
BOUND STATE SOLUTIONS FOR A CLASS OFNONLINEAR SCHRÖDINGER EQUATIONSDENIS BONHEURE∗ AND JEAN VAN SCHAFTINGEN∗,∗∗Abstra
t. We deal with the existen
e of positive bound state solutionsfor a 
lass of stationary nonlinear S
hrödinger equations of the form
−ε2∆u + V (x)u = K(x)up, x ∈ R

N ,where V, K are positive 
ontinuous fun
tions and p > 1 is sub
riti
al, ina framework whi
h may ex
lude the existen
e of ground states. Namely,the potential V is allowed to vanish at in�nity and the 
ompeting fun
-tion K does not have to be bounded. In the semi-
lassi
al limit, i.e.for ε ∼ 0, we prove the existen
e of bound state solutions lo
alizedaround lo
al minimum points of the auxiliary fun
tion A = V θK−
2

p−1 ,where θ = (p + 1)/(p − 1) − N/2. A spe
ial attention is devoted to thequalitative properties of these solutions as ε goes to zero.1. Introdu
tionThe nonlinear S
hrödinger equation appears in many �elds of physi
s asnonlinear opti
s or plasma physi
s. It typi
ally reads
i~
∂ψ

∂t
+

~
2

2m
∆ψ −W (x)ψ + |ψ|p−1ψ = 0, (t, x) ∈ R × R

N , (1)where ~ denotes the Plank 
onstant and i is the imaginary unit. This equa-tion models the non-relativisti
 evolution of a quantum parti
le. It is ex-pe
ted that 
lassi
al me
hani
s 
an be re
overed by letting ~ → 0 in (1) andthe limiting behaviour as ~ → 0 is then 
alled semi-
lassi
al. The study ofthe dynami
s of (1) leads naturally to standing wave solutions, i.e. solutionsof the form
ψ(t, x) = e−iEt/~u(x),where E is the energy of the wave. For small ~, these solutions are referredto as semi-
lassi
al states. The fun
tion ψ is a standing wave solution of (1)if and only if u solves the semilinear ellipti
 equation

− ε2∆u+ V (x)u = |u|p−1u, x ∈ R
N , (2)where ε2 = ~

2/2m and V (x) = (W (x) − E).The study of (2) goes ba
k at least to Floer and Weinstein [18℄ whoinvestigated the spe
ial 
ase where N = 1 and p = 3. Assuming that V is aDate: September 29, 2006.2000 Mathemati
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2 DENIS BONHEURE AND JEAN VAN SCHAFTINGENglobally bounded potential having a nondegenerate 
riti
al point, say x = 0,and infRN V > 0, they 
onstru
ted a positive solution uε of (2) for small
ε > 0 via a Lyapunov-S
hmidt redu
tion. Moreover, they proved that thesolution 
on
entrates around the 
riti
al point of V , i.e. most of the massof uε is 
ontained in a neighbourhood of 0 that shrinks to a single point as
ε → 0. This result was then extended to higher dimensions by Oh [27, 29℄who also 
onsidered the possibility of simultaneous 
on
entration aroundmultiple 
riti
al points leading to so-
alled multi-bump standing waves. Oh[28℄ also investigated the stability of these solutions.Sin
e then, equation (2) has attra
ted the interest of many mathemati-
ians and the existen
e of positive solutions under various assumptions hasbeen proved using di�erent methods. As the problem has generated an im-pressive amount of publi
ations, it is impossible to give a 
omprehensivelist of referen
es here. Basi
ally, two main routes have been pursued. TheLyapunov-S
hmidt redu
tion s
heme proposed by Floer and Weinstein hasbeen further extended and 
ombined with variational arguments by Am-brosetti et al. [1, 7, 4, 5℄, see also for example [26, 30℄ for multibump so-lutions. On the other hand, Rabinowitz [33℄ initiated a purely variationalapproa
h, then mainly relayed by del Pino and Felmer [14, 15, 16, 17℄. Wealso refer to P.L. Lions [24℄, Y. Li [25℄, Bahri and P.L. Lions [9℄ as well as totheir bibliographies for other works involving variational methods to treatthe existen
e of standing waves for nonlinear S
hrödinger equations.The Lyapunov-S
hmidt redu
tion method introdu
ed by Floer and Wein-stein uses in an essential way the nondegenera
y of the 
riti
al point of Vso that one 
an address the natural question whether alternative argumentsmay be used to extend their result to a degenerate setting, that is whethersolutions 
on
entrating around possibly degenerate 
riti
al points of the po-tential 
an be obtained. Using a lo
al variational approa
h, Del Pino andFelmer [15, 17℄ 
onstru
ted positive solutions 
on
entrating around any topo-logi
ally nontrivial 
riti
al point of the potential V whereas an a�rmativeanswer to the above question has also been given using �nite dimensionalredu
tion arguments by Ambrosetti, Badiale and Cingolani [1℄ for isolated
riti
al points of V with polynomial degenera
y and by Y.Y. Li [26℄ in the
ase where V has stable 
riti
al points. Basi
ally, the approa
h of Y.Y. Lirequires that small C1 perturbations of the potential still have a 
riti
alpoint while that of del Pino and Felmer works �ne with any 
riti
al pointhaving a minimax 
hara
terisation, the easiest situation being that of a lo
alminimum. Assume for instan
e that Λ ⊂ R

N is a bounded open set su
hthat
V0 := inf

x∈Λ
V (x) < inf

x∈∂Λ
V (x). (3)Then, if infRN V > 0, there exists a positive solution 
on
entrating in Λ.More pre
isely, we have the following result whi
h is by now 
lassi
al.Theorem (del Pino-Felmer [14℄). Assume that V is a lo
ally Hölder 
on-tinuous potential bounded away from zero and Λ is a bounded open set sat-isfying (3). Then, there exist ε0 > 0 and a family of positive solutions

{uε ∈ H1(RN ) | 0 < ε < ε0} of (2) with the parti
ularity that ea
h uε pos-sesses a single maximum point xε su
h that V (xε) → V0 as ε→ 0. Moreover,



BOUND STATES FOR SCHRÖDINGER EQUATIONS 3there exist C, λ > 0 su
h that for every x ∈ R
N ,

uε(x) ≤ C e−λ|x−xε|/εand the limiting pro�le is given by
uε(x) = v

(x− xε

ε

)

+ wε(x),where v is the unique positive radial solution of
−∆v + V0v = |v|p−1vand wε → 0 in C2

loc(R
N ) and in L∞(RN ) as ε→ 0.Formally, equation (2) is the Euler-Lagrange equation asso
iated to thea
tion fun
tional
Iε(u) := Jε(u) −

1

p+ 1

∫

RN

up+1, (4)where
Jε(u) :=

1

2

∫

RN

(

ε2|∇u|2 + V (x)|u|2
)

.Assuming that 1 < p < (N + 2)/(N − 2) if N ≥ 3 and V (x) → +∞as |x| → ∞, it is easily seen that for any ε > 0, Jε a
hieves a minimum
onstrained to the manifold
M :=

{

u ∈ H1(RN )
∣

∣

∣

∫

RN

V (x)|u|2 <∞ and ∫
RN

up+1 = 1
}

.When infRN V > 0, this allows to obtain a positive ground-state, i.e. a leastenergy mountain pass solution, of (2). In [33℄, still assuming that infRN V >
0, Rabinowitz proved the existen
e of a positive ground state for any ε > 0under the 
ondition

0 < a ≤ V (x) ≤ lim inf
|x|→∞

V (x), for all x ∈ R
N and some a > 0,with stri
t inequality on a set of positive measure, while he observed thatfor small ε, existen
e holds under the weaker assumption

inf
x∈RN

V (x) < lim inf
|x|→∞

V (x). (5)In the meantime, Wang [37℄ proved under this last hypothesis that any posi-tive ground state does 
on
entrate at a global minimum point of V as ε→ 0.These last results 
on
ern the 
ase where V a
hieves a global minimum, i.e.the 
ase where we 
an 
hoose any su�
iently large bounded set Λ in the delPino-Felmer Theorem. When V only a
hieves lo
al minima, one requires,from a variational point of view, lo
al arguments to 
at
h lo
al mountainpasses. This is the spirit of the approa
h of del Pino and Felmer [14℄ whi
hrelies on the study of a penalized fun
tional. For instan
e, the modi�
ationin the fun
tional whi
h basi
ally 
orresponds to a penalization outside Λ,permits to re
over enough 
ompa
tness to se
ure the existen
e of a moun-tain pass 
riti
al point. This 
riti
al point is then shown to be a 
riti
alpoint of the original fun
tional when ε is small.For various reasons, the penalization s
heme developed by del Pino andFelmer 
ru
ially depends on the assumption
inf
RN

V > 0.



4 DENIS BONHEURE AND JEAN VAN SCHAFTINGENThe 
ase where infRN V = 0 (this happens if the frequen
y E of the waveis equal to infRN W whi
h is referred to as the 
riti
al frequen
y [11℄) hasbeen treated re
ently by Byeon and Wang in [11℄ 
on
erning the existen
e ofground states and in [12℄ 
on
erning lo
alized solutions. The results 
ontraststrikingly with the non-
riti
al frequen
y 
ase sin
e the amplitude of thesolutions goes to 0 as ε → 0 and the limiting pro�les depend on the shapeof the potential around the minimum points of V . It is worth pointing outthat even if the results of Byeon and Wang allow V to vanish in R
N , theydo require V to be bounded away from zero outside a 
ompa
t set of R

N .The starting point of our work is a re
ent result of Ambrosetti, Felli andMal
hiodi [2℄ where the authors 
onsider the model equation
− ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ R

N , (6)where K > 0 is an additional 
ompeting fun
tion, assumed to be positive.Su
h an equation has been previously treated by Wang and Zeng [38℄ as-suming that infRN V > 0 and K is bounded away from zero and bounded.The novelty in [2℄ is the 
ase where the potential V vanishes at in�nity. Thissituation di�ers drasti
ally from that 
onsidered by Byeon and Wang [11℄sin
e the fa
t that V a
hieves its in�mum at in�nity 
an 
learly produ
e ala
k of 
ompa
tness. Indeed, one easily observes for example that Iε, de�nedby (4), 
annot have a least energy mountain pass 
riti
al point in this 
ase.In order to re
over the existen
e of a ground state, Ambrosetti, Felli andMal
hiodi 
onsider (6) with K(x) → 0 as |x| → ∞ with a rate related tothat of V . More pre
isely, they assume that there exist A, a, α > 0 and
B, β > 0 su
h that

a

1 + |x|α ≤ V (x) ≤ A and 0 < K(x) ≤ B

1 + |x|β . (7)Assuming further that N ≥ 3, 0 < α < 2, β > 0 and de�ning
σ :=







N + 2

N − 2
− 4β

α(N − 2)
if β < α,

1 if α ≤ β,they prove the existen
e of a positive ground state in H1(RN ) provided
σ < p <

N + 2

N − 2
. (8)This 
ondition is sharp in the sense that for this range of p, the ground staterealizes the supremum

sup
Hε\{0}

∫

RN K(x)|u|p+1

∫

RN (ε2|∇u|2 + V (x)|u|2)
p+1
2

,where Hε is the weighted Sobolev spa
e de�ned by
Hε :=

{

u ∈ H1
loc(R

N )
∣

∣

∣

∫

RN

(

ε2|∇u|2 + V (x)|u|2
)

<∞
}

,while the supremum is +∞ if p < σ or p > (N + 2)/(N − 2). Noti
e thatin 
ase V and K are radial, the range of admissible p's given by (8) 
an beenlarged when looking for radial ground states as shown re
ently by Su etal. [35℄.



BOUND STATES FOR SCHRÖDINGER EQUATIONS 5In fa
t, under assumption (8), the Sobolev spa
e Hε is 
ompa
tly imbed-ded in Lp+1(RN ,K(x) dx) so that a positive ground state in Hε 
an beobtained via a 
lassi
al minimax pro
edure. At this point, it is worth men-tioning that (8) implies that the fun
tion
A(x) := [V (x)]

p+1
p−1

−N
2 [K(x)]−

2
p−1 (9)tends to +∞ as |x| → ∞ whereas one 
an 
he
k this last 
ondition a
tuallyimplies the 
ompa
t imbedding of Hε into Lp+1(RN ,K(x) dx) for any ε > 0.The existen
e 
ondition obtained in [2℄ 
an therefore be repla
ed by justimposing the 
oer
ivity of A without any spe
ial de
ay 
ondition on V and

K. However, one of the main issues of [2℄ is in fa
t to show that this groundstate is indeed in H1(RN ). To this respe
t, the assumption α < 2 in (7)seems essential.When V is bounded from below by a positive 
onstant and K is bounded,the auxiliary fun
tion A was shown by Wang and Zeng [38℄ to play in somesense the role of the potential in Rabinowitz's result, i.e. their extension ofRabinowitz's su�
ient 
ondition for the existen
e of a positive ground statesolution of (6) reads
inf

x∈RN
A(x) <

lim inf |x|→∞ V (x)
p+1
p−1

−N
2

lim sup|x|→∞K(x)
2

p−1

. (10)Under the same 
onditions, Wang and Zeng also proved that A 
ontainsthe information about 
on
entration, namely 
on
entration o

urs around
riti
al points of A. Therefore A is referred to as the 
on
entration fun
tionasso
iated to (6). In parti
ular, if V is bounded from below by a positive
onstant and K is bounded, any positive ground state solution of (6) 
on-
entrates at a global minimum point of A. In fa
t, one 
ould also rewritedel Pino-Felmer Theorem within the framework of equation (6), using thefun
tion A instead of V to lo
ate the peak of the solution. Therefore, theresult of [2℄ 
an be seen as a partial extension of that theorem in the 
ase ofequation (6) with both V and K de
aying to 0 at in�nity and A having aglobal minimum.In this paper, we 
onsider (6) in situations where
lim inf
|x|→∞

A(x) = 0and
A(x) > 0 for all x ∈ R

N .This means we 
onsider either a 
riti
al frequen
y 
ase infRN V = 0, assum-ing further V (x) > 0 for all x ∈ R
N , or an unbounded 
ompeting fun
tion K.Sin
e in general ground states do not exist in su
h 
ases, we sear
h for boundstate solutions lo
alized around lo
al minima of A. Our approa
h relies on asuitable adaptation of the above dis
ussed penalization method of del Pinoand Felmer. Our results also 
on
ern positive solutions for equations like (6)in bounded or exterior domains with Diri
hlet boundary 
ondition. In thelatter we assume that the domain has a bounded boundary, V > 0 in theinterior of the domain while we allow V to vanish or K to explode on theboundary.



