
BOUND STATE SOLUTIONS FOR A CLASS OFNONLINEAR SCHRÖDINGER EQUATIONSDENIS BONHEURE∗ AND JEAN VAN SCHAFTINGEN∗,∗∗Abstrat. We deal with the existene of positive bound state solutionsfor a lass of stationary nonlinear Shrödinger equations of the form
−ε2∆u + V (x)u = K(x)up, x ∈ R

N ,where V, K are positive ontinuous funtions and p > 1 is subritial, ina framework whih may exlude the existene of ground states. Namely,the potential V is allowed to vanish at in�nity and the ompeting fun-tion K does not have to be bounded. In the semi-lassial limit, i.e.for ε ∼ 0, we prove the existene of bound state solutions loalizedaround loal minimum points of the auxiliary funtion A = V θK−
2

p−1 ,where θ = (p + 1)/(p − 1) − N/2. A speial attention is devoted to thequalitative properties of these solutions as ε goes to zero.1. IntrodutionThe nonlinear Shrödinger equation appears in many �elds of physis asnonlinear optis or plasma physis. It typially reads
i~
∂ψ

∂t
+

~
2

2m
∆ψ −W (x)ψ + |ψ|p−1ψ = 0, (t, x) ∈ R × R

N , (1)where ~ denotes the Plank onstant and i is the imaginary unit. This equa-tion models the non-relativisti evolution of a quantum partile. It is ex-peted that lassial mehanis an be reovered by letting ~ → 0 in (1) andthe limiting behaviour as ~ → 0 is then alled semi-lassial. The study ofthe dynamis of (1) leads naturally to standing wave solutions, i.e. solutionsof the form
ψ(t, x) = e−iEt/~u(x),where E is the energy of the wave. For small ~, these solutions are referredto as semi-lassial states. The funtion ψ is a standing wave solution of (1)if and only if u solves the semilinear ellipti equation

− ε2∆u+ V (x)u = |u|p−1u, x ∈ R
N , (2)where ε2 = ~

2/2m and V (x) = (W (x) − E).The study of (2) goes bak at least to Floer and Weinstein [18℄ whoinvestigated the speial ase where N = 1 and p = 3. Assuming that V is aDate: September 29, 2006.2000 Mathematis Subjet Classi�ation. Primary: 35J60 Seondary:35B25,35B40,35J10.Key words and phrases. Semi-lassial states; ritial frequeny;
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2 DENIS BONHEURE AND JEAN VAN SCHAFTINGENglobally bounded potential having a nondegenerate ritial point, say x = 0,and infRN V > 0, they onstruted a positive solution uε of (2) for small
ε > 0 via a Lyapunov-Shmidt redution. Moreover, they proved that thesolution onentrates around the ritial point of V , i.e. most of the massof uε is ontained in a neighbourhood of 0 that shrinks to a single point as
ε → 0. This result was then extended to higher dimensions by Oh [27, 29℄who also onsidered the possibility of simultaneous onentration aroundmultiple ritial points leading to so-alled multi-bump standing waves. Oh[28℄ also investigated the stability of these solutions.Sine then, equation (2) has attrated the interest of many mathemati-ians and the existene of positive solutions under various assumptions hasbeen proved using di�erent methods. As the problem has generated an im-pressive amount of publiations, it is impossible to give a omprehensivelist of referenes here. Basially, two main routes have been pursued. TheLyapunov-Shmidt redution sheme proposed by Floer and Weinstein hasbeen further extended and ombined with variational arguments by Am-brosetti et al. [1, 7, 4, 5℄, see also for example [26, 30℄ for multibump so-lutions. On the other hand, Rabinowitz [33℄ initiated a purely variationalapproah, then mainly relayed by del Pino and Felmer [14, 15, 16, 17℄. Wealso refer to P.L. Lions [24℄, Y. Li [25℄, Bahri and P.L. Lions [9℄ as well as totheir bibliographies for other works involving variational methods to treatthe existene of standing waves for nonlinear Shrödinger equations.The Lyapunov-Shmidt redution method introdued by Floer and Wein-stein uses in an essential way the nondegeneray of the ritial point of Vso that one an address the natural question whether alternative argumentsmay be used to extend their result to a degenerate setting, that is whethersolutions onentrating around possibly degenerate ritial points of the po-tential an be obtained. Using a loal variational approah, Del Pino andFelmer [15, 17℄ onstruted positive solutions onentrating around any topo-logially nontrivial ritial point of the potential V whereas an a�rmativeanswer to the above question has also been given using �nite dimensionalredution arguments by Ambrosetti, Badiale and Cingolani [1℄ for isolatedritial points of V with polynomial degeneray and by Y.Y. Li [26℄ in thease where V has stable ritial points. Basially, the approah of Y.Y. Lirequires that small C1 perturbations of the potential still have a ritialpoint while that of del Pino and Felmer works �ne with any ritial pointhaving a minimax haraterisation, the easiest situation being that of a loalminimum. Assume for instane that Λ ⊂ R

N is a bounded open set suhthat
V0 := inf

x∈Λ
V (x) < inf

x∈∂Λ
V (x). (3)Then, if infRN V > 0, there exists a positive solution onentrating in Λ.More preisely, we have the following result whih is by now lassial.Theorem (del Pino-Felmer [14℄). Assume that V is a loally Hölder on-tinuous potential bounded away from zero and Λ is a bounded open set sat-isfying (3). Then, there exist ε0 > 0 and a family of positive solutions

{uε ∈ H1(RN ) | 0 < ε < ε0} of (2) with the partiularity that eah uε pos-sesses a single maximum point xε suh that V (xε) → V0 as ε→ 0. Moreover,



BOUND STATES FOR SCHRÖDINGER EQUATIONS 3there exist C, λ > 0 suh that for every x ∈ R
N ,

uε(x) ≤ C e−λ|x−xε|/εand the limiting pro�le is given by
uε(x) = v

(x− xε

ε

)

+ wε(x),where v is the unique positive radial solution of
−∆v + V0v = |v|p−1vand wε → 0 in C2

loc(R
N ) and in L∞(RN ) as ε→ 0.Formally, equation (2) is the Euler-Lagrange equation assoiated to theation funtional
Iε(u) := Jε(u) −

1

p+ 1

∫

RN

up+1, (4)where
Jε(u) :=

1

2

∫

RN

(

ε2|∇u|2 + V (x)|u|2
)

.Assuming that 1 < p < (N + 2)/(N − 2) if N ≥ 3 and V (x) → +∞as |x| → ∞, it is easily seen that for any ε > 0, Jε ahieves a minimumonstrained to the manifold
M :=

{

u ∈ H1(RN )
∣

∣

∣

∫

RN

V (x)|u|2 <∞ and ∫
RN

up+1 = 1
}

.When infRN V > 0, this allows to obtain a positive ground-state, i.e. a leastenergy mountain pass solution, of (2). In [33℄, still assuming that infRN V >
0, Rabinowitz proved the existene of a positive ground state for any ε > 0under the ondition

0 < a ≤ V (x) ≤ lim inf
|x|→∞

V (x), for all x ∈ R
N and some a > 0,with strit inequality on a set of positive measure, while he observed thatfor small ε, existene holds under the weaker assumption

inf
x∈RN

V (x) < lim inf
|x|→∞

V (x). (5)In the meantime, Wang [37℄ proved under this last hypothesis that any posi-tive ground state does onentrate at a global minimum point of V as ε→ 0.These last results onern the ase where V ahieves a global minimum, i.e.the ase where we an hoose any su�iently large bounded set Λ in the delPino-Felmer Theorem. When V only ahieves loal minima, one requires,from a variational point of view, loal arguments to ath loal mountainpasses. This is the spirit of the approah of del Pino and Felmer [14℄ whihrelies on the study of a penalized funtional. For instane, the modi�ationin the funtional whih basially orresponds to a penalization outside Λ,permits to reover enough ompatness to seure the existene of a moun-tain pass ritial point. This ritial point is then shown to be a ritialpoint of the original funtional when ε is small.For various reasons, the penalization sheme developed by del Pino andFelmer ruially depends on the assumption
inf
RN

V > 0.



4 DENIS BONHEURE AND JEAN VAN SCHAFTINGENThe ase where infRN V = 0 (this happens if the frequeny E of the waveis equal to infRN W whih is referred to as the ritial frequeny [11℄) hasbeen treated reently by Byeon and Wang in [11℄ onerning the existene ofground states and in [12℄ onerning loalized solutions. The results ontraststrikingly with the non-ritial frequeny ase sine the amplitude of thesolutions goes to 0 as ε → 0 and the limiting pro�les depend on the shapeof the potential around the minimum points of V . It is worth pointing outthat even if the results of Byeon and Wang allow V to vanish in R
N , theydo require V to be bounded away from zero outside a ompat set of R

N .The starting point of our work is a reent result of Ambrosetti, Felli andMalhiodi [2℄ where the authors onsider the model equation
− ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ R

N , (6)where K > 0 is an additional ompeting funtion, assumed to be positive.Suh an equation has been previously treated by Wang and Zeng [38℄ as-suming that infRN V > 0 and K is bounded away from zero and bounded.The novelty in [2℄ is the ase where the potential V vanishes at in�nity. Thissituation di�ers drastially from that onsidered by Byeon and Wang [11℄sine the fat that V ahieves its in�mum at in�nity an learly produe alak of ompatness. Indeed, one easily observes for example that Iε, de�nedby (4), annot have a least energy mountain pass ritial point in this ase.In order to reover the existene of a ground state, Ambrosetti, Felli andMalhiodi onsider (6) with K(x) → 0 as |x| → ∞ with a rate related tothat of V . More preisely, they assume that there exist A, a, α > 0 and
B, β > 0 suh that

a

1 + |x|α ≤ V (x) ≤ A and 0 < K(x) ≤ B

1 + |x|β . (7)Assuming further that N ≥ 3, 0 < α < 2, β > 0 and de�ning
σ :=







N + 2

N − 2
− 4β

α(N − 2)
if β < α,

1 if α ≤ β,they prove the existene of a positive ground state in H1(RN ) provided
σ < p <

N + 2

N − 2
. (8)This ondition is sharp in the sense that for this range of p, the ground staterealizes the supremum

sup
Hε\{0}

∫

RN K(x)|u|p+1

∫

RN (ε2|∇u|2 + V (x)|u|2)
p+1
2

,where Hε is the weighted Sobolev spae de�ned by
Hε :=

{

u ∈ H1
loc(R

N )
∣

∣

∣

∫

RN

(

ε2|∇u|2 + V (x)|u|2
)

<∞
}

,while the supremum is +∞ if p < σ or p > (N + 2)/(N − 2). Notie thatin ase V and K are radial, the range of admissible p's given by (8) an beenlarged when looking for radial ground states as shown reently by Su etal. [35℄.



BOUND STATES FOR SCHRÖDINGER EQUATIONS 5In fat, under assumption (8), the Sobolev spae Hε is ompatly imbed-ded in Lp+1(RN ,K(x) dx) so that a positive ground state in Hε an beobtained via a lassial minimax proedure. At this point, it is worth men-tioning that (8) implies that the funtion
A(x) := [V (x)]

p+1
p−1

−N
2 [K(x)]−

2
p−1 (9)tends to +∞ as |x| → ∞ whereas one an hek this last ondition atuallyimplies the ompat imbedding of Hε into Lp+1(RN ,K(x) dx) for any ε > 0.The existene ondition obtained in [2℄ an therefore be replaed by justimposing the oerivity of A without any speial deay ondition on V and

K. However, one of the main issues of [2℄ is in fat to show that this groundstate is indeed in H1(RN ). To this respet, the assumption α < 2 in (7)seems essential.When V is bounded from below by a positive onstant and K is bounded,the auxiliary funtion A was shown by Wang and Zeng [38℄ to play in somesense the role of the potential in Rabinowitz's result, i.e. their extension ofRabinowitz's su�ient ondition for the existene of a positive ground statesolution of (6) reads
inf

x∈RN
A(x) <

lim inf |x|→∞ V (x)
p+1
p−1

−N
2

lim sup|x|→∞K(x)
2

p−1

. (10)Under the same onditions, Wang and Zeng also proved that A ontainsthe information about onentration, namely onentration ours aroundritial points of A. Therefore A is referred to as the onentration funtionassoiated to (6). In partiular, if V is bounded from below by a positiveonstant and K is bounded, any positive ground state solution of (6) on-entrates at a global minimum point of A. In fat, one ould also rewritedel Pino-Felmer Theorem within the framework of equation (6), using thefuntion A instead of V to loate the peak of the solution. Therefore, theresult of [2℄ an be seen as a partial extension of that theorem in the ase ofequation (6) with both V and K deaying to 0 at in�nity and A having aglobal minimum.In this paper, we onsider (6) in situations where
lim inf
|x|→∞

A(x) = 0and
A(x) > 0 for all x ∈ R

N .This means we onsider either a ritial frequeny ase infRN V = 0, assum-ing further V (x) > 0 for all x ∈ R
N , or an unbounded ompeting funtion K.Sine in general ground states do not exist in suh ases, we searh for boundstate solutions loalized around loal minima of A. Our approah relies on asuitable adaptation of the above disussed penalization method of del Pinoand Felmer. Our results also onern positive solutions for equations like (6)in bounded or exterior domains with Dirihlet boundary ondition. In thelatter we assume that the domain has a bounded boundary, V > 0 in theinterior of the domain while we allow V to vanish or K to explode on theboundary.



