)

∣Du∣ dρ

= C12 rM∣Du∣(x),

where M∣Du∣(x) denotes the maximal function of ∣Du∣. It follows thus that for every
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1 Towards Sobolev mappings

λ > 0 and x ∈ Rm, we have

ˆ +∞

0

1
r1+sp

⎛
⎝

 
Br(x)

∣u(z) − u(x)∣
⎞
⎠

p

dr

≤ C12

ˆ λ

0
∣M∣Du∣(x)∣pr(1−s)p−1 dr + 2p

ˆ +∞

λ

∥u∥p
L∞

r1+sp dr

≤ C13
⎛
⎝
(M∣Du∣(x))p

λ(1−s)p +
∥u∥p

L∞

λsp

⎞
⎠

.

If we set λ = ∥u∥L∞/M∣Du∣(x), we obtain

ˆ +∞

0

1
r1+sp

⎛
⎝

 
Br(x)

∣u(z) − u(x)∣
⎞
⎠

p

dr ≤ C14∥u∥(1−s)p
L∞ (M∣Du∣(x))sp.

We have thus proved that

ˆ
Rm

ˆ
Rm

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx ≤ C15∥u∥(1−s)p

L∞

ˆ
Rm

(M∣Du∣)sp.

By the maximal function theorem (see for example [Ste70, Theorem I.1; Duo01, Theorem
2.16]), we conclude since sp > 1 that

ˆ
Rm

ˆ
Rm

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx ≤ C16 ∥u∥(1−s)p

L∞

ˆ
Rm

∣Du∣sp.

The proof can be adapted to a ball Br(a) so that one obtains the estimate:

ˆ
Br(a)

ˆ
Br(a)

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx ≤ C∥u∥(1−s)p

L∞(Br(a))

ˆ
Br(a)

∣Du∣sp. (1.16)

Problem 1.1 (88). Prove (1.16).

Fractional Sobolev–Morrey embedding

The next proposition states that W1,sp(Rm, Rn) ∩ L∞(Rm, Rn) ⊂ Ws,p(Rm, Rn).

Proposition 1.10. Let s ∈ (0, 1) and p ∈ [1,+∞). If sp > m, then there exists a constant C > 0
such that for every open set Rm ⊆ Rm, every u ∈ Ws,p(Rm) there exists a set E ⊂ Rm such that
Lm(E) = 0 and for every convex set A ⊂ Rm and every x ∈ A ∖ E, one has

 
A
∣u(y) − u(x)∣ dy ≤ C

diam(A)s+m
p

Lm(A)
2
p

(
ˆ

A

ˆ
A

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx)

1
p .
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1.2 Sobolev mappings

Lemma 1.11. If Ω ⊂ Rm and u ∈ Ws,p(Ω), then there exists E ⊂ Ω such that Lm(E) = 0 and
for each x ∈ Ω ∖ E,

 
A
∣u(y) − u(x)∣ dy ≤ ∑

j∈N

 
x+2−j(A−x)

 
x+2−j−1(A−x)

∣u(y) − u(z)∣ dy dz.

Proof. By a classical result in measure theory, since u ∈ L1
loc(Ω), there exists a measurable

set E ⊂ Ω such that for every x ∈ Ω ∖ E,

lim
r→0

1
rm

ˆ
Ω∩Br(x)

∣u(y) − u(x)∣ dy = 0.

The results comes then by letting k →∞ in the inequality

 

A

∣u(y) − u(x)∣ dy ≤
k
∑
j=1

 

x+2−j(A−x)

 

x+2−j−1(A−x)

∣u(y) − u(z)∣ dy dz

+
 

x+2−k−1(A−x)

∣u(y) − u(x)∣ dy.

Proof of proposition 1.10. We have by lemma 1.11 and by the Hölder inequality,
ˆ

A
∣u(y) − u(x)∣ dy

≤ C17

Lm(A) ∑j∈N

2j2m
ˆ

x+2−j(A−x)

ˆ
x+2−j−1(A−x)

∣u(y) − u(z)∣ dy dz

≤ C18

Lm(A)
2
p−1

(∑
j∈N

2
−j

m
p −s

1− 1
p )

1− 1
p

(∑
j∈N

ˆ
x+2−j(A−x)

ˆ
x+2−j−1(A−x)

∣u(y) − u(z)∣p

2−j(m+sp) dy dz)
1
p

≤ C19
diam(A)s+m

p

Lm(A)
2
p−1

(
ˆ

A

ˆ
A

∣u(y) − u(z)∣p
∣y − z∣m+sp dy dz)

1
p

.

1.2 Sobolev mappings

1.2.1 Motivation and definition

Sobolev spaces from a manifold M into a manifold N appear in the counterpart
of the Dirichlet problem (1.1). Whereas the Laplacian does not make sense as a
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1 Towards Sobolev mappings

linear operator acting on mappings, the minimization of the Dirichlet functional
E1,2 defined by (1.2) still makes sense. Minimizers of this energy harmonic maps in
Riemannian geometry and have been studied in geometric analysis (see for example
[HL87, SU82, Jos11, HW08, ES64, Bre03]). WhenM= [0, 1] harmonic maps are geodesics
with constant velocity parametrization.

Such problems appear in the mathematical analysis of ordered media in condensed
matter physics: superconductors (see for example [HT01, Mer79]), superfluids (see for
example [Mer79]), ferromagnetism (see for example [HS98, Mer79]) and liquid crystals
(see for example [Mer79, BZ11, Bre91, Muc12, CGH91]), of Cosserat materials in elasticity
(N = R3 × SO(3), see for example [Nef04]), of gauge theories in physics (see for example
[Lie93])

First-order Sobolev spaces

For given p ∈ [1,+∞) and Riemannian manifolds M and N , we define the Sobolev
space

W1,p(M,N) = {u ∈ W1,p(M, Rν) ∣ u ∈ N almost everywhere inM}. (1.17)

The Sobolev space W1,p(M, Rν) is defined by local charts and we have assumed that
the manifold N was isometrically embedded into Rν. (In view of Nash’s isometric
embedding theorem [Nas56], this is always possible.)

Proposition 1.12. Let N and L be Riemmanian manifolds. If N is compact and f ∈ C1(N ,L)
then the mapping

u ∈ W1,p(M,N) ↦ f ○ u ∈ W1,p(M,L)

is well-defined and continuous.

In particular if f ∈ C1(N ,L) is a Riemannian isometry, then proposition 1.12 implies
that the map u ∈ W1,p(M,N) ↦ f ○ u ∈ W1,p(M,L) is a homeomorphism. This
means in particular that the definition (1.17) does not depend on the embedding. This
comes ultimately from the fact that Riemannian isometries relate tangent directions
of embedded submanifolds and that the first-order chain rule formula only depends
on such derivatives. This is not anymore the case for higher-order Sobolev spaces
W j,p(M,N) [CVS].

Proof of proposition 1.12. We assume that the manifold N is embedded isometrically in
Rν and that L is embedded is embedded isometrically in Rλ. Since N is compact, there
exists map f̄ ∈ C1

c (Rν, Rλ) such that f̄ ∣N = f .
By the chain rule for Sobolev functions, for every u ∈ W1,p(M, Rν), one has f ○ u ∈

W1,p(M, Rλ). Assume now that the sequence (un)n∈N converges to u in W1,p(M, Rν).
Then (un)n∈N converges to u and (Dun)n∈N converges to Du in measure. Moreover,

∣D( f ○ un) −D( f ○ u)∣ = ∣D f (un)[Dun] −D f (u)[Du]∣ ≤ ∣D f (un)∣∣Dun∣ + ∣D f (u)∣∣Du∣.
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1.2 Sobolev mappings

By (a variant of) Lebesgue’s dominated convergence theorem, the sequence (D( f ○
un))n∈N converges to D( f ○ u) in Lp(N), and it follows then that the sequence ( f ○
un)n∈N converges to f ○ u in W1,p(M,L).

The proof of proposition 1.12 relies on Lebesgue’s dominated convergence theorem
and thus does not relate the rate of convergences. If fact the map f is not uniformly
continuous in general [CVS16, proposition 4.15].

Problem 1.2 (88). Construct two N and L that are isometrically embedded into
Euclidean spaces and a global Riemannian isometry i ∶ N → L such that the map
u ∈ W1,p(M,N) ↦ i ○ u ∈ W1,p(M,N) is not uniformly continuous.

Problem 1.3 (8888). Construct two N and L that are isometrically emedded
respectively in the Euclidean spaces Rν and Rλ and a global Riemannian isome-
try i ∶ N → L and a global Riemannian isometry i ∶ N → L such that the map
u ∈ W1,p(M,N) ↦ i ○ u ∈ W1,p(M,N) is not continous for the topologies induced
respectively on W1,p(M,N) and W1,p(M,L) by the weak topologies on W1,p(M, Rν)
and W1,p(M, Rλ).

This property of continuity relies on the continuity of the derivative. It is known that
the composition with Lipschitz-continuous mapping is not continuous [Haj07, theorem
1.2].

Fractional spaces

The fractional spaces can be defined intrinsically. Indeed, the Riemannian manifoldsM
and N are naturally endowed with their geodesic distances dN and dN . We define for
s ∈ (0, 1) and p ∈ [1,+∞), for every measurable map u ∶ M → N , the fractional energy

E s,p(u) =
ˆ
M

ˆ
M

dN (u(y), u(x))p

dM(y, x)m+sp dy dx.

We define a sequence (un)n∈N to be strongly converging to u whenever (ui)i∈N

converges locally in measure to u and

lim
i→∞
E s,p(ui) = E s,p(u).

By Fatou’s lemma, this is equivalent to require

lim sup
i→∞

E s,p(ui) = E s,p(u).

This is still equivalent to require that

lim
i→∞

ˆ
M

ˆ
M

∣dN (u(y), u(x)) − dN (ui(y), ui(x))∣p

dM(y, x)m+sp dy dx
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1 Towards Sobolev mappings

If we assume now that the manifoldN is isometrically embedded into some Euclidean
space Rν and if the sequence (ui)i∈N converges strongly in Ws,p(M,N) to u, then since
for every x, y ∈ M,

∣(ui(y) − u(y)) − (ui(x) − u(x))∣p
dM(y, x)m+sp ≤ 2p−1 ∣ui(y) − ui(x)∣p + ∣u(y) − u(x)∣p

dM(y, x)m+sp

≤ 2p−1 dN (ui(y), ui(x))p + dN (u(y), u(x))p

dM(y, x)m+sp ,

so that (ui)i∈N converges strongly to u in Ws,p(M, Rν).
Conversely, if (ui)i∈N converges strongly to u in Ws,p(M, Rν), then since

dN (ui(y), ui(x))p

dN (y, x)m+sp ≤ ∣ui(y) − ui(x)∣p
dN (y, x)m+sp ,

and thus by Lebesgue’s dominated convergence theorem, we have that (ui)i∈N converges
strongly to u in Ws,p(M,N).

We could also have defined the strong convergence by embedding. It follows from
[BPVS14, lemma 2.5; BBM04, claim (5.43)], that changes of the embedding induce
uniformly continuous maps for the induced distances on Ws,p(M,N).

Localizing the target

One of the basic facts in differential topology, is that smooth maps are continuous and
thus when restricted to sets that are small enough in the domain result have an image
which is in a single local chart domain. By the Morrey–Sobolev embedding (1.13), this
remains the case when sp > m; this is not anymore the case when sp ≤ m.

Indeed, if sp < 1 and one does not have s = p = m = 1, then for every ε > 0, there
exists a map u ∈ Ws,p(Rm, R) such that u ∈ C∞(Rm ∖ {0}), limx→0 u(x) = +∞. If M is
connected, then there exist a function g ∈ C1(R,M) be a function such that for every
T ∈ R, the set g([T,+∞)) is dense inM. The image of the function g ○ u is then dense
inM in every neighbourhood of 0.

Problem 1.4 (8). IfM is connected, a function γ ∈ C∞(R,M) such that for every T > 0,
the set γ([T,+∞)) is dense inM.

Problem 1.5 (88). If N is connected and sp < m = dimM, construct a function in
u ∈ Ws,p such that for every open set G ⊂M, the set u(G) is dense inM.

1.2.2 Questions

In order to study problems in calculus of variations and partial differential equations
involving mappings, it is useful to understand the structure of Sobolev mappings.

By nature, Sobolev spaces into manifolds do not have any linear structure. This means
that classical linear functional analysis theorems (Hahn–Banach theorem, uniform
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1.3 Comments

boundedness theorem) do not apply anymore and also that classical linear tools such
as the regularization by convolution do not work.

Several questions arise arise naturally for Sobolev mappings.
The question of approximation asks whether and how a Sobolev mapping can be

approximated by a class of smoother maps. If it is possible, then this means that the
theory of Sobolev maps is the study of the properties of this class of smoother maps
that are invariant under the notion of approximation. When this is not possible, this
indicates that the Sobolev space is much larger than the class of smoother maps. Hence,
the function space becomes part of the problem (or of the model in physical settings),
one can expect Lavrentiev phenomena (gap between infima of energies defined on
different spaces) and associated loss of regularity (one should expect in general that
maps having the regularity of minimizers in calculus of variations should be dense in
the domain; however the regularity can be worse than that).

The question of traces asks about the possible boundary values of Sobolev mappings.
This question is fundamental to understand admissible boundary data for problems in
calculus of variations.

Another question is about connected components of the Sobolev spaces of mappings.
One expects the multiplicity of connected components to be related to multiplicity of
minimizers (although it is known in general that each connected component carries
a minimizer). The probably simplest setting is the study of maps from Ws,p(Sm, Sm)
when sp ≥ m; maps in this space are connected to each other if and only if their Brouwer
topological degree coincide.

A last question is the question of lifting. Given a fibration π ∶ E → N , one asks
whether for u ∈ Ws,p(M,N) there exists a mapping ϕ ∶ M → E such that u = π ○ ϕ.
The goal is to have space E which has a simpler structure than N so that studying
the lifting simplifies the analysis of the problem. An important class of fibrations are
coverings, where π is a local homeomorphism that covers evenly N and in particular
universal coverings (when E is moreover simply connected). For example the map
t ∈ R↦ (cos t, sin t) is the universal covering of the circle S1 by R. Another example is
the Hopf fibration from S3 to S2.

1.3 Comments

Proposition 1.9 appears in [Run86, lemma 2.1; BM01, corollary 3.2]. The proof of
proposition 1.9 is inspired by [MS02].
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2 Supercritical and critical Sobolev
mappings

In this lecture, we consider problems for supercritical and critical Sobolev spaces. The
common feature of these spaces is that the integrability of the gradient guarantees that
these maps are continuous or close enough to continous and thus they inherit their
properties from Sobolev and continuous maps.

2.1 Approximation

We first consider the question of strong approximation in supercritical Sobolev spaces.

Theorem 2.1. If u ∈ Ws,p(M,N) and if sp ≥ m, then there exists a sequence (uj)j∈N in
C∞(M,N) that converges to u in Ws,p(M,N).

A first tool is the existence of a retraction from a neighbourhood of the embedded
manifold N ⊂ Rν.

Lemma 2.2. If N is a smooth compact submanifold of Rν, then there exists δN > 0, and a map
Π ∈ C∞(N + BδN ,N) such that Π∣N = id.

Proof. We observe that if δN is small enough, then for each y ∈ N + BδN we can define
Π(y) ∈ N to be the nearest point projection of y on N . By the implicit function theorem,
the map Π is smooth.

Problem 2.1 (8). Show the existence of δN and the smoothness of Π by the implicit
function theorem.

We first prove theorem 2.1 in the supercritical case sp > m.

Proof of theorem 2.1 when sp > m. Since u ∈ Ws,p(M, Rν), there exists a sequence (vj)j∈N

that converges to u in Ws,p(M, Rν). By proposition 1.8, we have for almost every x ∈ M

dist(vj(x),N) ≤ ∣vj(x) − v(x)∣ ≤ C1
⎛
⎝

ess inf
M

∣vj − v∣ + (
ˆ
M

∣D(vj − v)∣p)
1
p ⎞
⎠

.

Thus when j ∈ N is large enough, we have by continuity of vj for every x ∈ M,
dist(vj(x),N) ≤ δN and we can set for such j ∈ N, uj = Π ○ vj. Since the map Π is
smooth, the sequence (uj)j∈N converges to u = Π ○ u.
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2 Supercritical and critical Sobolev mappings

The proof of theorem 2.1 in the critical case sp = m is more subtle since the Morrey
embbedding proposition 1.8 does not hold in the limiting case sp = m.

The main tool is the following estimate on the distance to the target.

Lemma 2.3. If ϕ ∈ (L1 ∩ L∞)(M, R), if ϕ ≥ 0 and if
´
M ϕ = 1, then for every u ∈ L1(M, Rν),

one has

inf
z∈u(M)

∣
ˆ
M

u ϕ − z∣ ≤
ˆ
M

ˆ
M

∣u(y) − u(x)∣ϕ(y)ϕ(x) dy dx.

Proof. For every y ∈ M, we have u(y) ∈ u(M) and thus

inf
z∈u(M)

∣
ˆ
M

ϕu − z∣ ≤ ∣
ˆ
M

u(x)ϕ(x) dx − u(y)∣

= ∣
ˆ
M

(u(y) − u(x))ϕ(x) dx∣ ≤
ˆ
M

∣u(y) − u(x)∣ϕ(x) dx.

We reach the conclusion by multiplying by ϕ(y) and by integrating with respect to y
over the domainM.

In fact in the statement of lemma 2.3, we could neglect the values taken on a Lebesgue
null set ofM. This can be stated and proved through the notion of essential range of a
mapping [BN95].

Problem 2.2 (88). State and prove lemma 2.3 where u(M) is replaced by the essential
range of u.

Lemma 2.4. If sp = m and u ∈ Ws,p(M, Rν), then

lim
r→0

 
Br(a)

 
Br(a)

∣u(y) − u(x)∣ dy dx = 0.

Lemma 2.4 states that functions in the space Ws,p(M, Rν) have vanishing mean
oscillation.

Proof of lemma 2.4. If s = 1 we have by the Poincaré inequality (1.11) for every a ∈ M if
r > 0 is small enough (because we are working on a manifoldM)

 
Br(a)

 
Br(a)

∣u(y) − u(x)∣ dy dx ≤ (
 

Br(a)

 
Br(a)

∣u(y) − u(x)∣m dy dx)
1
m

≤ C2(
ˆ

Br(a)
∣Du∣m)

1
m

.

(2.1)

Since ˆ
M

∣Du∣m < +∞,
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2.1 Approximation

by Lebesgue’s dominated convergence theorem, we have

lim
r→0

sup
a∈Rm

ˆ
Br(a)

∣Du∣m = 0,

and thus the conclusion holds.
When s ∈ (0, 1), we have by Hölder’s inequality, if a ∈ M and if r > 0 is small enough

 
Br(a)

 
Br(a)

∣u(y) − u(x)∣ dy dx

≤
⎛
⎝

 
Br(a)

 
Br(a)

∣y − x∣
2m
p−1 dy dx

⎞
⎠

1− 1
p ⎛
⎝

 
Br(a)

 
Br(a)

∣u(y) − u(x)∣p
∣y − x∣2m dy dx

⎞
⎠

1
p

≤ C3 sup
a∈Rm

(
ˆ

Br(a)

ˆ
Br(a)

∣u(y) − u(x)∣p
∣y − x∣2m dy dx)

1
p

.

We conclude again by Lebesgue’s dominated convergence theorem that

lim
r→0

sup
a∈Rm

(
ˆ

Br(a)

ˆ
Br(a)

∣u(y) − u(x)∣p
∣y − x∣2m dy dx)

1
p

= 0.

Remark 2.5. Whereas the proof of lemma 2.4 seems to cover the range p ∈ [1,+∞) with
sp = m, it turns out that when s > 1 the Gagliardo seminorm defined in (1.15) is finite
only on mappings that are almost everywhere equal to a constant on each connected
component ofM.

Proof of theorem 2.1 whenM= Rm and sp = m. We define for each ε > 0, the function
uε ∈ C∞(Rm, Rν) by setting for each x ∈ Rm,

uε(x) ≜
ˆ

Rm
ϕ(y)u(x − εy) dy,

where ϕ ∈ C∞
c (Rm), ϕ ≥ 0 and supp ϕ ⊂ B1(0). By classical properties of Sobolev spaces,

uε → u in Ws,p(Rm, Rn) as ε → 0 to u.
By lemma 2.3, we have for every ε > 0

dist(uε,N) ≤ C1 sup
a∈Rm

 
Bε(a)

 
Bε(a)

∣u(y) − u(x)∣ dy dx, (2.2)

and thus by lemma 2.4, we deduce that

lim
ε→0

ess sup
x∈Rm

dist(uε(x),N) = 0. (2.3)

We conclude by lemma 2.3 as in the proof of theorem 2.1.
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2 Supercritical and critical Sobolev mappings

Problem 2.3 (88). Prove theorem 2.1 when sp = m onM= Rm by taking ϕ to be the
Poisson kernel.

Problem 2.4. Give an example of map u ∈ W1,m(M,N), which cannot be strongly
approximated by smooth maps.

Problem 2.5. Give an example of map u ∈ Ws,p(M,N) with sp = m, which cannot be
strongly approximated by smooth maps.

2.2 Homotopy

In the classical setting of continuous map, to maps u, v ∈ C(M,N) are homotopic if
there exists a map H ∈ C([0, 1] ×M,N) such that H(0, ⋅) = u and H(1, ⋅) = v. The
homotopy is an equivalence relation. Equivalently whenM is compact, there exists a
continuous map H ∈ C([0, 1], C(M,N)) (where C(M,N)) is endowed with the norm
of the uniform convergence) such that H(0) = u and H(1) = v. If N is compact, there
exists δ > 0 such that if u, v ∈ C(M,N) and if dN (u, v) ≤ δ, then u and v are homotopic.

We consider the question about homotopy in Sobolev spaces, that is whether two
given maps u, v ∈ Ws,p(M,N) can be connected by a continuous path in Ws,p(M,N).

The first result states that any supercritical or critical Sobolev map can be connected
to a continuous map. That is there are not more Sobolev connected than there were
continuous connected components.

Proposition 2.6. If sp ≥ m, then every u ∈ Ws,p(M,N), is connected continuously in
Ws,p(M,N) to a map in (C∞ ∩Ws,p)(M,N).

Proof. The proof goes as the proof of theorem 2.1, by letting ε > 0 be the homotopy
parameter.

A second fact is that any supercritical or critical Sobolev map is surrounded by a
neighbourhood of Sobolev maps belonging to the same connected component.

Proposition 2.7. Every path-connected connected component of Ws,p(M,N) is open.

In contrast with continuous maps between compact manifolds, we have no uniform
quantitative information on the size of the neighbourhood when sp = m.

Proof of proposition 2.7. We follow the proof of theorem 2.1. Given u ∈ Ws,p(M,N), we
observe that there exists ε > 0 and a neighbourhood U of u such that any v ∈ U satisfies

ess sup
x∈M

dist(vε(x),N) ≤ δN
2

.

We have then for every x ∈ M,

∣vε(x) − uε(x)∣ ≤ C2

 
Bε(x)

∣v(x − εy) − u(x − εy)∣ dy ≤ C3

ε
m(1− 1

p )
(
ˆ
M

∣v − u∣p)
1
p

.
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2.3 Extension from the boundary

Thus for fixed ε > 0, if we assume that u and v are close enough in Lp(M,N), then we
have everywhere onM,

∣vε − uε∣ ≤
δN
2

.

We conclude by combining a homotopy from u to uε, a homotopy from uε to vε and a
homotopy from vε to v.

Proposition 2.8. If sp ≥ m, then u, v ∈ (C ∩Ws,p)(M,N), are connected to each other in
Ws,p(M,N) if and only if they are connected to each other in C(M,N).

Proof. This is done by applying the construction of theorem 2.1 to smoothen the
continuous homotopy.

2.3 Extension from the boundary

2.3.1 Local extension

The application of the classical trace theory shows that traces of mappings in W1,p(M×
[0, 1],N) onM×{0} lie in the fractional space W1− 1

p ,p(M,N).

Proposition 2.9. If p > m = dimM+ 1, then for every u ∈ W1− 1
p ,p(M,N), there exists a map

U ∈ C∞(M×(0, 1],N)∩W1,p(M,N), such that trM×{0} U = u onM×{0} ≃M. Moreover,
there exists a constant C > 0 such that

E1,p(U) ≤ C E1− 1
p ,p(u)(1+ E1− 1

p ,p(u)
p

p−m ).

Proof. By the classical linear theory of extensions, there exists a function V ∈ C∞(M×
(0, 1], Rν) ∩W1,p(M, Rν) such that trM×{0} V = u onM×{0} ≃M. Moreover

E1,p(V) ≤ C1E1− 1
p ,p(u).

By the Sobolev–Morrey embedding, we have for almost every (x, t) ∈ M× [0, 1]

dist(V(t, x),N) ≤ ∣V(t, x) − u(x)∣ ≤ C2 t1−m
p (E1,p(V))

1
p ≤ C3 t1−m

p (E1− 1
p ,p(u))

1
p .

If we define

τ ≜ min
⎛
⎝

1,( δN

C3E1− 1
p ,p(u)

1
p

)
p

p−m ⎞
⎠

then V([0, τ]) ⊆ N + BδN . We conclude by defining U ∶ M× [0, 1] → N for almost every
(x, t) ∈ M× [0, 1] by

U(x, t) ≜ Π(V(x, τt))
and by observing that

E1,p(U) ≤ E
1,p(V)

τp ≤ C4E1− 1
p ,p(u)max(1,E1− 1

p ,p(u)
p

p−m ).
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2 Supercritical and critical Sobolev mappings

Problem 2.6 (88). Prove proposition 2.9 on a compact manifold.

Proposition 2.10. Assume that dimM= m − 1. For every u ∈ W1− 1
m ,m(M,N), there exists

a map U ∈ C∞(M×(0, 1],N)∩W1,m(M,N), such that trM×{0} U = u onM×{0} ≃M.

Proof. We assume that M = Rm. By the classical linear theory of extensions we can
define an extension

V =
ˆ

Rm
u(x − ty)ϕ(x) dy,

where ϕ ∈ C1
c (Rm), supp ϕ ⊂ B1(0), ϕ ≥ 0 on Rm and

´
Rm ϕ = 1. By the classical

linear trace theory, we have V ∈ C∞(M× (0, 1], Rν) ∩W1,p(M, Rν) and trM×{0} U = u
on M×{0} ≃ M. By lemma 2.3 and by lemma 2.4, there exists τ ∈ [0, 1] such that
V([0, τ]) ⊆ N + BδN . We conclude by taking

U(x, t) ≜ Π(V(x, τt)).

Problem 2.7 (888). Prove proposition 2.9 on a compact manifold.

In contrast with proposition 2.9, proposition 2.10 does not come with any estimate.
This comes from the fact that τ is defined in the proof through lemma 2.4 which is based
on Lebesgue’s dominated convergence theorem. The control given by this proof would
be in terms of the modulus of integrability of the Sobolev energy density; this would
imply uniform control on compact subsets of Ws,p(M,N). We will see later on that there
is no quantitative control when the homotopy groups π1(N), π2(N), . . . , πm(N) are not
all finite. One way to bypass this lack of control would be to lower the requirement on
the integrability of the gradient to a Marcinkiewicz weak Lm+1 condition [PR14, PVS17].

2.3.2 Global extension

We now consider the extension problem from the boundary of a manifold.

Proposition 2.11. If p ≥ m = dimM, then for every u ∈ W1− 1
p ,p(∂M,N), the following are

equivalent

(i) there exists a map U ∈ (C∞ ∩W1,m)(M,N), such that tr∂MU = u on ∂M,

(ii) u is homotopic in W1− 1
p ,p(∂M,N) to the restriction of a smooth map.

In the continuous case, this corresponds to the homotopy extension property: if
u ∈ C(∂M,N) is homotopic to V∣∂M for some V ∈ C(∂M,N), then u = U∣∂M for some
U ∈ C(M,N) which is homotopic to V on the manifoldM.

Proof of proposition 2.11. We first apply proposition 2.9 or proposition 2.10 to extend u
to a neighbourhood of ∂M. Since this extension is smooth far from the boundary, we
apply classical differential topology techniques to extend this map insideM.
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2.4 Lifting

Conversely, if u = tr∂M U, then there exists a sequence of maps (U`)`∈N in C∞(M,N)
converging to U in W1,m(M,N). By the continuity of the traces, the sequence

(tr∂MU`)`∈N converges to u in W1− 1
p ,p(∂M,N) and thus by proposition 2.7, u is con-

nected in W1− 1
p ,p(∂M,N) to the restriction of a smooth map U` ∈ C∞(M,N).

Problem 2.8 (888). Prove proposition 2.9 on a compact manifold.

When p > m, it is possible to prove by a compactness argument that the extension of
proposition 2.11 can be taken to be bounded on bounded sets [PVS17]. More explicit
estimates should be connected to quantitative homotopy theory [?Gromov_1996, FW13].

2.4 Lifting

Definition 2.12. Let Ñ and N be Riemannian manifolds. The map π ∶ Ñ → N is a
Riemannian covering whenever π is a local isometry.

In particular, if ρ ≜ inj(N) denotes the injectivity radius of the manifold N , then for
every ỹ ∈ Ñ is an isometry on the geodesic ball Bρ(ỹ). This means that for every y ∈ N ,

π−1(Bρ(y)) = ⋃
ỹ∈π−1(y)

Bρ(ỹ),

that is π−1(Bρ(y)) can be written as a union of open sets on which π is a homeomor-
phism.

It is a classical fact from homotopy theory that if the manifoldM is simply connected
then for every mapping u ∈ C(M,N) there exists a mapping ũ ∈ C(M̃,N) such that
u = π ○ ũ [Hat02, proposition 1.33].

Proposition 2.13. Let π ∶ Ñ → N be a covering map. If Ñ is either compact or a Euclidean
space, if sp ≥ m andM is compact, ifM simply connected and eitherM is compact or s = 1,
then for every u ∈ Ws,p(M,N), there exists ũ ∈ Ws,p(M,N) such that u = π ○ ũ.

The role of the assumption that Ñ is either compact or a Euclidean space is to have
simply defined Sobolev spaces.

Proof of proposition 2.13 when s = 1 and p > m. By the Morrey–Sobolev embedding, we
can assume that u is continuous. By the classical lifting theorem, there exists a map
ũ ∈ C(M, Ñ ) such that π ○ ũ = u. Since ũ is continuous and since by definition π is
local isometry, it follows that locally we have that ũ is weakly differentiable and

E1,p(ũ) = E1,p(u).

Proof of proposition 2.13 when s = 1 and sp > m. By the fractional Morrey–Sobolev embed-
ding, we can assume that the map u is continuous. SinceM is simply-connected, by
the classical lifting theorem, there exists a map ũ ∈ C(M, Ñ ) such that π ○ ũ = u.
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2 Supercritical and critical Sobolev mappings

By the Morrey–Sobolev embedding, there exists a constant C1 > 0 such that if

rsp−mE s,p(u) ≤ C1,

then diam(u(Br(a))) ≤ inj(N) for every a ∈ M. Hence, diam(ũ(Br(a))) ≤ inj(N) for
every a ∈ M and for every x, y ∈ M such that dM(y, x) ≤ r, we have dÑ (ũ(y), ũ(x)) =
dN (u(y), u(x)). We have thus

¨

(x,y)∈M2

dM(y,x)≤r

dN (ũ(y), ũ(x))p

dM(y, x)m+sp dy dx =
¨

(x,y)∈M2

dM(x,y)≤r

dN (u(y), u(x))p

dM(y, x)m+sp dy dx.

It follows then that u ∈ Ws,p(M,N).

Proof of proposition 2.13 when s = 1 and p = m. By theorem 2.1, there exists a sequence
(uj)j∈N that approximates u in W1,m(M,N). Since uj is smooth, there exists ũj such
that π ○ ũj = uj. If Ñ is a Euclidean space, then π is the universal covering of the
compact manifold N , and we can choose the uj in such a way that

∣
ˆ
M

ũj∣ ≤ C2.

As in the proof of the case s = 1 and p > m, we have

E1,m(ũj) = E1,m(uj).

SinceM is compact, the sequence ũ converges then in measure to some ũ.

Proof of proposition 2.13 when s ∈ (0, 1) and sp = m. Since u ∈ Ws,p(M,N), there exists a
map V ∈ C∞(M×(0, 1), Rν) such that

¨

M×[0,1]

∣DV(t, x)∣p

t1−(1−s)p dt dx ≤ E s,p(u),

trM×{0} V = u and U(t, x) is obtained by integration of u on Bt(x) [MR15; Maz11,
theorem 10.1.1.1]. It follows from lemma 2.3 and lemma 2.4, that when τ > 0 is
small enough we have V(M× [0, τ]) ⊂ N + BδN (0). We define then U ∶ M× [0, τ] by
V ≜ π ○ V∣M×[0,τ]. We have

¨

M×[0,τ]

∣DU(t, x)∣p

t1−(1−s)p dt dx ≤ C3

¨

M×[0,τ]

∣DV(t, x)∣p

t1−(1−s)p dt dx

Since U is smooth onM×(0, 1) andM×(0, 1) is simply connected by the simple-
connectedness ofM, there exists Ũ ∈ C∞

c (M× (0, 1), Ñ ) such that π ○ Ũ = U and we
have ¨

M×[0,τ]

∣DŨ(t, x)∣p

t1−(1−s)p dt dx =
¨

M×[0,τ]

∣DU(t, x)∣p

t1−(1−s)p dt dx.
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2.4 Lifting

Moreover, by the Hölder inequality, we have for every compact subset K ⊂M,

¨

K×[0,τ]

∣DŨ(t, x)∣ dt dx

≤
⎛
⎝

¨

K×[0,τ]

∣DŨ(t, x)∣p

t1−(1−s)p dt dx
⎞
⎠

1
p ⎛
⎝

¨

K×[0,τ]

1

t1− sp
p−1

dt dx
⎞
⎠

1− 1
p

< +∞.

Hence for almost every x ∈ M, we set ũ(x) = limt→0 Ũ(x, t). By classical weighted trace
theorems, we have ũ = trM×{0} Ũ ∈ Ws,p(M,N).

Proposition 2.14. Under the assumptions of proposition 2.13, there exists a countable family
of liftings (ũb̃)b̃∈π−1(b) in Ws,p(M,N) such that for almost every x ∈ Ω, π−1({u(x)}) is the
disjoint union ⋃b̃∈π−1(b){ũb̃(x)}.

Proof. Let U ∈ C∞(M×(0, 1),N) be given as in the proof of proposition 2.13. SinceM
is connected and simply-connected, there exists a family (Ũb̃)b̃∈π−1(b) of smooth liftings

such that for every (x, t) ∈ M× (0, τ), π−1(U(x, t)) is the disjoint union {Ũb̃(x, t) ∣ b̃ ∈
π−1({b})}. We then set ũb̃(x) = limt→0 Ũb̃.

Proposition 2.15. Assume that sp ≥ m and thatM is connected. If ũ, ṽ ∈ Ws,p(M,N), then
either ũ = ṽ almost everywhere or ũ ≠ ṽ almost everywhere.

Proposition 2.15 is a particular case of proposition 3.9 below, that covers the case
sp ≥ 1. We give a direct proof in the spirit of the present section.

Proof of proposition 2.15. Since the covering map π is a local isometry and since the
manifold N is compact, there exists δ > 0 such that if π(y) = π(z) and dN (y, z) ≤ δ
implies y = z. We choose a function θ ∈ C∞([0,+∞)) such that θ(0) = 0 and θ = 1
on [δ,+∞). We define f = θ(dN (u, v)). By the chain rule, f ∈ Ws,p(M,{0, 1}). By
theorem 2.1 applied to the 0–dimensional Riemannian manifold {0, 1}, f is the limit of
constant functions. SinceM is connected, we either have f = 0 almost everywhere on
M or f = 1 almost everywhere onM.

Proposition 2.16. Assume that Γ ⊂ M is a connected submanifold and dim Γ = `. If u ∈
W1,m(M,N) and ṽ ∈ W1− `

m ,m(Γ, Ñ ), and trΓ u = π ○ ṽ, then there exists ũ ∈ W1,m(M, Ñ )
such that u = π ○ ũ and trΓ ũ = ṽ on Γ.

Proof. We consider the liftings given by proposition 2.14. We claim that there exists ũb̃
such that trΓ ũb̃ = ṽ.

Indeed, assume that K ⊂ N is compact and that π is a homeomorphism on every
connected component of π−1(K). Then there exists an open set G such that K ⊂ G ⊂ N
such that π is a homeomorphism on every connected component of π−1(K). Let ϕ ∈ C1

c

35



2 Supercritical and critical Sobolev mappings

be such that ϕ > 0 on G and ϕ = 0 onM∖G. There exists a family ϕb̃ in C1
c (Ñ ) such

that ∑b̃∈π−1({b}) χb̃ = χ ○ π. We have then for every d̃ ∈ π−1({b}),

∑
b̃∈π−1({b})

χd̃ ○ ũb̃ = χ ○ u.

This convergence holds in Ws,p(M,N). Indeed, if s = 1, we have for every subset
F ⊆ π−1({b}) ∣D fF∣ ≤ C4∣Dũd̃∣ almost everywhere, where fF = ∑b̃∈F χd̃ ○ ũb̃; if 0 < s < 1,
we have for every x, y ∈ M, ∣ fF(y) − fF(x)∣ ≤ dÑ (ũd̃(y), ũd̃(y)).

Thus we have
∑

b̃∈π−1({b})
χd̃ ○ trΓ ũb̃ = χ ○ trΓ u,

from which it follows that for almost every x ∈ (trΓ u)−1(G), π−1(trΓ u(x)) = {trΓ ũb̃ ∣ b̃ ∈
π−1({b})}.

Problem 2.9. 88 For M = Bm and π ∶ R → S1 defined by π(t) = (cos t, sin t), show
that when sp = 0 there exists a sequence of smooth maps (ũj)j∈N in C∞(Sm, R), such
that

E s,p(ũj) → ∞

and

lim sup
j→∞

E s,p(ũj)
E s,p(π ○ ũj)

1
s

> 0.

2.5 Comments

Approximation

The fact that when sp = m, the observation that approximations by convolution are
close to the target manifold goes back to the seminal work of Schoen and Uhlenbeck
[SU82, §3; SU83, §4].

For the approximation problem, when the target manifold N is not assumed to be
compact, then additional restrictions on the target manifold appear in theorem 2.1 in
the critical case sp = m [HS14, BPVS17].

Homotopy

The homotopy classes of Sobolev mappings have been well studied for Ws,p(Sm, Sm),
where they are related to the topological Brouwer degree. The degree of maps in
W1,2(S2, S2) was studied by Brezis and Coron [BC83] (see also [Bre85]) in the context
of harmonic maps. The degree was defined for maps in W

1
2 ,2(S1, S1) in the context of

Ginzburg–Landau equations [BdMBGP91] (see also [BBH94]). The general theory of
Brezis and Nirenberg treats all the critical and supercritical Sobolev maps as maps of
vanishing mean oscillation (VMO), for which a degree can be defined [BN95, BN96].
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2.5 Comments

Extension

The extensions in the supercritical case where obtained by Bethuel and Demengel
[BD95, theorems 1 and 2].

Lifting

Bethuel and Zheng have proved the existence and uniqueness of liftings for maps
W1,2(B2, R) [BZ88, lemma 4]. When sp ≥ m, liftings have been constructed for maps
in Ws,p(Bm, S1) [BBM00, §2] by relying on iterated extensions in Sobolev spaces; the
same method was used to construct liftings for maps in Ws,p(Bm,N) when sp ≥ m by
Bethuel and Chiron [BC07, theorem 3 ii)]. We present here the method developped
by Petru Mironescu, Emmanuel Russ and Yannick Sire to cover the Besov spaces for
subcritical dimensions [MRS].
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3 Topological obstructions

3.1 Density of smooth maps

We consider the question of the density of the set C∞(M,N) of smooth maps in the
Sobolev space W1,p(M,N).

Proposition 3.1. If p < m and if the set C∞(M,N) is dense in the space W1,p(M,N), then
the restriction operator F ∈ C(B⌊p+1⌋,N) ↦ F∣S⌊p⌋ ∈ C(S⌊p⌋,N) is surjective.

Here and in the sequel ⌊p⌋ denotes the integer part of the real number p ∈ R:

⌊p⌋ = sup{k ∈ Z ∣ k ≤ p};

it is characterized by the conditions that ⌊p⌋ ∈ Z and ⌊p⌋ ≤ p < ⌊p + 1⌋.
In the language of algebraic topology, the necessary condition for the density of

smooth maps is that the ⌊p⌋-th homotopy group π⌊p⌋(N) of the target manifold N is
trivial: π⌊p⌋(N) ≃ {0}. This way of expressing the condition is a handy shortcut, but
might suggest the interaction with the group structure which does not appear in the
long run and obfuscate the more fundamental role of obstruction theory.

The necessary condition for density of proposition 3.1 only involves the target
manifold N . It will appear later that in general the condition does involve extensions
from general ⌊p⌋–dimensional skeletons contained in the domain manifoldM (see ??
below); when the topology domain manifold M is simple enough, it turns out that
there is no additional obstruction to the density of smooth maps.

Lemma 3.2. Let m ∈ N, p ∈ [1,+∞) and u ∶ Bm → Sm−1 be defined for each x ∈ Bm ∖ {0} by

u(x) = x
∣x∣ .

Then u ∈ W1,p(Bm, Sm−1) if and only if p < m.

Proof. Since when m = 1, the map u is discontinuous and cannot be weakly differen-
tiable, we assume henceforth that m ≥ 2.

Since the map u is smooth in Bm ∖ {0}, u is weakly differentiable on Bm ∖ {0} and
for every x ∈ Bm ∖ {0} and h ∈ Rm,

Du(x)[h] = h
∣x∣ −

x(x ⋅ h)
∣x∣3 .
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3 Topological obstructions

In particular, we have for every x ∈ Bm ∖ {0},

∣Du(x)∣ =
√

tr(Du(x)∗ ○ Du(x)) =
√

m − 1
∣x∣ .

(we are using the canonical Euclidean norm on linear mappings, also known as Frobe-
nius norm or as Hilbert–Schmidt norm). We then have

ˆ
Bm∖{0}

∣Du∣p =
ˆ

Bm

(m − 1)
p
2

∣x∣p dx,

which is finite if and only p < m. This condition is then necessary and sufficient to
have u∣Bm∖{0} ∈ W1,p(Bm ∖ {0}, Sm−1). By proposition 1.1, this is equivalent to have
u ∈ W1,p(Bm, Sm−1).

Proof of proposition 3.1 whenM= Bm and m − 1 ≤ p < m. Let f ∈ C(Sm−1,N). By stan-
dard approximation of continuous maps by smooth maps, the map f is homotopic to
some smooth map f̆ ∈ C∞(Sm−1,N).

We define the map u ∶ Bm →N for each x ∈ Bm ∖ {0} by

u(x) ≜ f̆( x
∣x∣ ). (3.1)

By lemma 3.2, the smoothness of f̆ and by the chain rule for Sobolev mappings, we
have u ∈ W1,p(Bm,N) for every p ∈ [1, m).

We assume now that the sequence (uj)j∈N of maps in C∞(Bm,N) converges strongly
to the map u in the Sobolev space W1,p(Bm,N). By integration in spherical coordinates
and Fubini’s theorem (or by the coarea formula), we have for every j ∈ N

ˆ
Bm

∣Duj −Du∣p + ∣uj − u∣p dLm =
ˆ 1

0

ˆ
Sm−1

r

∣Duj −Du∣p + ∣uj − u∣p dHm−1 dr.

In particular, up to a subsequence, for almost every r ∈ (0, 1), we have

lim
j→∞

ˆ
Sm−1

r

∣Duj −Du∣p + ∣uj − u∣p dHm−1 = 0.

If p ≥ m − 1, this implies by propositions 2.7 and 2.8 that when j ∈ N is large enough
the maps u∣Sm−1

r
and uj∣Sm−1

r
are homotopic as continous maps from Sm−1

r to N . By
assumption, the map uj∣Sm−1

r
has an extension to Bm−1

r . By construction, this means that
f̆ is homotopic to the restriction of a continous map from Bm to N . By transitivity of
homotopies, the map f is also homotopic to this restriction. In view of the homotopy
extension property, the map f is the restriction of a continuous map from Bm to N .

Remark 3.3. WhenM= Bm and m − 1 ≤ p < m, the topological obstruction already arises
for the approximation of maps in C∞(Bm ∖ {0},N)∩W1,p(Bm,N).
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3.2 Extension from the boundary

The proof of proposition 3.1 gives a formula (3.1) to construct a Sobolev map that
cannot be approximated by smooth maps.

Proof of proposition 3.1 whenM= Sm and m − 1 ≤ p < m. We proceed as in the caseM =
Sm and m − 1 ≤ p < m, except that we define the map u ∶ Sm → N for each (y, z) ∈ Sm ⊂
Rm ×R by

u(y, z) = f̆( y
∣y∣ ).

The proof continues as previously.

Remark 3.4. WhenM= Bm and m − 1 ≤ p < m, the topological obstruction already arises
for the approximation of maps in C∞(Sm ∖{em+1,−em+1},N), where em+1 = (0, . . . , 0, 1) ∈
Sm ⊂ Rm+1 is the (m+ 1)–th vector in the canonical basis of Rm+1. Equivalently, the map
is smooth except at the south and north poles; such a map is called a dipole.

Proof of proposition 3.1 in the general case. We choose a point b ∈ S⌊p+1⌋ and let û be the
function constructed in the proof on the sphere S⌊p+1⌋. We consider a mapping Ψ ∶ M →
S⌊p+1⌋ × Sm−⌊p+1⌋ such that Ψ is a diffeomorphism on Ψ−1((S⌊p+1⌋ ∖ {b}) × Sm−⌊p+1⌋). We
then define u = û ○ P ○ Ψ, where P ∶ S⌊p+1⌋ ×Sm−⌊p+1⌋ → S⌊p+1⌋ is the canonical projection
defined for each (y, z) ∈ S⌊p⌋ × Sm−⌊p⌋ by P(y, z) = y. Since the map û is smooth in a
neighbourhood of b, it follows that u ∈ W1,p(M,N). By Fubini’s theorem, if u can be
approximated by smooth maps, then .

Remark 3.5. The proof shows that the map is constant outside a solid torus B⌊p+1⌋ ×
Sm−⌊p+1⌋; the map constructed when the topological condition is not satisfied is smooth
outside two sets diffeomorphic to two spheres Sm−⌊p+1⌋. When ⌊p + 1⌋ = m, the two
corresponding points form a dipole.

Problem 3.1 (88). Write a detailed proof of proposition 3.1 when M is a general
manifold.

Problem 3.2 (8). Explain where it is used in the proof of proposition 3.1 that p < m.

Problem 3.3 (888). State and write proposition 3.1 for Ws,p(M,N) when s ∈ (0, 1),
p ∈ [1,+∞) and sp < m.

3.2 Extension from the boundary

We consider now the question of the extension of Sobolev mappings, for which we
have a similar restriction.

Theorem 3.6. Let 1 ≤ p < m. If every map u ∈ W1−1/p,p(∂M,N) is the trace of some map
U ∈ W1−1/p,p(M,N), then the restriction operator F ∈ C(B⌊p⌋,N) ↦ F∣S⌊p−1⌋ ∈ C(S⌊p−1⌋,N).

41



3 Topological obstructions

Equivalently, if the trace operator is onto then the homotopy group π⌊p−1⌋(N) is
trivial. When p ∈ [1, 2), the necessary condition is that the target manifold N should be
connected.

We will see later that other obstructions appear on lower-dimensional spheres as well
(see chapters 5 and 7 below); this other obstructions are appear for quantitative reasons
rather than qualitative reasons presented here.

The proof of theorem 3.6 relies on the fractional counterpart of lemma 3.2.

Lemma 3.7. Let m ∈ N, s ∈ (0, 1), p ∈ [1,+∞) and u ∶ Bm → Sm−1 be defined for each
x ∈ Bm ∖ {0} by

u(x) = x
∣x∣ .

Then u ∈ Ws,p(Bm, Sm−1) if and only if sp < m.

In view of the fractional Gagliardo–Nirenberg interpolation inequality proposition 1.9,
lemma 3.2 implies the sufficiency part of lemma 3.7 when sp ∈ (1, m) and hence, since
the domain Bm is bounded, for sp ∈ (0, m). We give a direct proof of lemma 3.7.

Proof of lemma 3.2. We have

E s,p(u) =
¨

Bm×Bm

∣u(y) − u(x)∣p
∣y − x∣m+sp dx dy = 2

¨

(x,y)∈Bm×Bm

∣x∣≤∣y∣

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx. (3.2)

For every x, y ∈ Bm ∖ {0}, we have by the triangle inequality

∣u(y) − u(x)∣ ≤ ∣u(y)∣ + ∣u(x)∣ = 2; (3.3)

if moreover ∣x∣ ≤ ∣y∣, then we have

∣u(y) − u(x)∣ =
RRRRRRRRRRR

y
∣y∣ −

x
∣x∣

RRRRRRRRRRR
=

∣y∣x∣ − x∣y∣∣
∣y∣∣x∣

≤
∣y∣x∣ − x∣x∣∣

∣y∣∣x∣ +
∣x∣x∣ − x∣y∣∣

∣y∣∣x∣ = ∣y − x∣
∣x∣ + ∣y − x∣

∣y∣ ≤ 2
∣y − x∣
∣x∣ .

(3.4)

We estimate then by (3.3)
¨

(x,y)∈Bm×Bm

∣x∣≤∣y∣
∣y−x∣≥∣x∣

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx ≤

¨

(x,y)∈Bm×Bm

∣x∣≤∣y∣
∣y−x∣≥∣x∣

2p

∣y − x∣m+sp dy dx

≤
¨

(x,z)∈Bm×Rm

∣z∣≥∣x∣

2p

∣z∣m+sp dy dx

≤ C1

ˆ
Bm

1
∣x∣sp dx < +∞,

(3.5)
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3.2 Extension from the boundary

since we have assumed sp < m. On the other hand, we have by (3.4)

¨

(x,y)∈Bm×Bm

∣x∣≤∣y∣
∣y−x∣≤∣x∣

∣u(y) − u(x)∣p
∣y − x∣m+sp dy dx ≤

¨

(x,y)∈Bm×Bm

∣y−x∣≤∣x∣

2p

∣x∣p∣y − x∣m−(1−s)p dy dx

≤
¨

(x,z)∈Bm×Rm

∣z∣≤∣x∣

2p

∣x∣p∣z∣m−(1−s)p dz dx

≤ C2

ˆ
Bm

1
∣x∣sp dx < +∞,

(3.6)

since s < 1 and sp < m. By (3.2), (3.5) and (3.6) we conclude that u ∈ Ws,p(Bm, Rm).
For the other direction, we have for every r ∈ (0, 1), since u is homogeneous of degree

0 and since u(x) ≠ u(y) for almost every x, y ∈ Bm ×Bm,

¨

Bm×Bm

∣u(y) − u(x)∣p
∣y − x∣m+sp dx dy >

¨

Bm
r ×Bm

r

∣u(y) − u(x)∣p
∣y − x∣m+sp dx dy

= rm−sp
¨

Bm×Bm

∣u(ry) − u(rx)∣p
∣y − x∣m+sp dx dy

= rm−sp
¨

Bm×Bm

∣u(y) − u(x)∣p
∣y − x∣m+sp dx dy,

(3.7)

This implies that 1 > rm−sp for every r ∈ (0, 1) and thus sp < m.

Proof of theorem 3.6 whenM= Bm−1 × [0, 1) and m − 1 ≤ p < m. Let f ∈ C(Sm−2,N). By
classical approximation, f is homotopic to some map f̆ ∈ C∞(Sm−2,N). We define
the map u ∶ Bm−1 →N for x ∈ Bm−1 ∖ {0} by

u(x) = f̆( x
∣x∣ ). (3.8)

Since p < m, by lemma 3.7 and the composition of fractional Sobolev maps by Lipschitz

continuous maps, we have u ∈ W1− 1
p ,p(Bm−1,N).

We assume now that u = trBm−1×{0} U on Bm−1 × {0}. By density of smooth maps in
W1,p(Bm−1 × [0, 1), Rν), there exists a sequence of smooth maps (Vj)j∈N in C∞(B̄m−1 ×
[0, 1], Rν) such that ˆ

Bm−1×[0,1)
∣DVj −DU∣p + ∣Vj −U∣p ≤ 2−j.
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3 Topological obstructions

By spherical integration and by Fubini’s theorem, we have for every j ∈ N,

ˆ 1

0

ˆ
Sm−1

r ∩Rm
+

∣DVj −DU∣p + ∣Vj −U∣p dHm−1

≤
ˆ

Bm−1×[0,1)
∣DVj −DU∣p + ∣Vj −U∣p ≤ 2−j.

By Lebesgue’s monotone convergence theorem, it follows thus that for almost every
r ∈ (0, 1),

lim
j→0

ˆ

[0,1]

ˆ

Sm−1
r ∩Rm

+

∣DVj −DU∣p + ∣Vj −U∣p dHm−1 = 0.

Since by assumption trBm−1×{0} U = u, we have by the classical trace theory that
(Vj∣Bm−1×{0})j∈N converges to u in Lp(Bm−1, Rν) and thus for almost every r ∈ (0, 1),
trSm−1

r ×0 U∣Sm
r ∩Rm

+ = u∣Sm−1
r ×0.

By proposition 2.11, it follows then that u∣Sm−2
r ×{0} is homotopic in W1−1/p,p(Sm−2

r ×
{0},N) to the restriction of a smooth map. By proposition 2.8, this implies that f̆ is
homotopic in C(Sm−2,N) to the restriction of a smooth function from B̄m−1 to N and
thus by transitivity of homotopies and by the homotopy extension property the map
f ∈ C(Sm−2,N) can be written as F∣Sm−2 for some F ∈ C(Bm−1,N).

3.3 Lifting

We now describe local obstructions to lifting.

Proposition 3.8. Let π ∶ M̃ → M be a Riemannian covering. If 1 ≤ sp < m = dimM and
every map u ∈ Ws,p(M,N) has a lifting, then every map f ∈ C(S1,N) has a lifting.

In many cases, is known that there exists maps f ∈ C(S1,N) that have no lifting:
π ∶ R1 → S1, π ∶ RPn → Sn, π ∶ U(2) → SO(3).

In order to establish an obstruction it is useful to know that the lifting is essentially
unique.

Proposition 3.9. Assume thatM is connected, that s ∈ (0, 1], p ∈ [1,+∞) and that sp ≥ 1.
For every ũ, ṽ ∈ Ws,p(M, Ñ ), if π ○ ũ = π ○ ṽ almost everywhere in M, then either ũ = ṽ
almost everywhere inM or ũ ≠ ṽ almost everywhere inM.

Proof of proposition 3.9 for s = 1. Since π is a local isometry and N is compact, there
exists δ > 0 such that if π(y) = π(z) and dN (y, z) ≤ δ implies y = z.

We define the function f ∶ M → R for x ∈ M by f (x) = dN (u(x), v(x)). By compo-
sition of Lipschitz maps with Sobolev mappings, f ∈ W1,p(M). We observe that for
every x ∈ M, f (x) ∈ {0} ∩ [δ,+∞). We choose a function θ ∈ C∞([0,+∞)) such that
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3.3 Lifting

θ(0) = 0 on [0, δ/3] and θ = 1 on [2δ/3,+∞). By the chain rule for Sobolev functions,
θ ○ f ∈ W1,p(M,{0, 1}) and for almost every x ∈ M,

∣D(θ ○ f )(x)∣ = ∣θ′( f (x))∣∣D f (x)∣ = 0.

Since the manifold M is connected, the function θ ○ f is almost everywhere equal
to a constant, and thus either θ ○ f = 0 almost everywhere on M and then ũ = ṽ
almost everywhere onM, or θ ○ f = 1 almost everywhere onM and then ũ ≠ ṽ almost
everywhere onM.

The proof of proposition 3.9 in the fractional case relies on the following property:

Lemma 3.10. Let Ω ⊂ Rm be convex and A ⊂ Ω be measurable. If
ˆ

A

ˆ
Ω∖A

1
∣y − x∣m+1 dy dx < +∞,

then either Lm(A) = 0 or Lm(Ω ∖ A) = 0.

Proof. We have by addidivity of the integral and by the change of variables z = x+y
2 .

¨

(x,y)∈A×Ω∖A

1
∣y − x∣m+1 dy dx

=
¨

(x,y)∈A×(Ω∖A)
x+y

2 ∈Ω∖A

1
∣y − x∣m+1 dy dx +

¨

(x,y)∈Ω×(Ω∖A)
x+y

2 ∈A

1
∣y − x∣m+1 dy dx

= 1
2

¨

(x,z)∈A×(Ω∖A)
2z−x∈Ω∖A

1
∣z − x∣m+1 dz dx + 1

2

¨

(z,y)∈Ω×(Ω∖A)
2z−y∈A

1
∣y − z∣m+1 dy dz

= 1
2

¨

(x,y)∈A×Ω∖A
2y−x∈Ω∖A

1
∣y − x∣m+1 dy dx + 1

2

¨

(x,y)∈A×(Ω∖A)
2x−y∈A

1
∣y − x∣m+1 dy dx,

Since the integrals are finite, this implies that for almost every (x, y) ∈ A ×Ω ∖ A, we
have 2y − x ∈ Ω ∖ A and 2x − y ∈ A. Assume now that Lm(A) > 0. Then, one has for
almost every y ∈ Ω ∖ A, 2y − x ∈ Ω ∖ A and hence Lm(Ω ∖ A ∖ ( 1

2((Ω ∖ A) + x))), which
implies that

Lm(Ω ∖ A) ≤ 2−mLm(Ω ∖ A)
and thus Lm(Ω ∖ A) = 0.

Remark 3.11. If we assume for some α ∈ (0,+∞) that
ˆ

A

ˆ
Ω∖A

1
∣y − x∣m+α

dy dx < +∞ (3.9)
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and if α ≥ 1 we reach the same conclusion. When α > 1, this can be proved by noting
that by boundedness of the set Ω, ∣y − x∣m+α ≤ diam(Ω)α−1∣y − x∣ or by noting that the
same change of variables, results in the inequality

¨

(x,y)∈A×Ω∖A

1
∣y − x∣m+1 dy dx ≤ 1

2α−1

¨

(x,y)∈A×Ω∖A

1
∣y − x∣m+1 dy dx,

which implies immediately that the integral should be 0. When α < 1, (3.9) holds for
any set A ⊂ Ω that has a smooth boundary.

Proof of proposition 3.9 for s ∈ (0, 1). We define the set

A ≜ {x ∈ M ∣ ũ(x) = ṽ(x)}.

We observe that for every x, y ∈ M, we have by the triangle inequality,

dÑ (ũ(y), ṽ(y)) ≤ dÑ (ũ(y), ũ(x)) + dÑ (ũ(x), ṽ(x)) + dÑ (ṽ(x), ṽ(y))

and thus, if if x ∈ A and y ∈ M∖ A then dÑ (ũ(y), ṽ(y)) ≥ ρ and ũ(x) = ṽ(x) and thus

ρp ≤ 2p−1(dÑ (ũ(y), ũ(x))p + dÑ (ṽ(x), ṽ(y))p).

If s ∈ (0, 1), we have then by definition of the Gagliardo energy
ˆ

A

ˆ
M∖A

1
dM(y, x)m+sp dy dx

≤ 2p−1

ρp

⎛
⎜
⎝

¨

M×M

dÑ (ũ(y), ũ(x))p

dM(y, x)m+sp dx dy +
¨

M×M

dÑ (ṽ(y), ṽ(x))p

dM(y, x)m+sp dx dy
⎞
⎟
⎠

< +∞.

Therefore by lemma 3.10, since sp ≥ 1, for every Br(a) ⊂ M, either ũ = ṽ almost
everywhere in Br(a) or ũ ≠ ṽ almost everywhere in Br(a).

When sp < 1, the uniqueness of the lifting fails.

Proposition 3.12. If sp < 1 and M̃ is connected and π ∶ Ñ → N is not injective, there exists a
map ũ ∈ Ws,p(M, Ñ ) which is not constant and such that π ○ ũ is not constant.

Proof of proposition 3.12 when M = Bm. By assumption, there exist ã, b̃ ∈ Ñ such that
π(ã) = π(b̃). We define

ũ(x) =
⎧⎪⎪⎨⎪⎪⎩

ã if ∣x∣ ≤ 1
2 ,

b̃ if 1
2 < ∣x∣ < 1.

We have¨
Bm×Bm

dÑ (ũ(y), ũ(x))p

∣y − x∣m+sp dy dx ≤ 2dÑ (b̃, b̃)p
ˆ

Bm
1/2

ˆ
Bm∖Bm

1/2

1
∣y − x∣m+sp dy dx.
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We estimateˆ
Bm

1/2

ˆ
Bm∖Bm

1/2

1
∣y − x∣m+sp dy dx ≤

ˆ
Bm

1/2

ˆ
Rm∖Bm

1/2−∣x∣(x)

1
∣y − x∣m+sp dy dx

≤ C3

ˆ
Bm

1/2

1
(1− 2∣x∣)sp dx < +∞,

since 0 < sp < 1.

Lemma 3.13. If ũ ∈ Ws,p(M, Ñ ) and if π ○ u ∈ C(M,N), then ũ is almost everywhere equal
to a continuous function ũ′ ∈ C(M, Ñ ).

Proof of lemma 3.13. Since continuity is local, it is sufficient to prove that ũ is almost
everywhere equal to a continuous map at a neighbourhood of any point.

Let a ∈ M. Since π ○ ũ is continuous, there exists r > 0 such that π(ũ(Br(a))) ⊂
Bρ(π(ũ(a))). Since Br(a) is connected, there exists a countable family of continuous
maps (ũb̃)b̃∈π−1({b}) such that π ○ ũb̃ = π ○ ũ and for every x ∈ Br(a), π−1(π(ũ(x)) =
{ũb̃(x) ∣ b̃ ∈ π−1({b})}. Since π is a local isometry, ũb̃∣Br(a) ∈ Ws,p(Br(a), Ñ) for every
b̃ ∈ π−1({b}). Hence by proposition 3.9, there exists b̃ ∈ π−1({b}) such that ũ = ũb̃ almost
everywhere in the ball Br(a) and the conclusion follows.

Proof of proposition 3.8 whenM= B2. Let f ∈ C(S1,N). By standard approximation, f is
homotopic to some f̆ ∈ C∞(S1,N). We define for each x ∈ B2 ∖ {0},

u(x) = f̆(x/∣x∣).

Since sp < 2, we have u ∈ Ws,p(B2,N) (lemma 3.2 if s = 1 and lemma 3.7 if 0 < s < 1). If
u = π ○ ũ, then by lemma 3.13, we have ũ ∈ C(B2 ∖ {0},N) and hence the map f̆ has
a continuous lifting and thus by the homotopy lifting property, the map f also has a
continuous lifting.

3.4 What abouth the homotopy problem?

We end this chapter, with a brief explanation about why we do not consider the
homotopy problem.

Proposition 3.14. For every s ∈ (0, 1], p ∈ [1,+∞) and N , every map u ∈ Ws,p(B,N) is
homotopic in Ws,p(B,N) to a constant map.

Proof. Let a ∈ Bm be a Lebesgue point of the map u. We define then for every t ∈ [0, 1]
and x ∈ Bm,

H(t)(x) = u((1− t)x + ta).

We have for every x ∈ Bm, H(0)(x) = u(x) and H(1)(x) = u(a). Moreover, H ∈
C([0, 1], Ws,p(Bm,N).
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3.5 Comments

3.5.1 Approximation

The necessary condition of proposition 3.1 was observed by Schoen and Uhlenbeck on
a ball [SU83, §4] (see also [BZ88, Theorem 2]) and extended by Bethuel to a general
domain [Bet91, Theorem A.0].

The fractional counterpart of proposition 3.1 was proved by Escobedo whenM= Bm

[Esc88, Theorem 3].

3.5.2 Extension

Theorem 3.6 is due to Robert Hardt and Lin Fanghua [HL87, §6.3] with a proof relying
on singularities of p–harmonic extensions (see also [BD95, theorem 4] for a proof using
the density of maps that are smooth outside a small-dimensional set).

3.5.3 Lifting

Proposition 3.8 when π ∶ R → S1 is due to Jean Bourgain, Haïm Brezis and Petru
Mironescu [BBM01, (4.2)]. The case where π ∶ Ñ → N is a universal covering or
π ∶ S1

k ↦ S1 is k–tuple covering of the circle due to Fabrice Bethuel and David Chiron
[BC07, lemma 1, theorem 3 i) and proposition 3 i)]. In the case of liquid crystals
π ∶ RPn → Sn, proposition 3.8 has been proved by John Ball and Argir Zarnescu
[BZ11, theorem 2].

The uniqueness of the lifting when π ∶ R→ S1 is due to Jean Bourgain, Haïm Brezis
and Petru Mironescu [BBM01, Appendix B]. For the projective space, in connection
with liquid crystals, proposition 3.8 has been proved when s = 1 by Ball and Zarnescu
[BZ11, proposition 2] and by Mucci [Muc12, theorem 2.5].

When α ∈ (0, 1), the double integral in eq. (3.9) defines an α–fractional perimeter (see
for example [PS17; CSV15; FMM11; FS08, (4.2)]).

Lemma 3.10 is originally due to Jean Bourgain, Haïm Brezis and Petru Mironescu
[Bre02; BBM01, Appendix B]. Other proofs have been given since [DMMS08]. We
present a proof inspired from Alireza Ranjbar-Motlagh.
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4 Singular retractions methods

4.1 Homotopic preliminaries

4.1.1 `–connected sets

We will assume that the target manifold N is `–connected.

Definition 4.1. The manifold N is `–connected whenever for every j ∈ {0, . . . , `}, the
restriction operator F ∈ C(B̄j+1,N) ↦ F∣Sj ∈ C(Sj,N) is surjective.

A practical consequence is that if A ⊂ [0, 1]`+1 is a union of lower-dimensional spaces,
the restriction operator F ∈ C([0, 1]`+1,N) ↦ F∣A ∈ C(A,N) is surjective.

For example, the sphere Sn is `–connected if and only if ` < n.
In the language of homotopy groups, a manifold N is `–connected if and only if

π0(N) ≃ ⋯ ≃ π`(N) ≃ {0}. In particular, N is 0–connected if and only if it is path-
connected; N is 1–connected if and only if it is path-connected and simply-connected.

By the Hurewicz theorem, if ` ≥ 1, the manifold N is `–connected if and only if
N is connected and simply connected and for every j ∈ {2, . . . , `}, the j–th homology
group with integer coefficients is trivial Hj(N , Z) ≃ {0} [Hu59, corollary II.9.2]. A
compact manifold N of dimension n is not n–connected: If the manifold N is connected
and orientiable, and if n = dimN , then Hn(N , Z) = Z and N is not n–connected
[Spa66, Exercise 4.E]; in general if N is connected, then Hn(N , Z/2) ≃ Hn(N , Z)⊗Z/2 ≃
Z/2.

4.1.2 Euclidean space as a cubical complex

In order to exploit the `–connectedness of the target manifold N , we will endow the
space Rν into which N is embedded with a cubical complex structure.

We consider a decomposition of the Euclidean space Rν into cubes of edge-length
η ∈ (0,+∞)

Lν
η ≜ {ηk + [− η

2 , η
2 ]

ν ∣ k ∈ Zν}

and we consider the set K`
η of `–dimensional faces of cubes of Qη . The realization of

the complex is
⋃K`

η ≜ ⋃
Q∈K`

η

Q.

We have immediately the inclusions

η(Z+ 1
2)

ν = ⋃K0
η ⊂ ⋃K1

η ⊂ ⋯ ⊂ ⋃Kν−1
η ⊂ ⋃Kν

η = Rν.
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4 Singular retractions methods

We also consider the dual decomposition

L`η ≜ {Q + η(1
2 , . . . , 1

2) ∣ Q ∈ K`
η}.

We observe that for every ` ∈ {0, . . . , ν − 1}, ⋃K`
η ∩⋃Lν−`−1

η = ∅ and that the set ⋃K`
η is

a homotopy retract of Rν ∖⋃Lν−`−1
η . We will use a quantitative version of this fact.

Lemma 4.2. For every ` ∈ {0, . . . , ν− 1}, there exists a map Θ`
η ∈ C(⋃K`+1

η ∖⋃Lν−`−1
η ,⋃K`

η)
such that

(i) for every Q ∈ K`+1
η , one has Θ`

η(Q ∖⋃Lν−`−1
η ) ⊂ Q,

(ii) for every y ∈ ⋃K`
η , one has Θ`

η(y) = y,

(iii) for every y ∈ ⋃K`+1
η ∖⋃Lν−`−1

η , one has [y, Θ`
η(y)] ⊂ ⋃K`+1

η ∖⋃Lν−`−1
η ,

(iv) the map Θ`
η is locally Lipschitz-continuous, and for every y ∈ ⋃K`+1

η ∖⋃Lν−`−1
η ,

∣DΘ`
η(y)∣ ≤ C η

dist∞(y,⋃Lν−`−1
η )

,

(v) for every j ∈ {ν − `, . . . , ν − 1} and every y ∈ ⋃K`+1
η ∖⋃Lν−`−1

η ,

dist∞(Θ`
η(y),⋃Lj

η) =
η

2 dist∞(y,⋃Lν−`−1
η )

dist∞(y,⋃Lj
η).

In particular for every Q ∈ K`+1
η and for every j ∈ {ν − `, . . . , ν − 1}

Θ`
η(Q ∖⋃Lj

η) ⊂ Q ∖⋃Lj
η .

We have defined here for every y ∈ Rν and A ⊂ Rν,

dist∞(y, A) = inf{∣y − z∣∞ ∣ z ∈ A},

where for every v = (v1, . . . , vν) ∈ Rν, ∣v∣∞ = max{∣v1∣, . . . , ∣vν∣}.

Proof of lemma 4.2. We need to define Θ`
η on Q∖Lν−`−1

η for Q ∈ K`+1
η . We assume without

loss of generality that η = 1 and that Q = [− η
2 , η

2 ]
`+1 × {0}ν−`−1. We have then

Q ∩Lν−`−1
η = {0},

We define for every y ∈ Q ∖⋃Lν−`−1
η

Θ`
η(y) ≜ η

2∣y∣∞
y.

We conclude by observing that for every y ∈ Q,

dist(y,⋃Lν−`−1
η ) = ∣y∣∞,

and that, more generally, for every j ∈ {ν − ` − 1, . . . , ν − 1} and every y ∈ Q,

dist(y,⋃Lj
η) = min

I⊂{1,...,`+1}
#I=ν−j

max
i∈I

∣yi∣.
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4.2 Extension for ⌊p − 1⌋–connected manifolds

As a first result for `–connected manifolds, we have the existence of an extension from
the trace space for ⌊p − 1⌋–connected manifolds.

Theorem 4.3. If p < m = dimM and if the manifold N is ⌊p − 1⌋–connected, then for each

map u ∈ W1− 1
p ,p(∂M,N), there exists a map U ∈ W1,p(M,N) such that tr∂M = u. Moreover,

E1,p(U) ≤ C E1− 1
p ,p(u),

for some constant C depending on p,M and N .

In view of theorem 5.1, the condition is necessary and sufficient when N is con-
nected and p < 3. For p ≥ 3, the weaker condition π⌊p−1⌋(N) ≃ {0}1 is necessary
(theorem 3.6); we will see further that it is also necessary that the homotopy groups
π1(N), . . . , π⌊p−2⌋(N) are all finite (see theorem 3.6).

In the supercritical and critical cases p ≥ m (proposition 2.9), lemma 2.2 provided a
smooth retraction on a tubular neighbourhood of the manifold N in the ambient space
Rν. In the subcritical case p < m, there is no reason for which an approximation by
convolution, a homotopy or an extension should stay in this neighbourhood. One way
to overcome this difficulty is to define a retraction on the whole on Rm. This can still
be done when the manifold N is `–connected if one is ready to treat singularities of
codimension ` + 2 in the retraction map.

Proposition 4.4. Let ` ∈ {0, . . . , ν − 2}. If the manifold N is `–connected, then for every
ρ ∈ (0, δN /2) and every η ∈ (0,+∞) small enough, there exists a compact set Σ ⊂ ⋃Lν−`−2

η ∩
(N +Bν

δN
) ∖ (N +Bν

ρ) and a map Φ ∈ C(Rν ∖Σ,N +Bν
δN/2

) such that

(i) for every y ∈ N +Bν
ρ, one has Φ(y) = y,

(ii) the map Φ is locally Lipschitz-continuous and for almost every y ∈ Rν ∖Σ, one has

∣DΦ(y)∣ ≤ C
dist (y, Σ) ,

for some constant C > 0 depending on N ,

(iii) the map Φ is constant outside a compact subset of Rν.

Here δN is given by lemma 2.2 so that there exists a smooth retraction Π ∶ N +Bν
δN
→

N .
When N = S`+1 ⊂ R`+2, a mapping Φ satisfying the conclusions of proposition 4.4

(except the constancy outside a compact set) is given for each y ∈ R`+2 ∖Σ with Σ = {0}
by

Φ(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−ρ
∣y∣ y if ∣y∣ ≤ 1− ρ,

y if 1− ρ ≤ ∣y∣ ≤ 1+ ρ,
1+ρ
∣y∣ y if ∣y∣ ≥ 1+ ρ.
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Proof of proposition 4.4. We define U = {Q ∈ Kν
η ∣ Q ⊂ N +Bν

δN /2(0)} and we observe that
if η is small enough, then

N +Bν
ρ ⊂ ⋃U ≜ ⋃

Q∈U
Q.

We define Φ for each y ∈ U by Φ(y) = y.
We set

V ≜ {Q ∈ Q ∣ Q ∩⋃U = ∅},

we choose b ∈ N and we define Φ for y ∈ ⋃V by Φ(y) = b.
We set now for every j ∈ {0, . . . , ν},

W j = {Q ∈ K`
η ∣ Q /⊂ ⋃U ∪⋃V}.

We define for each y ∈ ⋃W0, Ψ(y) = b.
We assume now that Ψ has been defined on ⋃W j for some j ∈ {0, . . . , ν − 1}. By

definition of U and V , the map Ψ is already defined on ⋃Kj
η . If j ≤ `, we observe that

since the manifold N is a deformation retract of its tubular neighbourhood N +Bν
δN

,
the set N + Bν

δN
is also `–connected. Thus by definition of `–connectedness and

classical regularization arguments, for every Q ∈ W j+1, we define Ψ to be a Lipschitz-
continuous extension of the boundary values. If j ≥ ` + 1, we define for every Q ∈ W j+1,
Ψ∣Q∖⋃Lν−`−2

η
= Ψ ○ Θj

η ∣Q∖⋃Lν−`−2
η

, where Θj
η was defined in lemma 4.2.

The conclusion holds with Σ ≜ ⋃Lν−`−2 ∖ (⋃U ∪⋃V).

Problem 4.1 (88). Show that one can take Φ ∈ C∞(Rν ∖ Σ,N) such that for every
k ∈ N, there exists a constant Ck such that for every y ∈ Rν ∖Σ,

∣DkΦ(y)∣ ≤ Ck

dist(y, Σ)k .

Proof of theorem 4.3. Let V ∈ W1,p(M, Rν) be an extension given by the classical linear
trace theory. Let Π ∶ N +Bν

ρ → N be the retraction given by lemma 2.2. Let Ψ ∶
Rν ∖⋃Lν−⌊p+1⌋

ν →N +Bν
ρ be given by proposition 4.4 with ` = ⌊p − 1⌋.

Since the function V is smooth in the interior ofM, by Sard’s theorem and by the
implicit function theorem, for almost every h ∈ Rν, the set V−1(K − h) is a countable
union of (m − ⌊p + 1⌋)–dimensional submanifolds ofM and V is transversal to these
manifolds and thus the map Φ ○ (V + h) is weakly differentiable.
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We set ρ = δN /2 and we compute now the quantity
ˆ

Bν
ρ

ˆ
M

∣D(Φ ○ (V + h) − h)∣p ≤
ˆ
M

∣DV∣p
ˆ

Bν
ρ

∣DΠ(V(x) + h)∣p dh dx

≤ C1

ˆ
M

∣DV∣p
ˆ

Bν
ρ

1
dist(V(x) + h, Σ)p dh dx

≤ C2

ˆ
M

∣DV∣p
ˆ 1

0

r⌊p⌋

rp dr

≤ C3

ˆ
M

∣DV∣p,

since the set Σ ⊂ ⋃Tν−⌊p+1⌋
ρ is a union of convex sets of codimension ⌊p + 1⌋. There exists

thus a vector h ∈ Bν
ρ such that Φ ○ (V + h) − h ∈ W1,p(M, Rν).

Moreover, since h ∈ Bν
δN /2, then Φ ○ (V + h) − h ∈ N +Bν

δN
in M and tr∂MΦ ○ (V +

h) − h = u on ∂M. We conclude by setting U ≜ Π ○ (Φ ○ (V + h) − h).

Remark 4.5. As a consequence, of the proof, there exists a set T ⊂M which is a countable
union of (m − ⌊p + 1⌋)–dimensional manifolds such that U ∈ C∞(M∖ T). Moreover, for
every x ∈ T, lim supy→x distM(y, x)∣DU(y)∣ < +∞.

Problem 4.2 (8). Prove that when the manifold N is m − 1–connected, then every map
u ∈ W1− 1

m ,m(∂M,N) can be extended to a map U ∈ C∞(M,N) and such that

E1,m(U) ≤ C E1− 1
m ,m(u).

Compare the result with proposition 2.10.

4.3 Approximation for ⌊p⌋–connected manifolds

We prove the following approximation result.

Theorem 4.6. If p < m = dimM and if the manifold N is ⌊p⌋–connected, then every map
u ∈ W1,p(N ,M) can be approximated by maps in C∞(M,N).

The proof is based on the following constrution.

Proposition 4.7. If N is `–connected and if ρ, η > 0 are small enough, then for every ε > 0
small enough, there exists a map Φε ∈ C∞(Rν,N +Bν

δN/2
) such that

(i) for every y ∈ (N +Bν
ρ) ∖ (⋃Lν−`−1

ρ +Bν
ε ), Φε(y) = y,

(ii) ∥DΦε∥L∞ ≤ C/ε, where the constant can be taken independently of ε,

(iii) the map Φε is constant outside a compact set which can be taken uniformly with respect to
ε.
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Proof. Let Π ∶ N +Bν
δN
→ N be the retraction of lemma 2.2. We consider U `

η = {Q ∈
K`

η ∣ Q ⊂ N +Bν
δN/2

(0)}. If η is small enough, then (N +Bν
ρ) ∩⋃K`

η ⊂ ⋃U `
η . We set

V ≜ {Q ∈ K`
η ∣ Q ∩⋃Uν

η = ∅},

we choose b ∈ N and we define Π̌(y) for each y ∈ ⋃Vν
η by Π̌(y) = b. Since the manifold

N is `–connected and Π is a deformation retraction, the set N +Bν
δN /2 is `–connected.

Hence the map Π̌∣⋃U `
η/2 is homotopic to a constant map on ⋃U `

η ∪⋃Vν
η . Hence there

exists a Lipschitz-continuous map Π̌ ∶ Rν →N +Bν
δN

such that Π̌ = Π on ⋃U `
η and such

that Π̌ = b on ⋃Vν
η .

We define for each (y, t) ∈ Rν × {1} ∪Rν ∖ (⋃Lν−`−1) × [0, 1],

Υ(y, t) = (1− t) (Θ`
η ○ ⋯ ○ Θν−1

η )(y) + ty

and we define for every ε > 0, the function dε ∶ Rν →N by setting for each y ∈ Rν

dε(y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if d̂ε(y) ≤ −1,
d̂ε(y) if −1 < d̂ε(y) < −1,
1 if d̂ε(y) ≥ 1.

where

d̂ε(y) = min{1,
6 dist(y, Kν−`−1

η )
ε

− 2, 1− dist(y,N)− ρ

λ
}

We then set

Φε(y) =
⎧⎪⎪⎨⎪⎪⎩

Υ(y, dε(y)) if dε(y) ≥ 0,
Π̌(Υ(y,−dε(y))) if dε(y) < 0.

By construction of Π̌, if dε(y) < 0, then Πε(y) = Π̌(Υ(y,−dε(y))) ∈ N +Bν
ρ. If dε(y) ≥ 0,

then we have dist(y,N) ≤ ρ + λ, and thus if ρ + λ + η
√

ν ≤ δN /2, hence Υ(y, dε(y)) ∈
N +Bρ+λ+η

√
ν and thus Φε(y) = Υ(y, dε(y)) ∈ N +Bν

ρ+λ+η
√

ν
.

If moreover dε(y) = 0, then Φε(y) = Π̌(Υ(y, 0)) = Π(Υ(y, 0)), since Υ(y, 0) ∈ ⋃K`
η and

by construction of Π̌, so that Ῠε is continuous.
We observe that if y ∈ N +Bν

ρ ∖ (⋃Kν−`−1
η +Bν

ε/2), then dist(y,⋃Kν−`−1
η ) ≥ ε/2 and

dist(y,N) ≤ ρ, and thus dε(y) = 1, so that Φε(y) = Υ(y, 1) = Πρ(y) = y.
If dε(y) = −1, then we clearly have

∥DΦε(x)∥L∞ ≤ C4.

If dε(y) ∈ (−1, 1), we have
dist(y,⋃Lν−`−1

ρ ) ≥ ε

6
,

and thus by the chain rule

∥DΦε(y)∥L∞ ≤ C5

ε
.
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4.3 Approximation for ⌊p⌋–connected manifolds

In order to have smooth map, we convolve with a radial mollifying kernel at a scale
ε/2 and by using the fact that ρ+λ+ η

√
ν < δN /2. By radiality of the kernel, it preserves

the fact that the map is the identity and by uniform convergence, it does not move the
points too far away from the target set.

Problem 4.3 (88). Prove that Φε can be chosen to satisfy for every k ∈ N,

∣DkΦε∣ ≤
Ck

εk ,

for some constant Ck independent of ε.

Proof of theorem 4.6. We choose ρ = δN /4. We first show that there exists a family hε in
Bν

ρ such that
lim
ε→0

∥(Φε(u − hε) + hε) − u∥W1,p(M) = 0.

Indeed, we have for every vector h ∈ Bν
ρ,

ˆ
M

∣D(Φε ○ (u − h) + h) −Du∣p =
ˆ

u−1(⋃Lν−`−1
η +Bν

ε (h))
∣D(Φε ○ (u − h)) −Du∣p.

Thus by integrating with respect to h we get, if N ⊂ Bν
Rˆ

Bν
ρ

ˆ
M

∣D((Φε(u − h) + h) −Du∣p

≤ C6

ˆ
M

∣Du∣p
ˆ

Bν
R+ρ∩(⋃L

ν−⌊p⌋−1
η +Bν

ε )
∣DΦε(z) − id∣p dz dx

≤ C7 ε⌊p⌋+1−p
ˆ
M

∣Du∣p.

We take now hε ∈ Bν
ρ such that

ˆ
M

∣D((Φε ○ (u − hε) + hε)) −Du∣p ≤ C8 ε⌊p⌋+1−p
ˆ
M

∣Du∣p.

By continuous differentiability of Π and since Π ○ u = u, we have

lim
ε→0

∥Π ○ (Φε(u − hε) + hε) − u∥W1,p(M) = 0.

We consider (vj)j∈N to a be a sequence in C∞(M, Rν) converging to u in W1,p(M, Rν).
By continuity, we have

lim sup
j→∞

∥Π ○ (Φε(vj − hε) + hε) − u∥W1,p(M) ≤ ∥Π ○ (Φε(u − hε) + hε) − u∥W1,p(M)

and thus
lim
ε→0

lim sup
j→∞

∥Π ○ (Φε(vj − hε) + hε) − u∥W1,p(M) = 0.

55



4 Singular retractions methods

4.4 Comments

The notion of `–connectedness is classical in homotopy theory (see [Hu59, §II.9; Hat02,
§4.1]).

Theorem 4.3 and its proof are due to Robert Hardt and Lin Fanghua [HL87, theorem
6.2]. Proposition 4.4 is essentially due to Hardt and Lin [HL87, lemma 6.1] (see also
[BPVS14, lemma 2.2; Hop16, lemma 4.5]). A difference from the classical treatment
is that the singular retraction Ψ is a retraction on a neighbourhood of the target
manifold, so that it is not needed to triangulate the manifold and its neighbourhood
and conjugation with a small translation still leaves a neighbourhood of the manifold
invariant.

Theorem 4.6 are due to Piotr Hajłasz [Haj94, theorem 1]. The idea and the analytical
part of the proof are due to Fabrice Béthuel and Zheng Xiaomin for N = Sn [BZ88,
theorem 1]. The present proof of theorem 4.6 differs by the fact that Φε is supposed to
be the identity in a neighbourhood of the manifold N except a neibourhood of a dual
skeleton. Again, our approach avoids triangulating the manifold and its neighbourhood
and conjugation of Φε with a small translation preserves its properties. Proposition 4.7
is a modification of corresponding result of Piotr Hajłasz [Haj94] (see also [BPVS13,
proposition 2.1] in the higher-order case). The construction of Π̂ρ in proposition 4.7
corresponds to [Haj94, lemma 1], where a cone construction is performed.
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5 Analytical obstruction and lack of
linear estimates

5.1 Quantitative obstruction for the extension of traces

The next theorem shows that there is a quantitative obstruction to the extension
problem.

Theorem 5.1. If 2 ≤ p < m and if for every map u ∈ W1−1/p,p(∂M,N) there exists a map
U ∈ W1−1/p,p(M,N) such that tr∂MU = u, then for every j ∈ {1, . . . , ⌊p − 1⌋}, the homotopy
group πj(N) is finite.

The combination of theorem 3.6 and theorem 5.1 gives as a necessary condition that
the groups π1(N), . . . , π⌊p−2⌋(N) are finite and that the group π⌊p−1⌋(N) is trivial. On
the other hand by theorem 4.3, when all the homotopy groups are trivial π1(N) ≃
⋯ ≃ π⌊p−1⌋(N) ≃ {0}. It is also known that when the group π1(N) is finite and
π2(N) ≃ ⋯ ≃ π⌊p−1⌋(N) ≃ {0}, then any map has an extension [MVS].

If w ∈ W1,p(B`,N) and w = b ∈ N , we define the topological Sobolev energy

E1,p
top(w) ≜ inf{

ˆ
B`

∣Dv∣p ∣ ∣ v ∈ W1,p(B`,N), tr v∂B` = b

and v is homotopic to w relatively to ∂B` in W1,`(B`,N)} (5.1)

If p > `, by the fractional Sobolev–Morrey embedding, we have v = v′ and w = w′ almost

everywhere on B` for some v′, w′ ∈ C0,1− `
p (B`,N) and the homotopy in (5.1) can be

understood in the classical sense (see section 2.2).

Lemma 5.2. If ` ≤ p − 1, then there exists a constant C > 0 such that if N is a compact
manifold, if U ∈ W1,p(B`+1 ∩R`+1

+ ,N) and if trB`×{0} U = b on (B`
1 ∖B`

1/2) × {0} for some
constant b ∈ N , then

E1,p
top(trB`×{0} U) ≤ C

ˆ
B`+1∩R`+1

+

∣DU∣p.

Proof of lemma 5.2. By Fubini’s theorem, for almost every r ∈ ( 1
2 , 1), we have Ur ≜

U∣∂B`+1
r ∩R` = tr∂B`+1

r ∩R` U, Ur ∈ W1,p(∂B`+1
r ∩ R`,N) ≃ W1,p(B`,N) and by proposi-

tion 2.11, Ur and trB`×{0} U are homotopic relatively to ∂B`. We then have for every
r ∈ (1

2 , 1), by lemma 5.2

E1,p
top(trB`×{0} U) ≤ C1

ˆ
∂B`+1

r ∩R`
∣DU∣p,
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5 Analytical obstruction and lack of linear estimates

where µ ∈ [0,+∞) denote the infimum in the conclusion. By integration with respect to
r over the interval ( 1

2 , 1), we reach the conclusion.

Lemma 5.3. Let N be a Riemannian manifold. If ` < p and if the set π`(N) is infinite, then
for every b ∈ N ,

sup{E1,p
top(w) ∣ w ∈ W1,p(B`,N) and tr∂B` w = b} = +∞.

Proof. Since p > `, for every M ∈ R, the set

SM = {v ∈ C(B`,N)∩W1,p(Bm,N) ∣ v∣∂B` = b and E1,p(v) ≤ M}

is precompact in C(B`,N) by the Morrey–Sobolev embedding and by the Ascoli–Arzela
compactness criterion. Therefore, there exists a finite set of maps in C(B`,N) to which
each map in the set SM is homotopic relatively to ∂B`. Since by assumption the
group π`(N) is infinite, there are infinitely many such homotopy classes and thus the
conclusion holds.

Proposition 5.4. Let N be a compact manifold, let ` ∈ N and p ∈ [1,+∞). If there exists
` ∈ {1, . . . , min{⌊p − 1⌋, m − 1}} such that π`(N) is infinite, then for every m ≥ ` + 1, there
exists a constant C > 0 such that for every M > 0, there exists a mapping u ∈ W1,p(Bm−1,N)
such that

(i) u = b on Bm−1 ∖Bm−1
1/2 ,

(ii)
ˆ

Bm−1
∣Du∣p ≥ M,

(iii) for every map U ∈ W1,p(Bm ∩Rm
+ ,N) such that trBm−1×{0} U = u, one hasˆ

Bm∩Rm
+

∣DU∣p ≥ C
ˆ

Bm−1
∣Du∣p.

Proof. When m = ` + 1, by lemma 5.3 and by eq. (5.1), there exists a map such that

M ≤ E1,p
top(u) ≤

ˆ
Bm−1

∣Du∣p ≤ 2E1,p
top(u).

By lemma 5.2, if U ∈ W1,p(Bm ∩Rm
+ ,N) and if trBm−1×{0} U = u, one hasˆ

Bm∩Rm
+

∣DU∣p ≥ C2 E1,p
top(u) ≥ C2

2

ˆ
Bm−1

∣Du∣p

If m > ` + 1, we let u∗ ∶ B`+1 →N be the map given by the first part of the proof. Let
Ψ ∶ G → B`+1 × Sm−`−1 be a diffeomorphism for some G ⊂ Bm such that Ḡ ⊂ Bm and
define

u(x) =
⎧⎪⎪⎨⎪⎪⎩

(u∗ ○ P1 ○ Ψ)(x) if x ∈ G,
b otherwise,

where P1 ∶ B`+1 × Sm−`−1 → B`+1 is the canonical projection on the first component. The
conclusion follows from the application of Fubini’s theorem.
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5.1 Quantitative obstruction for the extension of traces

Proposition 5.5. If 1 ≤ q < p < m and if every map u ∈ W1,q(∂M,N) is the trace of some map
U ∈ W1−1/p,p(M,N), then for every j ∈ {1, . . . , ⌊p − 1⌋}, the group πj(N) is finite.

Proof. Assume by contradiction that there exists ` ∈ {1, . . . , min{⌊p − 1⌋, m − 1}} such
that π`(N) is infinite We fix b ∈ N and we construct by theorem 5.6 a sequence of maps
(uj)j∈N in W1,p(Bm−1,N) such that

(a) uj = b on Bm−1
1 ∖Bm−1

1/2 ,

(b)
ˆ

Bm−1
∣Duj∣p ≥ 2j(m−p)

(c) there exists a constant C3 > 0 for every U ∈ W1,p(Bm ∩Rm
+ ,N) such that trBm−1×{0} U =

uj, we have ˆ
Bm∩Rm

+

∣DU∣p ≥ C3

ˆ
Bm−1

∣Duj∣p.

We choose a sequence of radii (ρj)j∈N in such a way that

ρ
m−p
j

ˆ
Bm

∣Duj∣p = 1. (5.2)

By (b) in our construction, we have for every j ∈ N, ρj ≤ 2−j, and thus ρj ∈ (0, 1) and
the sequence (ρj)j∈N converges to 0. If we set R = 3

√
m/2, there exists a sequence

of points (aj)j∈N converging to 0 such that the balls Bρj(aj) are pairwise disjoint and
⋃j∈N Bρj(aj) ⊂ BR. We define the map u ∶ BR →N for each x ∈ BR by

u(x) =
⎧⎪⎪⎨⎪⎪⎩

uj(
x−aj

ρj
) if x ∈ Bρj(aj) for some j ∈ N,

b otherwise.

We have by construction, by the Hölder inequality and by (5.2)

∑
j∈N

ˆ
Bρj(aj)

∣Du∣q ≤ ∑
j∈N

ρ
m−q
j

ˆ
Bm

∣Duj∣q

≤ C4 ∑
j∈N

ρ
m−q
j (

ˆ
Bm

∣Duj∣p)
q
p

= C4 ∑
j∈N

ρ
m(1− q

p )
j (ρ

m−p
j

ˆ
Bm

∣Duj∣p)
q
p

≤ C4 ∑
j∈N

1
2jm(1−q/p) < +∞,

and thus u ∈ W1,q(Bm−1
R ,N).
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5 Analytical obstruction and lack of linear estimates

Next we observe that if U ∈ W1,p(Bm
R ∩Rm

+ ,N), then we have for every j ∈ N, by (c)
and by (5.2) ˆ

Bm
ρj
(aj)∩Rm

+

∣DU∣p ≥ C3 ρ
m−p
j

ˆ
Bm−1

∣Duj∣p = C3,

and thus since the balls in the sequence (Bρj(aj))j∈N are disjoint,
ˆ

Bm
R∩Rm

+

∣DU∣p ≥ ∑
j∈N

ˆ
Bm

ρj
(aj)∩Rm

+

∣DU∣p = ∑
j∈N

C3 = +∞,

which is a contradiction.

Proof of the main proposition. If p > 2, let q = p − 1. If u ∈ W1,1−p(M,N), then by the
fractional Gagliardo–Nirenberg inequality (proposition 1.9)

E1− 1
p ,p(u) ≤ C5 E1,p−1(u) < +∞.

and thus u ∈ W1− 1
p ,p(M,N) and we get the conclusion by proposition 5.5 with q = p − 1.

If p = 2, we observe that if u ∈ W1, 3
2 (M,N), then y the Gagliardo–Nirenberg inequality

(proposition 1.9) and by the boundedness ofM, we get

E
1
2 ,2(u) ≤ E

3
4 ,2(u) ≤ E1, 3

2 (u) < +∞.

The conclusion follows then by proposition 5.5 with q = 3
2 .

Problem 5.1. (888) Prove that if the group π⌊`⌋(N) is infinite for some ` ∈ {1, . . . , ⌊p − 1⌋}
and if p < m, then there exists a sequence of smooth maps (uj)j∈N in C∞(Bm, Sm) con-

verging to a map u ∈ W1− 1
p ,p(∂M,N) which is not the trace of any map U ∈ W1,p(M,N).

Theorem 5.6. If p ∈ [1,+∞), if sq < p and if there exists ` ∈ {1, . . . , m − 1} such that π`(N)
is infinite, then there exists a sequence of maps (uj)j∈N in W1− 1

p ,p(M,N) such that

lim
j→∞
E1,p

ext (uj) = +∞ and lim inf
j→∞

E1,p
ext (uj)

sq
p

E s,q(u) , (5.3)

where

E1,p
ext = inf

⎧⎪⎪⎨⎪⎪⎩
E1,p(U) ∣ U ∈ W1,p(M,N) and tr∂MU = u

⎫⎪⎪⎬⎪⎪⎭
.

Theorem 5.6 shows that the extension of proposition 2.9 cannot be bounded linearly
when some lower-dimensional homotopy group is infinite in contrast with the linear

case where for each u ∈ W1− 1
p ,p(M, Rν) there exists an extension U ∈ W1,p(M, Rν) that

satisfies the estimate ˆ
M

∣DU∣p ≤ E1− 1
p ,p(u).
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5.2 Quantitative obstruction for the lifting problem

Proof of theorem 5.6. This follows from theorem 5.6.Theorem 5.6 means that there is a
sequence of maps (uj)j∈N in W1,p(Bm−1 × {0},N) such that for every sequence (Uj)j∈N

in W1,p(Bm ∩Rm
+ ,N) such that trBm−1×{0} Uj = uj,

lim
j→∞

ˆ
Bm−1

∣Duj∣p = +∞ and inf
j∈N

ˆ
Bm∩Rm

+

∣DUj∣p

ˆ
Bm−1

∣Duj∣p
> 0.

By the Hölder inequality this implies that for every r ∈ [1, p),

lim inf
j→∞

⎛
⎝

ˆ
Bm∩Rm

+

∣DUj∣p
⎞
⎠

q
p

ˆ
Bm−1

∣Duj∣r
> 0.

If 1 < sq < p we set q = sp, by the fractional Gagliardo–Nirenberg interpolation inequality
(proposition 1.9) we obtain

lim
j→∞

(
ˆ

Bm∩Rm
+

∣DUj∣p)
sq
p

E s,q(uj)
= +∞,

the case sq < 1 is similar.

5.2 Quantitative obstruction for the lifting problem

We also have the following necessary condition for the existence of a lifting.

Theorem 5.7. If N is compact, s ∈ (0, 1), p ∈ [1,+∞), 1 ≤ sp < m and if π ∶ Ñ → N is a
Riemannian covering and if for every u ∈ Ws,p(M, Ñ ) there exists a map ũ ∈ Ws,p(M,N)
such that π ○ ũ = u, then Ñ is compact.

The main step will be to construct a map with prescribed regularity properties.

Proposition 5.8. If 1 < sp < m. If π ∶ Ñ → N is a Riemannian covering map and if the
manifold Ñ is not compact, then for every b̃ ∈ N , there exists a map ũ ∈ C(Bm ∖ {0}) such that

(i) for every q ∈ [1,+∞) such that 1
q >

1
p +

1−s
m , one has ũ ∈ W1,q(Bm,N),

(ii) ũ /∈ Ws,p(Bm,N),

(iii) ũ = b̃ in Bm ∖Bm
1/2.

Proposition 5.8 in turn will follow from the iteration of the following elementary
construction.
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5 Analytical obstruction and lack of linear estimates

Lemma 5.9. Let m ∈ N, s ∈ (0, 1) and p ∈ [1,+∞). There exists a constant C > 0. If
π ∶ Ñ → N is a Riemannian covering map, then for every c̃, b̃ ∈ Ñ and every M ∈ R, there
exists a map ũ ∈ C(Bm, Ñ ) such that

(a) ũ = b in Bm
1 ∖Bm

1/2,

(b) for every x ∈ Bm,
∣Dũ(x)∣ ≤ 4 dÑ (b̃, c̃),

(c) for every s ∈ (0, 1) and p ∈ [1,+∞),

E s,p(ũ) ≥ C dÑ (b̃, c̃)p.

Proof. Let f̃ ∶ [0, 1] → Ñ be a constant velocity geodesic from c̃ to b̃. That is, f̃ (0) = c̃,
f̃ (1) = b̃ and ∣ f ′∣ = dÑ (b̃, c̃) on [0, 1]. We define the map ũ ∈ C(Bm, Ñ ) for each x ∈ Bm

by

ũ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c̃ if ∣x∣ ≤ 1
4 ,

f̃ (2− 4∣x∣) if 1
4 ≤ ∣x∣ ≤ 1

2 ,
b̃ if 1

2 ≤ ∣x∣ ≤ 1.

We have
E s,p(ũ) ≥ dÑ (b̃, c̃)p

ˆ
Bm

1 ∖Bm
1/2

ˆ
Bm

1/4

1
∣y − x∣m+sp dx dy,

where the last integral is positive.

Proof of proposition 5.8. Since Ñ is connected and not compact, for every b̃ ∈ Ñ and
every j ∈ N, there exists a point c̃j ∈ Ñ such that dN (b̃, c̃j) = 2j(m

p −s). We let ũj be given
by lemma 5.9. We define for each j ∈ N, ρj ≜ 2−j. If we set R = 3

√
m/2, there exists

a sequence of points (aj)j∈N converging to 0 such that the balls Bρj(aj) are pairwise
disjoint and ⋃j∈N Bρj(aj) ⊂ BR. We define the map u ∶ BR →N for every x ∈ BR by

ũ(x) =
⎧⎪⎪⎨⎪⎪⎩

ũj(
x−aj

ρj
) if x ∈ Bρj(aj) for some j ∈ N,

b̃ otherwise.

We have by lemma 5.9 and by the definition of c̃j and of ρj

E s,p(ũ) ≥ ∑
j∈N

ρ
m−sp
j E s,p(ũj) ≥ C6 ∑

j∈N

ρ
m−sp
j dN (b̃, c̃j)p ≥ C6 ∑

j∈N

1 = +∞.

and on the other handˆ
Bm

R

∣Du∣q ≤ ∑
n∈N

ˆ
Bm

ρj
(a)

∣Dũ∣q ≤ ∑
j∈N

ρ
m−q
j

ˆ
Bm

∣Dũj∣p

≤ C7 ∑
j∈N

ρ
m−q
j dN (b̃, c̃j)q

≤ ∑
j∈N

C8

2jq(m( 1
q−

1
p )−(1−s))

< +∞,
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5.2 Quantitative obstruction for the lifting problem

since by assumption q(m( 1
q −

1
p) − (1− s)) = qm( 1

q −
1
p −

1−s
m ) > 0.

Proof of theorem 5.7. Let b ∈ N . The set π−1({b}) ⊂ Ñ is countable and can thus be
written as π−1({b}) = {b̃j ∣ j ∈ N}. We set q = sp if sp > 1 and q = 1+s

2 p if sp = 1.
For every j ∈ N, let ũj be the map given by proposition 5.8 with b̃ = b̃j. We consider a

sequence of balls (Bρj(aj))j∈N such that the balls (Bρj(aj))j∈N are disjoint, and for every
j ∈ N, we have

ρ
m−sp
j

ˆ
Bm

∣Dũj∣q ≤
1
2j .

and (aj)j∈N converges to 0. We define the map u ∶ Bm →N by

u(x) =
⎧⎪⎪⎨⎪⎪⎩

(π ○ ũj)(
x−aj

ρj
) if x ∈ Bρj(aj) for some j ∈ N,

b otherwise.

We immediately have u ∈ W1,q(Bm,N). It follows from the Gagliardo–Nirenberg

fractional interpolation inequality that u ∈ W
q
p ,p(Bm,N). If sp > 1, then since q = sp, we

have u ∈ Ws,p(Bm,N); if sp = 1, then q = 1+p
2 and u ∈ W

1+s
2 ,p(Bm,N) ⊂ Ws,p(Bm,N).

In order to conclude, assume that there exists ũ ∈ Ws,p(Bm,N) such that π ○ ũ =. Since
u ∈ C(Bm ∖ {0, a0, a1, . . . },N), we have by proposition 5.8 ũ ∈ C(Bm ∖ {0, a0, a1, . . . },N).
By construction of u, the map u = b on Bm ∖ {0} ∖⋃j∈N Bρj/2(aj). Since the latter set

is connected, there exists thus j ∈ N such that ũ = b̃j on that set. Hence, we have
ũ(x) = ũj( x−a

ρj
) for every x ∈ Bρj(aj), in contradiction with the fact that ũj /∈ Ws,p(Bm,M)

in view of proposition 5.8.

Problem 5.2 (88). Show that a counterexample to theorem 5.7 can be constructed in
such a way that u ∈ C∞(BR ∖ {0},N).

Problem 5.3 (88). Show that a counterexample to theorem 5.7 can be constructed in
such a way that ũ is a limit in Ws,p(M,N) of smooth maps.

Lemma 5.9

Theorem 5.10. If N is compact, s ∈ (0, 1), p ∈ [1,+∞), if π ∶ Ñ → N is a covering map and
if Ñ is not compact, then there exists a sequence ũj ∈ Ws,p(M,N) such that

lim
j→∞
E s,p(ũj) = +∞ and lim inf

j→∞

E s,p(ũj)s

E s,p(π ○ ũj)
> 0.

In particular, if the covering π ∶ Ñ → N , then the lifting is unique up to a deck
transformation, which preserves the energy of the lifting. Hence there is no linear
estimate on the lifting. Theorem 5.10 extends the phenomenon of the nonexistence of
lifting for subcritical dimensions m > sp to the absence of linear estimates to (sub)critical
dimensions m ≤ sp.

63



5 Analytical obstruction and lack of linear estimates

Proof of theorem 5.10. Let b̃ ∈ Ñ . Since the manifold Ñ is not compact, there exists a
sequence (c̃j)j∈N such that limj→∞ dÑ (c̃j, b̃) = +∞. Let ũj be given by lemma 5.9. We
estimate then

E s,p(π ○ ũ) ≤ C9 dÑ (c̃j, b̃)sp

and
dÑ (c̃j, b̃)sp ≤ E s,p(π ○ ũ).

The conclusion then follows.

5.3 Comments

Theorem 5.1 is due to Bethuel [Bet14], with a statement of a necessary condition that
π1(N) is finite and π2(N) ≃ ⋯ ≃ π⌊p−1⌋(N) are trivial. A particular case of theorem 5.1
corresponding to N = S1 was obtained by Fabrice Béthuel and Françoise Demengel
[BD95, theorem 6]. The passage from theorem 5.6 to proposition 5.5 and theorem 5.1 is
in fact a particular instance of nonlinear uniform boundedness principles for Sobolev
mappings [MVS19].

Theorem 5.7 was proved for N = S1 by Jean Bourgain, Haïm Brezis and Petru
Mironescu [BBM00, theorem 2 (b)], with an example of the form (cos∣x∣−α, sin∣x∣−α)
treated through the fractional Gagliardo–Nirenberg interpolation inequality. This
counterexample was transfered to noncompact universal coverings by Fabrice Béthuel
and David Chiron [BC07, proposition 2]; the proof is based on the existence of a ray
(unbounded minimizing geodesic) and goes through any noncompact Riemannian
covering. The proof of theorem 5.7 presented here highlights the connection of the
analytical obstruction with the failure of linear bounds, which can also be connected
through a general uniform boundedness principle.

The same approach of bundling together maps satisfying worsening bounds has
been used by Fabrice Béthuel and David Chiron to prove the existence of maps in
W1,p(M, S2) that can be lifting by the Hopf fibration π ∶ S3 → S2 [BC07, theorem 4 d)].

Theorem 5.10 is due for π ∶ R→ S1 when m = 1 to Benoît Merlet [Mer06, theorem 1.1]
and when m ≥ 2 to Petru Mironescu and Ioana Molnar [MM15, proposition 5.7].
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6 Liftings

6.1 Construction of a lifting

We first construct a lifting for maps in W1,p(M,N) when the domain manifoldM is
simply-connected.

Theorem 6.1. Assume that the manifoldM is compact and simply-connected and π ∶ Ñ → N
is a covering map. For every u ∈ W1,p(M,N), there exists a map ũ ∈ W1,p(M, Ñ ) such that
π ○ ũ = u.

Since the Riemannian covering map π ∶ M → N is by definition a local isometry, if
ũ ∈ W1,p(M, Ñ ), then for almost every x ∈ M,

∣D(π ○ ũ)(x)∣ = ∣Dũ(x)∣,

and thus for every q ∈ [1,+∞), ũ ∈ W1,p(M, Ñ ) if and only if π ○ ũ ∈ W1,p(M, Ñ ).

Lemma 6.2. If ` ≥ 2, if u ∈ W1,2(Q`,N), if g̃ ∈ W1,1(Q`, Ñ ) and if tr∂Q` u = π ○ g̃ almost
everywhere on ∂Q`, then there exists a map ũ ∈ W1,2(Q`,N) such that π ○ ũ = u on Q` and
tr∂Q` ũ = g̃ on ∂Q`.

The proof of lemma 6.2 rests on two lemmas describing the behaviour of a Sobolev
functions on almost every one-dimensional line and on almost every two-dimensional
plane.

Lemma 6.3. For every u ∈ W1,p(Q`, Rν), then there exists a negligible sets E ⊂ Q` and
F ⊂ Q`−1 such that

(i) if y ∈ Q`−1 ∖ F, then u∣Q1×{y} ∈ W1,p(Q1 × {y}, Rν) and D(u∣Q1×{y}) = (Du)∣Q1×{y},

(ii) if y ∈ Q`−1 ∖ F, then tr∂Q1×{y} u∣Q1×{y} = (tr∂Q`−1 u)∣∂Q1×{y},

(iii) if (x, y) ∈ Q` ∖ (E ∪Q1 × F), then tr{(x,y)} u∣Q1×{y} = u(x, y).

Proof. Let (uj)j∈N be a sequence of functions in C1(Q`, Rν) such that for every j ∈ N,

ˆ
Q`

∣Duj −Du∣p + ∣uj − u∣p ≤ 1
2j . (6.1)
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6 Liftings

By elementary trace theory, we have
ˆ

∂Q1×Q`−1
∣uj − u∣p ≤ C1

2j . (6.2)

We define the sets

E ≜ {(x, y) ∈ Q1 ×Q`−1 = Q` ∣ ∑
j∈N

∣uj(x, y) − u(x, y)∣p = +∞}

and

F ≜
⎧⎪⎪⎨⎪⎪⎩

y ∈ Q`−1 ∣ ∑
j∈N

ˆ
Q1×{y}

∣Duj −Du∣p + ∣uj − u∣p = +∞ or ∂Q1 × {y} /⊆ E
⎫⎪⎪⎬⎪⎪⎭

In view of (6.1) and (6.2), both sets E and F are negligible.
Moreover, for every y ∈ Q`−1 ∖ F, the sequence (uj∣[0,1]×{y})j∈N converges to the

function u∣[0,1]×{y} and for every (x, y) ∈ Q` ∖ E, the sequence of vectors (uj(x, y))j∈N

converges to the vector u(x, y). Moreover, ∂Q1 × (Q`−1 ∖ F) ⊆ Q` ∖ E. The conclusion
follows from continuity of weak derivatives and of the trace in Sobolev spaces.

We also use the two-dimensional version of this lemma.

Lemma 6.4. For every u ∈ W1,p(Q`, Rν), then there exists a negligible sets E ⊂ Q`−1 and
F ⊂ Q`−2 such that

(i) if z ∈ Q`−2 ∖G, then u∣Q2×{z} ∈ W1,p(Q2 × {z}, Rν) and D(u∣Q2×{z}) = (Du)∣Q2×{z},

(ii) if z ∈ Q`−2 ∖G, then tr∂Q2×{z} u∣Q2×{z} = (tr∂Q` u)∣∂Q2×{z},

(iii) if (y, z) ∈ Q`−1 ∖ (E ∪Q1 × F), then trQ1×{(y,z)} u∣Q2×{z} = u∣Q1×{(y,z)}.

The proof of lemma 6.4 is similar to the proof of lemma 6.3.

Problem 6.1 (8). Prove lemma 6.4.

Proof of lemma 6.2. In view lemma 6.3 and of the lifting of continuous maps on an
interval, for almost every (` − 1)–dimensional face Q ⊂ ∂Q`, we define the map ũQ ∶
Q` → Ñ almost everywhere on Q` by requiring it to be continuous on almost every
segment perpendicular to Q and coinciding with g̃ on Q`. Moreover, ũQ is measurable
and weakly differentiable in the direction normal to Q.

For every x ∈ Q` on which ũQ1(x) and ũQ2(x) are defined, let Σ be a rectangle
consisting of the two segments that have been used to define this values (which are
colinear if Q1 and Q2 are opposite sides) and the other sides are taken in ∂Q`. By
applying lemma 6.3 and lemma 6.4 for almost every x ∈ Q`, we have u ∈ W1,2(Σ,N)
and tr∂Σ u∣Σ = u∣∂Σ ∈ W1,1(∂Σ) and we have g̃∣Σ∩∂Q` ∈ W1,1(Σ∩ ∂Q`). By proposition 2.11,
u∣∂Σ is almost everywhere equal to the restriction of a continuous function (and is equal
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6.2 Fractional construction of a lifting

at the vertices), and hence by classical properties of lifting of continuous mappings, one
should have ũQ1(x) and ũQ2(x).

We define the map ũ to be the common value of these liftings on a full measure
set. By construction ũ is weakly differentiable in all the directions of axis and has the
required trace on each face.

Problem 6.2 (8888). Prove that uQ is measurable.

Proof of theorem 6.1. SinceM is a compact manifold, it can be embedded isometrically
in some Euclidean space Rµ. Let ΠM ∶ M + B

µ
δM
→ M denote the nearest point

retraction. We define the map U = u ○ Π. We check that U ∈ W1,p(M+B
µ
δM

,N).
Let Uµ

η = {Q ∈ Lµ
η ∣ Q ⊂ M+ B

µ

δM/2. When η > 0 is small enough, ⋃Uµ
η Q is a

deformation retract ofM+B
µ

δM/2. We denote by U `
η the set of `-dimensional faces of

the cubes in Uµ
η .

By lemma 6.3, for almost every h ∈ B
µ

δM/2, U∣⋃U1
η+h ∈ W1,p(⋃U1

η + h), that is the
function is in the Sobolev space on every segment and the traces and the vertices
coincide. Moreover, we can ensure by lemma 6.4, that U∣⋃U2

η+h ∈ W1,p(⋃U1
η + h) and

that tr⋃U1
η+h U∣⋃U2

η+h = tr⋃U1
η+h U. By proposition 2.11, the map U∣⋃U1

η+h is almost

everywhere equal to the restriction of a continuous map F ∈ C(⋃U2
η + h,N). SinceM

is simply connected, the set ⋃Uµ
η + h is simply connected and the set ⋃U2

η + h is also
simply connected. By classical results on the lifting, there exists F̃ ∈ C(⋃U2

η + h, Ñ )
such that π ○ F̃ = F. In particular, we have F̃∣⋃U1

η+h ∈ W1,p(⋃U1
η + h, Ñ ). We set Ũ = F̃

on ⋃U1
η + h. We apply now lemma 6.2, to define successively the map Ũ on the sets

⋃U2
η + h, . . . ,⋃Uµ

η + h.
Finally, we observe that since Ũ ∈ W1,p(⋃Uµ

η + h), there exists ũ ∈ W1,p(M, Ñ such
that Ũ = ũ ○ ΠM onM+B

µ

δM/4.

Problem 6.3 (8). Prove theorem 6.1 whenM= Rν.

Problem 6.4 (888). Prove theorem 6.1 whenM⊂ Rν is an open set, with a smooth
boundary.

6.2 Fractional construction of a lifting

When 0 < sp < 1, Sobolev maps are not regular enough to guarantee for example some
uniqueness property for the lifting; this leaves much room for the construction of a
lifting, which is possible without any restriction.

Theorem 6.5. Let s ∈ (0, 1) and p ∈ [1,+∞). If sp < 1 and if π ∶ M̃ → N is a Riemannian
covering map, then for every u ∈ Ws,p(M,N), there exists ũ ∈ Ws,p(M, Ñ ) such that π ○ ũ =
u.
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6 Liftings

Proof of theorem 6.5 whenM= Qm ≜ [0, 1]m. We define for each j ∈ N, the set of cubes

Qj = {[ k1
2m , k1+1

2m ) ×⋯× [ km
2j , km+1

2j ] ∣ k1, . . . , km ∈ {0, . . . , 2j − 1}}

and we define the function vj ∶ [0, 1)m → Rν by defining if Q ∈ Qj and x ∈ Qj,

vj(x) =
 

Q
u.

By classical properties of measurable functions, the sequence (vj)j∈N converges almost
everywhere to u.

Let Π ∶ N +Bν
δN
→N be the nearest-point retraction given by lemma 2.2 and let b ∈ N .

We define

uj(x) =
⎧⎪⎪⎨⎪⎪⎩

Π(uj(x)) if uj(x) ∈ N +Bν
δN

,
b otherwise.

By definition of uj, there exists a ∈ N such that u0 = a in [0, 1)m. We choose ã ∈ N
such that π(ã) = a. We assume now that ũj has been defined. Since the manifold N
is connected, and thus path-connected, for every x ∈ [0, 1)m, there exists a minimizing
geodesic γ ∈ C1([0, 1],N) such that γ(0) = uj(x) and γ(1) = uj+1(x). By the classical
lifting theory, there exists γ̃ ∈ C1([0, 1], Ñ) such that π ○ γ̃ = γ and γ̃(0) = ũj(x). We
define ũj+1(x) ≜ γ̃(1) and we observe that π ○ ũj+1 = uj+1 and that

dÑ (ũj+1(x), ũj(x)) = dN (uj+1(x), uj(x)) (6.3)

We claim that for every x ∈ [0, 1)m,

dN (uj+1(x), uj(x)) ≤ C2(dN (vj+1(x), u(x)) + dN (vj(x), u(x))) (6.4)

If dist(vj(x),N) ≤ δN and dist(vj+1(x),N) ≤ δN , then by the Lipschitz-continuity of Π
and by the triangle inequality, we have

dN (uj+1(x), uj(x)) ≤ C3dN (uj+1(x), uj(x))
≤ C3(dN (vj+1(x), u(x)) + dN (vj(x), u(x))).

(6.5)

Otherwise, we have

dN (uj+1(x), uj(x)) ≤ diamN
δN

(dN (vj+1(x), u(x)) + dN (vj(x), u(x))). (6.6)

The inequality (6.4) follows then from (6.5) and (6.6).
From (6.4) we deduce that
ˆ
[0,1)m

dN (uj+1(x), uj(x))p dx

≤ C4
⎛
⎝

ˆ
[0,1)m

dN (vj+1(x), u(x))p dx +
ˆ
[0,1)m

dN (vj(x), u(x))p dx
⎞
⎠

. (6.7)

68



6.2 Fractional construction of a lifting

We compute for every j ∈ N,
ˆ
[0,1)m

dN (vj(x), u(x))p dx = ∑
Q∈Qj

2jm
ˆ

Q

ˆ
Q

dN (u(y), u(x))p dy dx.

We observe now that if x, y ∈ Q for some Q ∈ Qj, then by Pythagoras’ theorem,
∣y − x∣ ≤

√
m2−j, and thus

∑
j∈N

{x,y}⊂Q
Q∈Qj

∑
x,y∈Q

2j(m+sp) ≤ C5

∣y − x∣m+sp ,

and

∑
j∈N

2jsp
ˆ
[0,1)m

dN (vj(x), u(x))p dx ≤ C6

¨

[0,1)m×[0,1)m

dN (u(y), u(x))p

∣y − x∣m+sp dy dx. (6.8)

and finally by (6.7)

∑
j∈N

2jsp
ˆ
[0,1)m

dN (uj+1(x), uj(x))p dx ≤ C7

¨

[0,1)m×[0,1)m

dN (u(y), u(x))p

∣y − x∣m+sp dy dx. (6.9)

By (6.3) and (6.9), we have

∑
j∈N

2jsp
ˆ
[0,1)m

dN (ũj+1(x), ũj(x))p dx ≤ C7

¨

[0,1)m×[0,1)m

dN (u(y), u(x))p

∣y − x∣m+sp dy dx. (6.10)

In particular, for almost every x ∈ [0, 1)m,

∑
j∈N

2jspdN (ũj+1(x), ũj(x))p < +∞,

and thus if k < `, one has by Hölder’s inequality

dN (ũ`(x), ũk(x)) ≤
`−1

∑
j=k

dN (ũj+1(x), ũj(x))

≤
⎛
⎝
`−1

∑
j=k

2jspdN (ũj+1(x), ũj(x))p⎞
⎠

1
p ⎛
⎝
`−1

∑
j=k

1

2
jsp
p−1

⎞
⎠

1− 1
p

≤ C8

2ks

⎛
⎝∑j∈N

2jspdN (ũj+1(x), ũj(x))p⎞
⎠

1
p

.

The sequence (ũj(x))j∈N thus a Cauchy sequence in Ñ that converges to some ũ(x) ∈ N
and for almost every x ∈ [0, 1)m, π ○ ũ(x) = limj→∞ π ○ ũj(x) = limj→∞ uj(x) = u(x).
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6 Liftings

It remains to prove that u ∈ Ws,p([0, 1)m,N). We define for each j ∈ N the set

∆j ≜ ⋃
Q∈Qj

Q ×Q ⊂ [0, 1)m × [0, 1)m.

For every x, y ∈ [0, 1)m ×[0, 1)m, if (x, y) ∈ ∆k and ` ≥ k, we have by the triangle inequality

dÑ (ũ`(y), ũ`(x)) ≤
`

∑
j=k

dÑ (ũj+1(y), ũj(y)) + dÑ (ũj+1(x), ũj(x)) + dÑ (ũk(y), ũk(x))

=
`

∑
j=k

dÑ (ũj+1(y), ũj(y)) + dÑ (ũj+1(x), ũj(x)),

since by construction ũk(y) = ũk(x) if (x, y) ∈ ∆`. By definition of ũ we have for every
x, y ∈ ∆k,

dÑ (ũ(y), ũ(x)) ≤
∞
∑
j=k

dÑ (ũj+1(y), ũj(y)) + dÑ (ũj+1(x), ũj(x)).

If p = 1, this implies that for every k ∈ N,

¨

∆k∖∆k+1

dÑ (ũ(y), ũ(x))
∣y − x∣m+s dy dx ≤

∞
∑
j=k

¨

∆k∖∆k+1

dÑ (ũj+1(x), ũj(x))
∣y − x∣m+s dy dx.

and thus by summing over k ∈ N, we obtain

¨

[0,1)m×[0,1)m

dÑ (ũ(y), ũ(x))
∣y − x∣m+s dy dx ≤

∞
∑
j=0

j

∑
k=0

¨

∆k∖∆k+1

dÑ (ũj+1(x), ũj(x))
∣y − x∣m+s dy dx

=
∞
∑
j=0

¨

[0,1)m×[0,1)m∖∆j+1

dÑ (ũj+1(x), ũj(x))
∣y − x∣m+s dy dx.

(6.11)

If p > 1, have for every x ∈ [0, 1)m,

(
∞
∑
j=k

dÑ (ũj+1(x), ũj(x)))
p

≤ 2p−1⎛
⎝
( ∑

j≥k
2j ∣y−x∣≥1

dÑ (ũj+1(x), ũj(x)))
p

+( ∑
j≥k

2j ∣y−x∣<1

dÑ (ũj+1(x), ũj(x)))
p⎞
⎠

. (6.12)

By the discrete Hölder inequality, we bound the first term in the right-hand side of
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6.2 Fractional construction of a lifting

(6.12) for every δ > 0 by

( ∑
j≥k

2j ∣y−x∣≥1

dÑ (ũj+1(x), ũj(x)))
p

≤ ∑
j≥k

2j ∣y−x∣≥1

2jδdÑ (ũj+1(x), ũj(x))p ( ∑
j≥k

2j ∣y−x∣≥1

2−j δ
p−1 )

p−1

≤ C9∑
j≥k

2jδ ∣y − x∣δdÑ (ũj+1(x), ũj(x))p.

Similarly, we have for the second term in (6.12) for every δ > 0 by Hölder’s inequality

( ∑
j≥k

2j ∣y−x∣<1

dÑ (ũj+1(x), ũj(x)))
p

≤ ∑
j≥k

2j ∣y−x∣<1

2−δjdÑ (ũj+1(x), ũj(x))p ( ∑
j≥k

2j ∣y−x∣<1

2j δ
p−1 )

p−1

≤ C10∑
j≥k

dÑ (ũj+1(x), ũj(x))p

2jδ∣y − x∣δ
.

Therefore, by integration and by symmetry we have for every k ∈ N,

¨

∆k∖∆k+1

dÑ (ũ(y), ũ(x))p

∣y − x∣m+sp dy dx

≤ C11

∞
∑
j=k

2jδ
¨

∆k∖∆k+1

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+sp−δ
dy dx

+C12

∞
∑
j=k

2−jδ
¨

∆k∖∆k+1

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+sp+δ
dy dx.
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6 Liftings

By summing over k ∈ N, we get
¨

[0,1)m×[0,1)m

dÑ (ũ(y), ũ(x))p

∣y − x∣m+sp dy dx

≤ C11

∞
∑
j=0

j

∑
k=0

2jδ
¨

∆k∖∆k+1

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+sp−δ
dy dx

+C12

∞
∑
j=0

j

∑
k=0

2−jδ
¨

∆k∖∆k+1

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+sp+δ
dy dx

= C11

∞
∑
j=0

2jδ
¨

[0,1)m×[0,1)m∖∆j+1

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+sp−δ
dy dx

+C12

∞
∑
j=0

2−jδ
¨

[0,1)m×[0,1)m∖∆j+1

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+sp+δ
dy dx.

(6.13)

We observe that for if Q ∈ Qj+1, since by construction, the maps ũj and ũj+1 are
constant on Q, we have for every x ∈ Q,

dÑ (ũj+1(x), ũj(x))p = 1
2jm

ˆ
Q

dÑ (ũj+1, ũj)p.

hence for every β ∈ (0, 1)
¨

Q×[0,1)m∖Q×Q

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+β
dy dx

= 1
2jm

ˆ
Q

dÑ (ũj+1, ũj)p
¨

Q×(Rm∖Q)

1
∣y − x∣m+β

dy dx

= C132jβ
ˆ

Q
dÑ (ũj+1, ũj)p,

(6.14)

since β ∈ (0, 1), the constant depending on β. By summing over Q ∈ Qj+1 the estimate
(6.14), we deduce that

¨

[0,1)m×[0,1)m∖∆j+1

dÑ (ũj+1(x), ũj(x))p

∣y − x∣m+β
dy dx ≤ C142jβ

ˆ
[0,1)m

dÑ (ũj+1, ũj)p. (6.15)

Thus in view of (6.11) if p = 1, or (6.13) if p > 1 and if we choose δ > 0 such that
0 < sp − δ and sp + δ < 1, we deduce that

¨

[0,1)m×[0,1)m

dÑ (ũ(y), ũ(x))p

∣y − x∣m+sp dy dx ≤ C15 ∑
j∈N

2jsp
ˆ
[0,1)m

dÑ (ũj+1, ũj)p. (6.16)

72



6.3 Remarks and comments

By (6.10), we conclude that
¨

[0,1)m×[0,1)m

dÑ (ũ(y), ũ(x))p

∣y − x∣m+sp dy dx ≤ C16

¨

[0,1)m×[0,1)m

dN (u(y), u(x))p

∣y − x∣m+sp dy dx. (6.17)

Problem 6.5 (88). Show that for every measurable u ∶ M → N there exists a bounded
and measurable map ũ ∶ M → Ñ such that π ○ ũ = u onM.

6.3 Remarks and comments

Theorem 6.1 for M = Bm and N = S1 due to Fabrice Béthuel and Zheng Xiaomin
[BZ88, lemma 1 (i)] and to Fabrice Béthuel and David Chiron when M is simply
connected and π ∶ Ñ → N is the universal covering of N [BC07, theorem 1]. John
Ball and Argir Zarnescu, and Domenico Mucci have proved theorem 6.1 when π ∶
RP2 → S2 is the (universal) double covering of the projective plane RPn by the sphere
Sn [BZ11, theorem 2; Muc12, theorem 1.1]).

Our proof of theorem 6.1 follows the strategy of Fabrice Béthuel and Zheng Xiaomin
[BZ88, lemma 1 (i)] and its adaptation to the universal covering by Fabrice Béthuel and
David Chiron [BC07, theorem 1] and provides the detail on the adaptation to the case
whereM is not homeomorphic to a ball. An alternative would be to follow Mucci’s
approach [Muc12, theorem 3.5] and to prove that maps that are continuous outside
singularities of codimension 3 are strongly dense in W1,p(M,N) (see [Bet91, theorem
2; HL03a, theorem 6.1]), that such maps have a lifting with the same Sobolev energy
and thus the sequence of liftings of the approximations converges (Ball and Zarnescu
[BZ11, theorem 2] follow the same strategy but use the more delicate property of weak
density of smooth maps [PR03] whose full power does seem to be required). When
π ∶ R → S1, Carbou has constructed the lifting ũ by first computing its derivative
in terms of the derivative of u and showing that this equation admits a solution
[Car92, proposition 1] (see also [Mir07a, proof of theorem 3.1 (ii)]).

Theorem 6.5 is due for N = S1 to Jean Bourgain, Haïm Brezis and Petru Mironescu
[BBM00] and was extended to the case where π ∶ Ñ → N is a universal covering by
Fabrice Béthuel and David Chiron [BC07]. The construction of the lifting as a limit of
liftings on approximations on dyadic cubes that are as close as possible comes from
Bourgain, Brezis and Mironescu [BBM00], who deduce convergence and boundedness
estimates (6.9) and (6.16) that can be obtained from Bourdaud’s [Bou95]; they prove
also these estimates with a particular attention to the behaviour of the constants in
the equivalences. Bethuel and Chiron [BC07] follow the same strategy and propose a
simplified argument for the estimate (6.17) (it was not clear to us how the insertion
in [BC07] of (A.13) and (A.14) gives (A.12) is performed when p > 1). Our proof still
follows the same strategy and relies on the same estimates, that we have written out at
an elementary level and in a nonlinear formulation.

The constant appearing in the construction of theorem 6.5 is not sharp when in the
limit sp → 1. When p = 2, s < 1

2 and π ∶ R→ S1, Jean Bourgain, Haïm Brezis and Petru
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6 Liftings

Mironescu have given a construction with sharp constant [BBM00, theorem 4]. These
bounds on lifting yield in turn sharp estimates on Ginzburg–Landau functionals in
terms of norms of the boundary data in the trace space W1/2,2(∂M, S1) [BBM00, theorem
5]; this bound on the Ginzburg–Landau was obtained by Tristan Rivière with a proof
in the spirit of the proof of the extension for 0–connected manifolds theorem 4.3
[Riv00, proposition 2.1]. Petru Mironescu and Ioana Molnar have constructed liftings
satisfying the sharp bound when p ∈ [1,+∞) [MM15, theorem 1.3].

The only property used in theorem 6.5 is the fact that for every path γ ∈ C1([0, 1],N),
there exists a path γ̃ ∈ C1([0, 1], Ñ such that π ○ γ̃ = γ on [0, 1] and ∣γ̃′∣Ñ ≤ ∣γ̃′∣N . This
property is still satisfied when and thus theorem 6.5 still holds under the condition that
π ∶ Ñ → N is a Riemannian submersion (or isometric submersion), that is the differential of
π is at every point an isometry on the orthogonal to its kernel [Kli82, definition 1.11.9].

Theorem 6.6. Let s ∈ (0, 1) and p ∈ [1,+∞). If sp < 1 and if π ∶ M̃ → N is a Riemannian
submersion, then for every u ∈ Ws,p(M,N), there exists ũ ∈ Ws,p(M, Ñ ) such that π ○ ũ = u.
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7 Approximation of Sobolev mappings

7.1 The approximation theorem in slightly supercritical
dimension

We will prove the following approximation theorem in slightly supercritical dimension.

Theorem 7.1. Let p ∈ [1,+∞). If m = dim(M), if m − 1 ≤ p < m and if πm−1(N) ≃ {0},
then C∞(M,N) is dense in W1,p(M,N).

In view of proposition 3.1, the condition πm−1(N) ≃ {0} is necessary for the density
of smooth maps in W1,p(M,N).

The first construction in the proof of theorem 7.1 consists in modifying a function
inside a ball on which it has small energy in such a way that its image is small.

Lemma 7.2. Let δ ∈ (0, δN ). There exists κ > 0, such that for every u ∈ W1,p(Bm
ρ ,N) that

satisfies the estimate ˆ
Bm

ρ

∣Du∣p ≤ κρm−pδp,

then there exists σ ∈ ( ρ
2 , ρ), a map v ∈ W1,p(Bm

ρ ,N) and a set A ⊂ Bm
ρ such that

(i) v = u on Bm
ρ ∖Bm

σ ,

(ii) osc(v, Bm
σ ) ≤ δ,

(iii)
ˆ

Bm
ρ

∣Du −Dv∣p + ∣u − v∣p
ρp ≤ C

ˆ
A
∣Du∣p,

(iv) Lm(A) ≤ C
ρp

δp

ˆ
Bm

ρ

∣Du∣p.

A first tool to prove lemma 7.2 is the following construction of restrictions.

Lemma 7.3. If u ∈ W1,p(Bm
ρ , Rν), then

(i) for almost every r ∈ (0, ρ), one has u∣Sm−1
r

∈ W1,p(Sm−1
r , Rν) and D(u∣Sm−1

r
) = (Du)∣Sm−1

r

almost everywhere on Sm−1
r ,

(ii) for almost every r ∈ (0, ρ), one has trSm−1
r

u = u∣Sm−1
r

,

(iii)
ˆ ρ

0
(
ˆ

Sm−1
r

∣Du∣Sm−1
r

∣p) dr ≤
ˆ

Bm
∣Du∣p.
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7 Approximation of Sobolev mappings

The proof of lemma 7.3 is similar to the proof of lemma 6.3.

Lemma 7.4. There exists a constant C such that if δ > 0 is small enough and y ∈ N , there
exists a smooth map Πδ

y ∶ N → B
µ
δ (y) ∩N such that

(i) if z ∈ B
µ
δ (y) ∩N , then Πδ

y(z) = z,

(ii) ∥DΠδ
y∥L∞ ≤ C.

Proof. We take a function θ ∶ [0,+∞) → (0,+∞), such that θ = 1 on [0, 1/2] and θ = 0 and
[1,+∞). We set then for every z ∈ N ,

Πδ
y(z) = Π(θ( ∣z − y∣

δ
)z +(1− θ( ∣z − y∣

δ
))y).

We have then, since Π is smooth,

∣DΠδ
y(z)∣ ≤ C1(1+ ∣θ′( ∣z − y∣

δ
)∣ ∣z − y∣

δ
) ≤ C2,

since θ′ = 0 on [1,+∞).

Proof of lemma 7.2. By lemma 7.3, there is some σ ∈ (ρ/2, ρ) such that trSm−1
r

u = u∣Sm−1
r

∈
W1,p(Sm−1

r , Rν), D(u∣Sm−1
r

) = (Du)∣Sm−1
r

and
ˆ

Sm−1
σ

∣D trSm
r u∣p ≤ 2

ρ

ˆ
Bm

ρ

∣Du∣p. (7.1)

Since p > m − 1, by Morrey’s embedding on Sm−1
σ , we have for almost every y, z ∈ Sm−1

σ ,
in view of (7.1),

∣u(y) − u(x)∣ ≤ C3(
ˆ

Sm−1
σ

∣Du∣p)
1
p

∣y − x∣1−
m−1

p ≤ C4(
1
ρ

ˆ
Bm−1

ρ

∣Du∣p)
1
p

σ
1−m−1

p

≤ C5(κρm−p−1δp)
1
p ρ

1−m−1
p ≤ C5κ

1
p δ.

In particular if κ > 0 is small enough, there exists a point y∗ ∈ N , such that for almost
every x ∈ Sm−1

σ ,
u(x) ∈ Bν

δ/4(y∗). (7.2)

We now define the map v ∶ Bm
ρ →N for each x ∈ Bm

ρ by

v(x) =
⎧⎪⎪⎨⎪⎪⎩

u(x) if ∣x∣ > σ,
Πy∗(u(x)) if ∣x∣ ≤ σ,

where Πδ
y ∶ N → N is given by lemma 7.4. In view of (7.2), we have almost everywhere

on Sm−1
σ , trSm−1

σ
u = trSm−1

σ
Πy∗ ○ u = Πy∗ ○ trSm−1

σ
u and thus v ∈ W1,p(Bm

ρ ,N).
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7.1 The approximation theorem in slightly supercritical dimension

Finally, we observe that, since u = v on Bm
σ , we have

ˆ
Bm

ρ

∣Du −Dv∣p =
ˆ

A
∣Du −Dv∣p ≤ 2p−1

ˆ
A
∣Du∣p + ∣Dv∣p ≤ 2p−1(1+ ∥DΠδ

y∥
p
L∞)

ˆ
A
∣Du∣p.

where the set A is defined as

A ≜ {x ∈ Bm
µ ∣ u(x) /∈ Bm

δ/2(y∗)}.

We define the function f ∶ Bm
ρ → [0,+∞) for each x ∈ Bm

σ by

f (x) = (∣u(x) − y∗∣ − δ/4)+.

By the chain rule for Sobolev functions, f ○ u ∈ W1,p
0 (Bm

σ ) and f (x) ≥ δ
4 on the set A.

Hence, by the Chebyshev and Poincaré inequalities,

Lm(A) ≤ C6

ˆ
Bm

σ

∣ f ∣p ≤ C7σp

δp

ˆ
Bm

σ

∣D f ∣p ≤ C8σp

δp

ˆ
Bm

σ

∣Du∣p ≤ C9ρp

δp

ˆ
Bm

ρ

∣Du∣p.

Finally, by the Poincaré inequality, we have, since u = v on Bm
ρ ∖Bm

σ ,
ˆ

Bm
ρ

∣u − v∣p =
ˆ

Bm
σ

∣u − v∣p ≤ C10 σp
ˆ

Bm
σ

∣D(u − v)∣p ≤ C10 ρp
ˆ

Bm
ρ

∣D(u − v)∣p.

The second construction in theorem 7.1, is a controlled modification of the map
u inside a ball, with a quality of the approximation controlled by the energy of the
original map on the ball.

Lemma 7.5. If πm−1(N) ≃ {0} and if u ∈ W1,p(Bm
ρ ,N), then there exists σ ∈ ( ρ

2 , ρ) and
v ∈ W1,p(Bm

ρ ,N) such that

(i) u = v on Bm
ρ ∖Bm

σ ,

(ii) v is continuous on B̄m
σ ,

(iii)
ˆ

Bm
ρ

∣Du −Dv∣p + ∣u − v∣p
ρp ≤ C

ˆ
Bm

ρ

∣Du∣p.

The core construction in the proof of lemma 7.5 is the possibility to extend a map on
a sphere of subcritical dimension with a controlled on the energy of the extension. The
homotopy assumption plays a role in this precise lemma.

Lemma 7.6. If m − 1 < p < m, if πm−1(N) ≃ {0} and if w ∈ W1,p(Sm−1
σ ,N), then there exists

a map v ∈ (W1,p ∩C)(Bm
σ ,N) such that trSm−1

σ
v = w and

ˆ
Bm

σ

∣Dv∣p ≤ Cσ

ˆ
Sm−1

σ

∣Dw∣p.
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7 Approximation of Sobolev mappings

Proof. By scaling, we can assume that σ = 1. We first observe that if
´

Bm ∣Dw∣p = 0, then
there exists a point b ∈ N such that w = b almost everywhere on Sm−1. The conclusion
follows then by taking v ≜ w on Bm.

We assume now that
´

Bm ∣Dw∣p > 0. Since w ∈ W1,p(Sm−1) and p > m − 1, w = w̆ almost
everywhere, with w̆ ∈ (W1,p ∩C)(Sm−1,N). Without loss of generality, we assume tha
w̆ = w. By classical approximation of continuous maps by smooth maps, there exists
a map f ∈ C1(Sm−1,N) such that ∣ f − w̆∣ ≤ δN . Since by assumption πm−1(N) ≃ {0},
there exists a map F ∈ C1(Bm,N) such that F∣Sm−1 = f on Sm−1. We define then for every
λ ∈ (0, 1], the map vλ ∶ Bm →N for each x ∈ Bm by

vλ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w( x
∣x∣) if ∣x∣ ≥ λ,

ΠN ((2∣x∣
λ − 1)w( x

∣x∣) + 2(1− ∣x∣
λ
) f ( x

∣x∣)) if λ
2 ≤ ∣x∣ ≤ λ,

F( x
2λ) if ∣x∣ ≤ λ

2 .

We have vλ ∈ (W1,p ∩C)(Bm,N). Moreover, since p < m, we have

ˆ
Bm

∣Dvλ∣p ≤
ˆ 1

λ
(
ˆ

Sm−1
∣Dw∣p)rm−1−p dr + λm−p

ˆ
Bm

∣Dv1∣p

≤ 1
m − p

ˆ
Sm−1

∣Dw∣p + λm−p
ˆ

Bm
∣Dv1∣p.

By taking λ ∈ (0, 1) in such a way that

λm−p
ˆ

Bm
∣Dv1∣p ≤

1
m − p

ˆ
Sm−1

∣Dw∣p

we conclude that ˆ
Bm

∣Dvλ∣p ≤
2

m − p

ˆ
Sm−1

∣Dw∣p.

Proof of lemma 7.5. By lemma 7.3, there exists σ ∈ (ρ/2, ρ) such that if trSm−1
r

u = u∣Sm−1
σ

∈
W1,p(Sm−1

σ , Rν), then D(u∣Sm−1
σ

) = (Du)∣Sm−1
σ

and

ˆ
Sm−1

σ

∣DtrSm
σ

u∣p ≤ 2
ρ

ˆ
Bm

ρ

∣Du∣p.

We apply lemma 7.6 to the map w ≜ trSm−1
r

u, to obtain a map v ∶ Bm
σ → Rm. Since

trSm−1
σ

v = trSm−1
σ

u, we can extend v by u to Bm
ρ to obtain a map v ∈ W1,p(Bm

σ ,N).
By construction, we have

ˆ
Bm

ρ

∣Du −Dv∣p =
ˆ

Bm
σ

∣Du −Dv∣p ≤ 2p−1
ˆ

Bm
σ

∣Du∣p + ∣Dv∣p

≤ C11(
ˆ

Bm
ρ

∣Du∣p + 1
σ

ˆ
Sm−1

ρ

∣D trSm−1
σ

u∣p) ≤ C12

ˆ
Bm

ρ

∣Du∣p.
(7.3)
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7.1 The approximation theorem in slightly supercritical dimension

Finally, we note that since u = v on Bm
ρ ∖Bm

σ , by the Poincaré inequality with vanishing
trace on the ball Bm

σ , we have
ˆ

Bm
ρ

∣u − v∣p =
ˆ

Bm
σ

∣u − v∣p ≤ C13σp
ˆ

Bm
σ

∣D(u − v)∣p ≤ C13ρp
ˆ

Bm
ρ

∣D(u − v)∣p

and we conclude by (7.3).

We can summarize the constructions lemma 7.2 and lemma 7.5 in the following
statement.

Lemma 7.7. If πm−1(N) ≃ {0}. Then there exists a constant C > 0 such that if if u ∈
W1,p(Bm

ρ ,N), then there exists σ ∈ ( ρ
2 , ρ), v ∈ W1,p(Bm

ρ ,N) and a set A ⊂ Bm
ρ such that

(i) u = v on Bm
ρ ∖Bm

σ ,

(ii) lim supε→0 sup{∣v(y) − v(x)∣ ∣ x, y ∈ Bm
σ and ∣y − x∣ ≤ ε} ≤ δ,

(iii)
ˆ

Bm
ρ

∣Du −Dv∣p + ∣u − v∣p
ρp ≤ C

ˆ
Bm

ρ

∣Du∣p,

(iv) Lm(A) ≤ C
ρp

δp

ˆ
Bm

ρ

∣Du∣p.

Proof. If ˆ
Bm

ρ

∣Du∣p ≤ κρm−pδp,

we apply lemma 7.2. Otherwise we have
ˆ

Bm
ρ

∣Du∣p > κρm−pδp, (7.4)

we apply lemma 7.5, we set A = Bm
ρ and we and we note that in view of (7.4)

Lm(A) = C14ρm ≤ C15
ρp

δp

ˆ
Bm

ρ

∣Du∣p,

and thus the conclusion holds.

Lemma 7.8. LetM be a compact manifold. There exists an integer k, such that if ρ > 0 is small
enough, then there exists finite sets ai

j with 1 ≤ i ≤ k j, such that

M=
k
⋃
i=1

k j

⋃
j=1

BMρ/2(ai
j)

and for every i ∈ {1, . . . , k} and j, ` ∈ {1, . . . , k j}, if i ≠ j then B̄Mρ/2(ai
j) ∩ B̄Mρ/2(ai

`) = ∅.
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7 Approximation of Sobolev mappings

Proof. SinceM is compact it suffices to perform the construction locally.

In order to do this, we observe that in Rm, B̄m(ρ/2) covers a cube of edge-length
2ρ/

√
m. If we arrange the cubes on an array 2ρq√

m Zm with q ≥
√

m, then we find k = qm

families of nonintersecting balls covering Rn.

Problem 7.1 (88). Perform the construction of lemma 7.8 forM= Sm.

Proof of theorem 7.1. For every ρ > 0, let (ai
j)1≤i≤k,1≤j≤ki be the points given by lemma 7.8.

Let δ ≜ δN /k.

We set uρ
0 = u and given uρ

i−1 we construct uρ
i by applying lemma 7.7 on Bρ(aj

i), which
yields also a set Aj

i ⊂ Bρ(aj
i). We define Aρ

i = ⋃
ki
j=1 Ai

j.

We claim that we have the following properties

(a) if Hρ
i = ⋃

i
`=1⋃

k`
1=j Bρ/2(aj

i), then

lim
ε→0

sup{∣uρ
i (y) − uρ

i (x)∣ ∣ x, y ∈ Hρ
i and d(y, x) ≤ ε} ≤ iδN ,

(b) there exists a set Fρ
i ⊂M such that

ˆ
M

∣Duρ
i −Du∣p +

∣uρ
i − u∣p

ρp ≤ C16

ˆ
Fρ

i

∣Du∣p,

and

Hm(Fρ
i ) ≤ C17ρp

ˆ
M

∣Du∣p.

The property a follows from lemma 7.7 and by induction. Next, we have

ˆ
M

∣Duρ
i −Du∣p +

∣uρ
i − u∣p

ρp

≤ 2p−1⎛
⎝

ˆ
M

∣Duρ
i −Duρ

i−1∣
p +

∣uρ
i − ui−1∣p

ρp +
ˆ
M

∣Duρ
i−1 −Du∣p +

∣uρ
i−1 − u∣p

ρp

⎞
⎠
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7.1 The approximation theorem in slightly supercritical dimension

By lemma 7.7, and by our induction assumption,

ˆ
M

∣Duρ
i −Duρ

i−1∣
p +

∣uρ
i − u∣p

ρp ≤
ki

∑
j=1

ˆ
Bm

ρ (aj
i)
∣Duρ

i −Duρ
i−1∣

p +
∣uρ

i − u∣p

ρp

≤ C18

ki

∑
j=1

ˆ
Aj

i

∣Duρ
i−1∣

p

≤ C19

ˆ
Aρ

i

∣Duρ
i−1∣

p

≤ C20
⎛
⎝

ˆ
Aρ

i

∣Du∣p +
ˆ
M

∣Duρ
i−1 −Du∣p

⎞
⎠

≤ C21

ˆ
Aρ

i ∪Fρ
i−1

∣Du∣p.

The set Aρ
i satisfies, in view of our induction assumption,

Hm(Aρ
i ) ≤ C22ρp

ˆ
M

∣Duρ
i−1∣

p

≤ C23ρp(
ˆ
M

∣Duρ
i−1 −Du∣p +

ˆ
M

∣Du∣p)

≤ C24ρp
ˆ
M

∣Du∣p.

If we set Fρ
i = Aρ

i ∪ Fρ
i−1, we have

Hm(Fρ
i ) ≤ H

m(Aρ
i ) +H

m(Fρ
i−1) ≤ C25ρp

ˆ
M

∣Du∣p.

We set now uρ = uρ
k and Fρ = Fρ

k and we observe that by Lebesgue’s dominated
convergence theorem,

lim sup
ρ→0

ˆ
M

∣Duρ
i −Duρ

i−1∣
p +

∣uρ
i − u∣p

ρp ≤ C26 lim sup
ρ→0

ˆ
Fρ
∣Du∣p = 0,

since
Hm(Fρ

i ) ≤ C27ρp
ˆ
M

∣Du∣p.

It remains to remark that in view of (a), we have

lim sup
ε→0

sup{∣u(y) − u(x)∣ ∣ x, y ∈ M and d(y, x) ≤ ε} ≤ δN .

Problem 7.2 (8). Approximate uρ
k by smooth mappings.
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7 Approximation of Sobolev mappings

7.2 Other approximation results

Theorem 7.9. Let p ∈ [1,+∞). If m = dim(M), if 1 ≤ p < m and if π⌊p⌋(N) ≃ {0}, then
C∞(Bm,N) is dense in W1,p(Bm,N).

Theorem 7.10. Let p ∈ [1,+∞). If m = dim(M) and if 1 ≤ p < m, then maps that are smooth
outside a set of dimension m − ⌊p + 1⌋ are dense in W1,p(Bm,N).

Proof of theorem 7.10 when m − 1 < p < m. The proof follows the proof of theorem 7.1,
with a homogeneous extension replacing the extension in lemma 7.6.

7.3 Remarks and comments

Theorem 7.1, theorem 7.9 and theorem 7.10 is due to Fabrice Bethuel [Bet91].
We present here a proof of theorem 7.1 due to Augusto Ponce with the author

[PVS09]; this proof has been adapted to higher-order Sobolev spaces Wk,p(M,N) when
m − 1 ≤ kp < m [GN11; BPVS08, §3]. This approach can be adapted to the case m = p + 1,
but does not seem to work any more when m > p + 1.

The original proofs of theorem 7.9 of Fabrice Bethuel [Bet91, §1] and of Lin Fanghua
and Hang Fengbo [HL03a] is based on a two-scale decomposition into cubes of the
domain. It is possible to work with a single decomposition into cubes provided the
cubes are not aligned with each other by relying on an opening construction [BPVS15].

Lemma 7.4 is due to Fabrice Béthuel [Bet91, lemma A.5].
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8 Perspectives

8.1 The trace problem

The trace problem is not currently completely solved:

Open problem 8.1. For 4 ≤ p < m, determine whether every map in W1− 1
p ,p(Bm−1,N)

is the trace of a map in W1,p(Bm−1 × (0, 1),N), when π1(N) is finite, π⌊p−1⌋(N) ≃ {0},
and the groups π2(N), . . . , π⌊p−2⌋(N) are finite but not all trivial.

8.2 Relaxed questions

8.2.1 Approximation by smooth maps outside a singular set

If π⌊p⌋(N) /≃ {0}, maps in W1,p(M,N) cannot be in general approximated strongly by
smooth maps in C∞(M,N) (see proposition 3.1). This leads to the question about what
are the smoothest maps that can be used to approximate maps in W1,p(M,N). The
general answer is that they can be approximated by smooth maps outside a singular
set of codimension ⌊p + 1⌋.

More precisely, one defines

R∞
` (M,N) ≜ {u ∈ C∞(M∖K,N) ∣ K ⊂M is compact and

is contained in a union of `–dimensional submanifolds ofM, and
for every k ∈ N∗, there exists Ck such that for each x ∈ M∖K

∣Dku(x)∣ ≤ Ck/dist(x, K)k}.

One has then the following density result:

Theorem 8.1. IfM andN are compact Riemannian manifolds, then R∞
m−⌊p+1⌋(M,N) is dense

in W1,p(M,N).

Theorem 8.1 is due to Fabrice Béthuel and Zheng Xiaomin when p < m ≤ p + 1
[BZ88, theorem 4]) and to Fabrice Béthuel in the general case [Bet91, theorem 2] (see
also [HL03a, theorem 5.1]).

8.2.2 Singular extensions

If π⌊p−1⌋(N) /≃ {0}, then maps in W1−1/p,p(∂M,N) are not necessarily the traces of
maps in W1,p(M,N) (theorem 3.6).
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8 Perspectives

This obstruction can be bypassed by relaxed by considering for U ∈ W1,p(M,N), an
energy of the form

Jε(U) =
ˆ
M

∣DU∣p + 1
εp

ˆ
M

dist(u,M)p.

When p = 2 and N = S1, we have for every y ∈ R2 with dist(y,M)2 = (1 − ∣y∣)2, and
thus if ∣y∣ ≤ 1, 1

2(1 − ∣y∣2)2 ≤ dist(y,M) ≤ (1 − ∣y∣2)2, and Jε(U) is equivalent to the
Ginzburg–Landau energy.

There exists a constant C such that for ε > 0 small enough, for every u ∈ W1/2,2(M, S1)
one has [BBM00, theorem 5] (see also [Riv00, proposition 2.1])

inf{G1,p
ε (U) ∣ U ∈ W1,2(M, S1) and tr∂MU = u} ≤ C E1/2,2(u) ln

1
ε

.

The proof of the estimates shows that in general if π1(N) ≃ ⋯ ≃ πp−2(N) ≃ {0} and if
p ∈ N, then

inf{G1,p
ε (U) ∣ U ∈ W1,p(M,N) and tr∂MU = u} ≤ C E1−1/p,p(u) ln

1
ε

.

In the critical case m = p, where estimates for extensions fail, it has been proved
that any map in W1− 1

m ,m(Sm−1,N) has an extension whose gradient in the weak
Marcinkiewicz space is controlled [PVS17] (see also [PR14]).

Open problem 8.2. If m > p ∈ N and π1(N) ≃ ⋯ ≃ πp−2(N) ≃ {0}, is it possible for

every u ∈ W1− 1
p ,p(M,N) to construct U ∈ W1,1(M,N) such that tr∂MU = u and for

every λ ∈ (0,+∞),

λ
1
pHm({x ∈ M ∣ ∣DU(x)∣ ≥ λ}) ≤ CE1− 1

p ,p(u)?

8.2.3 Relaxed lifting

If s ∈ (0, 1) and sp ≤ 2 < m, the analytical obstruction to the lifting problem (theorem 5.7)
tells somehow that the space in which we are searching a lifting might not be the right
space.

When N = S1 and π ∶ R→ S1 is the universal covering, then any map can be lifted in
(Ws,p +W1,sp)(M, R).

Theorem 8.2. If 0 < s < 1 and 2 ≤ sp < m, then for every map u ∈ Ws,p(Bm, S1), there exists a
map ũ ∈ (Ws,p +W1,sp)(Bm, R) such that (cos ũ, sin ũ) = u.

Theorem 8.2 is due to Petru Mironescu [Mir08]. When s = 1
2 , p = 2, m ≥ 2 and u is

the strong limit of smooth maps, theorem 8.2 is due to Jean Bourgain and Haïm Brezis
[BB03, theorem 4] and when m = 1 and s = 1

p to Nguyen Hoai-Minh [Ngu08, theorem 2].

As a sort of converse to theorem 8.2, if ũ ∈ (Ws,p +W1,sp)(Bm, R) and if p > 1 then
by the chain rule and by the fractional Gagliardo–Nirenberg interpolation inequality
(cos ũ, sin ũ) ∈ Ws,p(M,N).
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8.3 Global obstructions

Open problem 8.3. For every s ∈ (0, 1) and p ∈ [1,+∞) define a space W̃s,p(M, Ñ ) such
that π(W̃s,p(M, Ñ ) ⊂ Ws,p(M, Ñ ) and equality holds if sp ≥ 2 and if the domainM is
simply connected.

When Ñ , one can take W̃s,p(M, Ñ ) = Ws,p(M, Ñ ) [MVS].

8.3 Global obstructions

8.3.1 Global obstruction to the approximation problem

Besides the local obstruction of proposition 3.1, there is a local obstruction.

Theorem 8.3. If M⌊p⌋ is the ⌊p⌋–dimensional skeleton of a triangulation of M. Then
C∞(M,N) is dense in W1,p(M,N) if and only if the restriction operator f ∈ C(M,N) ↦
f ∣M⌊p⌋ ∈ C(M⌊p⌋,N) is surjective.

Theorem 8.3 is due to Hang Fengbo and Lin Fanghua [HL03a, theorem 1.3].
The assumption is stronger than π⌊p⌋(N) ≃ {0}, this assumption is not satisfied when

when M = RPm and N = Rn, and 1 ≤ p < n + 1 ≤ m, or M = CPm and N = Cn, m > n
and 2 ≤ p < 2n + 1 ≤ 2m [HL03a, Corrolary 1.5], whereas .

Particular cases where the assumption of theorem 8.3 is satisfied are when π1(M) ≃
⋯ ≃ πj(M) ≃ πj+1(N) ≃ ⋯ ≃ π⌊p⌋(N) for some j ∈ {1, . . . , ⌊p − 1⌋} (leading to theorem 4.6
when j = 0), and when π⌊p⌋(N) ≃ ⋯ ≃ πm−1(N) ≃ {0} (leading to theorem 7.1 when
m ≤ p + 1).

8.3.2 Global obstruction for the lifting problem

We have stated our lifting results under the condition that the domain π(M) should be
simply connected. In fact it is possible to relax this assumption.

Theorem 8.4. If p ≥ 2 and π ∶ Ñ → N be a covering map. Then W1,p(M,N) = π(W1,p(M, Ñ ))
if and only if C(M2,N) = π(C(M2,N)).

Theorem 8.4 does not seem to have been written in the literature.
The condition can be weaker than π1(M) simply connected. Indeed, it will be

satisfied if for example any homomorphism of π1(M) into π1(N) is trivial; this would
be the case if for example π1(M) = Zi and π1(N) = Zj and i and j have no nontrivial
common divisor.

8.3.3 Global obstruction for the extension problem

For the extension problem, the local obstruction has a corresponding global obstruction.

Theorem 8.5. If p ≥ 2 and if the trace operator U ∈ W1,p(M,N) ↦ tr∂MU is surjective, then
the restriction operator F ∈ C(M⌊p⌋,N) ↦ F∣∂M⌊p−1⌋ ∈ C(∂M⌊p−1⌋,N) is surjective.

Theorem 8.5 is essentially due Isobe Takeshi [Iso03, theorems 1.2 and 1.3].
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8 Perspectives

8.3.4 Global obstruction for the homotopy problem

Theorem 8.6. The set W1,p(M,N) is path-connected if and only if the image of the restriction
operator F ∈ C(M⌊p⌋,N) ↦ F∣M⌊p−1⌋ ∈ C(M⌊p−1⌋,N) is path-connected in C(M⌊p−1⌋,N).

Theorem 8.6 is due to Hang Fengbo and Lin Fanghua [HL03a, theorem 5.1]. When
1 ≤ p < 2, theorem 8.6 gives immediately the path-connectedness of W1,p(M,N)
without any restriction on the domain, which is due to Haïm Brezis and Li Yanyan
[BL01, theorem 0.2].

In particular, if there exists j ∈ {1, . . . , ⌊p − 1⌋} such that π1(M) ≃ ⋯ ≃ πj(M) ≃
πj+1(N) ≃ ⋯ ≃ π⌊p−1⌋(N), then W1,p(M,N) is path-connected [HL03a, theorem 5.1]
(the result was due to Haïm Brezis and Yanyan Li when j = 0, [BL01, theorem 0.3],
whenM= Sm [BL01, proposition 0.1]).

Theorem 8.7. Every map in W1,p(M,N) is connected to a smooth map if and only if the
restriction operators F ∈ C(M,N) ↦ F∣M⌊p−1⌋ ∈ C(M⌊p−1⌋,N) and f ∈ C(M⌊p⌋,N) ↦
f ∣M⌊p−1⌋ ∈ C(M⌊p−1⌋,N) have the same image.

Theorem 8.7 is due to Hang Fengbo and Lin Fanghua [HL03a, corollary 5.4].

8.4 Properties of individual mappings

8.4.1 Cohomological tools

If f ∈ W1,`(M,N), ω ∈ C∞(N ,⋀`N) and ζ ∈ C∞(M,⋀m−`−1M), we define the distri-
bution Hur`( f )[ω],

⟨Hur`( f )[ω], ζ⟩ =
ˆ
M

f ∗ω ∧ dζ.

By construction, Hur`[ω] depends linearly on ω. If moreover ω = dη, for some
η ∈ C∞(N ,⋀`−1N), then

⟨Hur`( f )[dη], dζ⟩ =
ˆ
M

u∗dη ∧ dζ =
ˆ
M

d(u∗η) ∧ dζ = (−η)`
ˆ
M

f ∗η ∧ d2ζ = 0.

In particular, ⟨Hur`( f )[ω], ζ⟩ is well-defined on the `–th order de Rham cohomology
group H`

dR(N), and thus by duality ⟨Hur`( f ), ζ⟩ ∈ H`(N , R) ≃ H`(N , Q) ≃ H`(N , Z) ⊗
Q.

Moreover, we observe that if f ∈ W1,`+1(M,N),

⟨Hur`( f )[dη], dζ⟩ =
ˆ
M

u∗dη ∧ dζ =
ˆ
M

d(u∗η) ∧ dζ = (−η)`+1
ˆ
M

u∗η ∧ d2ζ = 0.

This implies the following proposition:

Theorem 8.8. If u ∈ W1,p(M,N) is the strong limit of smooth mappings, then Hur⌊p⌋( f ) = 0.
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8.5 Weak-bounded approximation by smooth maps

Theorem 8.8 has a converse under the assumption that the ⌊p⌋–th homotopy group
describes the homology.

Theorem 8.9. If the Hurewicz homomorphism π⌊p⌋(N) → H⌊p⌋(N , Q) is an isomorphism
and if every the restriction operators F ∈ C(M,N) → F∣M⌊p−1⌋ ∈ C(M⌊p−1⌋,N) and F ∈
C(M⌊p⌋,N) → F∣M⌊p−1⌋ ∈ C(M⌊p−1⌋,N) have the same image, then if u ∈ W1,p(M,N) and
Hur⌊p⌋(u) = 0, then u has a strong approximation by smooth maps.

Theorem 8.9 is due to Fabrice Béthuel, Jean-Michel Coron, Françoise Demengel and
Frédéric Hélein [BCDH91, theorem 1].

When N = Sn, then any ω ∈ C∞(Sn,⋀n Sn) such that dω = 0 is a constant multiple
of the volume form on Sn, and Hurn is the distributional Jacobian introduced by John
Ball in elasticity [Bal76, (6.10)], for continuous Sobolev mappings with finitely many
singularities by Haïm Brezis, Jean-Michel Coron and Eliot H. Lieb [BCL86, appendix
B] and by Fabrice Béthuel, Haïm Brezis and Jean-Michel Coron for Sobolev mappings
[BBC90]. In particular, theorem 8.9 was obtained for M = B3, N = S2 and p = 2 by
Fabrice Béthuel [Bet90] and for M = Bm, N = S1 and p = 1 by Françoise Demengel
[Dem90].

The drawback of the homological approach is that it seems that sharp answers in the
theory of Sobolev maps are formulated in homotopy theory and that homological tools
cannot capture the full picture of homotopies.

8.4.2 Parametrized families of skeletons

Sobolev mappings in W1,p(M,N) that can be approximated smoothly can be charac-
terized by the behaviour on a parametrized family of ⌊p⌋–dimensional components of a
triangulation for a set of parameters with positive measure [HL03a, remark 6.1] (see
also [Iso05]).

The existence of a path between two maps of W1,p(M,N) can similarly be deter-
mined by examining whether they are homotopic on a parametrized family of ⌊p − 1⌋–
dimensional triangulations for a set of positive measure of the parameter [HL03a, theo-
rem 1.1].

8.5 Weak-bounded approximation by smooth maps

The question of the approximation treated up to now can be weakened as the question
of the weak-bounded approximation. That is, given u ∈ W1,p(M,N), does there exists a
sequence (uj)j∈N in C∞(M,N) such that (uj)j∈N converges almost everywhere to u
and (uj)j∈N is bounded in W1,p(M,N).

When p > 1, a weak-bounded approximating sequence is an approximating sequence
in the weak topology; when p = 1 this is not anymore the case (the existence of
approximating sequences in the weak topology turns then to be equivalent to the
existence of norm approximating sequences [Han02]).

The first result concerns the case where p /∈ N.
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Theorem 8.10. Let p ∈ [1,∞). If p /∈ N. Every map in W1,p(M,N) has a weak-bounded
approximation if and only if the restriction operator F ∈ C(M,N) ↦ F∣M⌊p⌋ is surjective.

In view of theorem 8.10, the strong approximation problem and the weak-bounded
approximation problem are equivalent. It suffices thus to show the necessity in the-
orem 8.10. This was done locally by Fabrice Béthuel [Bet91, theorem 3]; the global
obstruction can be proved by following Hang Fengbo and Lin Fanghua [HL03a].

In general, Hang Fengbo and Lin Fanghua have proved the following condition.

Theorem 8.11. Let p ∈ [1,∞). If every map in W1,p(M,N) has a weak-bounded approxima-
tion, then the restriction operators F ∈ C(M,N) ↦ F∣M⌊p−1⌋ and F ∈ C(M⌊p⌋,N) ↦ F∣M⌊p−1⌋

have the same image.

If p is an integer, then the condition of theorem 8.11 is sufficient for the closure of
C∞(M,N) to be W1,p(M,N) [HL03a, §7; Bet91, theorem 5]. Since the weak topology
is not metrisable, this does not imply the existence of weak-boundedly approximating
sequences.

WhenM= B3 and N = S2. For every u ∈ W1,2(B3, S2), Fabrice Béthuel, Haïm Brezis
and Jean-Michel Coron have prove that there exists a sequence of smooth maps (uj)j∈N

such that uj → u, and

lim sup
j→∞

ˆ
B3

∣Duj∣2 ≤
ˆ

B3
∣Duj∣2 + 2 inf{

ˆ
B3

u∗ω ∧ dζ ∣ ζ ∈ C∞
c (B3,⋀0 R3)},

where ω ∈ C∞(S2,⋀2 S2) is a normalized volume form on S2, that is dω = 0 and
´

S2 ω = 1
[BBC90, theorem 2̃].

For p = 1 and p = 2 and if the necessary condition of Hang and Lin holds, Mohammad
Reza Pakzad and Tristan Rivière have proved that any map has a weak-bounded
approximation [Pak03, theorem 1; PR03, theorems I and IV]. The situation is similar
but more delicate for W1,2(M, S2) when dim M ≥ 4 [Pak02,GMS98a,GMS98b,TF05] (see
also [GM06, GMM08, GM07a, GM07b, GM06]). The same approach has also been used
when p = 1 and N = S1 [DH92, Ign05].

It is also known that if p ∈ N and π1(N) ≃ ⋯ ≃ πp−1(N) ≃ {0}, then every map in
W1,p(M,N) has a weak-bounded approximation [Haj94].

The weak-bounded approximation problem satisfies a uniform boundedness principle
[HL03b, theorem 9.6] (see also [MVS19]).

For W1,3(B4, S2), Fabrice Béthuel has given in a recent preprint [Bet14] a quantitative
obstruction to the weak-bounded approximation.

Open problem 8.4. When p ∈ N and p ≥ 2 determine whether every W1,p(M,N) has
weak-bounded approximation by smooth maps.

8.6 Quantitative estimates

When M = N = Sn, the connected components of C(Sm, Sm) are classified by the
Brouwer topological degree. The degree of smooth map f ∈ C1(S1, S1) can be computed
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8.6 Quantitative estimates

through the Kronecker formula

deg f =
ˆ

Sm
f ∗ω,

where ω ∈ C∞(Sm,⋀m Sm) is the standard volume form.
In view of the classical inequality between the geometric and quadratic means, we

have

∣ f♯ωSm ∣ = ∣det D f ∣ωSn ≤ ∣D f ∣m
mm/2

ωSm

everywhere on the sphere Sm. An integral estimate on the degree (see [BBM05, Remark
0.7]) then follows

∣deg( f )∣ ≤ 1
mm/2

 
Sm

∣D f ∣m = 1
mm/2∣Sm∣

E1,m( f ). (8.1)

This formula extends to fractional Sobolev maps: for every p ∈ (m,+∞), there exists
a constant Cm,p such that for every map f ∈ Wm/p,p(Sm, Sm), one has [BBM05, theorem
0.6] (see also [BdMBGP91, theorem A.3; Mir07b, theorem 2.3])

∣deg( f )∣ ≤ Cm,p Em/p,p( f ). (8.2)

The inequality (8.2) follows from gap potential estimates obtained by Jean Bourgain,
Haïm Brezis, Petru Mironescu and Nguyên Hoài-Minh [BBN05, theorem 1.1; BBM05,

open problem 2; Ngu07] (see also [Ngu14]): for every ε ∈ (0,
√

2(1+ 1
m+1)), there exists

a constant Cε,m such that for every map f ∈ C(Sm, Sm), one has

∣deg( f )∣ ≤ Cε,m

¨

(x,y)∈Sm×Sm

∣ f (y)− f (x)∣>ε

1
∣y − x∣2m dx dy. (8.3)

If m ≥ 2, the constant Cε,m can be taken to satisfy Cε,m ≤ Cmεm [Ngu17].

Open problem 8.5. What is the optimal scaling of the constant in (8.3) for m = 1?

In the general case, one can wonder whether a bound on the Sobolev energies implies
that the number of connected components to which maps can belong remains bounded.
In general the answer is negative and is related to the fact that thanks the action of
π1(N) on πm(N) can produce maps in infinitely many connected components and
such that the Sobolev energy remains bounded, an explicit counterexample is provided
by gluing S1 × S2m to Sm × Sm+1 through a trivial sphere S2m [VS]. It has been proved
that sets satisfying a bound on a critical Sobolev energy are generated by finitely many
maps and the action of π1(N) on πm(N) when m = 1, s = 1

2 and p = 2 by Ernst Kuwert
[Kuw98], when m ≥ 1, s = 1 by Frank Duzaar and Ernst Kuwert [DK98, theorem 4],
when m ≥ 1 and s = 1− 1

m+1 by Thomas Müller [Mül00, theorem 5.1], when m = 2 and
s = 1 by Richard Schoen and Jon Wolfson [SW01, lemma 5.2]. The general result for

89



8 Perspectives

bounded sets in critical fractional Sobolev spaces follows from a decomposition result
under a bound of a quantity of the form of the right-hand side of (8.3) [VS].

In the case whenM = S2n−1 and N = Sn, one can define the Hopf invariant, which
classifies homotopy classes when n = 2. When n is odd it is always trivial, whereas when
n is even, it is nontrivial and only finitely many connected components of C(S2n−1, Sn)
share the same Hopf invariant. Tristan Rivière has proved that [Riv98, lemma III.1] (see
also [Gro99a; Gro99b, Lemma 7.12])

∣degH( f )∣ ≤ C (
ˆ

S2n−1
∣D f ∣2n−1)

1+ 1
2n−1

(the proof is written when n = 2 but goes to higher dimension) and that the power is
optimal. In comparison with the corresponding estimate of the topological degree (8.1),
the estimate saws the appearance of a power 1+ 1

2n−1 applied to the integral coming
from the Whitehead formula for the Hopf invariant [Whi47].

In the fractional case, Armin Schikorra and the author Jean Van Schaftingen have
proved that

∣degH( f )∣ ≤ C E s, 2n−1
s (u)1+ 1

2n−1 , (8.4)

when s ≥ 1− 1
2n [SVS].

Open problem 8.6. Prove (8.4) when 0 < s < 1− 1
2n .

8.7 Higher-order Sobolev mappings

The higher order Sobolev spaces Wk,p(M,N) are motivated by problems such as the
biharmonic maps.

In contrast with first-order Sobolev spaces, the space and the convergence depend in
general on the embedding and are not equivalent with an intrinsic deinition [CVS].

By the Gagliardo–Nirenberg interpolation inequality, one has the embedding of
the spaces Wk,p(M,N) ⊂ W1,kp(M,N), and one expects both spaces to have similar
properties.

For the lifting problem, once one has a lifting ũ in W1,kp(M,N), one can write

Dũ = (Dπũ)−1[Du]

and then study the higher differentiability properties of the lifting by the chain rule.
For the approximation problem, any map in Wk,p(Bm,N) has a strong approximation

by maps in C∞(Bm,N) if and only if π⌊kp⌋(N) ≃ {0} [BPVS15].
The extension problem is delicate because one would then like to prescribe a value

of the function and of the normal derivative.

Open problem 8.7. Let m > 2p. Given u ∈ W2,p(Bm
1 ,N), does there exist v ∈ W2,p(Bm

2 ,N)
such that v∣Bm

1
= u on Bm

1 ?

Equivalently, open problem 8.7 asks whether the space of traces of u and its derivative
that is independent on the side of the boundary on which one takes the trace.
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