6 DENIS BONHEURE AND JEAN VAN SCHAFTINGENFrom now on, Ω ⊂ R
N denotes a regular domain with bounded boundary.Of 
ourse, this in
ludes the 
ase Ω = R

N . Let V, K ∈ C(Ω,R+) satisfy, if
∂Ω 6= ∅,
(G∂Ω) lim sup

x→∂Ω
d(x, ∂Ω)p−1K(x)

V (x)
<∞and one of the three following growth 
onditions at in�nity if Ω is unbounded:

(G1
∞) there exist α ∈ [0, 2[ and λ > 0 su
h that

lim inf
|x|→∞

V (x)|x|α > 0 and lim sup
|x|→∞

ψ1,λ(x)
K(x)

V (x)
<∞ ,where ψ1,λ := exp(−λ|x|1−α/2) ;

(G2
∞) there exists λ > 0 su
h that

lim inf
|x|→∞

V (x)|x|2 > 0 and lim sup
|x|→∞

ψ2,λ(x)
K(x)

V (x)
<∞ ,where ψ2,λ(x) := |x|−λ ;

(G3
∞) N > 2 and

lim sup
|x|→∞

|x|−νK(x)

V (x)
<∞ ,where ν = (p− 1)(N − 2).Theorem 1. Suppose Ω ⊂ R

N is a regular domain with bounded boundaryand p ∈ ]1, (N + 2)/(N − 2)[ if N ≥ 3 or p ∈ ]1,∞[ otherwise. Let V, K ∈
C(Ω,R+) satisfy (G∂Ω) if ∂Ω 6= ∅ and one set (Gi

∞) of growth 
onditions if
Ω is unbounded. Let Λ ⊂ R

N be open and bounded and assume
inf
x∈Λ

A(x) < inf
x∈∂Λ

A(x),where A is de�ned by (9). Then there exists ε0 > 0 su
h that for every
0 < ε < ε0, the Diri
hlet problem

−ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω

(11)has at least one positive solution uε.We emphasize that the solution uε also satis�es
∫

Ω

(

ε2|∇uε|2 + V (x)|uε|2
)

= O(εN ),but sin
e V does not have a positive lower bound, ‖uε‖2
L2(Ω) does not needto satisfy the same estimate, and might even not be �nite. However, thesolution displays the following features.Theorem 2. Under the assumptions of Theorem 1, let uε be the solution of(11) obtained in that theorem and xε ∈ Ω be su
h that

uε(xε) = sup
x∈Ω

uε(x).



BOUND STATES FOR SCHRÖDINGER EQUATIONS 7Then, we have
A(xε) → inf

x∈Λ
A(x), as ε→ 0,for every r > 0 and ε su�
iently small, uε has no lo
al maximum outsidethe ball B(xε, εr) and satis�es

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

εN−2

(ε2 + |x− xε|2)
N−2

2

.If moreover,
lim inf

d(x,∂Ω)→0
V (x) > 0 and lim inf

|x|→∞
V (x)|x|2 > 0,then, for every λ > 0, there is C > 0 and ε0 > 0 su
h that if 0 < ε < ε0,

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

ελ

(ε2 + |x− xε|2)
λ
2

,while if
lim inf

d(x,∂Ω)→0
V (x) > 0, and lim inf

|x|→∞
V (x)|x|α > 0 for some α ∈ ]0, 2[ ,then for every λ > 0, there is C > 0 and ε0 > 0 su
h that if 0 < ε < ε0,

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(

−λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)

.When Ω = R
N the pre
eding holds provided d(x, ∂Ω)/(1 + d(x, ∂Ω)) is re-pla
ed by 1.This theorem implies in parti
ular that uε ∈ L2(Ω) and ‖uε‖2

2 = O(εN )as soon as N > 4 or as lim inf |x|→∞ V (x)|x|2 and lim infd(x,∂Ω)→0 V (x) > 0.Theorem 2 
an be seen as a weak version of the 
on
entration behaviourdes
ribed in del Pino-Felmer Theorem. If V and K are lo
ally Hölder 
on-tinuous, then the solution 
an be shown to a
hieve a unique (hen
e global)maximum point. On the other hand, as dis
ussed below, one 
annot hope toobtain better de
ay estimates sin
e they do depend in an essential way onthe behaviour of V at in�nity.While 
ompleting our resear
h, we heard about some re
ent preprintsdealing also with nonlinear S
hrödinger equations with potentials vanishingat in�nity. The most related one, by Ambrosetti, Mal
hiodi and Ruiz [6℄,
on
erns the model equation (6) in R
N under assumptions similar to ours.Namely, the authors assume therein that V, K are smooth and positive, V ′,

K, K ′ are bounded and V de
ays to zero at in�nity in su
h a way that
lim inf
|x|→∞

V (x)|x|2 > 0.Under these assumptions, the authors are able to 
onstru
t, for su�
ientlysmall ε, bound state solutions 
on
entrating at any isolated stable stationarypoint of the 
on
entration fun
tion A. However, their assumptions on thepotentials V and K are more restri
tive and they require K to be bounded.Also, the method of [6℄ relies 
ru
ially on the homogeneity of the nonlinearterm K(x)up while we are able to deal with more general nonlinearities.In [6℄, the authors point out the paper of Souplet and Zhang [34℄ where



8 DENIS BONHEURE AND JEAN VAN SCHAFTINGENradial de
aying potentials are 
onsidered under stronger growth restri
tionsat in�nity. Moreover, neither semi
lassi
al states nor spikes are investigated.In two other re
ent prepints by Ambrosetti and Ruiz [8℄ and Byeon and Wang[13℄, the possibility of 
on
entration on spheres in the framework of de
ayingpotentials has also been 
onsidered. It 
ould be interesting to see how far ourmethod 
an be adapted to the sear
h of su
h solutions. Finally, we point outthe note [3℄, where re
ent developments on nonlinear S
hrödinger equationsare dis
ussed. The results of this paper were partially announ
ed in [10℄.Our paper is organized as follows. We deal in fa
t with (6) where thenonlinear term up may be repla
ed by a more general superlinear term f(u).It is not usually possible to give an expli
it expression of the 
on
entrationfun
tion, i.e. the energy asso
iated the ground state solutions of the limitingequation, see Se
tion 3, whi
h is given by A in the homogeneous 
ase. Also,the growth 
onditions (Gi
∞) have to be adapted a

ording to the behaviourof f(u)/u 
lose to zero. We refer to Se
tion 2 where we 
omplete our generalassumptions. We investigate the qualitative properties of the 
on
entrationfun
tion and those of the ground states of the limiting problem in Se
tion 3.In Se
tion 4, we dis
uss the penalization s
heme of del Pino and Felmerand we provide an adequate modi�
ation of their approa
h whi
h works �newithin our framework. From the way our penalized fun
tional is de�ned, itmight seem at �rst sight that the method of del Pino and Felmer extendsto our framework with only minor 
hanges. Whereas this is true for somearguments, the possibility of V to vanish at in�nity brings a lot of troublesand requires 
areful estimates. Firstly, our de�nition of the penalized fun
-tional requires some preliminary te
hni
al adjustments in order to 
at
h amountain-pass solution uε of the penalized equation. Indeed, our assump-tions on V do not imply the L2-boundedness of Palais-Smale sequen
es asin [14℄, but Hardy's inequality 
an still prevent losses of mass at in�nity inthose sequen
es. Sin
e Hardy's inequality does not hold in two dimensions,a spe
ial 
are is needed in that 
ase and the 
ompa
tness of Palais-Smalesequen
es is derived from a Hardy type inequality with potential whi
h takesa growth restri
tion on V at in�nity into a

ount. This is one of the reasonsfor whi
h we require N > 2 when dealing with the weaker growth 
onditionin (G3

∞). To re
over a solution of the original equation, we argue as follows.As in [14℄, for small ε, the solution uε is �rst shown to be small on the bound-ary of Λ. This is done in Se
tion 5. Then, using 
omparison arguments, theestimate on the boundary is extended outside Λ. To this respe
t, the situa-tion here is mu
h more deli
ate than in [14℄. Indeed, we do require pre
iseestimates on the de
ay of the solution at in�nity. Su
h estimates are workedout in Se
tion 6 where the proof of Theorem 1 is 
ompleted. Theorem 2
on
erning 
on
entration is proved in Se
tion 7. Here again the approa
hand the results di�er 
onsiderably due to both weak regularity assumptionson the potentials and their behaviour at in�nity. In [14℄, when V is Hölder
ontinuous, it is established that uε has a unique lo
al (and hen
e global)maximum. As we only assume that V and K are 
ontinuous, the weakness ofthe regularity of the solution ruled out the arguments used therein. However,as stated in Theorem 2, the global maximum xε is shown to be essentiallyunique in the sense that if yε is a lo
al maxima of uε, then d(xε, yε) = o(ε)



BOUND STATES FOR SCHRÖDINGER EQUATIONS 9as ε → 0. Observe also that when V is not bounded away from zero, we donot re
over an exponential de
ay as in del Pino-Felmer Theorem. In somesense, the solution inherits its de
ay properties from the behaviour of V .De
ay estimates are deli
ate and depend on 
omparison arguments uniformin ε. They are obtained by using families of barrier fun
tions, i.e. familiesof 
omparison fun
tions. Finally, Se
tion 8 is devoted to some 
on
ludingremarks and possible extensions of our results.2. AssumptionsFor further referen
es, we now introdu
e the main assumptions that willbe used throughout the paper. As already mentioned, we deal in fa
t withthe more general Diri
hlet problem
{

−ε2∆u+ V (x)u = K(x)f(u) in Ω,
u = 0 on ∂Ω,

(12)under the assumptions des
ribed hereafter.2.1. The domain. We assume the domain Ω ⊂ R
N is a 
onne
ted open setwith bounded C1,α boundary. In the sequel, su
h domains are referred to asbounded or exterior domains and unless expli
itely stated, a regular domainis understood as a domain with C1,α boundary. This regularity assumption issu�
ient for our purpose but 
an be weakened for some pointwise statements.The boundedness of the boundary is basi
ally used in order to have auniform 
ontrol on its geometry. Our arguments would thus also work forsome 
ylindri
al domains.2.2. The nonlinearity. We deal with a nonlinearity whi
h is a 
ontinuousfun
tion f : R

+ → R
+ su
h that

(f1) f(s) = o(s) as s→ 0+;
(f2) there exists 1 < p <

N + 2

N − 2
if N ≥ 3 or 1 < p < +∞ if N = 1, 2,su
h that

lim
s→∞

f(s)

sp
= 0 ;

(f3) there exists 2 < θ ≤ p+ 1 su
h that
0 < θF (s) ≤ f(s)s for s > 0 ,where F (s) :=
∫ s
0 f(σ) dσ ;

(f4) the fun
tion s 7→ f(s)/s is nonde
reasing.We extend f by zero for s < 0, so that every nonzero solution of (12) is bythe maximum prin
iple a positive solution of (12).Combining (f1) and (f2), we infer that for every δ > 0, there exists Cδ > 0su
h that
f(u) ≤ δ|u| + Cδ|u|p.Assumption (f3) implies that there is C > 0 su
h that F (s) ≥ C(|s|θ − 1),i.e. F grows superquadrati
ally fast. This 
ondition 
ould be weakened byassuming only that (f3) holds for large s and for any a, b > 0, there existsa positive least-energy solution (see below for a pre
ise de�nition) of theequation
− ∆u+ au = bf(u). (13)



10 DENIS BONHEURE AND JEAN VAN SCHAFTINGENThe hypothesis (f4) may also be weakened provided one 
an still obtain asuitable minimax 
hara
terization of the in�mum level on the Nehari man-ifold, see Lemma 3 below. For instan
e, Wang and Zeng [38℄ treated asuperlinear term of the form up − uq, assuming q < p.Our regularity assumption on the nonlinear term f is weaker than theusual one, see e.g. [14℄. Indeed, assuming f of 
lass C1 provides quite use-ful information about the ground states of (13): by the symmetry resultof Gidas, Ni and Nirenberg [20℄, any su
h solution is radial and radially de-
reasing. This analysis remains valid when f is Lips
hitz in a neighbourhoodof 0, see [19℄. In the general 
ase, the fa
t that u ∈ H1(RN ) is a groundstate and f is nonde
reasing implies that u is radial and radialy de
reasing,see [36℄.2.3. The potentials. We next 
onsider two potentials V, K ∈ C(Ω,R+),su
h that V (x) > 0. Moreover, we assume K is not identi
ally 0. If Ω isunbounded, we impose one of the three following sets of growth 
onditionsat in�nity:
(G1

f,∞) there exist α ∈ [0, 2[ and λ > 0 su
h that
lim inf
|x|→∞

V (x)|x|α > 0 and lim sup
|x|→∞

f(exp(−λ|x|1−α/2))

exp(−λ|x|1−α/2)

K(x)

V (x)
< 1 ;

(G2
f,∞) there exists λ > 0 su
h that

lim inf
|x|→∞

V (x)|x|2 > 0 and lim sup
|x|→∞

f(|x|−λ)

|x|−λ

K(x)

V (x)
< 1 ;

(G3
f,∞) N > 2 and there exists λ > 0 su
h that

lim sup
|x|→∞

f(λ|x|2−N )

λ|x|2−N

K(x)

V (x)
< 1 .If the boundary Ω is not empty, then we also assume that V and K satisfya growth 
ondition on the boundary:

(Gf,∂Ω) there exist µ > 0 su
h that
lim sup

d(x,∂Ω)→0

f(µd(x, ∂Ω))

µd(x, ∂Ω)

K(x)

V (x)
< 1.Observe that all growth 
onditions depend on the behaviour of K and Vat in�nity and around ∂Ω, and on the behaviour of f(s)/s around s = 0.Noti
e also that only V is assumed to be stri
tly positive inside Λ.3. Limit problemIn this se
tion, we introdu
e the 
on
entration fun
tion whi
h is the 
oun-terpart of the fun
tion A in the homogeneous 
ase and we study some of itsproperties. We also provide an independent de
ay estimate on the groundstates of the autonomous limiting problem. We �rst de�ne the fun
tional

Fa,b : H1(RN ) → R by
Fa,b(u) :=

1

2

(
∫

RN

|∇u|2 + a

∫

RN

|u|2
)