6 DENIS BONHEURE AND JEAN VAN SCHAFTINGENFrom now on, Ω ⊂ R
N denotes a regular domain with bounded boundary.Of ourse, this inludes the ase Ω = R

N . Let V, K ∈ C(Ω,R+) satisfy, if
∂Ω 6= ∅,
(G∂Ω) lim sup

x→∂Ω
d(x, ∂Ω)p−1K(x)

V (x)
<∞and one of the three following growth onditions at in�nity if Ω is unbounded:

(G1
∞) there exist α ∈ [0, 2[ and λ > 0 suh that

lim inf
|x|→∞

V (x)|x|α > 0 and lim sup
|x|→∞

ψ1,λ(x)
K(x)

V (x)
<∞ ,where ψ1,λ := exp(−λ|x|1−α/2) ;

(G2
∞) there exists λ > 0 suh that

lim inf
|x|→∞

V (x)|x|2 > 0 and lim sup
|x|→∞

ψ2,λ(x)
K(x)

V (x)
<∞ ,where ψ2,λ(x) := |x|−λ ;

(G3
∞) N > 2 and

lim sup
|x|→∞

|x|−νK(x)

V (x)
<∞ ,where ν = (p− 1)(N − 2).Theorem 1. Suppose Ω ⊂ R

N is a regular domain with bounded boundaryand p ∈ ]1, (N + 2)/(N − 2)[ if N ≥ 3 or p ∈ ]1,∞[ otherwise. Let V, K ∈
C(Ω,R+) satisfy (G∂Ω) if ∂Ω 6= ∅ and one set (Gi

∞) of growth onditions if
Ω is unbounded. Let Λ ⊂ R

N be open and bounded and assume
inf
x∈Λ

A(x) < inf
x∈∂Λ

A(x),where A is de�ned by (9). Then there exists ε0 > 0 suh that for every
0 < ε < ε0, the Dirihlet problem

−ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω

(11)has at least one positive solution uε.We emphasize that the solution uε also satis�es
∫

Ω

(

ε2|∇uε|2 + V (x)|uε|2
)

= O(εN ),but sine V does not have a positive lower bound, ‖uε‖2
L2(Ω) does not needto satisfy the same estimate, and might even not be �nite. However, thesolution displays the following features.Theorem 2. Under the assumptions of Theorem 1, let uε be the solution of(11) obtained in that theorem and xε ∈ Ω be suh that

uε(xε) = sup
x∈Ω

uε(x).



BOUND STATES FOR SCHRÖDINGER EQUATIONS 7Then, we have
A(xε) → inf

x∈Λ
A(x), as ε→ 0,for every r > 0 and ε su�iently small, uε has no loal maximum outsidethe ball B(xε, εr) and satis�es

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

εN−2

(ε2 + |x− xε|2)
N−2

2

.If moreover,
lim inf

d(x,∂Ω)→0
V (x) > 0 and lim inf

|x|→∞
V (x)|x|2 > 0,then, for every λ > 0, there is C > 0 and ε0 > 0 suh that if 0 < ε < ε0,

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

ελ

(ε2 + |x− xε|2)
λ
2

,while if
lim inf

d(x,∂Ω)→0
V (x) > 0, and lim inf

|x|→∞
V (x)|x|α > 0 for some α ∈ ]0, 2[ ,then for every λ > 0, there is C > 0 and ε0 > 0 suh that if 0 < ε < ε0,

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(

−λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)

.When Ω = R
N the preeding holds provided d(x, ∂Ω)/(1 + d(x, ∂Ω)) is re-plaed by 1.This theorem implies in partiular that uε ∈ L2(Ω) and ‖uε‖2

2 = O(εN )as soon as N > 4 or as lim inf |x|→∞ V (x)|x|2 and lim infd(x,∂Ω)→0 V (x) > 0.Theorem 2 an be seen as a weak version of the onentration behaviourdesribed in del Pino-Felmer Theorem. If V and K are loally Hölder on-tinuous, then the solution an be shown to ahieve a unique (hene global)maximum point. On the other hand, as disussed below, one annot hope toobtain better deay estimates sine they do depend in an essential way onthe behaviour of V at in�nity.While ompleting our researh, we heard about some reent preprintsdealing also with nonlinear Shrödinger equations with potentials vanishingat in�nity. The most related one, by Ambrosetti, Malhiodi and Ruiz [6℄,onerns the model equation (6) in R
N under assumptions similar to ours.Namely, the authors assume therein that V, K are smooth and positive, V ′,

K, K ′ are bounded and V deays to zero at in�nity in suh a way that
lim inf
|x|→∞

V (x)|x|2 > 0.Under these assumptions, the authors are able to onstrut, for su�ientlysmall ε, bound state solutions onentrating at any isolated stable stationarypoint of the onentration funtion A. However, their assumptions on thepotentials V and K are more restritive and they require K to be bounded.Also, the method of [6℄ relies ruially on the homogeneity of the nonlinearterm K(x)up while we are able to deal with more general nonlinearities.In [6℄, the authors point out the paper of Souplet and Zhang [34℄ where



8 DENIS BONHEURE AND JEAN VAN SCHAFTINGENradial deaying potentials are onsidered under stronger growth restritionsat in�nity. Moreover, neither semilassial states nor spikes are investigated.In two other reent prepints by Ambrosetti and Ruiz [8℄ and Byeon and Wang[13℄, the possibility of onentration on spheres in the framework of deayingpotentials has also been onsidered. It ould be interesting to see how far ourmethod an be adapted to the searh of suh solutions. Finally, we point outthe note [3℄, where reent developments on nonlinear Shrödinger equationsare disussed. The results of this paper were partially announed in [10℄.Our paper is organized as follows. We deal in fat with (6) where thenonlinear term up may be replaed by a more general superlinear term f(u).It is not usually possible to give an expliit expression of the onentrationfuntion, i.e. the energy assoiated the ground state solutions of the limitingequation, see Setion 3, whih is given by A in the homogeneous ase. Also,the growth onditions (Gi
∞) have to be adapted aording to the behaviourof f(u)/u lose to zero. We refer to Setion 2 where we omplete our generalassumptions. We investigate the qualitative properties of the onentrationfuntion and those of the ground states of the limiting problem in Setion 3.In Setion 4, we disuss the penalization sheme of del Pino and Felmerand we provide an adequate modi�ation of their approah whih works �newithin our framework. From the way our penalized funtional is de�ned, itmight seem at �rst sight that the method of del Pino and Felmer extendsto our framework with only minor hanges. Whereas this is true for somearguments, the possibility of V to vanish at in�nity brings a lot of troublesand requires areful estimates. Firstly, our de�nition of the penalized fun-tional requires some preliminary tehnial adjustments in order to ath amountain-pass solution uε of the penalized equation. Indeed, our assump-tions on V do not imply the L2-boundedness of Palais-Smale sequenes asin [14℄, but Hardy's inequality an still prevent losses of mass at in�nity inthose sequenes. Sine Hardy's inequality does not hold in two dimensions,a speial are is needed in that ase and the ompatness of Palais-Smalesequenes is derived from a Hardy type inequality with potential whih takesa growth restrition on V at in�nity into aount. This is one of the reasonsfor whih we require N > 2 when dealing with the weaker growth onditionin (G3

∞). To reover a solution of the original equation, we argue as follows.As in [14℄, for small ε, the solution uε is �rst shown to be small on the bound-ary of Λ. This is done in Setion 5. Then, using omparison arguments, theestimate on the boundary is extended outside Λ. To this respet, the situa-tion here is muh more deliate than in [14℄. Indeed, we do require preiseestimates on the deay of the solution at in�nity. Suh estimates are workedout in Setion 6 where the proof of Theorem 1 is ompleted. Theorem 2onerning onentration is proved in Setion 7. Here again the approahand the results di�er onsiderably due to both weak regularity assumptionson the potentials and their behaviour at in�nity. In [14℄, when V is Hölderontinuous, it is established that uε has a unique loal (and hene global)maximum. As we only assume that V and K are ontinuous, the weakness ofthe regularity of the solution ruled out the arguments used therein. However,as stated in Theorem 2, the global maximum xε is shown to be essentiallyunique in the sense that if yε is a loal maxima of uε, then d(xε, yε) = o(ε)



BOUND STATES FOR SCHRÖDINGER EQUATIONS 9as ε → 0. Observe also that when V is not bounded away from zero, we donot reover an exponential deay as in del Pino-Felmer Theorem. In somesense, the solution inherits its deay properties from the behaviour of V .Deay estimates are deliate and depend on omparison arguments uniformin ε. They are obtained by using families of barrier funtions, i.e. familiesof omparison funtions. Finally, Setion 8 is devoted to some onludingremarks and possible extensions of our results.2. AssumptionsFor further referenes, we now introdue the main assumptions that willbe used throughout the paper. As already mentioned, we deal in fat withthe more general Dirihlet problem
{

−ε2∆u+ V (x)u = K(x)f(u) in Ω,
u = 0 on ∂Ω,

(12)under the assumptions desribed hereafter.2.1. The domain. We assume the domain Ω ⊂ R
N is a onneted open setwith bounded C1,α boundary. In the sequel, suh domains are referred to asbounded or exterior domains and unless expliitely stated, a regular domainis understood as a domain with C1,α boundary. This regularity assumption issu�ient for our purpose but an be weakened for some pointwise statements.The boundedness of the boundary is basially used in order to have auniform ontrol on its geometry. Our arguments would thus also work forsome ylindrial domains.2.2. The nonlinearity. We deal with a nonlinearity whih is a ontinuousfuntion f : R

+ → R
+ suh that

(f1) f(s) = o(s) as s→ 0+;
(f2) there exists 1 < p <

N + 2

N − 2
if N ≥ 3 or 1 < p < +∞ if N = 1, 2,suh that

lim
s→∞

f(s)

sp
= 0 ;

(f3) there exists 2 < θ ≤ p+ 1 suh that
0 < θF (s) ≤ f(s)s for s > 0 ,where F (s) :=
∫ s
0 f(σ) dσ ;

(f4) the funtion s 7→ f(s)/s is nondereasing.We extend f by zero for s < 0, so that every nonzero solution of (12) is bythe maximum priniple a positive solution of (12).Combining (f1) and (f2), we infer that for every δ > 0, there exists Cδ > 0suh that
f(u) ≤ δ|u| + Cδ|u|p.Assumption (f3) implies that there is C > 0 suh that F (s) ≥ C(|s|θ − 1),i.e. F grows superquadratially fast. This ondition ould be weakened byassuming only that (f3) holds for large s and for any a, b > 0, there existsa positive least-energy solution (see below for a preise de�nition) of theequation
− ∆u+ au = bf(u). (13)



10 DENIS BONHEURE AND JEAN VAN SCHAFTINGENThe hypothesis (f4) may also be weakened provided one an still obtain asuitable minimax haraterization of the in�mum level on the Nehari man-ifold, see Lemma 3 below. For instane, Wang and Zeng [38℄ treated asuperlinear term of the form up − uq, assuming q < p.Our regularity assumption on the nonlinear term f is weaker than theusual one, see e.g. [14℄. Indeed, assuming f of lass C1 provides quite use-ful information about the ground states of (13): by the symmetry resultof Gidas, Ni and Nirenberg [20℄, any suh solution is radial and radially de-reasing. This analysis remains valid when f is Lipshitz in a neighbourhoodof 0, see [19℄. In the general ase, the fat that u ∈ H1(RN ) is a groundstate and f is nondereasing implies that u is radial and radialy dereasing,see [36℄.2.3. The potentials. We next onsider two potentials V, K ∈ C(Ω,R+),suh that V (x) > 0. Moreover, we assume K is not identially 0. If Ω isunbounded, we impose one of the three following sets of growth onditionsat in�nity:
(G1

f,∞) there exist α ∈ [0, 2[ and λ > 0 suh that
lim inf
|x|→∞

V (x)|x|α > 0 and lim sup
|x|→∞

f(exp(−λ|x|1−α/2))

exp(−λ|x|1−α/2)

K(x)

V (x)
< 1 ;

(G2
f,∞) there exists λ > 0 suh that

lim inf
|x|→∞

V (x)|x|2 > 0 and lim sup
|x|→∞

f(|x|−λ)

|x|−λ

K(x)

V (x)
< 1 ;

(G3
f,∞) N > 2 and there exists λ > 0 suh that

lim sup
|x|→∞

f(λ|x|2−N )

λ|x|2−N

K(x)

V (x)
< 1 .If the boundary Ω is not empty, then we also assume that V and K satisfya growth ondition on the boundary:

(Gf,∂Ω) there exist µ > 0 suh that
lim sup

d(x,∂Ω)→0

f(µd(x, ∂Ω))

µd(x, ∂Ω)

K(x)

V (x)
< 1.Observe that all growth onditions depend on the behaviour of K and Vat in�nity and around ∂Ω, and on the behaviour of f(s)/s around s = 0.Notie also that only V is assumed to be stritly positive inside Λ.3. Limit problemIn this setion, we introdue the onentration funtion whih is the oun-terpart of the funtion A in the homogeneous ase and we study some of itsproperties. We also provide an independent deay estimate on the groundstates of the autonomous limiting problem. We �rst de�ne the funtional

Fa,b : H1(RN ) → R by
Fa,b(u) :=

1

2

(
∫

RN

|∇u|2 + a

∫

RN

|u|2
)

− b

∫

RN

F (u). (14)



BOUND STATES FOR SCHRÖDINGER EQUATIONS 11A neessary ondition for u ∈ H1(RN ) to be a nontrivial ritial point of
Fa,b is to belong to the Nehari manifold

Na,b := {u ∈ H1(RN ) | u 6= 0, (F ′
a,b(u), u) = 0}.We then say that u ∈ H1(RN ) is a least-energy solution of

− ∆u+ au = bf(u), (15)or equivalently that u is a least-energy ritial point of Fa,b if
Fa,b(u) = inf

u∈Na,b

Fa,b(u).We may now de�ne the ground-energy funtion
E : R

+
0 × R

+
0 → R

+ : (a, b) 7→ E(a, b) := inf
u∈Na,b

Fa,b(u)as the ation of any least-energy ritial point of Fa,b and onsequently weintrodue the onentration funtion C : R
N → R

