
BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH
L1�DATAHAÏM BREZIS (1),(2) AND JEAN VAN SCHAFTINGEN (3)Abstra
t. 1. Introdu
tionRe
ently, new estimates for L1�ve
tor �elds have been dis
overed by Bour-gain and Brezis [1, 2℄, whi
h yield in parti
ular improved estimates for thesolutions of ellipti
 systems in R

N or in a 
ube Q ⊂ R
N with periodi
boundary 
onditions. Simpli�ed proof of some of the results have been givenby Van S
haftingen [8℄. Here are two typi
al results:Theorem 1.1. Let f ∈ L1(RN ;RN ), N ≥ 3. If div f = 0, then the system

−∆u = f in R
N ,admits a unique solution u ∈ LN/(N−2)(RN ;RN ) with ∇u ∈ LN/(N−1).A similar 
on
luion holds for the same problem in a 
ube with periodi
boundary 
onditions.Theorem 1.2. Let f ∈ L1(R2;R2). If div f = 0, then the system

−∆u = f in R
N ,admits a unique solution u ∈ (L∞ ∩ C)(R2;R2) with ∇u ∈ L2.Our main goal in this paper is to address similar questions in domains

Ω ⊂ R
N with Diri
hlet or Neumann boundary 
onditions. Interior estimates
an be easily derived from the results in [1, 2, 8℄. However the question ofestimates up to the boundary requires some further work.In se
tion 2, we study the system

−∆u = f in Ω ⊂ R
2,together with the Diri
hlet boundary 
ondition u = 0 on ∂Ω or the Neumannboundary 
ondition ∂u/∂n = 0 on ∂Ω. For the Diri
hlet problem, we showthat if f ∈ L1(Ω;R2) and div f = 0, then u ∈ C(Ω;R2) ∩ W1,2(Ω;R2). Forthe Neumann problem, we get the same 
on
lusion under the additionnalassumption that (f · n) = 0 on ∂Ω; su
h a 
ondition plays an essential role,see Remark 2.3. The proofs are elementary; they involve sharp estimates forthe Green's fun
tions. These are well-known to the experts and are presentedin Appendix A for the 
onvenien
e of the reader.In se
tion 3, we start with the system(1.1) {

−∆u = f in Ω,

u = 0 on ∂Ω,1



2 HAÏM BREZIS AND JEAN VAN SCHAFTINGENwith Ω ⊂ R
N , N ≥ 2 and f ∈ L1(RN ;RN ). If div f = 0, the heart of thematter is the inequality(1.2) ∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ ‖f‖L1‖Dϕ‖LN ,for every ϕ ∈ (W1,N

0 ∩ L∞)(Ω;RN ), whi
h we derive from similar estimatesin [1, 2, 8℄. Therefore it admits an elementary proof in the spirit of [8℄.Next we 
ombine (1.2) with standard Lp regularity theory to 
on
lude that
u ∈ W1,N/(N−1)(Ω;RN ) when f ∈ L1(Ω;RN ) and div f = 0.A mu
h more deli
ate result asserts that if f ∈ L1(Ω;R2) and div f ∈

(W2,N +W1,N
0 )∗, one still has u ∈ W1,N/(N−1)(Ω;RN ). The main ingredientis due to Bourgain and Brezis and asserts that every ve
tor �eld in W1,N

0belongs to L∞ modulo gradients (see the pre
ise statements in Theorem 3.2and Lemma 3.3).The remainder of se
tion 3 is devoted to the pure Neumann boundary
onditions and to various mixtures of Diri
hlet and Neumann boundary 
on-ditions. We also 
onsider the problem
{

−∆u = 0 in Ω,

u = 0 on ∂Ω.In se
tion 4, we present estimates up to the boundary for the problem
{

divZ = 0 in Ω,

curlZ = Y in Ω,where Ω ⊂ R
3, together with the boundary 
onditions Z ·n = 0 or Z×n = 0.Next we present some results for �rst-order systems of k�forms, 2 ≤ k ≤