− b

∫

RN

F (u). (14)



BOUND STATES FOR SCHRÖDINGER EQUATIONS 11A ne
essary 
ondition for u ∈ H1(RN ) to be a nontrivial 
riti
al point of
Fa,b is to belong to the Nehari manifold

Na,b := {u ∈ H1(RN ) | u 6= 0, (F ′
a,b(u), u) = 0}.We then say that u ∈ H1(RN ) is a least-energy solution of

− ∆u+ au = bf(u), (15)or equivalently that u is a least-energy 
riti
al point of Fa,b if
Fa,b(u) = inf

u∈Na,b

Fa,b(u).We may now de�ne the ground-energy fun
tion
E : R

+
0 × R

+
0 → R

+ : (a, b) 7→ E(a, b) := inf
u∈Na,b

Fa,b(u)as the a
tion of any least-energy 
riti
al point of Fa,b and 
onsequently weintrodu
e the 
on
entration fun
tion C : R
N → R

+ ∪ {+∞} by
C(ξ) :=

{

E(V (ξ),K(ξ)) if K(ξ) > 0,
+∞ otherwise. (16)In other words, if K(ξ) > 0, C(ξ) is the ground-energy asso
iated to least-energy solutions of

− ∆u+ V (ξ)u = K(ξ)f(u). (17)3.1. Energy of the ground state. The following lemma provides somebasi
 properties of the ground-energy fun
tion. We sket
h the proof for
ompleteness.Lemma 3. Assume f : R
+ → R

+ is a 
ontinuous fun
tion that ful�ls as-sumptions (f1)-(f4). Then, for every (a, b) ∈ R
+
0 × R

+
0 , E(a, b) is a 
riti
alvalue of Fa,b and we have

E(a, b) = inf
u∈H1(RN )

u 6=0

max
t≥0

Fa,b(tu).If u ∈ Na,b and E(a, b) = E(u), then u ∈ C1 and up to a translation, u is aradial fun
tion su
h that ∇u(x) · x < 0 for every x ∈ R
N \ {0}.Moreover, the following properties hold:(i) the ground-energy fun
tion is 
ontinuous in R

+
0 × R

+
0 ;(ii) for every b∗ ∈ R

+
0 , a→ E(a, b∗) is stri
tly in
reasing;(iii) for every a∗ ∈ R
+
0 , b→ E(a∗, b) is stri
tly de
reasing;(iv) for every λ > 0, E(λa, λb) = λ1−N/2E(a, b);(v) if f(u) = up with 1 < p < (N + 2)/(N − 2) if N ≥ 3 or 1 < p < +∞ if

N = 1, 2, then
E(a, b) = E(1, 1)a

p+1
p−1

−N
2 b

− 2
p−1 .Proof. The proof of the minimax 
hara
terization of E(a, b) is by now 
las-si
al, see e.g. [39℄. The key ingredient in the proof is the monotoni
ityassumption (f4). On
e this 
hara
terization is established, it is also quiteeasy to show that E(a, b) is a 
riti
al value. These two fa
ts have been es-sentially proved by Rabinowitz [33℄. By 
lassi
al regularity estimates, u is
ontinuously di�erentiable. If f is Lips
hitz, by [20, 19℄, up to a translation

u is radial and ∇u ·x < 0. When f is monotone, [36℄ implies that u is radial



12 DENIS BONHEURE AND JEAN VAN SCHAFTINGENand ∇u ·x < 0. For x ∈ R
N \{0}, let H denote the halspa
e whose boundaryis perpendi
ular to x and let v denote the re�e
tion of u with respe
to to ∂H.By assumption, u− v ≥ 0 in H with equality on ∂H. By the monotoni
ityof f , −∆(u − v) + a(u − v) ≥ 0. Sin
e v is radial, u 6= v, so that by thestrong maximum prin
iple, ∇u · x < 0.Let us now fo
us on the properties(i)-(v).Property (i). Let (a, b) ∈ R

+ × R
+ be given. We �rst 
laim that E islower semi-
ontinuous. Assume (an, bn) → (a, b) as n → ∞ and denote by

un ∈ Nan,bn
a least-energy solution of

−∆u+ anu = bnf(u).We infer from assumption (f3) that there exist δ > 0 and C > 0 su
h that
δ‖un‖2

H1(RN ) ≤ θFan,bn
(un) − (F ′

an,bn
(un), (un)) ≤ C.Hen
e, there exists u ∈ H1(RN ) su
h that, passing to a subsequen
e ifne
essary, un ⇀ u weakly in H1(RN ). It then follows from Strauss' 
ompa
timbeddings, see e.g. [39℄, that un 
onverges strongly in Lp(RN ) for any p ∈

]2, (N + 2)/(N − 2)[. On the other hand, sin
e un solves (15), assumption
(f2) and Sobolev's inequality imply the existen
e of c > 0 su
h that

c ≤ ‖un‖H1(RN ).We now 
on
lude that u is a nontrivial solution of
−∆u+ au = bf(u),so that u ∈ Na,b and we dedu
e from standard arguments that

E(a, b) ≤ Fa,b(u) ≤ lim inf
n→∞

Fan,bn
(un).Sin
e Fan,bn

(un) = E(an, bn), the 
laim follows.We next prove E is upper semi-
ontinuous. Let u ∈ Na,b be a least-energysolution of (15). Consider the fun
tion g(t) = Fa,b(tu) on [0,∞[. It followsfrom (f1) and (f3) that g(0) = 0, g(t) > 0 for small t > 0 and g(t) < 0 forlarge t. Combining these fa
ts with (f4), we dedu
e that t = 1 is the uniquemaximum point of g. In parti
ular, we have
Fa,b(u) = max

t≥0
Fa,b(tu).Assume now (an, bn) → (a, b) as n → ∞. By the minimax 
hara
terizationof E(an, bn) and from what pre
edes, we infer that for ea
h n ≥ 0, thereexists a unique tn su
h that

E(an, bn) ≤ max
t≥0

Fan,bn
(tu) = Fan,bn

(tnu). (18)We now 
laim that tn → 1. Noti
e that the uniqueness of the maximumpoint of g and the de�nition of the sequen
e (tn)n implies the 
laim followsas soon as we prove that (tn)n is bounded and bounded away from 0. Observe�rst that (tn)n is bounded. Indeed, we have an ≤ a, bn ≥ b and if tn → +∞as n→ ∞, we dedu
e by (f3) that for n large enough,
Fan,bn

(tnu) ≤ Fa,b(tnu) < 0,



BOUND STATES FOR SCHRÖDINGER EQUATIONS 13whi
h is absurd. We next prove that tn remains bounded away from zero.Indeed, this follows from the superquadrati
ity of F whi
h implies that forevery ε > 0, there exists Cε > 0 su
h that
Fan,bn

(tnu) ≥ t2n(‖∇u‖2
L2(RN ) + (an − εbn)‖u‖2

L2(RN )) − Cεt
p
n‖u‖p

Lp(RN )
.Hen
e, sin
e ε is arbitrary and there exist a, b > 0 su
h that an ≥ a, bn ≤ b,this last inequality shows that tn remains bounded away from zero. We arenow in a position to 
on
lude the proof. Letting n go to in�nity in (18), wededu
e that

lim sup
n→∞

E(an, bn) ≤ E(a, b).Indeed, writing
Fan,bn

(tnu) = (Fan,bn
(tnu) −Fa,b(tnu)) + Fa,b(tnu),we observe that the �rst term in the right hand side tends to 0 be
ause (tnu)nis bounded in H1(RN ) while taking into a

ount that tnu → u in H1(RN ),we dedu
e that

Fa,b(tnu) → Fa,b(u).Properties (ii) and (iii). Let b∗ ∈ R
+
0 be �xed and assume u ∈ H1(RN ) isa least energy 
riti
al point of Fa,b∗ . Assume a < a. Consider again thefun
tion g(t) = Fa,b∗(tu) on [0,∞[. As in (i), we infer there exists t̄ > 0 su
hthat

Fa,b∗(t̄u) = max
t≥0

Fa,b∗(tu) ≥ E(a, b∗).We now dedu
e that
E(a, b∗) ≤ Fa,b∗(t̄u) + (a− a)

∫

RN

t̄2|u|2

≤ max
t≥0

Fa,b∗(tu) + (a− a)

∫

RN

t̄2|u|2

< E(a, b∗),so that (ii) follows. The property (iii) follows arguing in a similar way.Property (iv). Let λ > 0 and for every u ∈ H1(RN ), write uλ(x) = u(λ1/2x).Then, one has
Fλa,λb(uλ) = λ1−N/2Fa,b(u).Sin
e u 7→ uλ is a bije
tion ofH1(RN ), this implies E(λa, λb) = λ1−N/2E(a, b).Property (v). Let µ > 0. For every u ∈ H1(RN ), one has

Fa,µb(µ
−1/(p−1)u) = µ−2/(p−1)Fa,b(u),so that E(a, µb) = µ−2/(p−1)E(a, b). Hen
e, the 
on
lusion follows by 
om-puting

E(a, b) = E(a.1, a.
b

a
.1) = a

p+1
p−1

−N
2 b

− 2
p−1 E(1, 1). �It follows from that lemma and the 
ontinuity of V and K that C is
ontinuous from Ω → R

+ ∪ {∞}. When assuming more regularity on V and
K, the 
on
entration fun
tion 
an be shown to be of 
lass C1 on the setwhere C is �nite, see [38℄. If we also assume that the positive radial groundstate of (17) is unique for every ξ su
h that K(ξ) > 0, then C(ξ) 
ontains



14 DENIS BONHEURE AND JEAN VAN SCHAFTINGENall the information about possible 
on
entration points. Indeed, Wang andZheng proved that in this 
ase, bound state solutions 
on
entrating on asingle point must have their peak 
onverging to a 
riti
al points of C. Werefer to [38℄ for a pre
ise statement and to [31℄ for a similar result in a moregeneral framework.3.2. De
ay of the ground state. We next derive a pointwise estimate forground states of (15) whi
h provides information on the de
ay at in�nity.Proposition 4. Let u ∈ Na,b be su
h that
E(a, b) = Fa,b(u),then, up to a translation, u is radial and radially de
reasing. Moreover, forevery x ∈ R

N , we have
|u(x)|2 ≤ C

2θ

θ − 2

E(a, b)

a1/2|x|(N−1)
, (19)where C is a positive 
onstant that depends only on the dimension of thespa
e and θ is given in assumption (f3).Proof. As u a
hieves the in�mum on the Nehari manifold, it is a groundstate solution [39℄. It is therefore radial and radially de
reasing [19, 20, 36℄.Then, by the inequality of Strauss, see e.g. [39℄, we infer that

|u(x)|2 ≤ C
‖∇u‖2 ‖u‖2

|x|N−1At last, sin
e u ∈ Na,b, we dedu
e from (f3) that
(1

2
− 1

θ

)

∫

RN

|∇u|2 + a|u|2 ≤ Fa,b(u) = E(a, b)so that the 
on
lusion follows. �As already noti
ed, it is well-known, at least when f is smooth, thatground states de
ay exponentially at in�nity, see Gidas, Ni and Nirenberg[20℄. The main point of Proposition 4 is that the inequality (19) does onlydepend on the ground energy and holds uniformly for any ground state.Using regularity theory, one 
an improve (19) and obtain usual exponentialde
ay estimates. 4. The penalization s
hemeIn this se
tion, motivated by the paper of del Pino and Felmer [14℄, we
onsider a modi�ed problem whi
h is the starting point for a lo
al variationalanalysis. We �rst fo
us on a suitable fun
tional framework.Formally, the ellipti
 equation in (12) is the Euler-Lagrange equation ofthe fun
tional
Iε(u) :=

1

2

∫

Ω

(

ε2|∇u|2 + V (x)|u|2
)

−
∫

RN

K(x)F (u).It is quite natural to 
onsider the fun
tional Iε in the weighted Sobolev spa
e
Hε :=

{

u ∈ D1,2
0 (Ω)

∣

∣

∣

∫

Ω

(

ε2|∇u|2 + V (x)|u|2
)

dx < +∞},



BOUND STATES FOR SCHRÖDINGER EQUATIONS 15where we re
all that D1,2
0 (Ω) is the 
losure of C∞

c (Ω) for the L2-norm of thegradient. The spa
e Hε is a Hilbert spa
e with s
alar produ
t and normrespe
tively de�ned by
(u|v)ε :=

∫

Ω

(

ε2∇u · ∇v + V (x)uv
)

dx,

‖u‖2
ε :=

∫

Ω

(

ε2|∇u|2 + V (x)|u|2
)

dx.However, the assumptions on V and K do not ensure that Hε is neitherembedded in H1
0 (Ω), when Ω is not bounded, nor in Lp+1(Ω,K(x) dx). Inparti
ular Iε does not need to be �nite for every u ∈ Hε so that Iε(u) ∈

R∪{−∞}. Moreover, even if V and K are bounded and bounded away fromzero, in whi
h 
ase the above-mentioned embeddings hold and the fun
tionalis well-de�ned in H1
0 (Ω), the Palais-Smale 
ondition usually fails without aglobal assumption like one of those proposed by Rabinowitz [33℄ and Wangand Zheng [38℄. As dis
ussed in the introdu
tion, for small values of ε, Wangand Zheng proved the existen
e of a positive solution assuming that
inf

x∈RN
A(x) <

lim inf |x|→∞ V (x)
p+1
p−1

−N
2

lim sup|x|→∞K(x)
2

p−1

.In fa
t this 
ondition implies that the Palais-Smale 
ondition holds at themountain pass level of Iε for small ε. Sin
e our assumptions allow V tovanish and K to explode as |x| → ∞, we 
annot ta
kle the problem via aglobal variational approa
h.In order to bypass these di�
ulties, we follow the penalization methodintrodu
ed by del Pino and Felmer [14℄. This approa
h whi
h 
an be seen asa lo
al variational approa
h, is well adapted to 
at
h positive bound-stateswhen assuming that V is bounded away from zero. In fa
t the methodrequires this last assumption in an essential way. In the next subse
tion, weimprove the penalization s
heme by using a di�erent penalized fun
tional.4.1. The Penalized fun
tional. Assume there exists Λ ⊂ Ω whose 
losureis 
ompa
t in Ω su
h that
inf
x∈Λ

C(x) < inf
x∈∂Λ

C(x),where C is the 
on
entration fun
tion de�ned by (16). We also assume that
Λ is 
hosen in su
h a way that

sup
x∈Λ

C(x) <∞.The penalization 
onsists in modifying the superquadrati
 term in Iε outside
Λ. To do so, we �rst de�ne f̃ : Ω × R

+ → R by
f̃(x, s) := min (κV (x)s,K(x)f(s)) , (20)where 0 < κ < 1. Then, denoting the 
hara
teristi
 fun
tion of the set Λ by

χΛ, we de�ne g : Ω × R
+ → R by

g(x, s) := χΛ(x)K(x)f(s) + (1 − χΛ(x))f̃(x, s). (21)



16 DENIS BONHEURE AND JEAN VAN SCHAFTINGENFrom now on, we also use the notation G(x, s) :=
∫ s
0 g(x, σ) dσ. One mayeasily 
he
k that a

ording to (f1)-(f4) and the assumptions on V and K, gis a Carathéodory fun
tion satisfying

(g1) g(x, s) = o(s) as s→ 0+ uniformly in 
ompa
t subsets of Ω ;
(g2) there exists 1 < p <

N + 2

N − 2
if N ≥ 3 or 1 < p < +∞ if N = 1, 2,su
h that

lim
s→∞

g(x, s)

sp
= 0 ;

(g3) there exist 2 < θ ≤ p+ 1 and κ ∈ (0, 1) su
h that
0 < θG(x, s) ≤ g(x, s)s for all x ∈ Λ and any s > 0,and

0 ≤ 2G(x, s) ≤ g(x, s)s ≤ κV (x)s2 for all x 6∈ Λ and any s > 0 ;

(g4) the fun
tion
s 7→ g(x, s)

sis nonde
reasing for all x ∈ Ω.We are now in a position to introdu
e the penalized fun
tional
Jε(u) :=

1

2

(
∫

Ω
ε2|∇u|2 + V (x)|u|2

)

−
∫

Ω
G(x, u).Using 
lassi
al arguments, we 
an 
he
k that (g2) and (g3) imply that Jεis well-de�ned and that Jε ∈ C1(Hε,R). Moreover its 
riti
al points areweak solutions of the boundary value problem

{

−ε2∆u+ V (x)u = g(x, u) in Ω,
u = 0 on ∂Ω.

(22)We next show that Jε has a mountain pass geometry in Hε. We �rstobserve that 0 is a lo
al minimum.Lemma 5. Let g : R
+ → R be a Carthéodory fun
tion. If g satis�es as-sumptions (g1)-(g3) and V : Ω → R

+ is a 
ontinuous fun
tion. Then, thefun
tional Jε a
hieves a lo
al minimum at 0 in Hε.Proof. The proof easily follows from the estimate
Jε(u) =

1

2

(
∫

Ω
ε2|∇u|2 + V (x)|u|2

)

−
∫

Λ
G(x, u) −

∫

Ω\Λ
G(x, u)

≥ 1 − κ

2
‖u‖2

ε +

∫

Λ

(κ

2
V (x)|u|2 −G(x, u)

)

.Now, as V is 
ontinuous and positive, by 
lassi
al arguments, see e.g. [32℄,
(g1) and (g2) imply

∫

Λ
G(x, u) = o(‖u‖2

ε), as u→ 0.Therefore, the 
on
lusion follows from the above estimate. �



BOUND STATES FOR SCHRÖDINGER EQUATIONS 17On the other hand, the in�mum of Jε is −∞. Indeed, if 0 6= u ∈ Hε hassupport in Λ, then
Jε(λu) → −∞, as λ→ +∞.We then de�ne the minimax level
cε := inf

γ∈Γε

max
t∈[0,1]

Jε(γ(t)), (23)where Γε is the set of 
ontinuous paths
Γε := {γ ∈ C([0, 1],Hε) | γ(0) = 0, Jε(γ(1)) < 0} . (24)Now that the minimax setting is established, our next step is to 
he
k that

Jε satis�es some 
ompa
tness 
ondition. This is the obje
t of the nextsubse
tion.4.2. Palais-Smale. We �rst re
all that (un)n ⊂ Hε is a Palais-Smale se-quen
e for Jε at level cε if
Jε(un) → cε and J ′

ε(un) → 0 as n→ ∞.We say that Jε satis�es the Palais-Smale 
ondition, (PS) in short, if anysequen
e (un)n ⊂ Hε for whi
h Jε(un) is bounded and J ′
ε(un) → 0 as

n→ ∞ possesses a 
onvergent subsequen
e.The existen
e of a Palais-Smale sequen
e at level cε follows from standarddeformation arguments, see for example [39℄. Hen
e, if Jε satis�es (PS), theminimax level cε is a 
riti
al value of Jε. In the next lemma, we set ε = 1,
H = H1 and J = J1 to simplify the notations.Lemma 6. Let g : R

+ → R be a Carathéodory fun
tion satisfying (g1)-(g3)and V : Ω → R
+ be a 
ontinuous fun
tion. If N = 2 and Ω is unbounded,assume furthermore that

lim inf
|x|→∞

V (x)|x|2 > 0.Then, the fun
tional J : H → R satis�es (PS).A spe
ial 
are is required when Ω is an unbounded two-dimensional do-main, due to the failure of Hardy's inequality in dimension 2. This problemis 
ir
umvented thanks to the following preliminary lemma whi
h provide aHardy type inequality in dimension 2.Lemma 7. Let Ω ⊂ R
2 be a regular exterior domain and V ∈ C(Ω; R+). If

lim inf
|x|→∞

V (x)|x|2 > 0,then there exists C > 0 su
h that for every u ∈ D(Ω),
∫

Ω

|u|2
dΩ(x)2

≤ C

∫

Ω
|∇u|2 + V (x)|u|2,where dΩ(x) = d(x, ∂Ω) if ∂Ω 6= ∅ and dΩ(x) = 1 + |x| in the 
ase where

Ω = R
2.



18 DENIS BONHEURE AND JEAN VAN SCHAFTINGENRemark 8. When N 6= 2 or Ω is bounded, then one has the stronger 
lassi
alHardy inequality
∫

Ω

|u|2
dΩ(x)2

≤ C

∫

Ω
|∇u|2,Moreover, one 
an take dRN (x) = |x|, see e.g. [22℄.Proof of Lemma 7. Let us 
hoose R > 1 su
h that R

N \B(0, R) ⊂ Ω, and
c := inf

|x|>R
V (x)|x|2 > 0.Then, the set Ω′ = Ω∩B(0, 3R) is a Lips
hitz bounded domain and dΩ′ ≤ dΩ(dΩ′ ≤ 3RdΩ if Ω = R

2). Therefore, we infer from the 
lassi
al Hardyinequality on bounded Lips
hitz domains, see e.g. [22℄, that for every u ∈
D(Ω′),

∫

Ω′

|u|2
dΩ(x)2

≤
∫

Ω′

|u|2
dΩ′(x)2

≤ C1

∫

Ω′

|∇u|2,where C1 > 0. On the other hand, if |x| > 2R, then dΩ(x) ≥ |x|/2, so thatfor every u ∈ D(RN \B(0, 2R)), we obtain
∫

RN\B(0,2R)

|u|2
dΩ(x)2

≤ 4

∫

RN\B(0,2R)

|u|2
|x|2 ≤ 4

c

∫

RN\B(0,2R)
V (x)|u|2.We next 
hoose a 
ut-o� fun
tion η ∈ D(Ω) su
h that η(x) = 1 if x ∈

B(0, 2R), 0 ≤ η(x) ≤ 1 if x ∈ B(0, 3R) and η(x) = 0 outside B(0, 3R).Combining these inequalities, we then get for every u ∈ D(Ω),
1

2

∫

Ω

|u|2
dΩ(x)2

≤
∫

Ω∩B(0,3R)

|ηu|2
dΩ(x)2

+

∫

RN\B(0,2R)

|(1 − η)u|2
dΩ(x)2

≤ C1

∫

Ω∩B(0,3R)
|∇(ηu)|2 +

4

c

∫

RN\B(0,2R)
V (x)|u|2

≤ 2C1

∫

Ω
|∇u|2 +

(

C2‖∇η‖2
∞ +

4

c

)
∫

Ω
V (x)|u|2,where C2 > 0 essentially depends on the lower bound of V in the annulus

B(0, 3R) \B(0, 2R). This 
on
ludes the proof. �Proof of Lemma 6. Throughout the proof, C denotes a positive 
onstantthat 
an 
hange from line to line. Let (un)n ⊂ H be a Palais-Smale se-quen
e, that is J (un) is bounded and J ′(un) → 0 as n→ ∞.Claim 1: the sequen
e (un)n is bounded in H. By assumption, we have
∣

∣

∣

∣

1

2

∫

Ω

(

|∇un|2 + V (x)|un|2
)

−
∫

Ω
G(x, un)

∣

∣

∣

∣

≤ Cand for n large enough,
|(J ′(un), un)| =

∣

∣

∣

∣

∫

Ω

(

|∇un|2 + V (x)|un|2
)

−
∫

Ω
g(x, un)un

∣

∣

∣

∣

≤ ‖J ′(un)‖ ‖un‖ ≤ ‖un‖.



BOUND STATES FOR SCHRÖDINGER EQUATIONS 19Combining these inequalities, we infer from (g3) that
θ − 2

2

∫

Ω

(

|∇un|2 + V (x)|un|2
)

≤ κ
θ − 2

2

∫

Ω\Λ
V (x)|un|2 + C + ‖un‖.Sin
e κ < 1 in (20) it follows that

∫

Ω

(

|∇un|2 + V (x)|un|2
)

≤ C(1 + ‖un‖).This proves the 
laim.Claim 2: for all δ > 0, there exists a 
ompa
t set K ⊂ Ω su
h that
lim sup

n→∞

∫

Ω\K

(

|∇un|2 + V (x)|un|2
)

≤ δ. (25)Let δ > 0 be given. We de�ne a 
ut-o� fun
tion ηλ in the following way.Assume that ζ ∈ C∞(R,R) is su
h that 0 ≤ ζ(s) ≤ 1 if |s| ∈ [1, 2] and
ζ(s) =

{

0 if |s| ≤ 1,

1 if |s| ≥ 2.We then de�ne ηλ ∈ C∞(Rn,R) by
ηλ(x) := ζ

(

log dΩ(x)

λ

)

, (26)where again dΩ(x) = d(x, ∂Ω) if ∂Ω 6= ∅ while dΩ(x) = 1+ |x| when Ω = R
N .Noti
e that the fun
tion dΩ is Lips
hitz and |∇dΩ| ≤ 1 almost everywhereso that ηλun ∈ H. Sin
e (un) is bounded, we infer that

(J ′(un), ηλun) = o(1) as n→ ∞.Assuming that λ has been 
hosen large enough so that ηλ ≡ 0 on Λ, we then
ompute
∫

Ω

(

|∇un|2 + V (x)|un|2
)

ηλ =

∫

Ω
g(x, un)unηλ −

∫

Ω
un∇un · ∇ηλ + o(1).(27)For the �rst term in the right-hand side of the equality, we observe that sin
e

ηλ(x) = 0 for any x ∈ Λ, we have
∫

Ω
g(x, un)unηλ ≤ κ

∫

Ω
V (x)|un|2ηλ. (28)The se
ond term 
an be rewritten as

∫

Ω
un∇un · ∇ηλ =

∫

Ω

un

dΩ(x)
∇un · (dΩ(x)∇ηλ).From the 
lassi
al Hardy inequality if N > 2 or Ω is bounded (see e.g. [22℄),or Lemma 7 when N = 2 and Ω is not bounded, one has

∫

Ω

|un|2
dΩ(x)2

≤ C‖un‖2
H.On the other hand, we 
ompute

‖dΩ∇ηλ‖∞ ≤ sup
x∈Ω

∣

∣

∣

∣

dΩ(x)θ′
(

dΩ(x)
log dΩ(x)

λ

)

1

λdΩ(x)

∣

∣

∣

∣

≤ C

λ
.



20 DENIS BONHEURE AND JEAN VAN SCHAFTINGENCombining these last estimates with Cau
hy-S
hwarz inequality, we inferthat
∣

∣

∣

∣

∫

Ω
un∇un · ∇ηλ

∣

∣

∣

∣

≤ C

λ
‖un‖2

H. (29)Now, taking (28) and (29) into a

ount, we dedu
e from (27) that
(1 − κ)

∫

Ω

(

|∇un|2 + V (x)|un|2
)

ηλ ≤ C

λ
‖un‖H + o(1).If λ > 0 is su�
iently large, (25) thus holds with

K = {x ∈ Ω : e−2λ ≤ dΩ(x) ≤ e2λ}.Con
lusion. We dedu
e from Claim 1 that, up to a subsequen
e, (un)n
onverges weakly in H to some fun
tion u ∈ H. Now, �x δ > 0 and let
K ⊃ Λ be su
h that (25) holds and

∫

Ω\K
V (x)|u|2 ≤ δ.Let us write

‖un − u‖2
H = (J ′(un) − J ′(u), un − u) +

∫

Ω
(g(x, un) − g(x, u))(un − u) dx.Sin
e J ′(un) → 0 and un 
onverges weakly to u, (J ′(un)−J ′(u), un−u) → 0as n→ ∞. By (g3), one has

lim sup
n→∞

∫

Ω\K
|g(x, un) − g(x, u)| |un − u| dx

≤ lim sup
n→∞

2κ

∫

Ω\K
V (x)(|un|2 + |u|2) ≤ 4κδ,where the se
ond inequality 
omes from (25) and Fatou's Lemma. On theother hand, by Relli
h's 
ompa
tness theorem, un → u in Lp+1(K) so thatby (g2),

∫

K
(g(x, un) − g(x, u))(un − u) dx→ 0.One thus 
on
ludes that for every δ > 0,

lim sup
n→∞

‖un − u‖2
H ≤ 4κδi.e. un → u strongly in H. �4.3. Solutions of the modi�ed problem. Having proved that (PS) holds,we may state the following existen
e result for the modi�ed problem (22).Proposition 9. Suppose that g : R

+ → R is a Carathéodory fun
tion sat-isfying (g1)-(g3) and V ∈ C(Ω) is positive. If N = 2 and Ω is unbounded,assume moreover that V satis�es
lim inf
|x|→∞

V (x)|x|2 > 0.Then, the fun
tional Jε has a 
riti
al point uε ∈ Hε whi
h is a weak positivesolution of (22).The proof being straightforward, we skip it. We next analyze the regular-ity of the solution.



BOUND STATES FOR SCHRÖDINGER EQUATIONS 21Proposition 10. Under the assumptions of Proposition 9, any solution uε ∈
Hε of (22) satis�es uε ∈ W 2,q

loc (Ω) for every q < ∞. In parti
ular, u ∈
C1,α

loc (Ω) for every 0 < α < 1.The proof follows from a 
lassi
al bootstrap argument so that we omit it.Remark 11. Observe that this result 
annot be improved, even if we addfurther regularity assumptions on Ω and V . Indeed, in general, one 
annotprove that u ∈ C2,α(Ω) or u ∈W 3,1
loc (Ω). This is due to the fa
t that even fora smooth u, g(x, u) does not need to be neither in C0,α(Ω) nor in W 1,1

loc (Ω).4.4. Estimate of the moutain pass level. We dedu
e from the pre
edingse
tions that the mountain pass level cε de�ned by (23) is a 
riti
al level for
Jε. In order to prove that this minimax level yields a solution of the originalproblem for small values of ε, we need a sharp energy estimate.Let Λ ⊂⊂ Ω be su
h that

inf
ξ∈Λ

C(ξ) < inf
ξ∈∂Λ

C(ξ) (30)and supξ∈Λ C(ξ) < ∞. As already mentioned, the 
ontinuity of V and Kimplies that the 
on
entration fun
tion C is 
ontinuous in Λ. We thereforededu
e the existen
e of ξ0 ∈ Λ su
h that
C(ξ0) = min

Λ
C. (31)To save notation, let us denote by F0 : H1(RN ) → R the fun
tional de�nedby (14) with a = V (ξ0) and b = K(ξ0). We also de�ne

c0 := inf
γ∈Γ0

max
t∈[0,1]

F0(γ(t)), (32)where
Γ0 :=

{

γ ∈ C([0, 1],H1(RN )) | γ(0) = 0, F0(γ(1)) < 0
}

.One of the key ingredients to prove Theorem 1 is a 
omparison between thelevels cε and c0 for ε small.Lemma 12. Suppose that f : R
+ → R

+ is a 
ontinuous fun
tion satisfying
(f1)-(f3), V, K : Ω → R

+ are 
ontinuous fun
tions and g : Ω × R
+ → Ris de�ned by (21). If N = 2 and Ω is unbounded, assume moreover that Vsatis�es

lim inf
|x|→∞

V (x)|x|2 > 0.Then, the fun
tional Jε has a 
riti
al point uε ∈ Hε su
h that
Jε(uε) ≤ εNc0 + o(εN ), as ε→ 0.Moreover, there exists C > 0 su
h that

‖uε‖2
Hε

≤ CεN .Proof. It follows from Proposition 9 that the mountain pass value cε is a
riti
al level for Jε. From the de�nition of c0, we infer that for every δ >
0, there exists a 
ontinuous path γδ : [0, 1] → R

N su
h that γδ(0) = 0,
F0(γδ(1)) < 0 and

c0 ≤ max
t∈[0,1]

F0(γδ(t)) ≤ c0 + δ.



22 DENIS BONHEURE AND JEAN VAN SCHAFTINGENLet η ∈ C∞(RN ,R) be a 
ut-o� fun
tion, with support in Λ, su
h that
η(x) = 1 for x in a neighbourhood of ξ0 de�ned by (31). We then de�ne thepath γ̄δ : [0, 1] → Hε bȳ

γδ(t) : x→ η(x)γδ(t)

(

x− ξ0
ε

)

.Res
aling in the spa
e variable leads to
Jε(γ̄δ(t)) =

εN

2

∫

Ωε

(

|∇(η(εx + ξ0)γδ(t))|2 + V (εx+ ξ0)|η(εx + ξ0)γδ(t)|2
)

− εN
∫

Ωε

K(εx+ ξ0)F (η(εx + ξ0)γδ(t)),where Ωε := {x ∈ R
N | εx + ξ0 ∈ Ω}. Hen
e, a straightforward but rathertedious 
omputation shows that

Jε(γ̄δ(t)) = εNF0(γδ(t)) + o(εN ) as ε→ 0.It follows that for ε small enough, γ̄δ belongs to the 
lass of paths Γε de�nedby (24). We therefore 
on
lude that
Jε(uε) = inf

γ∈Γε

max
t∈[0,1]

Jε(γ(t))

≤ max
t∈[0,1]

Jε(γ̄δ(t))

≤ εN (c0 + δ) + o(εN ).Sin
e the last inequality holds for any δ > 0, the �rst statement is established.Consider now a 
riti
al point uε ∈ Hε at the mountain pass energy level.To prove the estimate on the norm of uε, we observe, arguing as in the �rst
laim of Lemma 6, that
(1 − κ)

(1

2
− 1

θ

)

∫

Ω

(

ε2|∇uε|2 + V (x)u2
ε

)

≤ Jε(uε).Hen
e the proof follows from the energy estimate. �5. Asymptoti
s of solutionsWe study in this se
tion, the asymptoti
 behaviour of the mountain passsolution of the modi�ed problem (22) as ε → 0. In parti
ular, we derive auniform estimate of uε on ∂Λ, see Proposition 21, whi
h is a main step in theproof of the existen
e of a solution of the original boundary value problem(12).5.1. Estimates on sequen
es of res
aled solutions. Sin
e the Hε-normof the solution uε of the modi�ed problem is of the order εN/2, it is naturalto res
ale uε as uε(xε + ε·) around a well-
hosen family of points xε.We �rst observe that su
h sequen
es are relatively 
ompa
t for the uniform
C1-
onvergen
e over 
ompa
t sets. Moreover, even if there is no a prioriguarantee that uε belongs to H1(Ω), any limit v of a subsequen
e of res
aledsolutions will be in H1(RN ), i.e. the fa
t that uε ∈ H1

loc(R
N ) yields v ∈

H1(RN ).



BOUND STATES FOR SCHRÖDINGER EQUATIONS 23Lemma 13. Suppose the assumptions of Lemma 12 are satis�ed and assume
uε ∈ H1

loc(Ω) is the positive solution of (22) obtained in that lemma. Let
(εn)n ⊂ R

+ and (xn)n ⊂ Ω be sequen
es su
h that εn → 0 and xn → x̄ ∈ Ωas n→ ∞ and denote by (vn)n the sequen
e de�ned by vn(x) = uεn(xn+εnx).Then, there exists v ∈ H1(RN ) su
h that, along a subsequen
e that we stilldenote by (vn)n,
vn

C1
loc

(RN )−→ v .Moreover, for every R > 0 and q > 0, we have
sup
n∈N

‖vn‖W 2,q(BR) <∞, (33)and
∫

RN

|∇v|2 = lim
R→∞

lim
n→∞

ε−N
n

∫

Bn(R)
ε2n|∇uεn |2 ,

∫

RN

V (x̄)|v|2 = lim
R→∞

lim
n→∞

ε−N
n

∫

Bn(R)
V (x)|uεn |2 ,where Bn(R) := B(xn, εnR). In parti
ular, we have

lim
R→∞

lim
n→∞

ε−N
n

∫

An(R)
ε2n|∇uεn |2 + V (x)|uεn |2 = 0 , (34)where An(R) := B(xn, εnR) \B(xn, εnR/2).Proof. First observe that ea
h vn solves the equation

−∆vn + V (xn + εnx)vn = χΛ(xn + εnx)K(xn + εnx)f(vn)

+(1 − χΛ(xn + εnx))f̃(xn + εnx, vn), x ∈ Ωn,(35)where Ωn := {x ∈ R
N | xn + εnx ∈ Ω}. We now infer from the estimates ofLemma 12 that
Jεn(vn) ≤ c0 + o(1) as n→ ∞and for all n ∈ N,

∫

Ωn

(

|∇vn|2 + V (xn + εnx)|vn|2
)

< C, (36)with C > 0 independent of n.De�ne again a 
ut-o� fun
tion ηR ∈ C∞
c (RN ) su
h that η(x) = 1 if |x| ≤

R/2, η(x) = 0 if |x| ≥ R and ‖∇ηR‖∞ ≤ C/R for some C > 0. Choose
Rn su
h that Rn → ∞, εnRn → 0 and B(xn, 2εnRn) ⊂ Ω and de�ne wn ∈
H1

loc(R
N ) by

wn(x) := ηRn(x)vn(x).We �rst observe that
∫

RN

|wn|2 ≤
∫

BRn

|vn|2 ≤ 1

infBn(R) V

∫

Ωn

V (xn + εnx)|vn|2. (37)Observe that V being positive in Ω, the 
onvergen
e of xn to a point in Ωimplies there exists m > 0 su
h that V (x) ≥ m for every x ∈ B(xn, εnRn).Hen
e we dedu
e from (37) the estimate
∫

RN

|wn|2 ≤ C

m
. (38)



24 DENIS BONHEURE AND JEAN VAN SCHAFTINGENOn the other hand, we 
ompute
∫

RN

|∇wn|2 =

∫

RN

|∇ηRn |2|vn|2+
∫

RN

|∇vn|2|ηRn |2+2

∫

RN

∇vn·∇ηRnηRnvn.(39)For the �rst term on the right-hand side, we have the estimate
∣

∣

∣

∣

∫

RN

|∇ηRn |2|vn|2
∣

∣

∣

∣

≤ C

Rn
‖vn‖L2(BRn ), (40)while for the last one, we infer from Cau
hy-S
hwarz inequality that

∣

∣

∣

∣

∫

RN

∇vn · ∇ηRnηRnvn

∣

∣

∣

∣

≤ C

Rn
‖∇vn‖L2(BRn )‖vn‖L2(BRn ). (41)Sin
e we have

‖vn‖H1(BRn ) ≤
1

m

∫

Ωn

(

|∇vn|2 + V (xn + εnx)|vn|2
)

≤ C

m
,
olle
ting the estimates (38), (39), (40) and (41), we infer that (wn)n isbounded in H1(RN ). Sin
e wn solves (35) on BRn/2 for all n, 
lassi
alregularity estimates yield then (33).We may now extra
t from (wn)n a subsequen
e, that we still denote by

(wn)n for simpli
ity, that 
onverges weakly in H1(RN ) to some fun
tion
v ∈ H1(RN ). By (33), it is 
lear that wn 
onverges to v uniformly in C1(K),for every 
ompa
t K ⊂ R

N . Moreover, for n large enough, wn = vn in
ompa
t sets so that vn → v in C1
loc(R

N ).The remaining estimates follow from the 
ontinuity of V and the fa
t that
v ∈ H1(RN ). �A useful appli
ation of Lemma 13 
onsists in estimating the a
tion of uεin neighbourhoods of points. In parti
ular, this will provide a lower bound ofthe a
tion depending on the number and on the lo
ation of the lo
al maximaof uε.Lemma 14. Suppose that the assumptions of Lemma 12 are satis�ed andassume moreover that (f4) holds. Let uε ∈ H1

loc(Ω) be the positive solutionof (22) obtained in Lemma 12 and the sequen
es (εn)n ⊂ R
+ and (xn)n ⊂ Ωbe su
h that εn → 0, xn → x̄ as n→ ∞ and

lim inf
n→∞

uεn(xn) > 0. (42)Then, up to a subsequen
e, we have
lim inf
R→∞

lim inf
n→∞

ε−N
n

(

1

2

∫

Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Bn(R)
G(x, uεn)

)

≥ C(x̄),(43)where Bn(R) := B(xn, εnR).Proof. Passing to a subsequen
e if ne
essary, we may assume that thereexists v ∈ H1(RN ) su
h if vn(y) = uεn(xn + εny), vn → v in C1
loc(R

N ).Sin
e Λ is smooth, still going to a subsequen
e if required, the sequen
e of
hara
teristi
 fun
tions χn(x) = χΛ(xn + εnx) 
onverges almost everywhere
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tion χ satisfying 0 ≤ χ(x) ≤ 1. We then dedu
e that vsolves the limiting equation
− ∆v + V (x̄)v = g̃(x, v), x ∈ R

N , (44)where
g̃(x, v) := χ(x)K(x̄)f(v) + (1 − χ(x))f̃(x̄, v).By (42), we know that v(0) = limn→∞ vn(0) > 0, so that v is not identi
allyzero.As v is a nonzero solution of (44), it belongs to the Nehari manifoldasso
iated to this equation, that is
N := {u ∈ H1(RN ) | u 6= 0, (G′(u), u) = 0},

G : H1(RN ) → R being the fun
tional de�ned by
G(u) :=

1

2

(
∫

RN

|∇u|2 + V (x̄)

∫

RN

|u|2
)

−
∫

RN

G̃(x, u),where G̃(x, u) :=
∫ u
0 g̃(x, s) ds. Sin
e g̃(x, v) ≤ K(x̄)f(v) in R

N × R
+, itfollows that for all u ∈ H1(RN ),

G(u) ≥ 1

2

(
∫

RN

|∇u|2 + V (x̄)

∫

RN

|u|2
)

−K(x̄)

∫

RN

F (u).Therefore, as g̃ satis�es the 
ondition (g4), we dedu
e that
G(v) = max

t>0
G(tv) ≥ inf

u∈H1(RN )

u 6=0

sup
t>0

G(tu) ≥ inf
u∈H1(RN )

u 6=0

sup
t>0

FV (x̄),K(x̄)(tu) = C(x̄).Finally, we 
laim that
lim inf
R→∞

lim inf
n→∞

1

2

∫

BR

|∇vn|2 + V (x)|vn|2 −
∫

BR

G(x, vn) ≥ G(v).Let us write for notational 
onvenien
e
hn :=

1

2

(

|∇vn|2 + V (xn + εnx)|vn|2
)

−G(xn + εnx, vn).Then, for every R > 0, the 
onvergen
e of vn in C1
loc(R

N ) implies that
lim

n→∞

∫

BR

hn =
1

2

∫

BR

(

|∇v|2 + V (x̄)|v|2
)

−
∫

BR

G̃(x, v).On the other hand, sin
e v ∈ H1(RN ), for any δ > 0, there exists R0 > 0su
h that if R > R0

lim
n→∞

∫

BR

hn ≥ G(v) − δ.This proves the 
laim and 
ompletes the proof. �The estimate (43) only be
omes useful on
e we 
an estimate what happensoutside small balls. That is the obje
t of the next lemma.Lemma 15. Let the assumptions of Lemma 12 be satis�ed and assume uε ∈
H1

loc(Ω) is the positive solution of (22) obtained in that lemma. Let (εn)n ⊂
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R

+ and (xi
n)n ⊂ Ω, 1 ≤ i ≤ K, be sequen
es su
h that εn → 0 and xi

n →
x̄i ∈ Λ̄ as n→ ∞. Then, up to a subsequen
e, we have
lim inf
R→∞

lim inf
n→∞

ε−N
n

(

1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\Bn(R)
G(x, uεn)

)

≥ 0,(45)where Bn(R) :=

K
⋃

i=1

B(xi
n, εnR).Proof. Let ηR,εn be a smooth 
ut-o� fun
tion su
h that ηR,εn ≡ 0 in Bn(R/2),

ηR,εn ≡ 1 in Ω \ Bn(R) and |∇ηR,εn | ≤ 2/(εnR). As (g3) holds, we have
1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\Bn(R)
G(x, uεn)

≥ 1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 − g(x, uεn)uεn . (46)Taking uεnηR,εn as test fun
tion, one obtains

∫

Ω
ε2n∇uεn · ∇(ηR,εnuεn) + ηR,εnV (x)|uεn |2 − ηR,εng(x, uεn)uεn = 0.Hen
e, the right-hand side of (46) 
an be written as

−1

2

∫

An(R)
ε2nuεn∇uεn ·∇ηR,εn+

(

ε2n|∇uεn |2 + V (x)|uεn |2 − g(x, uεn)uεn

)

ηR,εn ,where An(R) := Bn(R)\Bn(R/2). For the �rst term in this expression, usingthe estimate of Lemma 12, we infer that
∣

∣

∣

∣

∣

lim inf
n→∞

ε−N
n

∫

An(R)
ε2nuεn∇uεn · ∇ηR,εn

∣

∣

∣

∣

∣

≤ C

R
sup

1≤i≤K

1

V (x̄i)1/2
. (47)For the se
ond one, using the growth assumptions on g, we get

∣

∣

∣

∣

∣

lim inf
n→∞

ε−N
n

∫

An(R)
(ε2n|∇uεn |2 + V (x)|uεn |2 − g(x, uεn)uεn)ηR,εn

∣

∣

∣

∣

∣

≤ lim inf
n→∞

ε−N
n

K
∑

i=1

Ci(I
2
i,n,R + Ip+1

i,n,R),where the 
onstants Ci only depend on x̄i, and
Ii,n,R =

(

∫

B(xi
n,εnR)\B(xi

n,εnR/2)

(

ε2n|∇uεn |2 + V (x)|uεn |2
)

ηR,εn dx

)1/2

.Hen
e, taking (46) and (47) into a

ount, the 
on
lusion follows from Lemma 13.
�Proposition 16. Suppose that the assumptions of Lemma 12 are satis�edand assume moreover that (f4) holds. Let uε ∈ H1

loc(Ω) be the positive solu-tion of (22) obtained in Lemma 12, (εn)n ⊂ R
+ and (xi

n)n ⊂ Ω be sequen
es
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h that εn → 0 and for 1 ≤ i ≤ K, xi
n → x̄i ∈ Λ̄ as n → ∞. If for every

1 ≤ i < j ≤ K, we have
lim sup

n→∞

|xi
n − xj

n|
εn

= ∞and if for every 1 ≤ i ≤ K,
lim inf
n→∞

uεn(xi
n) > 0,then

lim inf
n→∞

ε−N
n J (uεn) ≥

K
∑

i=1

C(x̄i).Proof. First observe that going to a subsequen
e if ne
essary, we may assumethat for every 1 ≤ i < j ≤ K, we have
lim

n→∞

|xi
n − xj

n|
εn

= ∞.We infer from Lemma 14 and Lemma 15 that up to a subsequen
e, for any�xed δ > 0, we 
an 
hoose R large enough so that
lim inf
n→∞

ε−N
n

(

1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\Bn(R)
G(x, uεn)

)

≥ −δ,where Bn(R) :=

K
⋃

i=1

B(xi
n, εnR) and for every 1 ≤ i ≤ K,

lim inf
n→∞

ε−N
n

(

1

2

∫

Bi
n(R)

ε2n|∇uεn |2 + V (x)|uεn |2 −
∫

Bi
n(R)

G(x, uεn)

)

≥ C(x̄i)−δ,where Bi
n(R) := B(xi

n, εnR). Now, as for n su�
iently large, the balls Bi
n(R)are mutually disjoint, we may de
ompose J (uεn) as

J (uεn) =
K
∑

i=1

(

1

2

∫

Bi
n(R)

ε2n|∇uεn |2 + V (x)|uεn |2 −
∫

Bi
n(R)

G(x, uεn)

)

+
1

2

∫

Ω\∪K
i=1Bi

n(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\∪K
i=1Bi

n(R)
G(x, uεn),
on
luding therefore that

lim inf
n→∞

ε−N
n J (uεn) ≥

K
∑

i=1

C(x̄i) − (K + 1)δ.Sin
e this 
an be done for every subsequen
e, the 
on
lusion holds for thewhole sequen
e. �In the 
ase where the xn's are lo
al maxima of uεn and their 
luster pointsare all inside Λ, the estimates of Lemma 13 
an be re�ned. In parti
ular,we obtain a 
ommon de
ay estimate for any 
onverging subsequen
e, seeProposition 20. We �rst 
onsider the following preliminary lemma.



28 DENIS BONHEURE AND JEAN VAN SCHAFTINGENLemma 17. Let f ∈ C(R), V ∈ C(Ω; R+) and K ∈ C(Ω; R+) be given andassume g : Ω × R → R is de�ned by (21). Let uε ∈ H1
loc(Ω) be a positive
ontinuous solution of (22). If yε ∈ Ω is a lo
al maximum point of uε su
hthat uε(yε) > 0, then

f(uε(yε))/uε(yε) ≥ V (yε)/K(yε). (48)Proof. Suppose for the sake of 
ontradi
tion that (48) does not hold. Sin
e
uε, V and K are 
ontinuous, there exists ρ > 0 su
h that for every x ∈
B(yε, ρ), we have

f(uε(x))/uε(x) < V (x)/K(x).By de�nition of g, the fun
tion uε then satis�es the inequality
−ε2∆uε + V (x)uε < K(x)f(uε)in B(yε, ρ). Consequently, there holds

−∆uε < 0in B(yε, ρ). But, we then dedu
e, using the strong maximum prin
iple forsubharmoni
 fun
tions, that yε is not a lo
al maximum of uε, whi
h is a
ontradi
tion. �Proposition 18. Suppose the assumptions of Lemma 12 are satis�ed andassume uε ∈ H1
loc(Ω) is the positive solution of (22) obtained in that lemma.Let (εn)n ⊂ R

+ and (xn)n ⊂ Ω be sequen
es su
h that εn → 0, xn is a lo
almaximum point of uεn and xn → x̄ ∈ Λ as n → ∞. Let (vn)n denote thesequen
e de�ned by vn(x) = uεn(xn + εnx). Then, there exists a positivefun
tion v ∈ H1(RN ) ∩C1(RN ) su
h that
− ∆v + V (x̄)v = K(x̄)f(v), (49)

v a
hieves a maximum at 0 and, along a subsequen
e,
vn

C1
loc

(RN )−→ v .Proof. By Lemma 13, we infer the existen
e of a 
luster point v ∈ H1(RN )of vn = uεn(xn + εn·) in C1
loc(R

N ). Sin
e xn → x̄ in Λ, v solves (49) andas vn attains a maximum at 0, v also a
hieves a maximum at 0. We nowdedu
e from Lemma 17 that
f(vn(0))/vn(0) ≥ V (xn)/K(xn)so that
f(v(0))/v(0) ≥ V (x̄)/K(x̄),and hen
e v(0) > 0. �Remark 19. If moreover f ∈ Ck,1(R), V and K are of 
lass Ck,α, for some

k ≥ 0 and α > 0, similar regularity estimates then yield the 
onvergen
e
vn → v in Ck+2

loc (RN ).Proposition 20. Suppose the assumptions of Lemma 12 are satis�ed andassume uε ∈ H1
loc(Ω) is the positive solution of (22) obtained in that lemma.Let xε denote a lo
al maximum point of uε and assume moreover that all the
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luster points of the set {xε | 0 < ε ≤ ε0} are inside Λ. Then, there exists
C > 0 su
h that

uε(xε + εy) ≤ C

|y|(N−1)/2
+ o(1),uniformly in y over 
ompa
t subsets as ε→ 0.Proof. The proof is a dire
t 
onsequen
e of Proposition 4 and Proposition 18,taking also the boundedness of the 
on
entration fun
tion C, de�ned by (16),in Λ into a

ount. �5.2. Uniform 
onvergen
e on ∂Λ. The main 
onsequen
e of the previousanalysis of sequen
es of res
aled solutions is the following estimate on theboundary of Λ. As already dis
ussed, this estimate is 
ru
ial in our approa
h.Proposition 21. Suppose that f : R

+ → R
+ is a 
ontinuous fun
tion sat-isfying (f1)-(f4) and V, K : Ω → R

+ are 
ontinuous fun
tions. Assume thatthe open set Λ ⊂⊂ Ω satis�es (30) and g : Ω × R
+ → R is de�ned by (21).If N = 2 and Ω is unbounded, assume moreover that V satis�es

lim inf
|x|→∞

V (x)|x|2 > 0.Then, the family (uε)ε ⊂ H1
loc(Ω) of positive solutions of (22) obtained inLemma 12 satis�es
lim
ε→0

sup
x∈∂Λ

uε(x) = 0.Proof. Suppose by 
ontradi
tion that there exist sequen
es (εn)n ⊂ R
+ and

(xn)n ⊂ ∂Λ su
h that εn → 0 and
lim inf
n→∞

uεn(xn) > 0.Then, going to a subsequen
e if ne
essary, xn → x̄ ∈ ∂Λ and we dedu
e fromProposition 16 that
lim inf
n→∞

ε−N
n J (uεn) ≥ C(x̄),
ontradi
ting the energy estimate of Lemma 12. �6. Solutions of the initial problemIn this se
tion, we prove that for ε small enough, the solutions of themodi�ed problem (22) do solve the initial problem (12). Theorem 1 statedin the introdu
tion is a parti
ular 
ase of the following more general result.Theorem 22. Suppose Ω ⊂ RN is a regular bounded or exterior domain.Let V, K ∈ C(Ω,R+) satisfy (Gf,∂Ω) if ∂Ω 6= ∅ and one set (Gi

f,∞) of growth
onditions if Ω is unbounded. Let Λ ⊂⊂ Ω be open and bounded and assume
inf
x∈Λ

C(x) < inf
x∈∂Λ

C(x), (50)where C is de�ned by (16). Then there exists ε0 > 0 su
h that for every
0 < ε < ε0, the Diri
hlet problem (12) has at least one positive solution uε.We already know from Lemma 12 that the modi�ed problem (22) possessesa positive solution uε. We will prove that for ε small enough, this solutiona
tually solves (12). Our arguments rely on the 
onstru
tion of suitable
omparison fun
tions in order to obtain good de
ay estimates on the solution
uε at in�nity or 
lose to ∂Ω. These are worked out in the next subse
tions.



30 DENIS BONHEURE AND JEAN VAN SCHAFTINGEN6.1. Maximum prin
iple. As in the previous se
tion, Ω ⊂ R
N is assumedto have a bounded C1,α boundary. We �rst de�ne a weak notion of upperand lower solutions for the linear operator LW,ε de�ned formally by

LW,εu = −ε2∆u+W (x)u, (51)where W is a 
ontinuous nonnegative fun
tion and ε > 0.De�nition 23. Let Ω ⊂ R
N be a domain and W ∈ C(Ω) be nonnegative. Afun
tion v ∈W 1,1

loc (Ω) is a lower solution of the linear operator LW,ε, formallyde�ned by (51) where ε > 0, if for every ϕ ∈ C∞
c (Ω) su
h that ϕ ≥ 0,

∫

Ω

(

ε2∇v · ∇ϕ+W (x)vϕ
)

≤ 0. (52)A fun
tion v ∈ H1
loc(Ω) is an upper solution of LW,ε if −v is a lowersolution.The use of weak solutions is justi�ed by Remark 11. We next state amaximum prin
iple asso
iated to this 
lass of weak solutions.Proposition 24. Let Ω ⊂ R

N be a regular bounded or exterior domainand LW,ε be the linear operator formally de�ned by (51) where ε > 0 and
W ∈ C(Ω; R) is nonnegative. Assume that(1) u ∈ H1

loc(Ω) is a lower solution of LW,ε ;(2) ∇u+ ∈ L2(Ω) ;(3) if N = 2 and Ω is unbounded,
∫

Ω

u2
+

1 + |x|2 <∞.Then, if u+ = 0 on ∂Ω, we have u+ = 0 in Ω.Remark 25. The hypothesis u ∈ H1
loc together with the summability 
ondi-tion ∇u+ ∈ L2(Ω), imply that u+ ∈ H1(U) where U is a bounded neighbour-hood of the boundary ∂Ω. Therefore, by the Sobolev tra
e embedding, u+ hasa tra
e on ∂Ω.Remark 26. When N > 2 or Ω is bounded, the assumption (3) is indeedunne
essary sin
e in fa
t, it is a 
onsequen
e of Hardy's inequality.Proof of Proposition 24. First noti
e that sin
e u ∈ H1

loc(Ω), the variationalinequality (52) holds in fa
t for every ϕ ∈ H1
c (Ω), that is the set of 
ompa
tlysupported fun
tions of H1(Ω). Let ηλ be the 
ut-o� fun
tion de�ned by (26)in the proof of Lemma 6. Taking (1− ηλ)u+ as test fun
tion in (52), we get

∫

Ω
(1 − ηλ)(ε2|∇u+|2 +W (x)u2

+) ≤
∫

Ω
∇u+ · ∇ηλu+.Sin
e u+ = 0 on ∂Ω, taking the assumptions (2) and (3) into a

ount, wemay argue as in the proof of Lemma 6 to estimate the right-hand side of thislast inequality. We then infer this right-hand side is of order 1/λ as λ→ ∞.On the other hand, it is 
lear that ηλ → 0 as λ → ∞. Therefore, as W isnonnegative, Fatou's Lemma yields

∫

Ω
ε2|∇u+|2 +W (x)u2

+ ≤ lim inf
λ→∞

∫

Ω
∇u+ · ∇ηλu+ = 0.Hen
e, we 
on
lude that u+ = 0. �
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tions. We �rst 
onsider 
omparison fun
tions 
loseto the boundary. Along a smooth boundary, it is possible to 
onstru
t aharmoni
 fun
tion that de
ay uniformly when approa
hing the boundary.Proposition 27. Let Ω be a regular bounded or exterior domain in R
N with

N ≥ 2. Assume Λ ⊂ Ω is a regular subdomain su
h that Λ̄ ⊂ Ω. Then, thereexists a fun
tion ψb su
h that ∇ψb ∈ L2(Ω),
−∆ψb ≥ 0 and ψb(x) ≤ C

d(x, ∂Ω)

1 + d(x, ∂Ω)on Ω \ Λ̄,
ψb = 1on Λ and ψb(x) = 0 for x ∈ ∂Ω.Proof. Choose U ⊂ Ω su
h that U ∩ Λ = ∅, U is bounded with a regularboundary and ∂Ω ⊂ ∂U . De�ne ψb : Ω̄ \ Λ → R by



















∆ψb = 0 in U ,
ψb = 0 on ∂Ω,
ψb = 1 on ∂U \ ∂Ω.
ψb = 1 on Ω \ U .The fun
tion ψb is 
learly subharmoni
. The regularity hypothesis on Ωand U imply that ψb ∈ C1,α(Ū). Therefore, we have
ψb(x) ≤ C

d(x, ∂Ω)

1 + d(x, ∂Ω)for x ∈ Ω \ Λ and ∇ψb ∈ L2(Ω). �The next proposition deals with 
omparison fun
tions at in�nity.Proposition 28. Let N ≥ 1, U ⊂ R
N be unbounded and W ∈ C(U ; R+).Assume either(i) lim inf

x→∂U
W (x) > 0 and there exists α < 2 su
h that

lim inf
|x|→∞

W (x)|x|α > 0,and ψ∞(x) = exp(−λ(1 + |x|2)1/2−α/4), where λ > 0, or(ii) lim inf
x→∂U

W (x) > 0,
lim inf
|x|→∞

W (x)|x|2 > 0,and ψ∞(x) = (1 + |x|2)−λ/2, where λ > 0, or(iii) W is nonnegative, N > 2 and ψ∞(x) = (1 + |x|2)1−N/2.Then there exists ε0 > 0 su
h that if 0 < ε < ε0,
−ε2∆ψ∞ +W (x)ψ∞ ≥ 0in U .



32 DENIS BONHEURE AND JEAN VAN SCHAFTINGENProof. Consider the 
ase (i). By assumption, there is c > 0 su
h that for
x ∈ U , W (x) ≥ c/(1+ |x|)α. An expli
it 
omputation of −ε2∆ψ∞ 
ombinedwith the previous inequality gives

− ε2∆ψ∞ +W (x)ψ∞

≥
(

ε2λ(1 − α
2 )
(

−λ(1 − α
2 )

|x|2
1 + |x|2 +

N + (N − 1 − α
2 )|x|2

2(1 + |x|2)3/2−α/4

)

+ c

)

ψ∞

(1 + |x|2)α/2
.Sin
e α < 2, this last expression is positive for every x ∈ U when ε issu�
iently small.Under the assumptions (ii) and (iii), one 
omputes

−∆
( 1

(1 + |x|2)λ/2

)

=
λ

(1 + |x|2)λ/2+1

(N − (λ−N + 2)|x|2
1 + |x|2

)

.In 
ase (ii), one 
on
ludes as in 
ase (i), while in 
ase (iii), one has even
−∆ψ∞ ≥ 0, so that in this 
ase, the 
on
lusion holds for any nonnegative
W . �6.3. Proof of Theorem 22.Proof of Theorem 22. To �x the ideas, we work out the proof for an exteriordomain Ω su
h that ∂Ω 6= ∅ and (G1

f,∞) holds.By (G1
f,∞) and (Gf,∂Ω), there exist λ > 0, α ∈ [0, 2[, µ > 0 and κ ∈ (0, 1)su
h that

lim sup
|x|→∞

f(exp(−λ|x|1−α/2))

exp(−λ|x|1−α/2)

K(x)

V (x)
< κ, and lim sup

d(x,∂Ω)→0

f(µd(x, ∂Ω))

µd(x, ∂Ω)

K(x)

V (x)
< κ.De�ne f̃ by (20) a

ording to this 
hoi
e of κ. We know from Lemma 12 thatthe modi�ed problem (22) has a positive solution uε. If for every x ∈ Ω \Λ,we have

f(uε(x))

uε(x)

K(x)

V (x)
≤ κ,then uε is a positive solution of the original Diri
hlet problem (12).From the assumptions (f1), (f4), (Gf,∂Ω) and (G1

f,∞), we dedu
e the exis-ten
e of γ > 0 su�
iently small, su
h that, 
hoosing
w(x) = γ exp(−λ|x|1−α/2)

d(x, ∂Ω)

1 + d(x, ∂Ω)
,one has for all x ∈ Ω,

f(w(x))

w(x)

K(x)

V (x)
≤ κ. (53)Let us write mε = supx∈∂Λ uε(x) and de�ne the auxiliary fun
tion wb by

wb(x) :=
uε(x)

mε
− ψb(x),where ψb is de�ned in Proposition 27. We infer from the fa
t that uε solves(22) and the de�nition of g(x, u) that

−∆wb ≤ 0 in Ω \ Λ.
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iple for subharmoni
s, i.e. Proposition 24 with
W ≡ 0, to wb in Ω \ Λ, we dedu
e from Proposition 27 the estimate

uε(x) ≤ Cmε
d(x, ∂Ω)

1 + d(x, ∂Ω)
, (54)whi
h is valid for every x ∈ Ω \ Λ.Now, 
hoose U ⊂ Ω su
h that Ω \ U is bounded, Λ ∩ U = ∅, Ū ⊂ Ω and

∂U is 
ompa
t and smooth. It follows from (54) that uε is bounded on ∂Uuniformly in ε.To get a de
ay estimate at in�nity, we de�ne the auxiliary fun
tion w∞by
w∞(x) :=

uε(x)

mε
− Cψ∞(x),where ψ∞ is de�ned in Proposition 28 with λ > 0 as in assumption (G1

f,∞)and C > 0. This time, we observe that for ε small enough, w∞ is a lowersolution of LW,ε in U , where W (x) := (1−κ)V (x). Choosing C large enoughto ensure that w∞ ≤ 0 on ∂U and applying again Proposition 24, we get
uε(x) ≤ Cmεψ∞(x), (55)for x ∈ U .As mε → 0 by Proposition 21 and Ω \ U is bounded, 
ombining theestimates (54) and (55), we �nally dedu
e that for ε small enough,

uε(x) ≤ w(x),for every x ∈ Ω \ Λ.At last, we 
on
lude from (f4) and (53) that for ea
h x ∈ Ω \ Λ,
f(uε(x))

uε(x)

K(x)

V (x)
≤ f(w(x))

w(x)

K(x)

V (x)
≤ κ.This 
ompletes the proof of this 
ase. The arguments being similar whendealing with the assumptions (G2

f,∞) or (G3
f,∞), we do not repeat them. �Remark 29. The inequality (55) provides a de
ay estimate at in�nity forthe solution uε. In parti
ular, this estimate does hold even if α < 0 inassumption (G1

f,∞). If α = 0, i.e. if V is bounded from below at in�nity, weinfer the solution de
ay exponentially fast at in�nity. If α < 0, this de
ayrate at in�nity 
an be improved. For example, if V grows quadrati
ally fastat in�nity, then the solution de
ay like a Gaussian as |x| → ∞.7. Con
entrationWe next investigate the behaviour of the solutions uε obtained in The-orem 22 when ε → 0. Namely, we prove in this se
tion that the solutionsdisplay the features stated in the following theorem.Theorem 30. Suppose that the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be su
hthat
uε(xε) = sup

x∈Ω
uε(x).



34 DENIS BONHEURE AND JEAN VAN SCHAFTINGENThen, we have
lim
ε→0

C(xε) = inf
x∈Λ

C(x),and for every r > 0, there exist C > 0 and ε0 > 0 su
h that for 0 < ε < ε0,
uε has no lo
al maximum outside the ball B(xε, εr) and

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

εN−2

(ε2 + |x− xε|2)
N−2

2

. (56)If we assume in addition that
lim inf

d(x,∂Ω)→0
V (x) > 0 and lim inf

|x|→∞
V (x)|x|2 > 0,then for every λ > 0, there exist C > 0 and ε0 > 0 su
h that for 0 < ε < ε0,one has

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

ελ

(ε2 + |x− xε|2)λ/2
, (57)while if

lim inf
d(x,∂Ω)→0

V (x) > 0 and lim inf
|x|→∞

V (x)|x|α > 0for some α ∈ ]0, 2[ , then for every λ > 0, there exist C > 0 and ε0 > 0 su
hthat for 0 < ε < ε0,
uε(x) ≤ C

d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(

−λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)

. (58)When Ω = R
N the pre
eding holds provided d(x, ∂Ω)/(1 + d(x, ∂Ω)) is re-pla
ed by 1.Theorem 2 stated in the introdu
tion 
on
erning the parti
ular 
ase f(u) =

up 
learly follows from this more general result. The proof of Theorem 30is divided in two steps. We �rst investigate the behaviour of the maximaof uε. Then, the se
ond and main step is the 
onstru
tion of barrier fun
-tions, see below for a pre
ise de�nition, whi
h basi
ally 
onsist in families of
omparison fun
tions that provide uniform de
ay properties as ε→ 0.Observe that in 
ontrast with del Pino - Felmer Theorem stated in theintrodu
tion, we 
annot ensure the uniqueness of the maximum of uε. Thisis due to the la
k of regularity of f , V and K. When stronger regularityassumptions are made on those fun
tions, one re
overs solutions with a singlemaximum as in the above 
ited theorem, see Remark 35 below.7.1. Lo
al and global maxima. A �rst thing noteworthy in the study ofmaxima of uε is that the global maximum is always attained in Λ̄.Proposition 31. Suppose that f : R
+ → R

+, V, K : Ω → R
+ are 
on-tinuous fun
tions, Λ ⊂⊂ Ω and g : Ω × R

+ → R is de�ned by (21). Let
uε ∈ H1

loc(Ω) be a nonnegative solution of (22) su
h ∇uε ∈ L2(Ω). Thenthere exists xε ∈ Λ̄ su
h that
uε(xε) = sup

x∈Ω
uε(x).
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e the solution uε ∈ C1,α(Ω) by Proposition 10 and Λ̄ ⊂ Ω is
ompa
t, there exists xε ∈ Λ̄ su
h that
uε(xε) = max

x∈Λ̄
uε(x).Now observe that by de�nition of g in (20), one has,

−ε2∆uε + (1 − κ)V (x)uε ≤ 0in Ω \ Λ, where κ < 1. Hen
e, using the maximum prin
iple whi
h appliesbe
ause ∇uε ∈ L2(Ω), we infer that for every x ∈ Ω \ Λ̄,
uε(x) ≤ sup

x∈∂Ω∪∂Λ
uε(x) ≤ sup

x∈Λ̄

uε(x) = uε(xε). �In the sequel of this paragraph, we investigate the lo
alization of themaxima of uε in Ω. Our �rst observation is that the maximum points of thesolution obtained in Theorem 22 are all lo
ated in Λ.Proposition 32. Suppose the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be a lo
almaximum point of uε. Then xε ∈ Λ.Proof. The proof follows from the penalization pro
edure and Lemma 17.Indeed, if xε ∈ Ω is a lo
al maximum point of uε, then, as uε is stri
tlypositive, Lemma 17 implies
f(uε(xε))

uε(xε)

K(xε)

V (xε)
≥ 1.But on the other hand, sin
e uε solves both (22) and (11), we have for every

x ∈ Ω \ Λ,
f(uε(x))

uε(x)

K(x)

V (x)
≤ κ,with κ < 1. �Our se
ond fa
t is that any 
onverging sequen
e of maximum points of uεdoes 
onverge to a minimum point of C in Λ. This obviously implies that as

ε→ 0, the maxima of uε o

ur 
lose to minima of C.Proposition 33. Suppose that Λ ⊂⊂ Ω and the assumptions of Lemma12 are satis�ed. Let (εn)n ⊂ R
+ be su
h that εn → 0 as n → ∞ and

(uεn)n ⊂ H1
loc(Ω) be the 
orresponding sequen
e of positive solutions of (22)obtained in Lemma 12. If (yn)n ⊂ Λ is a sequen
e of lo
al maximum pointsof uεn, then

lim
n→∞

C(yn) = inf
x∈Λ

C(x).Proof. Assume by 
ontradi
tion that the 
on
lusion is false. Hen
e, by 
om-pa
tness, we infer that, up to a subsequen
e, (yn)n 
onverges to ȳ ∈ Λ̄ su
hthat
C(ȳ) > inf

x∈Λ
C(x). (59)On the one hand, we dedu
e from Proposition 16 and Lemma 17 that

lim inf
n→∞

ε−N
n Jεn(uεn) ≥ C(ȳ).
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lim sup

n→∞
ε−N
n Jεn(uεn) ≤ inf

x∈Λ
C(x).This 
ontradi
ts (59) and 
on
ludes the proof. �We next prove that lo
al maxima are essentially unique in the sense thatthey get 
loser and 
loser to the global one as ε → 0. Therefore, even if uε
an have more than one lo
al maximum, the solution is a perturbation of asolution with a single lo
al (hen
e global) maximum.Proposition 34. Suppose the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be su
hthat

uε(xε) = sup
x∈Ω

uε(x).Then, for every r > 0, there exists ε0 > 0 su
h that for every 0 < ε < ε0, uεhas no lo
al maxima in Λ \B(xε, εr).Proof. Let (xε)ε ⊂ Ω be global maximum points of uε. We argue by 
on-tradi
tion, assuming the existen
e of sequen
es (yn)n ⊂ Ω and (εn)n ⊂ R
+su
h that uεn attains a lo
al maximum at yn, εn → 0 as n→ ∞ and

lim inf
n→∞

|xεn − yn|
εn

> 0. (60)By Proposition 32, we may assume without loss of generality that (xεn)n ⊂
Λ, (yεn)n ⊂ Λ,

lim inf
n→∞

uεn(xεn) > 0 and lim inf
n→∞

uεn(yεn) > 0.Sin
e Λ̄ is 
ompa
t, going to a subsequen
e if ne
essary, we may also assumethat xεn → x̄ and yn → ȳ. Now, if
lim sup

n→∞

|xεn − yεn|
εn

= ∞,Proposition 16 applies. We therefore 
on
lude that
lim inf
n→∞

ε−N
n Jεn(uεn) ≥ C(x̄) + C(ȳ) ≥ 2 inf

x∈Λ
C(x),while by Lemma 12, we know that

lim sup
n→∞

ε−N
n Jεn(uεn) ≤ inf

x∈Λ
C(x).Sin
e infΛ C > 0, this brings a 
ontradi
tion. Therefore,

lim sup
n→∞

|xεn − yn|
εn

<∞. (61)Consider now the sequen
es (vn)n and (zn)n de�ned by vn(z) = uεn(xεn −
εnz) and zn = (xεn − yn)/εn. Sin
e zn is a lo
al maximum of vn, ∇vn(zn) =
0. By Proposition 18 and (61), up to subsequen
es, we have ∇vn → ∇vuniformly on 
ompa
t subsets, where v is a solution of (49), and zn → z ∈
R

N . Therefore ∇v(z) = limn→∞∇vn(zn) = 0, so that by Lemma 3, z = 0,i.e.
lim

n→∞

|xεn − yn|
εn

= 0,
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ontradi
tion with (60). �Remark 35. We may state a stronger 
on
lusion in Proposition 34 when
f is lo
ally Lips
hitz 
ontinuous and V and K are both Hölder 
ontinuousinside Λ. Indeed, in this 
ase, the sequen
e (vn)n of res
aled solutions de�nedby vn(x) = uεn(xεn + εnx) 
onverges for the C2

loc topology, see Remark 19,and the limit fun
tion v has a nondegenerate maximum at 0. Hen
e thereexists ε0 > 0 su
h that xε is the unique lo
al maximum of uε in Ω.7.2. Ellipti
 inequation outside small balls. All the previous results al-low to prove the following inequality whi
h will be useful to get 
on
entrationestimates.Proposition 36. Suppose the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be su
hthat
uε(xε) = sup

x∈Ω
uε(x).Then there exists r0 > 0 su
h that for every r > r0, there exists εr > 0 su
hthat for every ε ∈ ]0, εr[ ,

−ε2∆uε + (1 − κ)V (x)uε ≤ 0in Ω \B(xε, εr), where κ < 1 is de�ned in (20).Proof. First, noti
e that by the 
ompa
tness of Λ̄ ⊂ Ω, the 
ontinuity of Vand K and the assumption (f1), we infer there exists a > 0 su
h that
f(a)

a
≤ κ

V (x)

K(x)
(62)for every x ∈ Λ. On the other hand, by Proposition 20 and Proposition 34,we may take r > 0 large enough su
h that for ε→ 0,

uε(xε + εy) ≤ afor |y| = r and uε has no lo
al maximum in Λ \ B(xε, εr). Moreover, weknow from Proposition 21 that
max
x∈∂Λ

uε(x) → 0 as ε→ 0.Hen
e, one 
an assume that for small ε, uε(x) ≤ a for every x ∈ Λ\B(xε, εr).Taking (62) into a

ount, we now infer from (f4) that
g(x, uε(x)) = K(x)f(uε(x)) ≤ κV (x)uε(x)for x ∈ Λ\B(xε, εr). On the other hand, by the de�nition of the penalization,we have

g(x, uε(x)) ≤ κV (x)uε(x)for x ∈ Ω \ Λ. Therefore uε satis�es the desired inequality for ε smallenough. �
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tions. Proposition 36 implies that for r large and ε smallenough, (uε)ε is a family of lower solutions of −ε2∆ + W in Ω \ B(xε, rε),where W = (1−κ)V and xε is a global maximum point of uε. Then, arguingas in the proof of Theorem 22, one 
an easily obtain estimates for uε in
Ω \B(xε, rε) if we 
an 
ompare uε with a 
onvenient upper solution in thisset. This motivates the following de�nition.De�nition 37. Let Ω ⊂ R

N be a regular bounded or exterior domain and
LW,ε be the linear operator formally de�ned by (51) where ε > 0 and W ∈
C(Ω; R) is nonnegative. We say that the set (wε)ε ⊂ H1

loc(Ω \ B(xε, rε)),where r > 0 and (xε)ε ⊂ Ω, is a family of barrier fun
tions for W if thereexists ε0 > 0 su
h that for every 0 < ε < ε0,(1) B(xε, rε) ⊂ Ω ;(2) wε is an upper solution of LW,ε in Ω \B(xε, rε) ;(3) ∇wε ∈ L2(Ω \B(xε, rε)) ;(4) wε ≥ 1 on ∂B(xε, rε).As a basi
 example, the 
onstant fun
tions wε ≡ 1 form a family of barrierfun
tions for any nonnegative potential W .Remark 38. One easily 
he
ks that if (wε)ε is a family of barrier fun
tionsfor W ∈ C(Ω; R) and if W̄ ∈ C(Ω; R) satis�es W̄ ≥ W , then (wε)ε is afamily of barrier fun
tions for W̄ . Note also that if λ ≥ 0, then (wλε)ε is afamily of barrier fun
tions for λ−2W .As mentioned above, the main interest of a family of barrier fun
tions isto dedu
e estimates for the solutions (uε)ε obtained in Theorem 22. Theseestimates will be obtained through the following proposition.Proposition 39. Let Ω ⊂ R
N be a regular bounded or exterior domainand LW,ε be the linear operator formally de�ned by (51) where ε > 0 and

W ∈ C(Ω; R) is nonnegative. Assume wε ∈ H1
loc(Ω \B(xε, rε)), where r > 0and (xε)ε ⊂ Ω, is a familly of positive barrier fun
tions. If vε ∈ Hε is alower solution of LW,ε in Ω \B(xε, rε) su
h that

∫

Ω

|vε|2
1 + |x|2 <∞if N = 2 and Ω is unbounded, and
vε ≤ cεon ∂B(xε, rε), then for every ε ∈ ]0, ε0[, we have
vε ≤ cεwεin Ω \B(xε, rε).Proof. The proof follows immediately by applying Proposition 24 to the fun
-tions vε/cε − wε taking De�nition 37 into a

ount. �The main 
on
ern in this se
tion is to obtain uniform estimates as ε→ 0so that we have to sele
t 
arefully the family of barrier fun
tions in ourappli
ation of Proposition 39.Assuming that the potential V is positive, we dire
tly dedu
e a rough as-ymptoti
 behaviour using 
onstant barrier fun
tions. However, Remark 38
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onstru
tion of barriers depends on the asymptoti
 be-haviour of V so that we may hope an improvement of these basi
 estimatesby 
hoosing a suitable family of barrier fun
tions. In fa
t, without furtherrestri
tions on the potential, the 
onstant barriers 
an always be repla
ed byharmoni
 barriers.Proposition 40. Let N ≥ 2 and Ω ⊂ R
N be a domain. Assume (xε)ε ⊂ Ωis relatively 
ompa
t in Ω. Then, the family (Hε)ε ⊂ H1

loc(Ω \ B(xε, rε))de�ned by
Hε(x) =

(ε
√

1 + r2)N−2

(ε2 + |x− xε|2)N/2−1
.is a family of barrier fun
tions for any nonnegative W ∈ C(Ω; R).Proof. Noti
e that −∆Hε ≥ 0 on Ω \ {xε}. All the properties follow thenfrom straightforward 
omputations. �When N = 2, we re
over the 
onstant barriers wε ≡ 1 while for N > 2, thebarrier fun
tions provide a polynomial de
ay to 0 at in�nity. This 
ontrol atin�nity 
an be improved by either exponential or polynomial (of any order)barriers provided we assume further that

lim inf
|x|→∞

W (x)|x|α > 0 (63)for some α ∈ [0, 2].If W satis�es (63) for some α ∈ 0, 2[, then there exists families of barrierfun
tions for W that de
ay exponentially fast at in�nity.Proposition 41. Let N ≥ 2, Ω ⊂ R
N be an unbounded domain, r > 0 and

(xε)ε ⊂ Ω be relatively 
ompa
t in Ω. Assume that W ∈ C(Ω; R) is a positivepotential satisfying (63) for some α ∈ ]0, 2[ and
lim inf

d(x,∂Ω)→0
W (x) > 0,if ∂Ω 6= ∅. Then, for any λ > 0, there exists r0 > 0 su
h that (Eα,λ,ε)ε ⊂

H1
loc(Ω \B(xε, rε)) de�ned by

Eα,λ,ε(x) = exp
(

λr1−α/2 − λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)is a family of barrier fun
tions for W when r > r0.Proof. Let us write for simpli
ity Eε(x) = Eα,λ,ε(x). We then 
ompute for
x ∈ Ω \B(xε, rε),

−ε2∆Eε(x) +W (x)Eε(x) ≥
(

−λ2(1 − α
2 )2

εα

|x− xε|α
+W (x)

)

E(x).By assumption, sin
e (xε)ε ⊂ Ω is bounded, there exists c > 0 su
h that forevery x ∈ Ω and ε0 > ε > 0,
W (x) ≥ c

1 + |x− xε|α
,and on the other hand, for x ∈ Ω \B(xε, rε), we have

ε

|x− xε|
≤ 2ε0
rε0 + |x− xε|

.



40 DENIS BONHEURE AND JEAN VAN SCHAFTINGENIf r0 is taken large enough and ε0 is taken small enough, then one has
−ε2∆Eε(x) +W (x)Eε(x) ≥ 0. �Remark 42. Observe that when α = 0, we 
an also obtain barriers of theform

exp(−λ(|x/ε| − r)),for some small λ > 0 whi
h provide the de
ay estimates for the positivesolutions of −∆u+u = f(u). The restri
tion α > 0 in Proposition 41 allowsto play with every λ > 0.The limit 
ase α = 2 in the exponential barriers yields similarly polynomialbarriers of any order.Proposition 43. Let N ≥ 2, Ω ⊂ R
N be an unbounded domain and (xε)ε ⊂

Ω be relatively 
ompa
t in Ω. Assume that W ∈ C(Ω; R) is a positive poten-tial satisfying (63) with α = 2 and
lim inf

d(x,∂Ω)→0
W (x) > 0,if ∂Ω 6= ∅. Then, for any λ ≥ N − 2, there exists r0 > 0 su
h that the family

(Pλ,ε)ε ⊂ H1
loc(Ω \B(xε, rε)) de�ned by

Pλ,ε(x) =
(ε
√

1 + r2)λ

(ε2 + |x− xε|2)λ/2is a family of barrier fun
tions for W .7.4. Proof of Theorem 30.Proof of Theorem 30. To �x the ideas, assume Ω is a regular exterior domainwith nonempty boundary, (G1
f,∞) holds and
lim inf

d(x,∂Ω)→0
V (x) > 0.Let xε ∈ Ω be su
h that

uε(xε) = sup
x∈Ω

uε(x).We �rst 
laim there exists ε0 > 0 and δ > 0 su
h that
inf

0<ε<ε0

d(xε, ∂Λ) > δ.Indeed, assume this is not true. Then, we 
an �nd sequen
es (εn)n ⊂ R
+and (xεn)n ⊂ (xε)ε su
h that d(xεn , ∂Λ) → 0. Going to subsequen
es if ne
-essary, we now infer that xεn 
onverges to some x̄ ∈ ∂Λ, but this 
ontradi
tsProposition 33 and assumption (50). We may of 
ourse assume that δ ≤ 1.The �rst statements of the theorem then follows from Proposition 32,Proposition 33 and Proposition 34. Let us now fo
us on the asymptoti
estimate (58). Taking ε0 smaller if ne
essary, we may assume Proposition 36holds for ε0 and some r > 0. Now, let λ > 0 and 
onsider the family

(Eα,λ,ε)ε ⊂ H1
loc(Ω \ B(xε, rε)) of barrier fun
tions asso
iated to the set

(xε)ε, provided by Proposition 41. Noti
ing that the maximum of uε isbounded independently of ε ≤ ε0, we dedu
e from Proposition 39 that
uε(x) ≤ C exp

(

λr1−α/2 − λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2) (64)
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ular, sin
e |x− xε| ≥ δ > 0 for any x ∈ ∂Λ, we infer that
uε(x) ≤ C exp(−λ(δ/ε)1−α/2)on ∂Λ. Therefore, arguing as in the proof of Theorem 22, we now dedu
ethat

uε(x) ≤ 2C exp(−λ(δ/ε)1−α/2)
d(x, ∂Ω)

1 + d(x, ∂Ω)
, (65)in Ω \ Λ̄. Using the fa
ts that the boundary is bounded and Λ ⊂⊂ Ω, andtaking (64) and (65) into a

ount, we �nally 
on
lude that

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(

−cλ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)

,with c = min(1, 2δ/(diam(∂Ω) + 1))1−α/2. The estimates (57) and (56) 
anbe handled in a similar way. �We emphasize that when 
onsidering the growth 
ondition (G3
f,∞), we donot have to assume that V is stri
tly positive up to the boundary. Indeed,the stri
t positivity of V only plays a role in the 
onstru
tion of the familyof exponential and polynomial barrier fun
tions. When (G3

f,∞) holds, wehave at hand a family of harmoni
 barriers whi
h 
an be 
onstru
ted for anynonnegative potential V . 8. Final 
ommentsIn [15, 17℄, del Pino and Felmer used a penalization s
heme to treat theexisten
e of bound state solutions around other type of 
riti
al points of the
on
entration fun
tion C. A penalization method is also developed in [16℄ to
at
h multi-peak solutions. It 
ould be interesting to �nd out whether ourmethod 
an be adapted to those situations.Another interesting open question 
on
erns the qualitative behaviour ofground states of
−ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ R

N .As mentioned earlier, Ambrosetti, Felli and Mal
hiodi [2℄ proved the exis-ten
e of a ground state solution under the assumptions (7) and (8). If inaddition,
a

1 + |x|α ≤ V (x),with 0 ≤ α < 2, the authors show the ground state belongs to H1(RN ) and
on
entrates around a global minimum point of A as ε → 0. Con
erningthe existen
e of the ground state solution in a weighted Sobolev spa
e, these
onditions 
an be relaxed by just assuming that A is 
oer
itive. We thenobserve that in this 
ase, our result provide the existen
e of a H1 boundstate solution for ε small under less restri
tive assumptions on V . Namely, if
(G3

∞) holds and N > 4, the bound state belongs to H1(RN ) and 
on
entratesaround a global minimum point of A as ε → 0. Su
h a result is not knownfor the ground state solution.
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