+ ∪ {+∞} by
C(ξ) :=

{

E(V (ξ),K(ξ)) if K(ξ) > 0,
+∞ otherwise. (16)In other words, if K(ξ) > 0, C(ξ) is the ground-energy assoiated to least-energy solutions of

− ∆u+ V (ξ)u = K(ξ)f(u). (17)3.1. Energy of the ground state. The following lemma provides somebasi properties of the ground-energy funtion. We sketh the proof forompleteness.Lemma 3. Assume f : R
+ → R

+ is a ontinuous funtion that ful�ls as-sumptions (f1)-(f4). Then, for every (a, b) ∈ R
+
0 × R

+
0 , E(a, b) is a ritialvalue of Fa,b and we have

E(a, b) = inf
u∈H1(RN )

u 6=0

max
t≥0

Fa,b(tu).If u ∈ Na,b and E(a, b) = E(u), then u ∈ C1 and up to a translation, u is aradial funtion suh that ∇u(x) · x < 0 for every x ∈ R
N \ {0}.Moreover, the following properties hold:(i) the ground-energy funtion is ontinuous in R

+
0 × R

+
0 ;(ii) for every b∗ ∈ R

+
0 , a→ E(a, b∗) is stritly inreasing;(iii) for every a∗ ∈ R
+
0 , b→ E(a∗, b) is stritly dereasing;(iv) for every λ > 0, E(λa, λb) = λ1−N/2E(a, b);(v) if f(u) = up with 1 < p < (N + 2)/(N − 2) if N ≥ 3 or 1 < p < +∞ if

N = 1, 2, then
E(a, b) = E(1, 1)a

p+1
p−1

−N
2 b

− 2
p−1 .Proof. The proof of the minimax haraterization of E(a, b) is by now las-sial, see e.g. [39℄. The key ingredient in the proof is the monotoniityassumption (f4). One this haraterization is established, it is also quiteeasy to show that E(a, b) is a ritial value. These two fats have been es-sentially proved by Rabinowitz [33℄. By lassial regularity estimates, u isontinuously di�erentiable. If f is Lipshitz, by [20, 19℄, up to a translation

u is radial and ∇u ·x < 0. When f is monotone, [36℄ implies that u is radial



12 DENIS BONHEURE AND JEAN VAN SCHAFTINGENand ∇u ·x < 0. For x ∈ R
N \{0}, let H denote the halspae whose boundaryis perpendiular to x and let v denote the re�etion of u with respeto to ∂H.By assumption, u− v ≥ 0 in H with equality on ∂H. By the monotoniityof f , −∆(u − v) + a(u − v) ≥ 0. Sine v is radial, u 6= v, so that by thestrong maximum priniple, ∇u · x < 0.Let us now fous on the properties(i)-(v).Property (i). Let (a, b) ∈ R

+ × R
+ be given. We �rst laim that E islower semi-ontinuous. Assume (an, bn) → (a, b) as n → ∞ and denote by

un ∈ Nan,bn
a least-energy solution of

−∆u+ anu = bnf(u).We infer from assumption (f3) that there exist δ > 0 and C > 0 suh that
δ‖un‖2

H1(RN ) ≤ θFan,bn
(un) − (F ′

an,bn
(un), (un)) ≤ C.Hene, there exists u ∈ H1(RN ) suh that, passing to a subsequene ifneessary, un ⇀ u weakly in H1(RN ). It then follows from Strauss' ompatimbeddings, see e.g. [39℄, that un onverges strongly in Lp(RN ) for any p ∈

]2, (N + 2)/(N − 2)[. On the other hand, sine un solves (15), assumption
(f2) and Sobolev's inequality imply the existene of c > 0 suh that

c ≤ ‖un‖H1(RN ).We now onlude that u is a nontrivial solution of
−∆u+ au = bf(u),so that u ∈ Na,b and we dedue from standard arguments that

E(a, b) ≤ Fa,b(u) ≤ lim inf
n→∞

Fan,bn
(un).Sine Fan,bn

(un) = E(an, bn), the laim follows.We next prove E is upper semi-ontinuous. Let u ∈ Na,b be a least-energysolution of (15). Consider the funtion g(t) = Fa,b(tu) on [0,∞[. It followsfrom (f1) and (f3) that g(0) = 0, g(t) > 0 for small t > 0 and g(t) < 0 forlarge t. Combining these fats with (f4), we dedue that t = 1 is the uniquemaximum point of g. In partiular, we have
Fa,b(u) = max

t≥0
Fa,b(tu).Assume now (an, bn) → (a, b) as n → ∞. By the minimax haraterizationof E(an, bn) and from what preedes, we infer that for eah n ≥ 0, thereexists a unique tn suh that

E(an, bn) ≤ max
t≥0

Fan,bn
(tu) = Fan,bn

(tnu). (18)We now laim that tn → 1. Notie that the uniqueness of the maximumpoint of g and the de�nition of the sequene (tn)n implies the laim followsas soon as we prove that (tn)n is bounded and bounded away from 0. Observe�rst that (tn)n is bounded. Indeed, we have an ≤ a, bn ≥ b and if tn → +∞as n→ ∞, we dedue by (f3) that for n large enough,
Fan,bn

(tnu) ≤ Fa,b(tnu) < 0,



BOUND STATES FOR SCHRÖDINGER EQUATIONS 13whih is absurd. We next prove that tn remains bounded away from zero.Indeed, this follows from the superquadratiity of F whih implies that forevery ε > 0, there exists Cε > 0 suh that
Fan,bn

(tnu) ≥ t2n(‖∇u‖2
L2(RN ) + (an − εbn)‖u‖2

L2(RN )) − Cεt
p
n‖u‖p

Lp(RN )
.Hene, sine ε is arbitrary and there exist a, b > 0 suh that an ≥ a, bn ≤ b,this last inequality shows that tn remains bounded away from zero. We arenow in a position to onlude the proof. Letting n go to in�nity in (18), wededue that

lim sup
n→∞

E(an, bn) ≤ E(a, b).Indeed, writing
Fan,bn

(tnu) = (Fan,bn
(tnu) −Fa,b(tnu)) + Fa,b(tnu),we observe that the �rst term in the right hand side tends to 0 beause (tnu)nis bounded in H1(RN ) while taking into aount that tnu → u in H1(RN ),we dedue that

Fa,b(tnu) → Fa,b(u).Properties (ii) and (iii). Let b∗ ∈ R
+
0 be �xed and assume u ∈ H1(RN ) isa least energy ritial point of Fa,b∗ . Assume a < a. Consider again thefuntion g(t) = Fa,b∗(tu) on [0,∞[. As in (i), we infer there exists t̄ > 0 suhthat

Fa,b∗(t̄u) = max
t≥0

Fa,b∗(tu) ≥ E(a, b∗).We now dedue that
E(a, b∗) ≤ Fa,b∗(t̄u) + (a− a)

∫

RN

t̄2|u|2

≤ max
t≥0

Fa,b∗(tu) + (a− a)

∫

RN

t̄2|u|2

< E(a, b∗),so that (ii) follows. The property (iii) follows arguing in a similar way.Property (iv). Let λ > 0 and for every u ∈ H1(RN ), write uλ(x) = u(λ1/2x).Then, one has
Fλa,λb(uλ) = λ1−N/2Fa,b(u).Sine u 7→ uλ is a bijetion ofH1(RN ), this implies E(λa, λb) = λ1−N/2E(a, b).Property (v). Let µ > 0. For every u ∈ H1(RN ), one has

Fa,µb(µ
−1/(p−1)u) = µ−2/(p−1)Fa,b(u),so that E(a, µb) = µ−2/(p−1)E(a, b). Hene, the onlusion follows by om-puting

E(a, b) = E(a.1, a.
b

a
.1) = a

p+1
p−1

−N
2 b

− 2
p−1 E(1, 1). �It follows from that lemma and the ontinuity of V and K that C isontinuous from Ω → R

+ ∪ {∞}. When assuming more regularity on V and
K, the onentration funtion an be shown to be of lass C1 on the setwhere C is �nite, see [38℄. If we also assume that the positive radial groundstate of (17) is unique for every ξ suh that K(ξ) > 0, then C(ξ) ontains



14 DENIS BONHEURE AND JEAN VAN SCHAFTINGENall the information about possible onentration points. Indeed, Wang andZheng proved that in this ase, bound state solutions onentrating on asingle point must have their peak onverging to a ritial points of C. Werefer to [38℄ for a preise statement and to [31℄ for a similar result in a moregeneral framework.3.2. Deay of the ground state. We next derive a pointwise estimate forground states of (15) whih provides information on the deay at in�nity.Proposition 4. Let u ∈ Na,b be suh that
E(a, b) = Fa,b(u),then, up to a translation, u is radial and radially dereasing. Moreover, forevery x ∈ R

N , we have
|u(x)|2 ≤ C

2θ

θ − 2

E(a, b)

a1/2|x|(N−1)
, (19)where C is a positive onstant that depends only on the dimension of thespae and θ is given in assumption (f3).Proof. As u ahieves the in�mum on the Nehari manifold, it is a groundstate solution [39℄. It is therefore radial and radially dereasing [19, 20, 36℄.Then, by the inequality of Strauss, see e.g. [39℄, we infer that

|u(x)|2 ≤ C
‖∇u‖2 ‖u‖2

|x|N−1At last, sine u ∈ Na,b, we dedue from (f3) that
(1

2
− 1

θ

)

∫

RN

|∇u|2 + a|u|2 ≤ Fa,b(u) = E(a, b)so that the onlusion follows. �As already notied, it is well-known, at least when f is smooth, thatground states deay exponentially at in�nity, see Gidas, Ni and Nirenberg[20℄. The main point of Proposition 4 is that the inequality (19) does onlydepend on the ground energy and holds uniformly for any ground state.Using regularity theory, one an improve (19) and obtain usual exponentialdeay estimates. 4. The penalization shemeIn this setion, motivated by the paper of del Pino and Felmer [14℄, weonsider a modi�ed problem whih is the starting point for a loal variationalanalysis. We �rst fous on a suitable funtional framework.Formally, the ellipti equation in (12) is the Euler-Lagrange equation ofthe funtional
Iε(u) :=

1

2

∫

Ω

(

ε2|∇u|2 + V (x)|u|2
)

−
∫

RN

K(x)F (u).It is quite natural to onsider the funtional Iε in the weighted Sobolev spae
Hε :=

{

u ∈ D1,2
0 (Ω)

∣

∣

∣

∫

Ω

(

ε2|∇u|2 + V (x)|u|2
)

dx < +∞},



BOUND STATES FOR SCHRÖDINGER EQUATIONS 15where we reall that D1,2
0 (Ω) is the losure of C∞

c (Ω) for the L2-norm of thegradient. The spae Hε is a Hilbert spae with salar produt and normrespetively de�ned by
(u|v)ε :=

∫

Ω

(

ε2∇u · ∇v + V (x)uv
)

dx,

‖u‖2
ε :=

∫

Ω

(

ε2|∇u|2 + V (x)|u|2
)

dx.However, the assumptions on V and K do not ensure that Hε is neitherembedded in H1
0 (Ω), when Ω is not bounded, nor in Lp+1(Ω,K(x) dx). Inpartiular Iε does not need to be �nite for every u ∈ Hε so that Iε(u) ∈

R∪{−∞}. Moreover, even if V and K are bounded and bounded away fromzero, in whih ase the above-mentioned embeddings hold and the funtionalis well-de�ned in H1
0 (Ω), the Palais-Smale ondition usually fails without aglobal assumption like one of those proposed by Rabinowitz [33℄ and Wangand Zheng [38℄. As disussed in the introdution, for small values of ε, Wangand Zheng proved the existene of a positive solution assuming that
inf

x∈RN
A(x) <

lim inf |x|→∞ V (x)
p+1
p−1

−N
2

lim sup|x|→∞K(x)
2

p−1

.In fat this ondition implies that the Palais-Smale ondition holds at themountain pass level of Iε for small ε. Sine our assumptions allow V tovanish and K to explode as |x| → ∞, we annot takle the problem via aglobal variational approah.In order to bypass these di�ulties, we follow the penalization methodintrodued by del Pino and Felmer [14℄. This approah whih an be seen asa loal variational approah, is well adapted to ath positive bound-stateswhen assuming that V is bounded away from zero. In fat the methodrequires this last assumption in an essential way. In the next subsetion, weimprove the penalization sheme by using a di�erent penalized funtional.4.1. The Penalized funtional. Assume there exists Λ ⊂ Ω whose losureis ompat in Ω suh that
inf
x∈Λ

C(x) < inf
x∈∂Λ

C(x),where C is the onentration funtion de�ned by (16). We also assume that
Λ is hosen in suh a way that

sup
x∈Λ

C(x) <∞.The penalization onsists in modifying the superquadrati term in Iε outside
Λ. To do so, we �rst de�ne f̃ : Ω × R

+ → R by
f̃(x, s) := min (κV (x)s,K(x)f(s)) , (20)where 0 < κ < 1. Then, denoting the harateristi funtion of the set Λ by

χΛ, we de�ne g : Ω × R
+ → R by

g(x, s) := χΛ(x)K(x)f(s) + (1 − χΛ(x))f̃(x, s). (21)



16 DENIS BONHEURE AND JEAN VAN SCHAFTINGENFrom now on, we also use the notation G(x, s) :=
∫ s
0 g(x, σ) dσ. One mayeasily hek that aording to (f1)-(f4) and the assumptions on V and K, gis a Carathéodory funtion satisfying

(g1) g(x, s) = o(s) as s→ 0+ uniformly in ompat subsets of Ω ;
(g2) there exists 1 < p <

N + 2

N − 2
if N ≥ 3 or 1 < p < +∞ if N = 1, 2,suh that

lim
s→∞

g(x, s)

sp
= 0 ;

(g3) there exist 2 < θ ≤ p+ 1 and κ ∈ (0, 1) suh that
0 < θG(x, s) ≤ g(x, s)s for all x ∈ Λ and any s > 0,and

0 ≤ 2G(x, s) ≤ g(x, s)s ≤ κV (x)s2 for all x 6∈ Λ and any s > 0 ;

(g4) the funtion
s 7→ g(x, s)

sis nondereasing for all x ∈ Ω.We are now in a position to introdue the penalized funtional
Jε(u) :=

1

2

(
∫

Ω
ε2|∇u|2 + V (x)|u|2

)

−
∫

Ω
G(x, u).Using lassial arguments, we an hek that (g2) and (g3) imply that Jεis well-de�ned and that Jε ∈ C1(Hε,R). Moreover its ritial points areweak solutions of the boundary value problem

{

−ε2∆u+ V (x)u = g(x, u) in Ω,
u = 0 on ∂Ω.

(22)We next show that Jε has a mountain pass geometry in Hε. We �rstobserve that 0 is a loal minimum.Lemma 5. Let g : R
+ → R be a Carthéodory funtion. If g satis�es as-sumptions (g1)-(g3) and V : Ω → R

+ is a ontinuous funtion. Then, thefuntional Jε ahieves a loal minimum at 0 in Hε.Proof. The proof easily follows from the estimate
Jε(u) =

1

2

(
∫

Ω
ε2|∇u|2 + V (x)|u|2

)

−
∫

Λ
G(x, u) −

∫

Ω\Λ
G(x, u)

≥ 1 − κ

2
‖u‖2

ε +

∫

Λ

(κ

2
V (x)|u|2 −G(x, u)

)

.Now, as V is ontinuous and positive, by lassial arguments, see e.g. [32℄,
(g1) and (g2) imply

∫

Λ
G(x, u) = o(‖u‖2

ε), as u→ 0.Therefore, the onlusion follows from the above estimate. �



BOUND STATES FOR SCHRÖDINGER EQUATIONS 17On the other hand, the in�mum of Jε is −∞. Indeed, if 0 6= u ∈ Hε hassupport in Λ, then
Jε(λu) → −∞, as λ→ +∞.We then de�ne the minimax level
cε := inf

γ∈Γε

max
t∈[0,1]

Jε(γ(t)), (23)where Γε is the set of ontinuous paths
Γε := {γ ∈ C([0, 1],Hε) | γ(0) = 0, Jε(γ(1)) < 0} . (24)Now that the minimax setting is established, our next step is to hek that

Jε satis�es some ompatness ondition. This is the objet of the nextsubsetion.4.2. Palais-Smale. We �rst reall that (un)n ⊂ Hε is a Palais-Smale se-quene for Jε at level cε if
Jε(un) → cε and J ′

ε(un) → 0 as n→ ∞.We say that Jε satis�es the Palais-Smale ondition, (PS) in short, if anysequene (un)n ⊂ Hε for whih Jε(un) is bounded and J ′
ε(un) → 0 as

n→ ∞ possesses a onvergent subsequene.The existene of a Palais-Smale sequene at level cε follows from standarddeformation arguments, see for example [39℄. Hene, if Jε satis�es (PS), theminimax level cε is a ritial value of Jε. In the next lemma, we set ε = 1,
H = H1 and J = J1 to simplify the notations.Lemma 6. Let g : R

+ → R be a Carathéodory funtion satisfying (g1)-(g3)and V : Ω → R
+ be a ontinuous funtion. If N = 2 and Ω is unbounded,assume furthermore that

lim inf
|x|→∞

V (x)|x|2 > 0.Then, the funtional J : H → R satis�es (PS).A speial are is required when Ω is an unbounded two-dimensional do-main, due to the failure of Hardy's inequality in dimension 2. This problemis irumvented thanks to the following preliminary lemma whih provide aHardy type inequality in dimension 2.Lemma 7. Let Ω ⊂ R
2 be a regular exterior domain and V ∈ C(Ω; R+). If

lim inf
|x|→∞

V (x)|x|2 > 0,then there exists C > 0 suh that for every u ∈ D(Ω),
∫

Ω

|u|2
dΩ(x)2

≤ C

∫

Ω
|∇u|2 + V (x)|u|2,where dΩ(x) = d(x, ∂Ω) if ∂Ω 6= ∅ and dΩ(x) = 1 + |x| in the ase where

Ω = R
2.



18 DENIS BONHEURE AND JEAN VAN SCHAFTINGENRemark 8. When N 6= 2 or Ω is bounded, then one has the stronger lassialHardy inequality
∫

Ω

|u|2
dΩ(x)2

≤ C

∫

Ω
|∇u|2,Moreover, one an take dRN (x) = |x|, see e.g. [22℄.Proof of Lemma 7. Let us hoose R > 1 suh that R

N \B(0, R) ⊂ Ω, and
c := inf

|x|>R
V (x)|x|2 > 0.Then, the set Ω′ = Ω∩B(0, 3R) is a Lipshitz bounded domain and dΩ′ ≤ dΩ(dΩ′ ≤ 3RdΩ if Ω = R

2). Therefore, we infer from the lassial Hardyinequality on bounded Lipshitz domains, see e.g. [22℄, that for every u ∈
D(Ω′),

∫

Ω′

|u|2
dΩ(x)2

≤
∫

Ω′

|u|2
dΩ′(x)2

≤ C1

∫

Ω′

|∇u|2,where C1 > 0. On the other hand, if |x| > 2R, then dΩ(x) ≥ |x|/2, so thatfor every u ∈ D(RN \B(0, 2R)), we obtain
∫

RN\B(0,2R)

|u|2
dΩ(x)2

≤ 4

∫

RN\B(0,2R)

|u|2
|x|2 ≤ 4

c

∫

RN\B(0,2R)
V (x)|u|2.We next hoose a ut-o� funtion η ∈ D(Ω) suh that η(x) = 1 if x ∈

B(0, 2R), 0 ≤ η(x) ≤ 1 if x ∈ B(0, 3R) and η(x) = 0 outside B(0, 3R).Combining these inequalities, we then get for every u ∈ D(Ω),
1

2

∫

Ω

|u|2
dΩ(x)2

≤
∫

Ω∩B(0,3R)

|ηu|2
dΩ(x)2

+

∫

RN\B(0,2R)

|(1 − η)u|2
dΩ(x)2

≤ C1

∫

Ω∩B(0,3R)
|∇(ηu)|2 +

4

c

∫

RN\B(0,2R)
V (x)|u|2

≤ 2C1

∫

Ω
|∇u|2 +

(

C2‖∇η‖2
∞ +

4

c

)
∫

Ω
V (x)|u|2,where C2 > 0 essentially depends on the lower bound of V in the annulus

B(0, 3R) \B(0, 2R). This onludes the proof. �Proof of Lemma 6. Throughout the proof, C denotes a positive onstantthat an hange from line to line. Let (un)n ⊂ H be a Palais-Smale se-quene, that is J (un) is bounded and J ′(un) → 0 as n→ ∞.Claim 1: the sequene (un)n is bounded in H. By assumption, we have
∣

∣

∣

∣

1

2

∫

Ω

(

|∇un|2 + V (x)|un|2
)

−
∫

Ω
G(x, un)

∣

∣

∣

∣

≤ Cand for n large enough,
|(J ′(un), un)| =

∣

∣

∣

∣

∫

Ω

(

|∇un|2 + V (x)|un|2
)

−
∫

Ω
g(x, un)un

∣

∣

∣

∣

≤ ‖J ′(un)‖ ‖un‖ ≤ ‖un‖.



BOUND STATES FOR SCHRÖDINGER EQUATIONS 19Combining these inequalities, we infer from (g3) that
θ − 2

2

∫

Ω

(

|∇un|2 + V (x)|un|2
)

≤ κ
θ − 2

2

∫

Ω\Λ
V (x)|un|2 + C + ‖un‖.Sine κ < 1 in (20) it follows that

∫

Ω

(

|∇un|2 + V (x)|un|2
)

≤ C(1 + ‖un‖).This proves the laim.Claim 2: for all δ > 0, there exists a ompat set K ⊂ Ω suh that
lim sup

n→∞

∫

Ω\K

(

|∇un|2 + V (x)|un|2
)

≤ δ. (25)Let δ > 0 be given. We de�ne a ut-o� funtion ηλ in the following way.Assume that ζ ∈ C∞(R,R) is suh that 0 ≤ ζ(s) ≤ 1 if |s| ∈ [1, 2] and
ζ(s) =

{

0 if |s| ≤ 1,

1 if |s| ≥ 2.We then de�ne ηλ ∈ C∞(Rn,R) by
ηλ(x) := ζ

(

log dΩ(x)

λ

)

, (26)where again dΩ(x) = d(x, ∂Ω) if ∂Ω 6= ∅ while dΩ(x) = 1+ |x| when Ω = R
N .Notie that the funtion dΩ is Lipshitz and |∇dΩ| ≤ 1 almost everywhereso that ηλun ∈ H. Sine (un) is bounded, we infer that

(J ′(un), ηλun) = o(1) as n→ ∞.Assuming that λ has been hosen large enough so that ηλ ≡ 0 on Λ, we thenompute
∫

Ω

(

|∇un|2 + V (x)|un|2
)

ηλ =

∫

Ω
g(x, un)unηλ −

∫

Ω
un∇un · ∇ηλ + o(1).(27)For the �rst term in the right-hand side of the equality, we observe that sine

ηλ(x) = 0 for any x ∈ Λ, we have
∫

Ω
g(x, un)unηλ ≤ κ

∫

Ω
V (x)|un|2ηλ. (28)The seond term an be rewritten as

∫

Ω
un∇un · ∇ηλ =

∫

Ω

un

dΩ(x)
∇un · (dΩ(x)∇ηλ).From the lassial Hardy inequality if N > 2 or Ω is bounded (see e.g. [22℄),or Lemma 7 when N = 2 and Ω is not bounded, one has

∫

Ω

|un|2
dΩ(x)2

≤ C‖un‖2
H.On the other hand, we ompute

‖dΩ∇ηλ‖∞ ≤ sup
x∈Ω

∣

∣

∣

∣

dΩ(x)θ′
(

dΩ(x)
log dΩ(x)

λ

)

1

λdΩ(x)

∣

∣

∣

∣

≤ C

λ
.



20 DENIS BONHEURE AND JEAN VAN SCHAFTINGENCombining these last estimates with Cauhy-Shwarz inequality, we inferthat
∣

∣

∣

∣

∫

Ω
un∇un · ∇ηλ

∣

∣

∣

∣

≤ C

λ
‖un‖2

H. (29)Now, taking (28) and (29) into aount, we dedue from (27) that
(1 − κ)

∫

Ω

(

|∇un|2 + V (x)|un|2
)

ηλ ≤ C

λ
‖un‖H + o(1).If λ > 0 is su�iently large, (25) thus holds with

K = {x ∈ Ω : e−2λ ≤ dΩ(x) ≤ e2λ}.Conlusion. We dedue from Claim 1 that, up to a subsequene, (un)nonverges weakly in H to some funtion u ∈ H. Now, �x δ > 0 and let
K ⊃ Λ be suh that (25) holds and

∫

Ω\K
V (x)|u|2 ≤ δ.Let us write

‖un − u‖2
H = (J ′(un) − J ′(u), un − u) +

∫

Ω
(g(x, un) − g(x, u))(un − u) dx.Sine J ′(un) → 0 and un onverges weakly to u, (J ′(un)−J ′(u), un−u) → 0as n→ ∞. By (g3), one has

lim sup
n→∞

∫

Ω\K
|g(x, un) − g(x, u)| |un − u| dx

≤ lim sup
n→∞

2κ

∫

Ω\K
V (x)(|un|2 + |u|2) ≤ 4κδ,where the seond inequality omes from (25) and Fatou's Lemma. On theother hand, by Rellih's ompatness theorem, un → u in Lp+1(K) so thatby (g2),

∫

K
(g(x, un) − g(x, u))(un − u) dx→ 0.One thus onludes that for every δ > 0,

lim sup
n→∞

‖un − u‖2
H ≤ 4κδi.e. un → u strongly in H. �4.3. Solutions of the modi�ed problem. Having proved that (PS) holds,we may state the following existene result for the modi�ed problem (22).Proposition 9. Suppose that g : R

+ → R is a Carathéodory funtion sat-isfying (g1)-(g3) and V ∈ C(Ω) is positive. If N = 2 and Ω is unbounded,assume moreover that V satis�es
lim inf
|x|→∞

V (x)|x|2 > 0.Then, the funtional Jε has a ritial point uε ∈ Hε whih is a weak positivesolution of (22).The proof being straightforward, we skip it. We next analyze the regular-ity of the solution.



BOUND STATES FOR SCHRÖDINGER EQUATIONS 21Proposition 10. Under the assumptions of Proposition 9, any solution uε ∈
Hε of (22) satis�es uε ∈ W 2,q

loc (Ω) for every q < ∞. In partiular, u ∈
C1,α

loc (Ω) for every 0 < α < 1.The proof follows from a lassial bootstrap argument so that we omit it.Remark 11. Observe that this result annot be improved, even if we addfurther regularity assumptions on Ω and V . Indeed, in general, one annotprove that u ∈ C2,α(Ω) or u ∈W 3,1
loc (Ω). This is due to the fat that even fora smooth u, g(x, u) does not need to be neither in C0,α(Ω) nor in W 1,1

loc (Ω).4.4. Estimate of the moutain pass level. We dedue from the preedingsetions that the mountain pass level cε de�ned by (23) is a ritial level for
Jε. In order to prove that this minimax level yields a solution of the originalproblem for small values of ε, we need a sharp energy estimate.Let Λ ⊂⊂ Ω be suh that

inf
ξ∈Λ

C(ξ) < inf
ξ∈∂Λ

C(ξ) (30)and supξ∈Λ C(ξ) < ∞. As already mentioned, the ontinuity of V and Kimplies that the onentration funtion C is ontinuous in Λ. We thereforededue the existene of ξ0 ∈ Λ suh that
C(ξ0) = min

Λ
C. (31)To save notation, let us denote by F0 : H1(RN ) → R the funtional de�nedby (14) with a = V (ξ0) and b = K(ξ0). We also de�ne

c0 := inf
γ∈Γ0

max
t∈[0,1]

F0(γ(t)), (32)where
Γ0 :=

{

γ ∈ C([0, 1],H1(RN )) | γ(0) = 0, F0(γ(1)) < 0
}

.One of the key ingredients to prove Theorem 1 is a omparison between thelevels cε and c0 for ε small.Lemma 12. Suppose that f : R
+ → R

+ is a ontinuous funtion satisfying
(f1)-(f3), V, K : Ω → R

+ are ontinuous funtions and g : Ω × R
+ → Ris de�ned by (21). If N = 2 and Ω is unbounded, assume moreover that Vsatis�es

lim inf
|x|→∞

V (x)|x|2 > 0.Then, the funtional Jε has a ritial point uε ∈ Hε suh that
Jε(uε) ≤ εNc0 + o(εN ), as ε→ 0.Moreover, there exists C > 0 suh that

‖uε‖2
Hε

≤ CεN .Proof. It follows from Proposition 9 that the mountain pass value cε is aritial level for Jε. From the de�nition of c0, we infer that for every δ >
0, there exists a ontinuous path γδ : [0, 1] → R

N suh that γδ(0) = 0,
F0(γδ(1)) < 0 and

c0 ≤ max
t∈[0,1]

F0(γδ(t)) ≤ c0 + δ.



22 DENIS BONHEURE AND JEAN VAN SCHAFTINGENLet η ∈ C∞(RN ,R) be a ut-o� funtion, with support in Λ, suh that
η(x) = 1 for x in a neighbourhood of ξ0 de�ned by (31). We then de�ne thepath γ̄δ : [0, 1] → Hε bȳ

γδ(t) : x→ η(x)γδ(t)

(

x− ξ0
ε

)

.Resaling in the spae variable leads to
Jε(γ̄δ(t)) =

εN

2

∫

Ωε

(

|∇(η(εx + ξ0)γδ(t))|2 + V (εx+ ξ0)|η(εx + ξ0)γδ(t)|2
)

− εN
∫

Ωε

K(εx+ ξ0)F (η(εx + ξ0)γδ(t)),where Ωε := {x ∈ R
N | εx + ξ0 ∈ Ω}. Hene, a straightforward but rathertedious omputation shows that

Jε(γ̄δ(t)) = εNF0(γδ(t)) + o(εN ) as ε→ 0.It follows that for ε small enough, γ̄δ belongs to the lass of paths Γε de�nedby (24). We therefore onlude that
Jε(uε) = inf

γ∈Γε

max
t∈[0,1]

Jε(γ(t))

≤ max
t∈[0,1]

Jε(γ̄δ(t))

≤ εN (c0 + δ) + o(εN ).Sine the last inequality holds for any δ > 0, the �rst statement is established.Consider now a ritial point uε ∈ Hε at the mountain pass energy level.To prove the estimate on the norm of uε, we observe, arguing as in the �rstlaim of Lemma 6, that
(1 − κ)

(1

2
− 1

θ

)

∫

Ω

(

ε2|∇uε|2 + V (x)u2
ε

)

≤ Jε(uε).Hene the proof follows from the energy estimate. �5. Asymptotis of solutionsWe study in this setion, the asymptoti behaviour of the mountain passsolution of the modi�ed problem (22) as ε → 0. In partiular, we derive auniform estimate of uε on ∂Λ, see Proposition 21, whih is a main step in theproof of the existene of a solution of the original boundary value problem(12).5.1. Estimates on sequenes of resaled solutions. Sine the Hε-normof the solution uε of the modi�ed problem is of the order εN/2, it is naturalto resale uε as uε(xε + ε·) around a well-hosen family of points xε.We �rst observe that suh sequenes are relatively ompat for the uniform
C1-onvergene over ompat sets. Moreover, even if there is no a prioriguarantee that uε belongs to H1(Ω), any limit v of a subsequene of resaledsolutions will be in H1(RN ), i.e. the fat that uε ∈ H1

loc(R
N ) yields v ∈

H1(RN ).



BOUND STATES FOR SCHRÖDINGER EQUATIONS 23Lemma 13. Suppose the assumptions of Lemma 12 are satis�ed and assume
uε ∈ H1

loc(Ω) is the positive solution of (22) obtained in that lemma. Let
(εn)n ⊂ R

+ and (xn)n ⊂ Ω be sequenes suh that εn → 0 and xn → x̄ ∈ Ωas n→ ∞ and denote by (vn)n the sequene de�ned by vn(x) = uεn(xn+εnx).Then, there exists v ∈ H1(RN ) suh that, along a subsequene that we stilldenote by (vn)n,
vn

C1
loc

(RN )−→ v .Moreover, for every R > 0 and q > 0, we have
sup
n∈N

‖vn‖W 2,q(BR) <∞, (33)and
∫

RN

|∇v|2 = lim
R→∞

lim
n→∞

ε−N
n

∫

Bn(R)
ε2n|∇uεn |2 ,

∫

RN

V (x̄)|v|2 = lim
R→∞

lim
n→∞

ε−N
n

∫

Bn(R)
V (x)|uεn |2 ,where Bn(R) := B(xn, εnR). In partiular, we have

lim
R→∞

lim
n→∞

ε−N
n

∫

An(R)
ε2n|∇uεn |2 + V (x)|uεn |2 = 0 , (34)where An(R) := B(xn, εnR) \B(xn, εnR/2).Proof. First observe that eah vn solves the equation

−∆vn + V (xn + εnx)vn = χΛ(xn + εnx)K(xn + εnx)f(vn)

+(1 − χΛ(xn + εnx))f̃(xn + εnx, vn), x ∈ Ωn,(35)where Ωn := {x ∈ R
N | xn + εnx ∈ Ω}. We now infer from the estimates ofLemma 12 that
Jεn(vn) ≤ c0 + o(1) as n→ ∞and for all n ∈ N,

∫

Ωn

(

|∇vn|2 + V (xn + εnx)|vn|2
)

< C, (36)with C > 0 independent of n.De�ne again a ut-o� funtion ηR ∈ C∞
c (RN ) suh that η(x) = 1 if |x| ≤

R/2, η(x) = 0 if |x| ≥ R and ‖∇ηR‖∞ ≤ C/R for some C > 0. Choose
Rn suh that Rn → ∞, εnRn → 0 and B(xn, 2εnRn) ⊂ Ω and de�ne wn ∈
H1

loc(R
N ) by

wn(x) := ηRn(x)vn(x).We �rst observe that
∫

RN

|wn|2 ≤
∫

BRn

|vn|2 ≤ 1

infBn(R) V

∫

Ωn

V (xn + εnx)|vn|2. (37)Observe that V being positive in Ω, the onvergene of xn to a point in Ωimplies there exists m > 0 suh that V (x) ≥ m for every x ∈ B(xn, εnRn).Hene we dedue from (37) the estimate
∫

RN

|wn|2 ≤ C

m
. (38)



24 DENIS BONHEURE AND JEAN VAN SCHAFTINGENOn the other hand, we ompute
∫

RN

|∇wn|2 =

∫

RN

|∇ηRn |2|vn|2+
∫

RN

|∇vn|2|ηRn |2+2

∫

RN

∇vn·∇ηRnηRnvn.(39)For the �rst term on the right-hand side, we have the estimate
∣

∣

∣

∣

∫

RN

|∇ηRn |2|vn|2
∣

∣

∣

∣

≤ C

Rn
‖vn‖L2(BRn ), (40)while for the last one, we infer from Cauhy-Shwarz inequality that

∣

∣

∣

∣

∫

RN

∇vn · ∇ηRnηRnvn

∣

∣

∣

∣

≤ C

Rn
‖∇vn‖L2(BRn )‖vn‖L2(BRn ). (41)Sine we have

‖vn‖H1(BRn ) ≤
1

m

∫

Ωn

(

|∇vn|2 + V (xn + εnx)|vn|2
)

≤ C

m
,olleting the estimates (38), (39), (40) and (41), we infer that (wn)n isbounded in H1(RN ). Sine wn solves (35) on BRn/2 for all n, lassialregularity estimates yield then (33).We may now extrat from (wn)n a subsequene, that we still denote by

(wn)n for simpliity, that onverges weakly in H1(RN ) to some funtion
v ∈ H1(RN ). By (33), it is lear that wn onverges to v uniformly in C1(K),for every ompat K ⊂ R

N . Moreover, for n large enough, wn = vn inompat sets so that vn → v in C1
loc(R

N ).The remaining estimates follow from the ontinuity of V and the fat that
v ∈ H1(RN ). �A useful appliation of Lemma 13 onsists in estimating the ation of uεin neighbourhoods of points. In partiular, this will provide a lower bound ofthe ation depending on the number and on the loation of the loal maximaof uε.Lemma 14. Suppose that the assumptions of Lemma 12 are satis�ed andassume moreover that (f4) holds. Let uε ∈ H1

loc(Ω) be the positive solutionof (22) obtained in Lemma 12 and the sequenes (εn)n ⊂ R
+ and (xn)n ⊂ Ωbe suh that εn → 0, xn → x̄ as n→ ∞ and

lim inf
n→∞

uεn(xn) > 0. (42)Then, up to a subsequene, we have
lim inf
R→∞

lim inf
n→∞

ε−N
n

(

1

2

∫

Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Bn(R)
G(x, uεn)

)

≥ C(x̄),(43)where Bn(R) := B(xn, εnR).Proof. Passing to a subsequene if neessary, we may assume that thereexists v ∈ H1(RN ) suh if vn(y) = uεn(xn + εny), vn → v in C1
loc(R

N ).Sine Λ is smooth, still going to a subsequene if required, the sequene ofharateristi funtions χn(x) = χΛ(xn + εnx) onverges almost everywhere



BOUND STATES FOR SCHRÖDINGER EQUATIONS 25to a measurable funtion χ satisfying 0 ≤ χ(x) ≤ 1. We then dedue that vsolves the limiting equation
− ∆v + V (x̄)v = g̃(x, v), x ∈ R

N , (44)where
g̃(x, v) := χ(x)K(x̄)f(v) + (1 − χ(x))f̃(x̄, v).By (42), we know that v(0) = limn→∞ vn(0) > 0, so that v is not identiallyzero.As v is a nonzero solution of (44), it belongs to the Nehari manifoldassoiated to this equation, that is
N := {u ∈ H1(RN ) | u 6= 0, (G′(u), u) = 0},

G : H1(RN ) → R being the funtional de�ned by
G(u) :=

1

2

(
∫

RN

|∇u|2 + V (x̄)

∫

RN

|u|2
)

−
∫

RN

G̃(x, u),where G̃(x, u) :=
∫ u
0 g̃(x, s) ds. Sine g̃(x, v) ≤ K(x̄)f(v) in R

N × R
+, itfollows that for all u ∈ H1(RN ),

G(u) ≥ 1

2

(
∫

RN

|∇u|2 + V (x̄)

∫

RN

|u|2
)

−K(x̄)

∫

RN

F (u).Therefore, as g̃ satis�es the ondition (g4), we dedue that
G(v) = max

t>0
G(tv) ≥ inf

u∈H1(RN )

u 6=0

sup
t>0

G(tu) ≥ inf
u∈H1(RN )

u 6=0

sup
t>0

FV (x̄),K(x̄)(tu) = C(x̄).Finally, we laim that
lim inf
R→∞

lim inf
n→∞

1

2

∫

BR

|∇vn|2 + V (x)|vn|2 −
∫

BR

G(x, vn) ≥ G(v).Let us write for notational onveniene
hn :=

1

2

(

|∇vn|2 + V (xn + εnx)|vn|2
)

−G(xn + εnx, vn).Then, for every R > 0, the onvergene of vn in C1
loc(R

N ) implies that
lim

n→∞

∫

BR

hn =
1

2

∫

BR

(

|∇v|2 + V (x̄)|v|2
)

−
∫

BR

G̃(x, v).On the other hand, sine v ∈ H1(RN ), for any δ > 0, there exists R0 > 0suh that if R > R0

lim
n→∞

∫

BR

hn ≥ G(v) − δ.This proves the laim and ompletes the proof. �The estimate (43) only beomes useful one we an estimate what happensoutside small balls. That is the objet of the next lemma.Lemma 15. Let the assumptions of Lemma 12 be satis�ed and assume uε ∈
H1

loc(Ω) is the positive solution of (22) obtained in that lemma. Let (εn)n ⊂
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R

+ and (xi
n)n ⊂ Ω, 1 ≤ i ≤ K, be sequenes suh that εn → 0 and xi

n →
x̄i ∈ Λ̄ as n→ ∞. Then, up to a subsequene, we have
lim inf
R→∞

lim inf
n→∞

ε−N
n

(

1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\Bn(R)
G(x, uεn)

)

≥ 0,(45)where Bn(R) :=

K
⋃

i=1

B(xi
n, εnR).Proof. Let ηR,εn be a smooth ut-o� funtion suh that ηR,εn ≡ 0 in Bn(R/2),

ηR,εn ≡ 1 in Ω \ Bn(R) and |∇ηR,εn | ≤ 2/(εnR). As (g3) holds, we have
1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\Bn(R)
G(x, uεn)

≥ 1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 − g(x, uεn)uεn . (46)Taking uεnηR,εn as test funtion, one obtains

∫

Ω
ε2n∇uεn · ∇(ηR,εnuεn) + ηR,εnV (x)|uεn |2 − ηR,εng(x, uεn)uεn = 0.Hene, the right-hand side of (46) an be written as

−1

2

∫

An(R)
ε2nuεn∇uεn ·∇ηR,εn+

(

ε2n|∇uεn |2 + V (x)|uεn |2 − g(x, uεn)uεn

)

ηR,εn ,where An(R) := Bn(R)\Bn(R/2). For the �rst term in this expression, usingthe estimate of Lemma 12, we infer that
∣

∣

∣

∣

∣

lim inf
n→∞

ε−N
n

∫

An(R)
ε2nuεn∇uεn · ∇ηR,εn

∣

∣

∣

∣

∣

≤ C

R
sup

1≤i≤K

1

V (x̄i)1/2
. (47)For the seond one, using the growth assumptions on g, we get

∣

∣

∣

∣

∣

lim inf
n→∞

ε−N
n

∫

An(R)
(ε2n|∇uεn |2 + V (x)|uεn |2 − g(x, uεn)uεn)ηR,εn

∣

∣

∣

∣

∣

≤ lim inf
n→∞

ε−N
n

K
∑

i=1

Ci(I
2
i,n,R + Ip+1

i,n,R),where the onstants Ci only depend on x̄i, and
Ii,n,R =

(

∫

B(xi
n,εnR)\B(xi

n,εnR/2)

(

ε2n|∇uεn |2 + V (x)|uεn |2
)

ηR,εn dx

)1/2

.Hene, taking (46) and (47) into aount, the onlusion follows from Lemma 13.
�Proposition 16. Suppose that the assumptions of Lemma 12 are satis�edand assume moreover that (f4) holds. Let uε ∈ H1

loc(Ω) be the positive solu-tion of (22) obtained in Lemma 12, (εn)n ⊂ R
+ and (xi

n)n ⊂ Ω be sequenes



BOUND STATES FOR SCHRÖDINGER EQUATIONS 27suh that εn → 0 and for 1 ≤ i ≤ K, xi
n → x̄i ∈ Λ̄ as n → ∞. If for every

1 ≤ i < j ≤ K, we have
lim sup

n→∞

|xi
n − xj

n|
εn

= ∞and if for every 1 ≤ i ≤ K,
lim inf
n→∞

uεn(xi
n) > 0,then

lim inf
n→∞

ε−N
n J (uεn) ≥

K
∑

i=1

C(x̄i).Proof. First observe that going to a subsequene if neessary, we may assumethat for every 1 ≤ i < j ≤ K, we have
lim

n→∞

|xi
n − xj

n|
εn

= ∞.We infer from Lemma 14 and Lemma 15 that up to a subsequene, for any�xed δ > 0, we an hoose R large enough so that
lim inf
n→∞

ε−N
n

(

1

2

∫

Ω\Bn(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\Bn(R)
G(x, uεn)

)

≥ −δ,where Bn(R) :=

K
⋃

i=1

B(xi
n, εnR) and for every 1 ≤ i ≤ K,

lim inf
n→∞

ε−N
n

(

1

2

∫

Bi
n(R)

ε2n|∇uεn |2 + V (x)|uεn |2 −
∫

Bi
n(R)

G(x, uεn)

)

≥ C(x̄i)−δ,where Bi
n(R) := B(xi

n, εnR). Now, as for n su�iently large, the balls Bi
n(R)are mutually disjoint, we may deompose J (uεn) as

J (uεn) =
K
∑

i=1

(

1

2

∫

Bi
n(R)

ε2n|∇uεn |2 + V (x)|uεn |2 −
∫

Bi
n(R)

G(x, uεn)

)

+
1

2

∫

Ω\∪K
i=1Bi

n(R)
ε2n|∇uεn |2 + V (x)|uεn |2 −

∫

Ω\∪K
i=1Bi

n(R)
G(x, uεn),onluding therefore that

lim inf
n→∞

ε−N
n J (uεn) ≥

K
∑

i=1

C(x̄i) − (K + 1)δ.Sine this an be done for every subsequene, the onlusion holds for thewhole sequene. �In the ase where the xn's are loal maxima of uεn and their luster pointsare all inside Λ, the estimates of Lemma 13 an be re�ned. In partiular,we obtain a ommon deay estimate for any onverging subsequene, seeProposition 20. We �rst onsider the following preliminary lemma.



28 DENIS BONHEURE AND JEAN VAN SCHAFTINGENLemma 17. Let f ∈ C(R), V ∈ C(Ω; R+) and K ∈ C(Ω; R+) be given andassume g : Ω × R → R is de�ned by (21). Let uε ∈ H1
loc(Ω) be a positiveontinuous solution of (22). If yε ∈ Ω is a loal maximum point of uε suhthat uε(yε) > 0, then

f(uε(yε))/uε(yε) ≥ V (yε)/K(yε). (48)Proof. Suppose for the sake of ontradition that (48) does not hold. Sine
uε, V and K are ontinuous, there exists ρ > 0 suh that for every x ∈
B(yε, ρ), we have

f(uε(x))/uε(x) < V (x)/K(x).By de�nition of g, the funtion uε then satis�es the inequality
−ε2∆uε + V (x)uε < K(x)f(uε)in B(yε, ρ). Consequently, there holds

−∆uε < 0in B(yε, ρ). But, we then dedue, using the strong maximum priniple forsubharmoni funtions, that yε is not a loal maximum of uε, whih is aontradition. �Proposition 18. Suppose the assumptions of Lemma 12 are satis�ed andassume uε ∈ H1
loc(Ω) is the positive solution of (22) obtained in that lemma.Let (εn)n ⊂ R

+ and (xn)n ⊂ Ω be sequenes suh that εn → 0, xn is a loalmaximum point of uεn and xn → x̄ ∈ Λ as n → ∞. Let (vn)n denote thesequene de�ned by vn(x) = uεn(xn + εnx). Then, there exists a positivefuntion v ∈ H1(RN ) ∩C1(RN ) suh that
− ∆v + V (x̄)v = K(x̄)f(v), (49)

v ahieves a maximum at 0 and, along a subsequene,
vn

C1
loc

(RN )−→ v .Proof. By Lemma 13, we infer the existene of a luster point v ∈ H1(RN )of vn = uεn(xn + εn·) in C1
loc(R

N ). Sine xn → x̄ in Λ, v solves (49) andas vn attains a maximum at 0, v also ahieves a maximum at 0. We nowdedue from Lemma 17 that
f(vn(0))/vn(0) ≥ V (xn)/K(xn)so that
f(v(0))/v(0) ≥ V (x̄)/K(x̄),and hene v(0) > 0. �Remark 19. If moreover f ∈ Ck,1(R), V and K are of lass Ck,α, for some

k ≥ 0 and α > 0, similar regularity estimates then yield the onvergene
vn → v in Ck+2

loc (RN ).Proposition 20. Suppose the assumptions of Lemma 12 are satis�ed andassume uε ∈ H1
loc(Ω) is the positive solution of (22) obtained in that lemma.Let xε denote a loal maximum point of uε and assume moreover that all the



BOUND STATES FOR SCHRÖDINGER EQUATIONS 29luster points of the set {xε | 0 < ε ≤ ε0} are inside Λ. Then, there exists
C > 0 suh that

uε(xε + εy) ≤ C

|y|(N−1)/2
+ o(1),uniformly in y over ompat subsets as ε→ 0.Proof. The proof is a diret onsequene of Proposition 4 and Proposition 18,taking also the boundedness of the onentration funtion C, de�ned by (16),in Λ into aount. �5.2. Uniform onvergene on ∂Λ. The main onsequene of the previousanalysis of sequenes of resaled solutions is the following estimate on theboundary of Λ. As already disussed, this estimate is ruial in our approah.Proposition 21. Suppose that f : R

+ → R
+ is a ontinuous funtion sat-isfying (f1)-(f4) and V, K : Ω → R

+ are ontinuous funtions. Assume thatthe open set Λ ⊂⊂ Ω satis�es (30) and g : Ω × R
+ → R is de�ned by (21).If N = 2 and Ω is unbounded, assume moreover that V satis�es

lim inf
|x|→∞

V (x)|x|2 > 0.Then, the family (uε)ε ⊂ H1
loc(Ω) of positive solutions of (22) obtained inLemma 12 satis�es
lim
ε→0

sup
x∈∂Λ

uε(x) = 0.Proof. Suppose by ontradition that there exist sequenes (εn)n ⊂ R
+ and

(xn)n ⊂ ∂Λ suh that εn → 0 and
lim inf
n→∞

uεn(xn) > 0.Then, going to a subsequene if neessary, xn → x̄ ∈ ∂Λ and we dedue fromProposition 16 that
lim inf
n→∞

ε−N
n J (uεn) ≥ C(x̄),ontraditing the energy estimate of Lemma 12. �6. Solutions of the initial problemIn this setion, we prove that for ε small enough, the solutions of themodi�ed problem (22) do solve the initial problem (12). Theorem 1 statedin the introdution is a partiular ase of the following more general result.Theorem 22. Suppose Ω ⊂ RN is a regular bounded or exterior domain.Let V, K ∈ C(Ω,R+) satisfy (Gf,∂Ω) if ∂Ω 6= ∅ and one set (Gi

f,∞) of growthonditions if Ω is unbounded. Let Λ ⊂⊂ Ω be open and bounded and assume
inf
x∈Λ

C(x) < inf
x∈∂Λ

C(x), (50)where C is de�ned by (16). Then there exists ε0 > 0 suh that for every
0 < ε < ε0, the Dirihlet problem (12) has at least one positive solution uε.We already know from Lemma 12 that the modi�ed problem (22) possessesa positive solution uε. We will prove that for ε small enough, this solutionatually solves (12). Our arguments rely on the onstrution of suitableomparison funtions in order to obtain good deay estimates on the solution
uε at in�nity or lose to ∂Ω. These are worked out in the next subsetions.



30 DENIS BONHEURE AND JEAN VAN SCHAFTINGEN6.1. Maximum priniple. As in the previous setion, Ω ⊂ R
N is assumedto have a bounded C1,α boundary. We �rst de�ne a weak notion of upperand lower solutions for the linear operator LW,ε de�ned formally by

LW,εu = −ε2∆u+W (x)u, (51)where W is a ontinuous nonnegative funtion and ε > 0.De�nition 23. Let Ω ⊂ R
N be a domain and W ∈ C(Ω) be nonnegative. Afuntion v ∈W 1,1

loc (Ω) is a lower solution of the linear operator LW,ε, formallyde�ned by (51) where ε > 0, if for every ϕ ∈ C∞
c (Ω) suh that ϕ ≥ 0,

∫

Ω

(

ε2∇v · ∇ϕ+W (x)vϕ
)

≤ 0. (52)A funtion v ∈ H1
loc(Ω) is an upper solution of LW,ε if −v is a lowersolution.The use of weak solutions is justi�ed by Remark 11. We next state amaximum priniple assoiated to this lass of weak solutions.Proposition 24. Let Ω ⊂ R

N be a regular bounded or exterior domainand LW,ε be the linear operator formally de�ned by (51) where ε > 0 and
W ∈ C(Ω; R) is nonnegative. Assume that(1) u ∈ H1

loc(Ω) is a lower solution of LW,ε ;(2) ∇u+ ∈ L2(Ω) ;(3) if N = 2 and Ω is unbounded,
∫

Ω

u2
+

1 + |x|2 <∞.Then, if u+ = 0 on ∂Ω, we have u+ = 0 in Ω.Remark 25. The hypothesis u ∈ H1
loc together with the summability ondi-tion ∇u+ ∈ L2(Ω), imply that u+ ∈ H1(U) where U is a bounded neighbour-hood of the boundary ∂Ω. Therefore, by the Sobolev trae embedding, u+ hasa trae on ∂Ω.Remark 26. When N > 2 or Ω is bounded, the assumption (3) is indeedunneessary sine in fat, it is a onsequene of Hardy's inequality.Proof of Proposition 24. First notie that sine u ∈ H1

loc(Ω), the variationalinequality (52) holds in fat for every ϕ ∈ H1
c (Ω), that is the set of ompatlysupported funtions of H1(Ω). Let ηλ be the ut-o� funtion de�ned by (26)in the proof of Lemma 6. Taking (1− ηλ)u+ as test funtion in (52), we get

∫

Ω
(1 − ηλ)(ε2|∇u+|2 +W (x)u2

+) ≤
∫

Ω
∇u+ · ∇ηλu+.Sine u+ = 0 on ∂Ω, taking the assumptions (2) and (3) into aount, wemay argue as in the proof of Lemma 6 to estimate the right-hand side of thislast inequality. We then infer this right-hand side is of order 1/λ as λ→ ∞.On the other hand, it is lear that ηλ → 0 as λ → ∞. Therefore, as W isnonnegative, Fatou's Lemma yields

∫

Ω
ε2|∇u+|2 +W (x)u2

+ ≤ lim inf
λ→∞

∫

Ω
∇u+ · ∇ηλu+ = 0.Hene, we onlude that u+ = 0. �



BOUND STATES FOR SCHRÖDINGER EQUATIONS 316.2. Comparison funtions. We �rst onsider omparison funtions loseto the boundary. Along a smooth boundary, it is possible to onstrut aharmoni funtion that deay uniformly when approahing the boundary.Proposition 27. Let Ω be a regular bounded or exterior domain in R
N with

N ≥ 2. Assume Λ ⊂ Ω is a regular subdomain suh that Λ̄ ⊂ Ω. Then, thereexists a funtion ψb suh that ∇ψb ∈ L2(Ω),
−∆ψb ≥ 0 and ψb(x) ≤ C

d(x, ∂Ω)

1 + d(x, ∂Ω)on Ω \ Λ̄,
ψb = 1on Λ and ψb(x) = 0 for x ∈ ∂Ω.Proof. Choose U ⊂ Ω suh that U ∩ Λ = ∅, U is bounded with a regularboundary and ∂Ω ⊂ ∂U . De�ne ψb : Ω̄ \ Λ → R by



















∆ψb = 0 in U ,
ψb = 0 on ∂Ω,
ψb = 1 on ∂U \ ∂Ω.
ψb = 1 on Ω \ U .The funtion ψb is learly subharmoni. The regularity hypothesis on Ωand U imply that ψb ∈ C1,α(Ū). Therefore, we have
ψb(x) ≤ C

d(x, ∂Ω)

1 + d(x, ∂Ω)for x ∈ Ω \ Λ and ∇ψb ∈ L2(Ω). �The next proposition deals with omparison funtions at in�nity.Proposition 28. Let N ≥ 1, U ⊂ R
N be unbounded and W ∈ C(U ; R+).Assume either(i) lim inf

x→∂U
W (x) > 0 and there exists α < 2 suh that

lim inf
|x|→∞

W (x)|x|α > 0,and ψ∞(x) = exp(−λ(1 + |x|2)1/2−α/4), where λ > 0, or(ii) lim inf
x→∂U

W (x) > 0,
lim inf
|x|→∞

W (x)|x|2 > 0,and ψ∞(x) = (1 + |x|2)−λ/2, where λ > 0, or(iii) W is nonnegative, N > 2 and ψ∞(x) = (1 + |x|2)1−N/2.Then there exists ε0 > 0 suh that if 0 < ε < ε0,
−ε2∆ψ∞ +W (x)ψ∞ ≥ 0in U .



32 DENIS BONHEURE AND JEAN VAN SCHAFTINGENProof. Consider the ase (i). By assumption, there is c > 0 suh that for
x ∈ U , W (x) ≥ c/(1+ |x|)α. An expliit omputation of −ε2∆ψ∞ ombinedwith the previous inequality gives

− ε2∆ψ∞ +W (x)ψ∞

≥
(

ε2λ(1 − α
2 )
(

−λ(1 − α
2 )

|x|2
1 + |x|2 +

N + (N − 1 − α
2 )|x|2

2(1 + |x|2)3/2−α/4

)

+ c

)

ψ∞

(1 + |x|2)α/2
.Sine α < 2, this last expression is positive for every x ∈ U when ε issu�iently small.Under the assumptions (ii) and (iii), one omputes

−∆
( 1

(1 + |x|2)λ/2

)

=
λ

(1 + |x|2)λ/2+1

(N − (λ−N + 2)|x|2
1 + |x|2

)

.In ase (ii), one onludes as in ase (i), while in ase (iii), one has even
−∆ψ∞ ≥ 0, so that in this ase, the onlusion holds for any nonnegative
W . �6.3. Proof of Theorem 22.Proof of Theorem 22. To �x the ideas, we work out the proof for an exteriordomain Ω suh that ∂Ω 6= ∅ and (G1

f,∞) holds.By (G1
f,∞) and (Gf,∂Ω), there exist λ > 0, α ∈ [0, 2[, µ > 0 and κ ∈ (0, 1)suh that

lim sup
|x|→∞

f(exp(−λ|x|1−α/2))

exp(−λ|x|1−α/2)

K(x)

V (x)
< κ, and lim sup

d(x,∂Ω)→0

f(µd(x, ∂Ω))

µd(x, ∂Ω)

K(x)

V (x)
< κ.De�ne f̃ by (20) aording to this hoie of κ. We know from Lemma 12 thatthe modi�ed problem (22) has a positive solution uε. If for every x ∈ Ω \Λ,we have

f(uε(x))

uε(x)

K(x)

V (x)
≤ κ,then uε is a positive solution of the original Dirihlet problem (12).From the assumptions (f1), (f4), (Gf,∂Ω) and (G1

f,∞), we dedue the exis-tene of γ > 0 su�iently small, suh that, hoosing
w(x) = γ exp(−λ|x|1−α/2)

d(x, ∂Ω)

1 + d(x, ∂Ω)
,one has for all x ∈ Ω,

f(w(x))

w(x)

K(x)

V (x)
≤ κ. (53)Let us write mε = supx∈∂Λ uε(x) and de�ne the auxiliary funtion wb by

wb(x) :=
uε(x)

mε
− ψb(x),where ψb is de�ned in Proposition 27. We infer from the fat that uε solves(22) and the de�nition of g(x, u) that

−∆wb ≤ 0 in Ω \ Λ.



BOUND STATES FOR SCHRÖDINGER EQUATIONS 33Applying the maximum priniple for subharmonis, i.e. Proposition 24 with
W ≡ 0, to wb in Ω \ Λ, we dedue from Proposition 27 the estimate

uε(x) ≤ Cmε
d(x, ∂Ω)

1 + d(x, ∂Ω)
, (54)whih is valid for every x ∈ Ω \ Λ.Now, hoose U ⊂ Ω suh that Ω \ U is bounded, Λ ∩ U = ∅, Ū ⊂ Ω and

∂U is ompat and smooth. It follows from (54) that uε is bounded on ∂Uuniformly in ε.To get a deay estimate at in�nity, we de�ne the auxiliary funtion w∞by
w∞(x) :=

uε(x)

mε
− Cψ∞(x),where ψ∞ is de�ned in Proposition 28 with λ > 0 as in assumption (G1

f,∞)and C > 0. This time, we observe that for ε small enough, w∞ is a lowersolution of LW,ε in U , where W (x) := (1−κ)V (x). Choosing C large enoughto ensure that w∞ ≤ 0 on ∂U and applying again Proposition 24, we get
uε(x) ≤ Cmεψ∞(x), (55)for x ∈ U .As mε → 0 by Proposition 21 and Ω \ U is bounded, ombining theestimates (54) and (55), we �nally dedue that for ε small enough,

uε(x) ≤ w(x),for every x ∈ Ω \ Λ.At last, we onlude from (f4) and (53) that for eah x ∈ Ω \ Λ,
f(uε(x))

uε(x)

K(x)

V (x)
≤ f(w(x))

w(x)

K(x)

V (x)
≤ κ.This ompletes the proof of this ase. The arguments being similar whendealing with the assumptions (G2

f,∞) or (G3
f,∞), we do not repeat them. �Remark 29. The inequality (55) provides a deay estimate at in�nity forthe solution uε. In partiular, this estimate does hold even if α < 0 inassumption (G1

f,∞). If α = 0, i.e. if V is bounded from below at in�nity, weinfer the solution deay exponentially fast at in�nity. If α < 0, this deayrate at in�nity an be improved. For example, if V grows quadratially fastat in�nity, then the solution deay like a Gaussian as |x| → ∞.7. ConentrationWe next investigate the behaviour of the solutions uε obtained in The-orem 22 when ε → 0. Namely, we prove in this setion that the solutionsdisplay the features stated in the following theorem.Theorem 30. Suppose that the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be suhthat
uε(xε) = sup

x∈Ω
uε(x).



34 DENIS BONHEURE AND JEAN VAN SCHAFTINGENThen, we have
lim
ε→0

C(xε) = inf
x∈Λ

C(x),and for every r > 0, there exist C > 0 and ε0 > 0 suh that for 0 < ε < ε0,
uε has no loal maximum outside the ball B(xε, εr) and

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

εN−2

(ε2 + |x− xε|2)
N−2

2

. (56)If we assume in addition that
lim inf

d(x,∂Ω)→0
V (x) > 0 and lim inf

|x|→∞
V (x)|x|2 > 0,then for every λ > 0, there exist C > 0 and ε0 > 0 suh that for 0 < ε < ε0,one has

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)

ελ

(ε2 + |x− xε|2)λ/2
, (57)while if

lim inf
d(x,∂Ω)→0

V (x) > 0 and lim inf
|x|→∞

V (x)|x|α > 0for some α ∈ ]0, 2[ , then for every λ > 0, there exist C > 0 and ε0 > 0 suhthat for 0 < ε < ε0,
uε(x) ≤ C

d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(

−λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)

. (58)When Ω = R
N the preeding holds provided d(x, ∂Ω)/(1 + d(x, ∂Ω)) is re-plaed by 1.Theorem 2 stated in the introdution onerning the partiular ase f(u) =

up learly follows from this more general result. The proof of Theorem 30is divided in two steps. We �rst investigate the behaviour of the maximaof uε. Then, the seond and main step is the onstrution of barrier fun-tions, see below for a preise de�nition, whih basially onsist in families ofomparison funtions that provide uniform deay properties as ε→ 0.Observe that in ontrast with del Pino - Felmer Theorem stated in theintrodution, we annot ensure the uniqueness of the maximum of uε. Thisis due to the lak of regularity of f , V and K. When stronger regularityassumptions are made on those funtions, one reovers solutions with a singlemaximum as in the above ited theorem, see Remark 35 below.7.1. Loal and global maxima. A �rst thing noteworthy in the study ofmaxima of uε is that the global maximum is always attained in Λ̄.Proposition 31. Suppose that f : R
+ → R

+, V, K : Ω → R
+ are on-tinuous funtions, Λ ⊂⊂ Ω and g : Ω × R

+ → R is de�ned by (21). Let
uε ∈ H1

loc(Ω) be a nonnegative solution of (22) suh ∇uε ∈ L2(Ω). Thenthere exists xε ∈ Λ̄ suh that
uε(xε) = sup

x∈Ω
uε(x).



BOUND STATES FOR SCHRÖDINGER EQUATIONS 35Proof. Sine the solution uε ∈ C1,α(Ω) by Proposition 10 and Λ̄ ⊂ Ω isompat, there exists xε ∈ Λ̄ suh that
uε(xε) = max

x∈Λ̄
uε(x).Now observe that by de�nition of g in (20), one has,

−ε2∆uε + (1 − κ)V (x)uε ≤ 0in Ω \ Λ, where κ < 1. Hene, using the maximum priniple whih appliesbeause ∇uε ∈ L2(Ω), we infer that for every x ∈ Ω \ Λ̄,
uε(x) ≤ sup

x∈∂Ω∪∂Λ
uε(x) ≤ sup

x∈Λ̄

uε(x) = uε(xε). �In the sequel of this paragraph, we investigate the loalization of themaxima of uε in Ω. Our �rst observation is that the maximum points of thesolution obtained in Theorem 22 are all loated in Λ.Proposition 32. Suppose the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be a loalmaximum point of uε. Then xε ∈ Λ.Proof. The proof follows from the penalization proedure and Lemma 17.Indeed, if xε ∈ Ω is a loal maximum point of uε, then, as uε is stritlypositive, Lemma 17 implies
f(uε(xε))

uε(xε)

K(xε)

V (xε)
≥ 1.But on the other hand, sine uε solves both (22) and (11), we have for every

x ∈ Ω \ Λ,
f(uε(x))

uε(x)

K(x)

V (x)
≤ κ,with κ < 1. �Our seond fat is that any onverging sequene of maximum points of uεdoes onverge to a minimum point of C in Λ. This obviously implies that as

ε→ 0, the maxima of uε our lose to minima of C.Proposition 33. Suppose that Λ ⊂⊂ Ω and the assumptions of Lemma12 are satis�ed. Let (εn)n ⊂ R
+ be suh that εn → 0 as n → ∞ and

(uεn)n ⊂ H1
loc(Ω) be the orresponding sequene of positive solutions of (22)obtained in Lemma 12. If (yn)n ⊂ Λ is a sequene of loal maximum pointsof uεn, then

lim
n→∞

C(yn) = inf
x∈Λ

C(x).Proof. Assume by ontradition that the onlusion is false. Hene, by om-patness, we infer that, up to a subsequene, (yn)n onverges to ȳ ∈ Λ̄ suhthat
C(ȳ) > inf

x∈Λ
C(x). (59)On the one hand, we dedue from Proposition 16 and Lemma 17 that

lim inf
n→∞

ε−N
n Jεn(uεn) ≥ C(ȳ).



36 DENIS BONHEURE AND JEAN VAN SCHAFTINGENOn the other hand, by Lemma 12, uεn does satisfy
lim sup

n→∞
ε−N
n Jεn(uεn) ≤ inf

x∈Λ
C(x).This ontradits (59) and onludes the proof. �We next prove that loal maxima are essentially unique in the sense thatthey get loser and loser to the global one as ε → 0. Therefore, even if uεan have more than one loal maximum, the solution is a perturbation of asolution with a single loal (hene global) maximum.Proposition 34. Suppose the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be suhthat

uε(xε) = sup
x∈Ω

uε(x).Then, for every r > 0, there exists ε0 > 0 suh that for every 0 < ε < ε0, uεhas no loal maxima in Λ \B(xε, εr).Proof. Let (xε)ε ⊂ Ω be global maximum points of uε. We argue by on-tradition, assuming the existene of sequenes (yn)n ⊂ Ω and (εn)n ⊂ R
+suh that uεn attains a loal maximum at yn, εn → 0 as n→ ∞ and

lim inf
n→∞

|xεn − yn|
εn

> 0. (60)By Proposition 32, we may assume without loss of generality that (xεn)n ⊂
Λ, (yεn)n ⊂ Λ,

lim inf
n→∞

uεn(xεn) > 0 and lim inf
n→∞

uεn(yεn) > 0.Sine Λ̄ is ompat, going to a subsequene if neessary, we may also assumethat xεn → x̄ and yn → ȳ. Now, if
lim sup

n→∞

|xεn − yεn|
εn

= ∞,Proposition 16 applies. We therefore onlude that
lim inf
n→∞

ε−N
n Jεn(uεn) ≥ C(x̄) + C(ȳ) ≥ 2 inf

x∈Λ
C(x),while by Lemma 12, we know that

lim sup
n→∞

ε−N
n Jεn(uεn) ≤ inf

x∈Λ
C(x).Sine infΛ C > 0, this brings a ontradition. Therefore,

lim sup
n→∞

|xεn − yn|
εn

<∞. (61)Consider now the sequenes (vn)n and (zn)n de�ned by vn(z) = uεn(xεn −
εnz) and zn = (xεn − yn)/εn. Sine zn is a loal maximum of vn, ∇vn(zn) =
0. By Proposition 18 and (61), up to subsequenes, we have ∇vn → ∇vuniformly on ompat subsets, where v is a solution of (49), and zn → z ∈
R

N . Therefore ∇v(z) = limn→∞∇vn(zn) = 0, so that by Lemma 3, z = 0,i.e.
lim

n→∞

|xεn − yn|
εn

= 0,



BOUND STATES FOR SCHRÖDINGER EQUATIONS 37in ontradition with (60). �Remark 35. We may state a stronger onlusion in Proposition 34 when
f is loally Lipshitz ontinuous and V and K are both Hölder ontinuousinside Λ. Indeed, in this ase, the sequene (vn)n of resaled solutions de�nedby vn(x) = uεn(xεn + εnx) onverges for the C2

loc topology, see Remark 19,and the limit funtion v has a nondegenerate maximum at 0. Hene thereexists ε0 > 0 suh that xε is the unique loal maximum of uε in Ω.7.2. Ellipti inequation outside small balls. All the previous results al-low to prove the following inequality whih will be useful to get onentrationestimates.Proposition 36. Suppose the assumptions of Theorem 22 hold. Let uε bethe positive solution of (11) obtained in that theorem and xε ∈ Ω be suhthat
uε(xε) = sup

x∈Ω
uε(x).Then there exists r0 > 0 suh that for every r > r0, there exists εr > 0 suhthat for every ε ∈ ]0, εr[ ,

−ε2∆uε + (1 − κ)V (x)uε ≤ 0in Ω \B(xε, εr), where κ < 1 is de�ned in (20).Proof. First, notie that by the ompatness of Λ̄ ⊂ Ω, the ontinuity of Vand K and the assumption (f1), we infer there exists a > 0 suh that
f(a)

a
≤ κ

V (x)

K(x)
(62)for every x ∈ Λ. On the other hand, by Proposition 20 and Proposition 34,we may take r > 0 large enough suh that for ε→ 0,

uε(xε + εy) ≤ afor |y| = r and uε has no loal maximum in Λ \ B(xε, εr). Moreover, weknow from Proposition 21 that
max
x∈∂Λ

uε(x) → 0 as ε→ 0.Hene, one an assume that for small ε, uε(x) ≤ a for every x ∈ Λ\B(xε, εr).Taking (62) into aount, we now infer from (f4) that
g(x, uε(x)) = K(x)f(uε(x)) ≤ κV (x)uε(x)for x ∈ Λ\B(xε, εr). On the other hand, by the de�nition of the penalization,we have

g(x, uε(x)) ≤ κV (x)uε(x)for x ∈ Ω \ Λ. Therefore uε satis�es the desired inequality for ε smallenough. �



38 DENIS BONHEURE AND JEAN VAN SCHAFTINGEN7.3. Barrier funtions. Proposition 36 implies that for r large and ε smallenough, (uε)ε is a family of lower solutions of −ε2∆ + W in Ω \ B(xε, rε),where W = (1−κ)V and xε is a global maximum point of uε. Then, arguingas in the proof of Theorem 22, one an easily obtain estimates for uε in
Ω \B(xε, rε) if we an ompare uε with a onvenient upper solution in thisset. This motivates the following de�nition.De�nition 37. Let Ω ⊂ R

N be a regular bounded or exterior domain and
LW,ε be the linear operator formally de�ned by (51) where ε > 0 and W ∈
C(Ω; R) is nonnegative. We say that the set (wε)ε ⊂ H1

loc(Ω \ B(xε, rε)),where r > 0 and (xε)ε ⊂ Ω, is a family of barrier funtions for W if thereexists ε0 > 0 suh that for every 0 < ε < ε0,(1) B(xε, rε) ⊂ Ω ;(2) wε is an upper solution of LW,ε in Ω \B(xε, rε) ;(3) ∇wε ∈ L2(Ω \B(xε, rε)) ;(4) wε ≥ 1 on ∂B(xε, rε).As a basi example, the onstant funtions wε ≡ 1 form a family of barrierfuntions for any nonnegative potential W .Remark 38. One easily heks that if (wε)ε is a family of barrier funtionsfor W ∈ C(Ω; R) and if W̄ ∈ C(Ω; R) satis�es W̄ ≥ W , then (wε)ε is afamily of barrier funtions for W̄ . Note also that if λ ≥ 0, then (wλε)ε is afamily of barrier funtions for λ−2W .As mentioned above, the main interest of a family of barrier funtions isto dedue estimates for the solutions (uε)ε obtained in Theorem 22. Theseestimates will be obtained through the following proposition.Proposition 39. Let Ω ⊂ R
N be a regular bounded or exterior domainand LW,ε be the linear operator formally de�ned by (51) where ε > 0 and

W ∈ C(Ω; R) is nonnegative. Assume wε ∈ H1
loc(Ω \B(xε, rε)), where r > 0and (xε)ε ⊂ Ω, is a familly of positive barrier funtions. If vε ∈ Hε is alower solution of LW,ε in Ω \B(xε, rε) suh that

∫

Ω

|vε|2
1 + |x|2 <∞if N = 2 and Ω is unbounded, and
vε ≤ cεon ∂B(xε, rε), then for every ε ∈ ]0, ε0[, we have
vε ≤ cεwεin Ω \B(xε, rε).Proof. The proof follows immediately by applying Proposition 24 to the fun-tions vε/cε − wε taking De�nition 37 into aount. �The main onern in this setion is to obtain uniform estimates as ε→ 0so that we have to selet arefully the family of barrier funtions in ourappliation of Proposition 39.Assuming that the potential V is positive, we diretly dedue a rough as-ymptoti behaviour using onstant barrier funtions. However, Remark 38



BOUND STATES FOR SCHRÖDINGER EQUATIONS 39suggests that the onstrution of barriers depends on the asymptoti be-haviour of V so that we may hope an improvement of these basi estimatesby hoosing a suitable family of barrier funtions. In fat, without furtherrestritions on the potential, the onstant barriers an always be replaed byharmoni barriers.Proposition 40. Let N ≥ 2 and Ω ⊂ R
N be a domain. Assume (xε)ε ⊂ Ωis relatively ompat in Ω. Then, the family (Hε)ε ⊂ H1

loc(Ω \ B(xε, rε))de�ned by
Hε(x) =

(ε
√

1 + r2)N−2

(ε2 + |x− xε|2)N/2−1
.is a family of barrier funtions for any nonnegative W ∈ C(Ω; R).Proof. Notie that −∆Hε ≥ 0 on Ω \ {xε}. All the properties follow thenfrom straightforward omputations. �When N = 2, we reover the onstant barriers wε ≡ 1 while for N > 2, thebarrier funtions provide a polynomial deay to 0 at in�nity. This ontrol atin�nity an be improved by either exponential or polynomial (of any order)barriers provided we assume further that

lim inf
|x|→∞

W (x)|x|α > 0 (63)for some α ∈ [0, 2].If W satis�es (63) for some α ∈ 0, 2[, then there exists families of barrierfuntions for W that deay exponentially fast at in�nity.Proposition 41. Let N ≥ 2, Ω ⊂ R
N be an unbounded domain, r > 0 and

(xε)ε ⊂ Ω be relatively ompat in Ω. Assume that W ∈ C(Ω; R) is a positivepotential satisfying (63) for some α ∈ ]0, 2[ and
lim inf

d(x,∂Ω)→0
W (x) > 0,if ∂Ω 6= ∅. Then, for any λ > 0, there exists r0 > 0 suh that (Eα,λ,ε)ε ⊂

H1
loc(Ω \B(xε, rε)) de�ned by

Eα,λ,ε(x) = exp
(

λr1−α/2 − λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)is a family of barrier funtions for W when r > r0.Proof. Let us write for simpliity Eε(x) = Eα,λ,ε(x). We then ompute for
x ∈ Ω \B(xε, rε),

−ε2∆Eε(x) +W (x)Eε(x) ≥
(

−λ2(1 − α
2 )2

εα

|x− xε|α
+W (x)

)

E(x).By assumption, sine (xε)ε ⊂ Ω is bounded, there exists c > 0 suh that forevery x ∈ Ω and ε0 > ε > 0,
W (x) ≥ c

1 + |x− xε|α
,and on the other hand, for x ∈ Ω \B(xε, rε), we have

ε

|x− xε|
≤ 2ε0
rε0 + |x− xε|

.



40 DENIS BONHEURE AND JEAN VAN SCHAFTINGENIf r0 is taken large enough and ε0 is taken small enough, then one has
−ε2∆Eε(x) +W (x)Eε(x) ≥ 0. �Remark 42. Observe that when α = 0, we an also obtain barriers of theform

exp(−λ(|x/ε| − r)),for some small λ > 0 whih provide the deay estimates for the positivesolutions of −∆u+u = f(u). The restrition α > 0 in Proposition 41 allowsto play with every λ > 0.The limit ase α = 2 in the exponential barriers yields similarly polynomialbarriers of any order.Proposition 43. Let N ≥ 2, Ω ⊂ R
N be an unbounded domain and (xε)ε ⊂

Ω be relatively ompat in Ω. Assume that W ∈ C(Ω; R) is a positive poten-tial satisfying (63) with α = 2 and
lim inf

d(x,∂Ω)→0
W (x) > 0,if ∂Ω 6= ∅. Then, for any λ ≥ N − 2, there exists r0 > 0 suh that the family

(Pλ,ε)ε ⊂ H1
loc(Ω \B(xε, rε)) de�ned by

Pλ,ε(x) =
(ε
√

1 + r2)λ

(ε2 + |x− xε|2)λ/2is a family of barrier funtions for W .7.4. Proof of Theorem 30.Proof of Theorem 30. To �x the ideas, assume Ω is a regular exterior domainwith nonempty boundary, (G1
f,∞) holds and
lim inf

d(x,∂Ω)→0
V (x) > 0.Let xε ∈ Ω be suh that

uε(xε) = sup
x∈Ω

uε(x).We �rst laim there exists ε0 > 0 and δ > 0 suh that
inf

0<ε<ε0

d(xε, ∂Λ) > δ.Indeed, assume this is not true. Then, we an �nd sequenes (εn)n ⊂ R
+and (xεn)n ⊂ (xε)ε suh that d(xεn , ∂Λ) → 0. Going to subsequenes if ne-essary, we now infer that xεn onverges to some x̄ ∈ ∂Λ, but this ontraditsProposition 33 and assumption (50). We may of ourse assume that δ ≤ 1.The �rst statements of the theorem then follows from Proposition 32,Proposition 33 and Proposition 34. Let us now fous on the asymptotiestimate (58). Taking ε0 smaller if neessary, we may assume Proposition 36holds for ε0 and some r > 0. Now, let λ > 0 and onsider the family

(Eα,λ,ε)ε ⊂ H1
loc(Ω \ B(xε, rε)) of barrier funtions assoiated to the set

(xε)ε, provided by Proposition 41. Notiing that the maximum of uε isbounded independently of ε ≤ ε0, we dedue from Proposition 39 that
uε(x) ≤ C exp

(

λr1−α/2 − λ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2) (64)



BOUND STATES FOR SCHRÖDINGER EQUATIONS 41in Ω. In partiular, sine |x− xε| ≥ δ > 0 for any x ∈ ∂Λ, we infer that
uε(x) ≤ C exp(−λ(δ/ε)1−α/2)on ∂Λ. Therefore, arguing as in the proof of Theorem 22, we now deduethat

uε(x) ≤ 2C exp(−λ(δ/ε)1−α/2)
d(x, ∂Ω)

1 + d(x, ∂Ω)
, (65)in Ω \ Λ̄. Using the fats that the boundary is bounded and Λ ⊂⊂ Ω, andtaking (64) and (65) into aount, we �nally onlude that

uε(x) ≤ C
d(x, ∂Ω)

1 + d(x, ∂Ω)
exp
(

−cλ
∣

∣

∣

x− xε

ε

∣

∣

∣

1−α/2)

,with c = min(1, 2δ/(diam(∂Ω) + 1))1−α/2. The estimates (57) and (56) anbe handled in a similar way. �We emphasize that when onsidering the growth ondition (G3
f,∞), we donot have to assume that V is stritly positive up to the boundary. Indeed,the strit positivity of V only plays a role in the onstrution of the familyof exponential and polynomial barrier funtions. When (G3

f,∞) holds, wehave at hand a family of harmoni barriers whih an be onstruted for anynonnegative potential V . 8. Final ommentsIn [15, 17℄, del Pino and Felmer used a penalization sheme to treat theexistene of bound state solutions around other type of ritial points of theonentration funtion C. A penalization method is also developed in [16℄ toath multi-peak solutions. It ould be interesting to �nd out whether ourmethod an be adapted to those situations.Another interesting open question onerns the qualitative behaviour ofground states of
−ε2∆u+ V (x)u = K(x)|u|p−1u, x ∈ R

N .As mentioned earlier, Ambrosetti, Felli and Malhiodi [2℄ proved the exis-tene of a ground state solution under the assumptions (7) and (8). If inaddition,
a

1 + |x|α ≤ V (x),with 0 ≤ α < 2, the authors show the ground state belongs to H1(RN ) andonentrates around a global minimum point of A as ε → 0. Conerningthe existene of the ground state solution in a weighted Sobolev spae, theseonditions an be relaxed by just assuming that A is oeritive. We thenobserve that in this ase, our result provide the existene of a H1 boundstate solution for ε small under less restritive assumptions on V . Namely, if
(G3

∞) holds and N > 4, the bound state belongs to H1(RN ) and onentratesaround a global minimum point of A as ε → 0. Suh a result is not knownfor the ground state solution.
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