N − 2, su
h as
{

dω = α in Ω,

δω = β in Ω.2. Ellipti
 systems in R
2Theorem 2.1. Let Ω ⊂ R

2 be a smooth simply-
onne
ted domain and let
f ∈ L1(Ω;R2). If div f = 0 in the sense of distributions, i.e.,

∫

Ω
f · ∇ζ = 0, ∀ζ ∈ C1

0 (Ω),then the problem
{

−∆u = f in Ω,

u = 0 on ∂Ω,has a unique solution u ∈ W1,2(Ω;R2) ∩ C(Ω;R2) satisfying(2.1) ‖u‖W1,2 + ‖u‖L∞ ≤ C‖f‖L1 .Proof. By 
lassi
al regularity estimates, there is a solution u ∈ W1,q , for
q < 2. Sin
e div f = 0, there exists F ∈ W1,1(Ω) su
h that f = (−∂2F, ∂1F )



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 3and ∫

Ω F = 0. By Sobolev's inequality, ‖F‖L2 ≤ C‖f‖L1 . For every ϕ ∈

C∞
c (Ω;R2), one has

∫

Ω
∇u · ∇ϕ =

∫

Ω
f · ϕ =

∫

Ω
F (∂2ϕ1 − ∂1ϕ2) ≤ C‖f‖L1‖∇ϕ‖L2 .Therefore u ∈ W1,2(Ω;R2) with the required estimate.We now prove that u ∈ L∞. Let G denote the Green's fun
tion asso
iatedto Diri
hlet boundary 
ondition for Ω. Integrating by parts, one has, forevery x ∈ Ω,(2.2) u(x) =

∫

Ω
G(x, y)f(y) dy

= −

∫

Ω
(x− y)(∇yG(x, y) · f(y)) dy −

∫

Ω
G(x, y)(x − y) div f(y) dy

= −

∫

Ω
(x− y)(∇yG(x, y) · f(y)) dy,sin
e div f = 0. By Proposition A.1, |∇G(x, y)||x− y| is uniformly boundedfor x, y ∈ Ω. Hen
e u satis�es the required estimate. To prove that uis 
ontinuous, assume that xn → x. Then u(xn) → u(x) by (2.2) andLebesgue's dominated 
onvergen
e Theorem. �Remark 2.1. In the more general 
ase where f ∈ L1(Ω;R2) and div f ∈

L1(Ω), one obtains the 
ontinuity and the boundedness of u from the bound-edness of |∇yG(x, y)||x − y| on Ω × Ω. Using the the estimate
∫

Ω
|∇u|2 =

∫

Ω
u · f ≤ ‖u‖L∞‖f‖L1 ≤ C(‖f‖L1 + ‖div f‖L1)‖f‖L1 ,one 
on
ludes u ∈ W1,2(Ω;R2). Theorem 3.1 in the next se
tion gives W1,2(but not L∞!) estimates under the weaker 
ondition div f ∈ (W2,2 ∩W1,2

0 )∗.Remark 2.2. The 
on
lusion of Theorem 2.1 remains valid if f is a measure(more pre
isely, f belongs to the dual spa
e of C0(Ω)). The proof of thebounds in W1,2 and in L∞ are un
hanged. To prove that u is 
ontinuous,assume that xn → x ∈ Ω. Then
(xn − y)(∇yG(xn, y)) → (x− y)(∇yG(x, y))for every y ∈ Ω \{0}. On the other hand, the measure f belongs to the dualspa
e of W1,2

0 (Ω) and thus it does not 
harge points. One 
an 
on
lude asbefore by Lebesgue's dominated 
onvergen
e Theorem.Theorem 2.2. Let Ω ⊂ R
2 be a smooth simply-
onne
ted domain and let

f ∈ L1(Ω;R2). If div f = 0 in Ω and f · n = 0 on ∂Ω in the sense that
∫

Ω
f · ∇ζ = 0, ∀ζ ∈ C1(Ω),then ∫

Ω f = 0 and the problem










−∆u = f in Ω,
∂u
∂n = 0 on ∂Ω,
∫

Ω u = 0,



4 HAÏM BREZIS AND JEAN VAN SCHAFTINGENhas a unique solution u ∈ W1,2(Ω;R2) ∩ C(Ω;R2) and satisfying (2.1).Proof. The proof of Theorem 2.2 is similar to the proof of Theorem 2.1.Sin
e f · n = 0 on ∂Ω, one 
an 
onstru
t F su
h that F = 0 on ∂Ω (in pla
eof ∫

Ω F = 0 in the previous proof). Sin
e F ∈ W1,2
0 (Ω), one has

∫

Ω
f =

∫

Ω
(∇F )⊥ = 0.One 
on
ludes as before that u ∈ W1,2 and, using Proposition A.3, that u isbounded and 
ontinuous up to the boundary. �Remark 2.3. If one repla
es the 
ondition f · n = 0 on ∂Ω in Theorem 2.2by ∫

Ω f = 0, the 
on
lusion is not ne
essarily true. Assume without loss ofgenerality that 0 ∈ ∂Ω and that the normal to the boundary at 0 is parallelto the �rst 
oordinate axis. Choose a fun
tion ρ ∈ C∞
c (R2) su
h that ρ ≥ 0and ∫

R
ρ(0, x2) dx2 = 1. De�ne ρε(x) = ρ(x/ε)/ε and

fε = (∇ρε)
⊥ −

1

|Ω|

∫

Ω
(∇ρε)

⊥.For every ϕ ∈ C(Ω;R2),
∫

Ω
fεϕ→ e1

(

ϕ(0) −
1

|Ω|

∫

Ω
ϕ
)

.Let now uε ∈ W1,2(Ω;R2) be the solution of










−∆uε = fε in R
2,

∂uε
∂n = 0 on ∂Ω,
∫

Ω uε = 0,and assume by 
ontradi
tion that ‖∇uε‖L2 remains bounded as ε→ 0. Onehas then, for every ϕ ∈ C∞(Ω;R2),
∣

∣

∣
ϕ(0) −

1

|Ω|

∫

Ω
ϕ
∣

∣

∣
= lim

ε→0

∣

∣

∣

∫

Ω
fεϕ

∣

∣

∣
= lim

ε→0

∣

∣

∣

∫

Ω
∇uε · ∇ϕ

∣

∣

∣
≤ C‖∇ϕ‖L2 .This is not possible, sin
e W1,2(R2) is not imbedded in L∞(R2). Note that

∫

Ω
|∇uε|

2 ≤ ‖fε‖L1‖uε‖L∞ ,and thus ‖uε‖L∞ is not bounded as ε→ 0.3. Se
ond-order systems in higher dimensionsIn this se
tion, assume N ≥ 2.3.1. The Lapla
e equation with zero Diri
hlet boundary 
ondition.Theorem 3.1. Let Ω ⊂ R
N be a smooth bounded domain and let f ∈

L1(Ω;RN ). If(3.1) [f ] = sup
{

∫

Ω
f · ∇ζ : ζ ∈ C2(Ω),

ζ = 0 on ∂Ω and ‖D2ζ‖LN ≤ 1
}

<∞,



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 5then the system
{

−∆u = f in Ω,
u = 0 on ∂Ω,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) satisfying

‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f ]).Remark 3.1. If div f = 0 in the sense of distributions, then [f ] = 0. Moregenerally,
[f ] = ‖div f‖

(W2,N∩W1,N
0 )∗

.In order to prove Theorem 3.1, �rst re
allTheorem 3.2 (Bourgain and Brezis [2℄). For every ϕ ∈ W1,N
0 (Q;RN ), thereexist ψ ∈ (W1,N

0 ∩ L∞)(Q;RN ) and η ∈ W2,N
0 (Q) su
h that

ϕ = ψ + ∇η,where Q denotes the unit 
ube in R
N . Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Theorem 3.2 
an be extended to any smooth domain:Lemma 3.3. Let Ω ⊂ R
N be a smooth domain. For every ϕ ∈ W1,N

0 (Ω;RN ),there exist ψ ∈ (W1,N
0 ∩ L∞)(Ω;RN ) and η ∈ W2,N

0 (Ω) su
h that
ϕ = ψ + ∇η.Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Proof. In the 
ase where there is a bi-Lips
hitzian homeomorphism H from
Ω to Q and G is its inverse, 
onsider ϕ̃ de�ned by

ϕ̃i(x) =
N

∑

j=1

∂Hj

∂xi
(ϕj ◦H).By Theorem 3.2, there is ψ̃ ∈ (W1,N

0 ∩ L∞)(Q;RN ) and η̃ ∈ W2,N
0 (Q). One
he
ks immediately that η = η̃ ◦G and

ψ̃i =
N

∑

j=1

∂Gj

∂xi
(ψj ◦G)satisfy the 
on
lusion with estimates independent of ϕ. The 
ase of a generalsmooth domain follows then by partition of unity. �With Lemma 3.3, we 
an now prove that the data f is in the dual of

W 1,N
0 (Ω), more pre
isely:Lemma 3.4. Let Ω ⊂ R

N be a smooth bounded domain and let f ∈ L1(Ω;RN )be su
h that (3.1) holds. For every ϕ ∈ (W1,N
0 ∩ L∞)(Ω;RN ),

∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ C(‖f‖L1 + [f ])‖Dϕ‖LN .



6 HAÏM BREZIS AND JEAN VAN SCHAFTINGENProof. Write ϕ ∈ (W1,N
0 ∩L∞)(Ω;RN ) as ϕ = ψ+∇η a

ording to Lemma 3.3.One has

∫

Ω
f · ϕ =

∫

Ω
f · (ψ + ∇η)

≤ ‖f‖L1‖ψ‖L∞ + [f ]‖D2η‖LN ≤ C(‖f‖L1 + [f ])‖Dϕ‖LN .

�Remark 3.2. Starting from the estimate(3.2) ∣

∣

∣

∫

RN

f · ϕ
∣

∣

∣
≤ C(‖f‖L1‖Dϕ‖LN + ‖div f‖L1‖ϕ‖L1),whi
h has an elementary proof [8℄, it is possible to obtain(3.3) ∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ C(‖f‖L1‖ϕ‖W1,N + ‖div f‖L1‖ϕ‖L1),for every f ∈ L1(Ω;RN ) and ϕ ∈ (W1,N

0 ∩ L∞)(Ω;RN ). This is provedby extension of f to a small neighbourhood of Ω and multipli
ation of thisextension by a suitable 
uto� fun
tion. Note that, trivially,
[f ] ≤ C‖div f‖L1 ,and thus (3.3) is an immediate 
onsequen
e of Lemma 3.4. However, we 
allthe attention of the reader to the fa
t that (3.2) has an elementary proof,while the proof of Lemma 3.3 is quite elaborate.The other tool to obtain our regularity result is an ellipti
 regularity resultfor data in W−1,p(Ω) that is well-known to the experts, but di�
ult to �ndin the litterature. Mu
h more general estimates are obtained e.g. in [4℄.Lemma 3.5. Let Ω ⊂ R

N be a smooth domain. Let F ∈ Lp(Ω), 1 < p <∞.There is a unique u ∈ W1,p
0 (Ω) that solves
{

−∆u = − divF in Ω

u = 0 on ∂Ω.Moreover,
‖u‖W1,p ≤ C‖F‖Lp .The proof of Theorem 3.1 is a dire
t 
onsequen
e of Lemmas 3.4 and 3.5.Remark 3.3. