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Abstract. Groundstates of the stationary nonlinear Schrödinger equa-
tion

−∆u + V u = Kup−1,

are studied when the nonnegative function V and K are neither bounded
away from zero, nor bounded from above. A special care is paid to
the case of a potential V that goes to 0 at infinity. Conditions on
compact embeddings that allow to prove in particular the existence of
groundstates are established. The fact that the solution is in L2(RN ) is
studied and decay estimates are derived using Moser iteration scheme.
The results depend on whether V decays slower than |x|−2 at infinity.
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1. Introduction

In this paper, we consider the following problem for the time-independent
nonlinear Schrödinger equation:−∆u+ V u = Kup−1 in RN ,

lim
|x|→∞

u(x) = 0. (PV,K)

Here u : RN → R is an unknown function, while V : RN → R+ and
K : RN → R+ are given potentials. Solutions to (PV,K) can be used to repre-
sent a standing wave to the time-dependent nonlinear Schödinger equation;
they also appear as stationary solutions in models of cross-diffusion [12].
The study of such problems was initiated by Floer and Weinstein [9] by
perturbation methods.

Afterwards, Rabinowitz showed how the variational methods could be
applied to this problem. Indeed, the solutions of (PV,K) are — at least
formally — critical points of the action functional

I(u) =
∫

RN

|∇u|2

2
+ V
|u|2

2
−K |u|

p

p
.

The quadratic part of the functional naturally defines the Hilbert space

H1
V (RN ) =

{
u ∈W 1,1

loc (RN ) |
∫

RN
|∇u|2 + V |u|2 <∞

}
;

the functional I : H1
V (RN ) → R ∪ {−∞} is then well-defined. The ground-

state is the nontrivial weak solution to (PV,K) inH1
V (RN ) which has the least

energy I(u) among all solutions in H1
V . The classical scheme to prove the

existence of groundstates consists in minimizing I on the Nehari manifold

N =
{
u ∈ H1

V (RN ) |
∫

RN
|∇u|2 + V |u|2 =

∫
RN

K|u|p
}

The particularization of one result of Rabinowitz to our setting is

Theorem 1 (Rabinowitz [16]). Let V ∈ C(RN ; R+
0 ) and K ∈ C(RN ; R). If

2 < p < 2N/(N − 2),
(i) supRN K <∞,
(ii) infRN V > 0,
(iii) lim|x|→∞ V (x) = +∞,

then problem (PV,K) has a groundstate u ∈ H1
V (RN ).

Rabinowitz could also handle cases in which V is bounded from above
on RN . Further applications of variational methods have yield existence of
solutions that are not groundstates, for problems that might also not have a
groundstate, see e.g. [7, 8].

All the works mentioned are built on the assumption that V has a postive
lower bound and that K is bounded. In a recent work, Ambrosetti, Felli and
Malchiodi have investigated groundstates when V tends to zero at infinity.
One of the problems arising is that the natural spaceH1

V (RN ) is not anymore
embedded in L2(RN ). They obtained
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Theorem 2 (Ambrosetti, Felli and Malchiodi [2]). Assume N ≥ 3, V ∈
C(RN ; R+

0 ) and K ∈ C(RN ; R). If 2 < p < 2N/(N − 2), 0 < α < 1,

β > (1− α)
(
N − p

(N
2
− 1
))
, (1)

(i) supx∈RN (1 + |x|)βK < +∞,
(ii) infx∈RN (1 + |x|)2−2αV (x) > 0,
then problem (PV,K) has a groundstate u ∈ H1

V (RN ). Moreover, u ∈ L2(R2)
and

u(x) ≤ Ce−λ|x|α

for some C > 0 and λ > 0.

One should note that the solution is constructed as an element ofH1
V (RN ),

and need therefore not be a priori in L2(RN ). However, some regularity
theory allows to show afterwards that u is indeed square integrable. The
fact that u ∈ L2(RN ) has an interpretation in the model of the nonlinear
Schrödinger equation: since |u|2 corresponds to the probability density of
a particle, this means that the particle is localized, and that the solution
corresponds to a boundstate. The study of boundstates which are not neces-
sary groundstates with potentials vanishing at infinity has also been recently
studied [3, 5].

The aim of the present work consists in giving more insights on Theo-
rem 2. A first question is the existence question: What conditions should V
and K satisfy so that problem (PV,K) has a groundstate? A second ques-
tion is whether the groundstate solution is in L2(RN ). We provide here an
unified approach which allows to handle potentials V that vanish at infinity
or potentials K that explode at infinity. Unbounded potentials have been
considered by several authors, see e.g. [18].

A classical tool to prove the existence of groundstates of (PV,µ) is

Theorem 3. If one has the continuous embedding

H1
V (RN ) ⊂ Lp(RN ,KLN ),

then the functional I : H1
V (RN )→ R defined by

I(u) =
∫

RN

|∇u2|
2

+ V
|u|2

2
−
∫

RN
|u|pdµ

is well-defined and continuously differentiable on H1
V (RN ).

If moreover this embedding is compact, then there exists a groundstate solu-
tion to problem (PV,µ).

The applicability of Theorem 3 depends just on the answer to a question
about continuous and compact embeddings. The assumptions of Theorem 2
are one way to ensure these embeddings, but there are other ways. A first
tool is the function

W(x) =
K(x)

V (x)
N
2
− p

2
(N

2
−1)

.

Using Hölder’s inequality and Sobolev inequality, one can prove the following
result.
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Theorem 4. Let K : RN → R+ and V : RN → R+ be measurable functions.
i) IfW ∈ L∞(RN ) and 2 ≤ p ≤ 2N

N−2 , then one has the continuous embedding

H1
V (RN ) ⊂ Lp(RN ,KLN ).

ii) If moreover K ∈ L∞loc(RN ), p < 2N
N−2 and for every ε > 0,

LN ({x ∈ RN | W(x) > ε} <∞,
then this embedding is compact.

Theorem 4 is related to Theorem 18.6 in [14] by whichH1
V (RN ) ⊂ LpK(RN )

when there exists R > 0 and r : RN \B(0, R)→ R+ such that

1√
V (x)

≤ r(x) ≤ |x|
3

for every x ∈ RN \B(0, R),

0 < c−1 ≤ r(y)
r(x)

≤ c for every x ∈ RN \B(0, R) and y ∈ B(x, r(x),

sup
x∈RN\B(0,R)

sup
y∈B(x,r(x))

K(y)r(x)N−p(
N
2
−1) <∞.

Since

W(x) ≤ K(x)r(x)N−p(
N
2
−1) ≤ sup

y∈B(x,r(x)
K(y)r(x)N−p(

N
2
−1),

these assumptions are stronger than those of Theorem 4, and that they may
fail for highly oscillating potentials while those of Theorem 4 hold.

In the case where V (x) = (1 + |x|)2α−2, Theorem 4 allows for potentials
K such that

lim
|x|→∞

|x|βK(x) = 0,

with
β = (1− α)

(
N − p

(N
2
− 1
))
, (2)

which is a small improvement in view of Theorem 2. In the case of unbounded
potentials, we recover the embeddings of [18].

While the condition of Theorem 4 allows V and K to oscillate strongly,
their oscillation should be coordinated. A second tool provides embedding
theorems with a condition without interplay between K and V , in terms of
Marcinkiewicz spaces. Setting

‖f‖Lr,∞ = sup
E⊂RN

1

LN (E)1− 1
r

∫
E
|f |,

for p > 1, recall that the space Lr,∞(RN ) is the space of measurable functions
f : RN → R such that ‖f‖Lr,∞ < +∞. Its subspace L∞,r0 (RN ) is the closure
of (L∞ ∩ L1)(RN ) in Lr,∞(RN ).

In the sequel, we denote by Ḣ1(RN ) the homogeneous Sobolev space, i.e.
H1
V (RN ) with V ≡ 0.

Theorem 5. Assume N ≥ 3.
i) If 2 ≤ p ≤ 2N

N−2

p
(1

2
− 1
N

)
+

1
r

= 1
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and K ∈ Lr,∞(RN ,R+), then the embedding

Ḣ1(RN ) ⊂ Lp(RN ,KLN )

is continuous.
ii) If moreover p < 2N

N−2 and K ∈ Lr,∞0 (RN ), then this embedding is compact.

The first part of the result has been obtained by Visciglia [20]. Whereas
the combination of Theorems 4 and 5 allowsK not to be controlled pointwise
by V , it still requires when V is bounded that K should not be locally worst
than a function in Lr,∞. On the other hand, when p is small enough, trace
theorems show that |u|p is locally integrable on subsurfaces. This brings us
to embeddings theorem for a general measure. Here we state the result with
an explicit shape of a model potential V . Define

[µ]α = sup
{µ(B(x, ρ))

1
p

ρ
N
2
−1

| x ∈ RN and 0 < ρ <
1
2

(1 + |x|)1−α
}
. (3)

Theorem 6. Let N ≥ 3, α ≥ 0, V (x) = (1 + |x|)2α−2 and µ be a Radon
measure. Then,
(i) [µ]α is finite if and only if there exists c > 0 such that for every u ∈
H1
V (RN ),

‖u‖Lp(RN ,µ) ≤ c‖u‖H1
V
,

the quantity [µ]α being equivalent to the optimal constant in the inequality ;

(ii) the embedding H1
V (RN ) ⊂ Lp(RN , µ) is compact if and only if

lim
δ→0

sup
{µ(B(x, ρ))

1
p

ρ
N
2
−1

| x ∈ RN and 0 < ρ < δ(1 + |x|)1−α
}

= 0, (4)

lim
|x|→∞

sup
{µ(B(x, ρ))

1
p

ρ
N
2
−1

| 0 < ρ <
1
2

(1 + |x|)1−α
}

= 0. (5)

When α = 0, then H1
V (RN ) = D1,2(RN ); then the continuity part of

Theorem 6 was proven by Maz’ja [11, Theorem 1.4.4/1] and the compactness
part by Schneider [17, Theorem 2.1]. When α = 1, it is due to Maz’ja [11,
Theorems 1.4.4/2 and 1.4.6/1].

Whereas we do not have counterparts of Theorems 4 and 5 when N = 2,
Theorem 6 remains true when N = 2 provided ρ

N
2
−1 is replaced by (log ρ(1+

|x|)α−1)−1 everywhere in the statement (see Theorem 11). When p < 2N
N−2 ,

Theorem 6 allows the measure to be singular with respect to the Lebesgue
measure. Another situation in which Theorem 6 works while the previous
theorems fail is the following: α = 1 andK ∈ Lrloc(RN )\L∞(RN ) is periodic.

We now draw our interest to the question whether the solutions to−∆u+ V u = up−1µ in RN ,

lim
|x|→∞

u(x) = 0. (PV,µ)

are in L2(RN ), as it is the case in Theorem 2. Observe that we have re-
placed the potential K by a postive Radon measure µ. The solution is then
understood in the distributional sense.
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Let us first point out a necessary condition. Indeed, if u 6= 0, and

lim sup
|x|→∞

V (x)|x|2 < λ(λ+ 2−N), (6)

then, by the maximum principle, we have, for some c > 0,

u(x) ≥ c

(1 + |x|)λ
.

In particular, if (6) holds with λ = N
2 , then u 6∈ L

2(RN ). This decay of V is
in fact critical for u to be square-integrable.

Theorem 7. Assume that H1
V (RN ) ⊂ Lp(RN ), and that

lim inf
|x|→∞

|x|2V (x) > 1− (N2 − 1)2 > 0, (7)

then u ∈ L2(RN ).

The proof proceeds by multiplication of the equation by a test function of
the form u(1 + |x|).

We will go further in this analysis, and try to catch as much information
as possible about the decay of a solution.

Theorem 8. Assume that H1(RN , V ) ⊂ Lp(RN , µ) and u ∈ H1
V (RN ) solves

−∆u+ V u = up−1µ.

(i) If there exists λ > 0 such that

lim inf
|x|→∞

V (x)|x|2 > λ(λ+ 2−N),

then there exists C <∞ such that

u(x) ≤ C

(1 + |x|)λ
.

(ii) If moreover there exists α > 0 and λ > 0 such that

lim inf
|x|→∞

V (x)|x|2−2α > λ2,

then there exists C <∞ such that

u(x) ≤ Ce−λ(1+|x|)α .

Theorem 2 gives the same decay rate than the last part of the theo-
rem. However, our result allows equality in (1) — provided a solution
exists. The limit case where equality holds in (1) brings us some compli-
cations in the proof. In the previous situation, the condition (1) implies that
H1
V (RN ) ⊂ Lq(RN , µ) for some q > p. This allows to start immediately a

bootstrap argument. In the present setting, a first step is required to prove
that H1

V (RN ) ⊂ Lq(RN , µ) for some q > p.

The sequel of the paper is organized as follows. In Section 2, we work out
the continuous and compact embeddings ; in particular, we prove Theorems
4, 5 and 6. Section 3 is devoted to decay estimates and contains the proofs
of Theorems 7 and 8. Finaly, Section 4 deals with some extensions of our
decay estimates to other frameworks that we do not cover with details.
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2. Embedding theorems

In this section, we consider conditions that ensure continuity or compact-
ness of the imbedding of H1

V (RN ) into Lp(RN ,KLN ). We shall use three
different methods: one based on the concentration function, the second based
on Marcinkiewicz weak Lp–spaces and the last on the measure of balls, which
will lead respectively to Theorems 4, 5 and 6 which are independent.

2.1. Concentration function method. A first technique to obtain em-
beddings of H1

V (RN ) consists in interpolating between L2(RN , V LN ) and a
space in which H1

V (RN ) is contained : L
2N
N−2 (RN ).

Proof of Theorem 4. For every measurable set A ⊂ RN , since 2 ≤ p ≤ 2∗,
using Hölder’s inequality, we infer that for any u ∈ H1

V (RN ),∫
A
K|u|p ≤ ‖W‖L∞(A)

(∫
A
V |u|2

)N
2
− p

2
(N

2
−1)(∫

A
|u|

2N
N−2

)( p
2
−1)(N

2
−1)

. (8)

Taking A = RN , we deduce the first statement of the Theorem from the
Sobolev inequality.

To prove the second statement, it is sufficient to show that for any ε > 0,
there exists a set A ⊂ RN of finite-measure such that for every u ∈ H1

V (RN )
with ‖u‖H1

V
≤ 1, ∫

Ac
K(x)|u|p < ε.

Choosing Aδ = {x ∈ RN | W(x) ≥ δ} in (8), we get∫
RN\Aδ

K(x)|u|p ≤ δ
(∫

RN
V |u|2

)N
2
− p

2
(N

2
−1)(∫

RN
|u|

2N
N−2

)( p
2
−1)(N

2
−1)

,

so that our claim follows from the Sobolev inequality. �

As mentioned in the introduction, Theorem 4 implies that H1
V (RN ) ⊂

Lp(RN ,KLN ) when V (x) = |x|2−2α and K(x) = |x|−β , with β given by (2).
It should be pointed out that not only the proof of Theorem 4 fails in

dimension 2: one can find counter-examples. A weaker statement will be
proved in Section 2.3.3.

2.2. Marcinkiewicz spaces method. Another point of view to obtain em-
bedding, consists in using only the information about the Sobolev embedding
of H1

V (RN ).

Proof of Theorem 5. By [15], see also [21, Chapter 2], the Sobolev space
Ḣ1(RN ) is continuousloy embedded in the Lorentz space L

2N
N−2

,2(RN ), i.e.
the estimate

‖u‖
L

2N
N−2

,2 ≤ C‖∇u‖L2

holds. One has then, by Hölder’s inequality for Lorentz spaces and by the
embedding L

2N
N−2

,p(RN ) ⊂ L
2N
N−2

,2(RN ), and for every measurable set A ⊂
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RN ∫
A
K|u|p ≤ ‖K‖Lr,∞(A)‖u‖

p

L
2N
N−2

,p

≤ ‖K‖Lr,∞(A)‖u‖
p

L
2N
N−2

,2

≤ C‖K‖Lr,∞(A)‖∇u‖
p
L2(RN )

.

Under assumption ii), the compactness of the embedding can be proved
easily. �

Let us compare Theorems 4 and 5 in the case where V (x) ≥ (1 + |x|)2α−2

and K(x) ≤ (1 + |x|)β . The first gives a continuous embedding when

β ≥ (1− α)
(
N − p(1− N

2
)
)

while the latter requires

β ≥ N − p(1− N

2
).

If α ≥ 0, the condition of Theorem 4 is weaker than the condition of The-
orem 5; when α ≤ 0, one has the converse situation. The criticality of the
rate α = 0 can be explained by the Hardy inequality: H1

V (RN ) is a strict
subspace of Ḣ1(RN ) if, and only if, α > 0.

As a byproduct of Theorems 4 and 5, one has

Corollary 2.1. Assume that

p
(1

2
− 1
N

)
+

1
s

+
2t
N

= 1,

with 2 ≤ p ≤ 2N
N−2 and t > 0.

i) If KV −t ∈ Ls,∞(RN ), then the embedding H1
V (RN ) ⊂ Lp(RN ,KLN )

holds.
ii) If p < 2N

N−2 and KV −t ∈ Ls,∞0 (RN ), this embedding is compact.

Proof. Taking θ = 1
t

(
N
2 −

p
2(N2 − 1)

)
and using Hölder’s inequality, we infer∫

RN
K|u|p ≤

(∫
RN

V
N
2
− p

2
(N

2
−1)|u|p

) 1
θ
(∫

RN

(
KV −t

) θ
θ−1 |u|p

)1− 1
θ
.

One checks that the first factor is bounded by Theorem 4 while the second
is bounded by Theorem 5. We then conclude that∫

RN
K|u|p ≤ C‖KV −t‖Ls,∞‖u‖pH1

V
.

Under the assumptions in ii), one obtains the compactness in a straightfor-
ward way. �

2.3. Trace-type inequalities. We now examine the special case where
V (x) = (1 + |x|)α. In this case, one can find necessary and sufficient con-
ditions on a Radon measure µ so that one has the continuous embedding
H1
V (RN ) ⊂ Lp(RN , µ), or so that it is compact. This approach is based on

the corresponding work of Maz′ja on Ḣ1(RN ). We first explain how the case
N > 2 is treated before sketching out how to adapt the arguments to the
dimension N = 2.
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2.3.1. The subcritical case. A first tool in the proof of Theorem 6 is a char-
acterizations of the measures for which H1

V (RN ) ⊂ Lp(RN , µ) when N > 2.
Define

[µ] = sup
{µ(B(x, ρ))

1
p

ρ
N
2
−1

| x ∈ RN and ρ > 0
}
.

Theorem 9 (Adams [1], Maz′ja [11, Theorems 1.4.4/1 and 1.4.6/1]). Let
N > 2, µ be a Radon measure and p > 2. Then,
(i) [µ] is finite if and only if there exists C > 0 such that for every u ∈
Ḣ1(RN ),

‖u‖Lp(RN ,µ) ≤ C ‖∇u‖L2 ,

the quantity [µ] being equivalent to the optimal constant in the inequality ;

(ii) the embedding Ḣ1(Rn) ⊂ Lp(RN , µ) is compact if and only if

lim
δ→0

sup
{µ(B(x, ρ))

1
p

ρ
N
2
−1

| x ∈ RN and 0 < ρ < δ
}

= 0,

lim
|x|→∞

sup
{µ(B(x, ρ))

1
p

ρ
N
2
−1

| ρ > 0
}

= 0.

Remark 1. Since for every Radon measure µ 6= 0,

lim inf
ρ→0

sup
x∈RN

µ(B(x, ρ))
ρN

> 0,

Theorem 9 essentially applies only if p < 2N
N−2 .

In order to prove Theorem 6, we first prove that Theorem 9 applies to the
restriction of the measure µ to the ball B(x, 1

2(1 + |x|)α). Recall that [µ]α
has been defined in (3).

Lemma 2.2. Under the assumptions of Theorem 6, one has
(i) for every x, y ∈ RN and ρ > 0,

µ(B(y, ρ) ∩B(x, r))
1
p

ρ
N
2
−1

≤ C[µ]α,

where r = 1
2(1 + |x|)1−α ;

(ii) for every R > 0 and δ > 0,

sup
{µ(B(x, ρ) ∩B(0, R))

ρ
N
2
−1

| x ∈ RN and ρ < δ
}

≤ sup
{µ(B(x, ρ) ∩B(0, R))

ρ
N
2
−1

| x ∈ RN

and ρ < δ
(1 + |x|)1−α

min(1, (1 + δ +R)1−α)

}
(9)
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and

sup
{µ(B(x, ρ) \B(0, R))

1
p

ρ
N
2
−1

| x ∈ RN and ρ <
1
2

(1 + |x|)1−α
}

≤ sup
{µ(B(x, ρ))

1
p

ρ
N
2
−1

| |x| > 2R− 1
3

and 0 < ρ <
1
2

(1 + |x|)1−α
}
. (10)

Proof. When ρ < 1
2(1 + |y|)1+α, one has trivially

µ(B(y, ρ) ∩B(x, r))
1
p

ρ
N
2
−1

≤ µ(B(y, ρ))
1
p

ρ
N
2
−1

≤ [µ]α.

Assume now that ρ ≥ 1
2(1 + |y|)1−α. If 1

3(1 + |x|) ≤ (1 + |y|) ≤ 3(1 + |x|),
one has ρ ≥ 3−|1−α|r, and thus

µ(B(y, ρ) ∩B(x, r))
1
p

ρ
N
2
−1

≤ µ(B(x, r))
1
p

ρ
N
2
−1

≤ 3|1−α|(
N
2
−1)µ(B(x, r)

1
p

r
N
2
−1

≤ 3|1−α|(
N
2
−1)[µ]α.

(11)

If 3(1 + |y|) < 1 + |x|, assume without loss of generality that B(x, r) ∩
B(y, ρ) 6= ∅. One has then, since r ≤ 1

2(1 + |x|),

|x| − 1
2

≤ |x| − r < |y|+ ρ ≤ |x| − 2
3

+ ρ

so that

ρ ≥ |x|+ 1
6

>
r

3
.

Reasoning as in (11), one obtains

µ(B(y, ρ) ∩B(x, r))
1
p

ρ
N
2
−1

≤ 3(N
2
−1)[µ]α.

Finally, when 3(1 + |x|) < 1 + |y| and B(x, r) ∩B(y, ρ) 6= ∅, one has

3|x|+ 2− ρ ≤ |y| − ρ < |x|+ r ≤ 3|x|+ 1
2

so that
ρ ≥ 3

2
(|x|+ 1) > 3r,

and, as before,
µ(B(y, ρ) ∩B(x, r))

1
p

ρ
N
2
−1

≤ 1

3
N
2
−1

[µ]α.

For the second statement, assume that ρ ≤ δ and B(x, ρ) ∩ B(0, R) 6= ∅.
One has then |x| ≤ ρ+R ≤ δ +R, so that

ρ ≤ δ (1 + |x|)1−α

min(1, (1 + δ +R)1−α)
.
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For the last statement, if B(x, ρ) 6⊂ B(0, R), then R ≤ |x|+ ρ ≤ (3|x|+ 1)/2
and |x| ≥ (3R− 1)/2; the conclusion follows. �

The third tool to prove Theorem 6 is

Theorem 10 (Besicovitch’s covering theorem, see e.g. [10, Theorem 2.7]).
If A ⊂ RN is bounded and B is a family of closed balls such that each point
of A is the center of some ball of B, then there exists a finite or countable
collection of balls Bi ∈ B that covers A and such that every point of RN

belong to at most P (N) balls.

We can now prove the main result of this section

Proof of Theorem 6. By Lemma 2.2 and Theorem 9, for every x ∈ RN and
v ∈ Ḣ1(RN ),

‖v‖2Lp(B(x,r/2),µ) ≤ ‖v‖
2
Lp(B(x,r),µ) ≤ C[µ]α

∫
RN
|∇v|2,

where r = 1
2(1 + |x|)1−α. Recall that every u ∈ H1(B(0, 1/2)) has an

extension v ∈ H1(RN ) such that∫
RN
|∇v|2 ≤ C

∫
B(0,1/2)

|∇u|2 + |u|2.

By translation and scaling, every u ∈ H1(B(x, r/2)) has an extension v ∈
H1(RN ) such that∫

RN
|∇v|2 ≤ C

∫
B(x,r/2)

|∇u|2 + r−2|u|2.

By the choice of r, for every y ∈ B(x, r),

3
2

(1 + |x|) ≤ 1 + |x| − (1 + |x|)1−α

2
≤ 1 + |y|

≤ 1 + |x|+ (1 + |x|)1−α

2
≤ 3

2
(1 + |x|),

so that ∫
RN
|∇v|2 ≤ C ′

∫
B(x,r/2)

|∇u|2 + V |u|2.

One has thus, for every u ∈ H1
V (RN ),(∫

B(x,r/2)
|u|p
) 2
p ≤ C[µ]α

∫
B(x,r/2)

|∇u|2 + V |u|2.

For every R > 0, applying now Theorem 10 to A = B̄(0, R) and B =
B(x, 1

2(1+|x|)1−α), one obtains a collection of balls (B̄(xi, ri/2))i∈I such that
A ⊂

⋃
i∈I B̄(xi, ri/2), with ri = 1

2(1 + |xi|)1−α and
∑

i∈I χB̄(xi,ri/2) ≤ P (N),
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so that (∫
B(0,R)

|u|p dµ
) 2
p ≤

(∑
i∈I

∫
B(xi,ri)

|u|p dµ
) 2
p

≤
∑
i∈I

(∫
B(xi,ri)

|u|p dµ
) 2
p

≤ C[µ]α
∑
i∈I

∫
B(xi,ri)

|∇u|2 + V |u|2

≤ CP (N)[µ]α
∫

RN
|∇u|2 + V |u|2.

One obtains the continuous embedding by letting R→∞.
For the converse statement, let ϕ be a compactly supported smooth func-

tion such that ϕ = 1 on B(0, 1
2) and suppϕ ⊂ B(0, 3/4) and set ϕx,ρ(y) =

ϕ((x − y)/ρ). If ρ < 1
2(1 + |x|)1−α, then 1

2(1 + |y|) ≤ (1 + |x|) ≤ 2(1 + |y|)
for y ∈ B(x, ρ), so that∫

RN
V |ϕx,ρ|2 ≤

CρN

(1 + |x|)2−2α
≤ C ′ρN−2. (12)

One has thus

µ(B(x, ρ))
1
p ≤ ‖ϕx,ρ‖Lp(RN ,µ) ≤ c

(∫
RN
|∇ϕx,ρ|2 + V |ϕx,ρ|

) 1
2 ≤ cCρ

N
2
−1.

For the compactness part, first note that we deduce from (9) of Lemma
2.2 and Theorem 9 that Ḣ1(RN ) is compactly embedded in Lp(B(0, R), µ)
for every R > 0. Therefore the map u 7→ χB(0,R)u is a compact operator
from H1

V (RN ) to Lp(RN , µ). By the first part of this theorem and (10) of
Lemma 2.2,

‖u− χB(0,R)u‖Lp(RN ,µ)

‖u‖H1
V

≤ sup
{µ(B(x, ρ) \B(0, R))

1
p

ρ
N
2
−1

| x ∈ RN and ρ <
1
2

(1 + |x|)1−α
}
→ 0

as R→∞. Therefore the embedding H1
V (RN ) ⊂ Lp(RN , µ) is compact as a

limit in the operator norm of compact operators.
For the necessity part, let δk → 0 and (xk)k ⊂ RN . Set ρk = δk(1+|x|)1−α.

The sequence uk = ρ
−(N−2)/2
k ϕxk,ρk is bounded in H1

V (RN ) (see (12)) and
converges weakly to 0. Since H1

V (RN ) is embedded compactly in Lp(RN , µ),
one obtains

µ(B(xk, ρk))
1
p

ρ
N
2
−1

k

≤ C‖uk‖Lp(RN ,µ) → 0.

as k → ∞. This proves (4). Assuming that |xk| → ∞ and taking δk = 1
2

instead of δk → 0, one obtains similarly (5). �
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Remark 2. In view of [11], it is clear that similar results apply to the Sobolev
spaces W 1,q(RN ), with q < N . For example, one has

(∫
RN
|u|p dµ

) 1
p≤ [µ]q,α

(∫
RN

k∑
i=0

|Diu|p

(1 + |x|)(1−α)(k−i)p

) 1
q
,

where

[µ]α,q = sup
{µ(B(x, ρ))

1
p

ρ
N
p
−k

| x ∈ RN and 0 < ρ <
1
2

(1 + |x|)1−α
}
.

Remark 3. One can also consider spaces with a weight on the gradient. For
example, set

H = {u ∈W1,1
loc |

∫
RN

(1 + |x|)2τ |∇u|2 + (1 + |x|)2α+2τ−2|u|2}.

One has then H ∈ Lp(RN , µ) if and only if

sup
{ µ(B(x, ρ))

1
p

ρ
N
2
−1(1 + |x|)τ

| x ∈ RN and 0 < ρ <
1
2

(1 + |x|)1−α
}
<∞.

2.3.2. The critical case. In two dimensions, one has a similar result. Define

[µ]α,2 = sup{|log ρ|µ(B(x, ρ(1 + |x|)1−α))
1
p | x ∈ RN and 0 < ρ <

1
2
}.

Theorem 11. Assume α ≥ 0, V (x) = (1 + |x|)2α−2 and let µ be a Radon
measure. Then,
(i) [µ]α,2 is finite if and only if there exixts C > 0 such that for every u ∈
Ḣ1(R2),

‖u‖Lp(R2,µ) ≤ C‖u‖H1
V
,

the quantity [µ]α,2 being equivalent to the optimal constant in the inequality
;
(ii) the embedding H1

V (R2) ⊂ Lp(R2, µ) is compact if and only if

lim
δ→0

sup{|log ρ|µ(B(x, ρ(1 + |x|)1−α))
1
p | x ∈ RN and 0 < ρ < δ} = 0,

lim
|x|→∞

sup{|log ρ|µ(B(x, ρ(1 + |x|)1−α))
1
p | 0 < ρ <

1
2
} = 0.

Instead of Theorem 9, the main tool to prove Theorem 11 is

Theorem 12 (see [11, Corollary 8.6/1]). Let µ be a Radon measure, p > 2
and

[µ]2 = sup{|log ρ|µ(B(x, ρ))
1
p | x ∈ RN and 0 < ρ < 1}.

Then,
(i) [µ]2 is finite if and only if there exixts C > 0 such that for every u ∈
H1(R2),

‖u‖Lp(R2,µ) ≤ C(‖∇u‖L2 + ‖u‖L2),
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the quantity [µ]2 being equivalent to the optimal constant in the inequality ;
(ii) the embedding H1(R2) ⊂ Lp(R2, µ) is compact if and only if

lim
δ→0

sup{|log ρ|µ(B(x, ρ))
1
p | x ∈ RN and 0 < ρ < δ} = 0,

lim
|x|→∞

sup{|log ρ|µ(B(x, ρ))
1
p | 0 < ρ < 1} = 0.

Proof of Theorem 6. By a variant of Lemma 2.2 and Theorem 12 together
with a scaling argument, one obtains that for every v ∈ H1(RN ) and x ∈ RN ,

‖v‖2Lp(B(x,R/2),µ) ≤ C[µ]
∫

RN
|∇v|2 +

v2

R2
,

whereR = 1
2(1+|x|)1−α. The proof continues then as the proof of Theorem 6.

�

Remark 4. Remark 2 still applies for W k,q(RN ), with kq = N and

[µ]q,α = sup
{
|log ρ|q−1µ(B(x, ρ))

1
p | x ∈ RN and 0 < ρ <

1
2

(1 + |x|)1−α
}
.

2.3.3. Power-like potentials. When N ≥ 2 and V (x) = (1 + |x|)2α−2, The-
orems 6 and 11, show that when K(x) = (1 + |x|)−β , where β is given by
(2),

H1
V (RN ) ⊂ Lp(RN ,KLN ).

While Theorem 4 fails when N = 2, the preceding conclusion holds in this
particular case. We prove it as a lemma that we keep for future reference in
section 3. As this remains true when N = 1, we provide a direct proof that
works for all dimensions:

Lemma 2.3. Let N ≥ 1, α > 0, 2 ≤ p ≤ 2N
N−2 if N ≥ 3 and 2 ≤ p < ∞

otherwise, and β be given by (2). If p < ∞, V (x) = (1 + |x|)2α−2 and
K(x) = (1 + |x|)−β, then H1

V (RN ) ⊂ Lp(RN ,KLN ).

Proof. First note that by Gagliardo–Nirenberg’s inequality [13] and by scale
invariance, for every R > 0∫

B(0,2R)\B(0,R)

|u(x)|p

|x|β
dx ≤ C

(∫
B(0,2R)\B(0,R)

|u(x)|2

|x|2−2α
dx
)N

2
− p

2
(N

2
−1)

(∫
B(0,2R)\B(0,R)

|∇u(x)|2 +
|u(x)|2

|x|2
dx
)( p

2
−1)N

2
.

Summing this for R = 2k, k ≥ 0, we obtain since α ≥ 0,∫
RN\B(0,1)

|u(x)|p

|x|β
dx ≤ C

(∫
RN\B(0,1)

|u(x)|2

|x|2−2α
dx
)N

2
− p

2
(N

2
−1)

(∫
RN\B(0,1)

|∇u(x)|2 +
|u(x)|2

|x|2
dx
)( p

2
−1)N

2

≤ C
(∫

RN\B(0,1)
|∇u(x)|2 +

|u(x)|2

|x|2−2α
dx
) p

2
.

The conclusion follows then from Sobolev’s embedding Theorem. �
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One could similarly obtain some conditions for the compactness of the
embedding. As a corollary, one has in R2,∫

R2

|u(x)|p

|x|2
dx ≤ C

(∫
R2

|∇u(x)|2 +
|u(x)|2

|x|2
dx
) p

2
.

In contrast with the higher-dimensional case, the previous lemma cannot
be improved when N = 2 and α > 0 by replacing (1 + |x|) by |x|. If one
sets V (x) = (1 + |x|2α−2) and K(x) = 1 + |x|−β , then the conclusion of the
Lemma holds provided α ≤ 0.

3. Decay estimates

We now turn out to the decay property of solutions to (PV,µ). The first
improvement is to obtain that u multiplied by some function is still in the
energy space H1

V (RN ). The latter method also allows that the same holds
for a small power of u. By Moser’s iteration technique, we show then that a
solution u satisfies some decay estimates at infinity.

3.1. Linear estimates. We begin by considering the L2 theory of decay of
finite-energy. These are special cases of the sequel, but give an useful insight
on the proof of the exact decay estimates.

Assumption 1. Let µ be a Radon measure, f ∈ Lp/(p−2)(RN , µ) and u ∈
H1
V (RN ) be such that
(i) the embedding H1

V ⊂ Lp(RN , µ) is continuous,
(ii) u satisfies

−∆u+ V u = fuµ. (13)

Proposition 3.1. Under Assumption 1, if

ν := lim inf
|x|→∞

|x|2V (x) > λ2 − (N2 − 1)2 > 0, (14)

then (1 + |x|)λ u ∈ H1
V (RN ).

Let us first show how Theorem 7 follows:

Proof of Theorem 7. Under the assumptions of Theorem 7, the assumptions
of Proposition 3.1 hold with f = |u|p−2 ∈ L

p
p−2 (RN , µ) and λ = 1. We have

thus (1 + |x|)u ∈ H1
V and it easily follows that u ∈ L2(RN ). �

The proof roughly goes as follow. Take |x|2λu as a test function in (13),
integrate on RN \B(0, R) and apply Hölder’s inequality to obtain∫

RN\B(0,R)
|∇(|x|λu)|2 + V (x)||x|λu|2

≤
(∫

RN\B(0,R)
fp/(p−2) dµ

)1−2/p(∫
RN\B(0,R)

||x|λu|
)1/p

+ λ2

∫
RN

|u|x|λ|2

|x|2
+
∫
∂B(0,R)

u
∂

∂ν
(u|x|2λ).

When R is large enough, by the assumption on f , µ and λ, the two first
terms in the right-hand side can be absorbed, so that the conclusion follows.
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As usual, we need to be careful in the estimates of quantities that might not
be finite.

Proof of Proposition 3.1. For every Ω ⊂ RN and for every ϕ ∈ W 1,∞
0 (Ω)

such that ∇ϕ has compact support in Ω, recall that ϕ2u and ϕu ∈ H1
V (RN ),

|∇(ϕu)|2 = ∇u · ∇(ϕ2u) + |∇ϕ|2|u|2. (15)

so that, by Hölder’s inequality and the embedding H1
V (RN ) ⊂ Lp(RN , µ),

we get∫
RN
|∇(ϕu)|2 + V |ϕu|2 =

∫
RN

fϕ2|u|2 dµ+ |∇ϕ|2|u|2

≤
(∫

Ω
|f |

p
p−2 dµ

)1− 2
p
(∫

RN
|ϕu|p dµ

) 2
p +

∫
RN
|∇ϕ|2|u|2

≤ C
(∫

Ω
|f |

p
p−2 dµ

)1− 2
p
(∫

RN
|∇(ϕu)|2 + V |ϕu|2

)
+
∫

RN
|∇ϕ|2|u|2.

Let δ = C
(∫

Ω|f |
p
p−2 dµ

)1− 2
p . Since f ∈ L

p
p−2 (RN , µ), we can choose Ω =

RN \ B(0, R) in such a way that 0 < δ < 1. The preceding estimates then
yield a control on the norm of ϕu

(1− δ)
∫

RN
|∇(ϕu)|2 + V |ϕu|2 ≤

∫
RN
|∇ϕ|2|u|2. (16)

Taking (14) into account and increasing R if necessary, we can assume that
for every x ∈ Ω,

V (x) ≥ ν − δ
|x|2

(17)

and

(ν − δ)(1− δ) ≥ λ2

1− δ
− (1− δ)

(N
2
− 1
)2
, (18)

where we recall that ν = lim inf |x|→∞|x|2V (x).
Choose now ψ ∈ C∞c (Ω) such that ψ ≡ 1 on RN \B(0, 2R) and, for k > 0,

set ϕk(x) = ψ(x) min(k, |x|λ). We infer from (16) and (17) that

(1− δ)
∫

RN
|∇(ϕku)|2 +

(
δV + (1− δ)ν − δ

|x|2
)
|ϕku|2

≤
∫

RN
|∇ϕk|2|u|2

≤
∫

RN

λ2

|x|2
|ϕku|2 + C

∫
B(0,2R)\B(0,R)

|u|2,

where the constant C depends only on ψ, R and λ. Therefore,∫
RN
|∇(ϕku)|2 +

(
δV+

(
(1− δ)(ν − δ)− λ2

1− δ

) 1
|x|2

)
|ϕku|2

≤ C

1− δ

∫
B(0,2R)\B(0,R)

|u|2.
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Now, using (18), we infer that

δ

(∫
RN
|∇(ϕku)|2 + V |ϕku|2

)
+ (1− δ)

(∫
RN
|∇(ϕku)|2 −

(N
2
− 1
)2 |ϕku|2

|x|2

)
≤ C ′

∫
B(0,2R)\B(0,R)

|u|2

and Hardy’s inequality then yields

δ

(∫
RN
|∇(ϕku)|2 + V |ϕku|2

)
≤ C ′

∫
B(0,2R)\B(0,R)

|u|2.

By letting k →∞, we deduce from Fatou’s lemma that∫
RN
|∇(ϕu)|2 + V |ϕu|2 ≤ C ′

∫
B(0,2R)\B(0,R)

|u|2,

with ϕ(x) = ψ(x)|x|λ. Since local estimates are straightforward, we easily
conclude that |x|λ u ∈ H1

V (RN \B(0, 1)).
To complete the proof, we need to show that ∇((1 + |x|)λu) ∈ L2(RN ).

For this purpose, it is enough to observe that

(1 + |x|)λu =
(1 + |x|)λ

|x|λ
|x|λu

and to use the fact that ∇(|x|λu) ∈ L2(RN ). �

A similar method works in the case where V decays slowly at the infinity:

Proposition 3.2. Under Assumption 1, if

να := lim inf
|x|→∞

|x|2−2αV (x) > λ2, (19)

then eλ(1+|x|)αu ∈ H1
V (RN ).

Proof. Arguing as in the proof of Proposition 3.1, we choose the radius R in
such a way that δ < 1,

να >
λ2

(1− δ)2
+ δ. (20)

and
V (x) >

να − δ
|x|2−2α

, (21)

for every x ∈ U . Let ψ ∈ C∞c (U) be such that ψ ≡ 1 on RN \B(0, 2R) and,
for k > 0, set ϕk(x) = ψ(x) min(k, eλ|x|

α
). By (16), (20) and (21), we deduce

that ∫
RN
|∇(ϕku)|2 + V |ϕku|2 ≤ C

∫
B(0,2R)\B(0,R)

|u|2.

Letting k →∞ and applying Fatou’s lemma, we conclude that∫
RN
|∇(ϕu)|2 + V |ϕu|2 ≤ C

∫
B(0,2R)\B(0,R)

|u|2,

with ϕ(x) = ψ(x)eλ|x|
α . One concludes therefrom and from local estimates

that eλ′(1+|x|)αu ∈ H1
V (RN ) for every λ′ < λ. �
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Remark 5. The statement uses the weight eλ(1+|x|)α instead of the simpler
one eλ|x|α because the latter is not Lipschitz when 0 < α < 1.

3.2. Nonlinear estimates. The method of proof of Propositions 3.1 and
3.2 allows in fact to obtain information about ((1+ |x|)λ u)γ or (eλ(1+|x|)α u)γ

for γ > 1.

Lemma 3.3. Under Assumption 1, assuming moreover that γ > 1, u ∈
L2γ

loc(R
N ) and one of the following hypothesis holds

(i)
λ < (N2 − 1) 2γ−1

γ2−γ ,

and

ν = lim inf
|x|→∞

|x|2V (x) >
(
λ+ γ−1

γ (N2 − 1)
)2 − (N2 − 1

)2
> 0,

(ii)
ν > (1 + (γ−1)2

2γ−1 )λ2,

we have ((1 + |x|)λ u)γ ∈ H1
V (RN ).

The statement of Theorem 3.3 is a perturbation of Proposition 3.1 in
the sense that for every λ that satisfies (14), there exists γ̄(ν, λ) > 1 such
that Theorem 3.3 is applicable for 1 ≤ γ < γ̄(ν, λ). On the other hand,
Theorem 3.3 will only be useful when γ is small. Indeed, starting with
u ∈ H1

loc, Sobolev’s embedding Theorem only says u ∈ L2γ
loc(R

N ) for γ ≤
N/(N−2). Iterating the Lemma, one obtains successively that u ∈ L2γk

loc (RN )
for γk = Nk/(N−2)k for every k. For every fixed λ > 0, the iteration process
will cease giving global integrability information about ((1 + |x|)λu)γ when
γ is too large.

The proof of Lemma 3.3 follows the strategy used to prove that solutions
u ∈ H1(B(0, 1)) of the critical problem

−∆u = u
N+2
N−2

are in Lq(B(0, 1
2)) for q < 2N2/(N − 2)2 [4, 6, 19]. The proof proceeds

as follows. We first establish by integration by parts the inequality (25).
A suitable choice of test functions yields that ((1 + |x|)λ u)γ ∈ H1

V (RN \
B(0, 2R)) for some large R > 0. Finally we prove that one also has that
for every y ∈ RN , ((1 + |x|)λ u)γ ∈ H1

V (B(y, ρ)) for some ρ > 0. Since by
Besicovitch’s covering theorem, RN can be written as the union of a finite
collection of such balls together with RN \B(0, 2R), the claim will follow.

Proof of Lemma 3.3. First note that if v ∈ H1
loc(RN ) is locally bounded and

if ϕ is locally Lipschitz, one has

|∇((ϕv)γ)|2 = γ2

2γ−1∇v · ∇(ϕ2γv2γ−1) + 2γ2−2γ
2γ−1 vγϕγ−1∇ϕ · ∇(ϕv)γ

+ γ2

2γ−1 |∇ϕ|
2v2γϕ2γ−2 (22)

and thus, for every η > 0,

(1− η γ
2−γ

2γ−1 )|∇((ϕv)γ |)2

≤ γ2

2γ−1∇v · ∇(ϕ2γv2γ−1) + ( γ2

2γ−1 + 1
η
γ2−γ
2γ−1 )|∇ϕ|2v2γϕ2γ−2. (23)
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On the other hand, by (15), and since γ > 1,

(1− η γ
2−γ

2γ−1 )|∇(ϕv)|2 ≤ γ2

2γ−1 |∇(ϕv)|2

= γ2

2γ−1∇v · ∇(ϕ2v) + γ2

2γ−1 |∇ϕ|
2v2

≤ γ2

2γ−1∇v · ∇(ϕ2v) + ( γ2

2γ−1 + 1
η
γ2−γ
2γ−1 )|∇ϕ|2v2.

(24)

We will use this last estimates successively to obtain a first estimate at
infinity and a second one on small balls.

First step - a basic inequality. Define the truncation sequences (vk)k and
(wk)k by

vk = min((uϕk)γ , kuϕk) and wk = min((uϕk)2γ−1, k2uϕk),

where the choice of ϕk will be specified later. By applying successively (23)
and (24) to vk, we get the estimate

(1− η γ
2−γ

2γ−1 )|∇vk|2 ≤ γ2

2γ−1∇u · ∇(ϕkwk) + ( γ2

2γ−1 + 1
η
γ2−γ
2γ−1 )

|∇ϕk|2

ϕ2
k

v2
k.

If the support of ϕk lies in some open set Ω ⊂ RN , choosing ϕkwk as test func-
tion, applying Hölder’s inequality and the embedding H1

V (RN ) ⊂ Lp(RN , µ),
we infer that∫

RN
(2γ−1
γ2 − η γ−1

γ )|∇vk|2 + V |vk|2

≤
∫

RN
f |vk|2 dµ+ (1 + 1

η
γ−1
γ )

∫
RN

|∇ϕk|2

|ϕk|2
|vk|2

≤
(∫

Ω
|f |

p
p−2 dµ

)1− 2
p
(∫

RN
|vk|p dµ

) 2
p + (1 + 1

η
γ−1
γ )

∫
RN

|∇ϕk|2

|ϕk|2
|vk|2

≤ C
(∫

Ω
|f |

p
p−2 dµ

)1− 2
p
(∫

RN
|∇vk|2+V |vk|2

)
+(1+ 1

η
γ−1
γ )

∫
RN

|∇ϕk|2

|ϕk|2
|vk|2.

(25)

Let us set again δ = C
(∫

Ω|f |
p
p−2 dµ

)1− 2
p . The preceding estimate then leads

to

(2γ−1
γ2 −η γ−1

γ −δ)
∫

RN
|∇vk|2+(1−δ)

∫
RN

V |vk|2 ≤ (1+ 1
η
γ−1
γ )

∫
RN

|∇ϕ|2

|ϕ|2
|vk|2.

(26)

Second step - An estimate at infinity. Assume first that (i) holds. We then
choose η = λ/(N2 −1). Since f ∈ L

p
p−2 (RN , µ), we can take Ω = RN \B(0, R)

in such a way that
δ(2− δ) ≤ 2γ−1

γ2 − 2λ
N−2

γ−1
γ .

On the other hand, increasing R if necessary, we can assume that

(ν − δ) ≥
(λ+ γ

γ−1(N2 − 1))2

(1− δ)2
− (N2 − 1)2 (27)

and
V (x) ≥ ν − δ

|x|2
,
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for every x ∈ Ω. Let ψ ∈ C∞c (Ω) be such that ψ ≡ 1 on RN \B(0, 2R). For
k > 0, set ϕk(x) = ψ(x) min(k, |x|λ). By (16), for k and R large enough, we
have∫

RN
(2γ−1
γ2 − η γ−1

γ − δ)|∇vk|
2 +

(
(1− δ)δV + (1− δ)2 ν − δ

|x|2
)
|vk|2

≤ (1 + 1
η
γ−1
γ )

∫
RN

|∇ϕk|2

|ϕk|2
|vk|2

≤ (1 + 1
η
γ−1
γ )
(∫

RN

λ2

|x|2
|vk|2 + C

∫
B(0,2R)\B(0,R)

|u|2γ
)
,

where the constant C does not depend on k. Taking (27) into account, we
deduce that

(2γ−1
γ2 − η γ−1

γ − δ(2− δ))
(∫

RN
|∇vk|2 − (N2 − 1)2 |vk|2

|x|2
)

+ (1− δ)δ
(∫

RN
|∇vk|2 + V |vk|2

)
≤ C

∫
B(0,2R)\B(0,R)

|u|2γ

Applying Hardy’s inequality yields∫
RN
|∇vk|2 + V |vk|2 ≤ C ′

∫
B(0,2R)\B(0,R)

|u|2γ ,

and letting k →∞, we conclude that∫
RN
|∇(ϕu)γ |2 + V |(ϕu)γ |2 ≤ C ′

∫
B(0,2R)\B(0,R)

|u|2,

with ϕ(x) = ψ(x)|x|λ. Arguing as in the proof of Proposition 3.1, we deduce
that ((1 + |x|)λ u)γ ∈ H1

V (RN \B(0, 2R)).

If (ii) holds, we proceed similarly, choosing the radius R sufficiently large
and η > 0 such that

η γ−1
γ + 2δ − δ2 ≤ 2γ−1

γ2 , λ2(1 + 1
η
γ−1
γ ) ≤ (ν − δ)(1− δ)2

instead of (27).

Third step - the local estimates. Keeping the same notations, we now fix
x0 ∈ RN , choose η = 1/(γ − 1), Ω = B(x0, ρ), ϕ ∈ C∞c (Ω) such that ϕ = 1
on B(x0, ρ/2) and we set ψk = ϕ for every k. Taking ρ in such a way that

δ ≤ γ−1
2γ2 ,

we deduce from (16) that

γ−1
2γ2

∫
B(x0,ρ)

|∇vk|2 + V |vk|2 ≤ C
∫
B(x0,ρ)

|vk|2 ≤ C ′
∫
B(x0,ρ)

|u|2γ .

Letting k → ∞, we conclude that ∇(uγ) ∈ L2(B(x0, ρ/2)), and therefore
((1 + |x|)λu)γ ∈ H1

V (B(x0, ρ/2).
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Conclusion. Taking all the previous estimates into account, the conclusion
now follows from a standard application of Besicovitch’s covering theorem.

�

In view of Theorem 8, one would have expected to have conditions (i) or
(ii) replaced by the weaker assumption

ν > (λ− γ−1
γ (N2 − 1))2 − (N2 − 1)2.

Observe that the sign in front of γ−1
γ has changed. This can be explained

partially roughly as follows. If λ is optimal, one expects u to behave as
|x|−λ−(N

2
−1)/γ and

2uγ |x|λ(γ−1)∇|x|λ · ∇(|x|λu)γ ∼ −λ(N − 2)
|x|N

.

When passing from (22) to (23), the latter quantity can be bounded by

η|∇(u|x|λ)γ |2 +
1
η
u2γ |x|2λ(γ−1)|∇|x|λ|2

so that choosing η = λ/(N2 − 1) as in the proof, yields λ(N − 2)/|x|N , i.e.
the opposite quantity. (One would like thus to take η = −λ/(N2 − 1).)

The method of proof also works for 1
2 < γ < 1. In this case, the second

term on the right-hand side of (22) has a negative coefficient, so that one
(23) holds for η < 0. The conditions on γ, λ and ν are the same excepted
that the second inequality in (i) becomes

ν >
(
λ− γ−1

γ (N2 − 1)
)2 − (N2 − 1

)2
.

In view of the previous remark, the case γ < 1 is slightly better.
Finally, in the same fashion, one obtains the counterpart of Proposi-

tion 3.2:

Lemma 3.4. Under Assumption 1, if u ∈ L2γ
loc(R

N ) with γ > 1, and if

να = lim inf
|x|→∞

|x|2−2αV (x) >
(
1 + (γ−1)2

2γ−1

)
λ2,

then
(
eλ(1+|x|)α u

)γ ∈ H1
V (RN ).

As for Lemma 3.3, the condition on να and λ are stonger than the condition
να > λ2 that is stated in Theorem 8.

Whereas Lemma 3.3 plays a crucial role in the sequel, Lemma 3.4 is not
really needed, since Lemma 3.6 only requires information on the integrability
of |u|p−2 with a power-type weight.

3.3. Moser iteration scheme. We now show that whenever u and f are
in slighlty better spaces than H1

V (RN ) and Lp/(p−2)(RN , µ), this information
can be upgraded to a uniform decay of u at infinity.

Lemma 3.5. Assume that (14) holds, H1(RN , V ) ⊂ Lp(RN , µ) and

f(1 + |x|)(N−2)(η−1) ∈ Lq(RN , µ),

where
η =

p

2

(
1− 1

q

)
> 1.
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Then, if (1 + |x|)λ u ∈ H1
V (RN ) and u solves (13), there exists C <∞ such

that

u(x) ≤ C

(1 + |x|)λ+(N−2)/2
.

Proof. Assume that ((1 + |x|)σ u)γ ∈ H1
V (RN ) for some γ ≥ 1 and σ > 0.

Setting γ′ = ηγ,

σ′ = σ + (N2 − 1)
η − 1
γ′

,

w(x) = u2γ′−1(1 + |x|)2γ′σ′

and

v(x) = ((1 + |x|)σ′ u)γ
′
,

one has, see (24),

|∇v|2 = γ′2

2γ′−1∇u · ∇w + 2σ′ γ
′(γ′−1)
2γ′−1

v

1 + |x|
x · ∇v
|x|

+ γ′2

2γ′−1σ
′2 |v|2

(1 + |x|)2
,

so that

|∇v|2 ≤ 2γ′2

2γ′−1∇u · ∇w + γ′
2
σ′

2(1 + 1
(2γ′−1)2

)
|v|2

(1 + |x|)2
.

By a suitable limiting argument, one has therefore∫
RN
|∇v|2 ≤ 2γ′2

2γ′−1

∫
RN

fv2 dµ− 2γ′2

2γ′−1

∫
RN

V v2

+ γ′
2
σ′

2(1 + 1
(2γ′−1)2

)
∫

RN

|v|2

(1 + |x|)2
.

One has by Hölder’s inequality and the embedding H1
V ⊂ Lp(RN , µ)∫

RN
fv2 dµ =

∫
RN

f(1 + |x|)(N−2)(η−1)|u(x)(1 + |x|)σ|2γ′ dµ

≤ C
(∫

RN
|f(1 + |x|)(N−2)(η−1)|q dµ

) 1
q
(∫

RN
|(1 + |x|)σ u|γp dµ

)1− 1
q

≤ C
(∫

RN
|f(1 + |x|)(N−2)(η−1)|q dµ

) 1
q ‖((1 + |x|)σ u)γ‖2η

H1
V
.

Observing that η < p ≤ 2N/(N − 2) and combining this with (14), we infer
that Lemma 2.3 is applicable and yields∫

RN

|v|2

(1 + |x|)2
=
∫

RN

(|(1 + |x|)σ u|γ)2η

(1 + |x|)2−(N
2
−1)(2η−2)

≤ C‖((1 + |x|)σ u)γ‖2η
H1
V
.

One concludes thus that

‖((1 + |x|)σ′ u)γ
′‖H1

V
≤ C(1 + γ′ + σ′γ′

2)‖((1 + |x|)σ u)γ‖η
H1
V
.

Setting now γk = ηk and

σk = λ+ (1− 1
ηk

)
N − 2

2
,
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we get

‖((1 + |x|)σk+1 u)γk+1‖1/γk+1

H1
V

≤ [C(1 + η2(k+1))]1/η
k+1‖((1 + |x|)σk u)γ‖1/γk

H1
V
.

Therefore, the quantity

‖((1 + |x|)σk u)γk‖1/γk
H1
V

is bounded uniformly in k. In particular, by Lemma 2.3 again, we infer that(∫
RN

((1 + |x|)λ+(N−2)/2 u)2ηk

(1 + |x|)N
)1/(2ηk)

is bounded uniformly in k, so that

(1 + |x|)λ+(N−2)/2 u ∈ L∞(RN ). �

The same can be done when the potential decays slowly at infinity.

Lemma 3.6. Assume (19) holds, H1(RN , V ) ⊂ Lp(RN , µ) and

f(1 + |x|)(1−α)(N−2)(η−1) ∈ Lq(RN , µ),

where
η =

p

2

(
1− 1

q

)
> 1.

If eλ(1+|x|)α u ∈ H1
V (RN ) and u solves (13), then there exists C < ∞ such

that

u(x) ≤ Ce−λ(1+|x|)α

(1 + |x|)(1−α)(N−2)/2
.

Proof. We argue as in the proof of the previous lemma, taking γ′ = ηγ,

σ′ = σ + (1− α)(N2 − 1)
η − 1
γ′

w(x) = (1 + |x|)2γ′σ′e2γ′λ(1+|x|)αu2γ′−1(x),

and

v(x) = ((1 + |x|)σ′eλ(1+|x|)αu(x))γ
′
.

One obtains similarly∫
RN
|∇v|2 ≤ 2γ′2

2γ′−1

∫
RN

fv2 dµ− 2γ′2

2γ′−1

∫
RN

V v2

+ γ′
2(|σ′|+ λα)2(1 + 1

(2γ′−1)2
)
∫

RN

|v|2

(1 + |x|)2−2α
.

From the embedding H1
V ⊂ Lp(RN , µ) and Lemma 2.3, we deduce

‖((1 + |x|)σ′ u)γ
′‖H1

V
≤ C(1 + γ′ + (|σ|+ λα)γ′2)‖((1 + |x|)σ u)γ‖2η

H1
V
.

Setting now γk = ηk and

σk = λ+ (1− α)(1− 1
ηk

)
N − 2

2
,

and iterating as before, one has that

‖(eλ(1+|x|)αu)γk‖1/γk
H1
V
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is bounded uniformly in k. In particular, by Lemma 2.3(∫
RN

((1 + |x|)(1−α)(N−2)/2eλ(1+|x|)αu)2ηk

(1 + |x|)N(1−α)

)1/(2ηk)

is bounded uniformly in k, so that

(1 + |x|)(1−α)(N−2)/2eλ(1+|x|)αu ∈ L∞(RN ). �

3.4. Proof of Theorem 8. We can now bring together the results of the
previous sections in order to deduce the decay at infinity.

Proof of Theorem 8. Consider first the statement (i). Since we know that
|u|p−2 ∈ Lp/(p−2)(RN , µ) and, by assumption, we have

lim inf
|x|→∞

V (x)|x|2 > (λ− (N2 − 1))2 − (N2 − 1)2,

we deduce from Proposition 3.1 that u(1 + |x|)λ−(N
2
−1) ∈ H1

V (RN ).
Next, when γ > 1 is sufficiently small, Lemma 3.3 shows that

(u(1 + |x|)
γ−1
γ (

N
2 −1))γ ∈ H1

V (RN ) ⊂ Lp(RN , µ).

Setting q = γp
p−2 and

η = p
2(1− 1

q ) = 1 + γ−1
γ (p2 − 1),

one reaches the conclusion by using Lemma 3.5.
The proof of (ii) is similar. We start from Proposition 3.2 which states

eλ(1+|x|)αu ∈ H1
V (RN ). On the other hand, in view of Lemma 3.3, there

exists γ > 1 such that

(u(1 + |x|)
γ−1
γ (α−1)(

N
2 −1))γ ∈ H1

V (RN )

Taking q and η as above, by Lemma 3.6,

(1 + |x|)(1−α)(N−2)/2eλ(1+|x|)αu ∈ L∞(RN ).

This gives the conclusion if α ≤ 1. Otherwise, one just need to notice that
the range of admissible λ is open. �

4. Further comments

The method that we have followed is known to be very flexible. Let us
highlight some similar situations that can be treated as above.

4.1. Fast decay for exploding potential. By the Kelvin transform the
estimates around infinity are equivalent to local estimates with a singular
potential. Indeed, if u ∈ H1

V (RN ) satisfies (PV,µ), then

ū(x) =
1

|x|N−2
u
( x

|x|2
)
.

satisfies
−∆ū+ V̄ u = up−1µ̄,

where
V̄ (x) =

1
|x|4

V
( x

|x|2
)
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and the measure µ̄ is defined by∫
RN

ϕdµ̄ =
∫

RN
ϕ
( x

|x|2
) 1
|x|(N−2)p

dµ.

As a consequence of Theorem 8, one has that if

lim inf
x→0

|x|2V (x) > λ(λ+N − 2)

for λ > 0, then in a a neighbourhood of 0, u(x) ≤ C|x|λ. Similarly, if

lim inf
x→0

|x|2+2αV (x) > λ2,

then u(x) ≤ e−λ/|x|α in a a neighbourhood of 0.

4.2. Divergence-form operators. The Laplacian can be replaced by an
elliptic operator in divergence form. Assume that u solves,

−div ·A∇u+ V u = |u|p−2uµ,

where A : RN → RN×N is measurable and A(x) is symmetric for every
x ∈ RN and there exist 0 < a ≤ a <∞ such that

a|ξ|2 ≤ ξ ·Aξ ≤ a|ξ|2. (28)

If
lim inf
|x|→∞

|x|2V (x) > aλ2 − a(N2 − 1)2 > 0

then (1 + |x|)λ ∈ H1
V (RN ). Similarily, if

lim inf
|x|→∞

|x|2−2αV (x) > aλ2,

then eλ(1+|x|)αu ∈ H1
V (RN ). The proof of Lemmas 3.5 and 3.6 apply directy,

so that u(x) ≤ C(1+|x|)−λ+1−N
2 and u(x) ≤ Ce−λ(1+|x|)α(1+|x|)(α−1)(N

2
−1).

4.3. Nonuniformly elliptic operators. If the matrix A is not anymore
uniformly elliptic, but satisfies

a

(1 + |x|)2τ
|ξ|2 ≤ ξ ·Aξ ≤ a

(1 + |x|)2τ
|ξ|2,

instead of (28). One has then the following extension: if

lim inf
|x|→∞

|x|2V (x) > aλ2 − a(N2 − τ − 1)2 > 0,

then (1 + |x|)λ u ∈ H, where H is defined in Remark 3, and if

lim inf
|x|→∞

|x|2−2αV (x) > aλ2,

then eλ(1+|x|)αu ∈ H. Suitable adaptations of Lemmas 3.5 allow also to show
that

u(x) ≤ C(1 + |x|)−λ−(N
2
−1−τ)

and
u(x) ≤ Ce−λ(1+|x|)α(1 + |x|)(α−1)(N

2
−1−τ)

respectively.
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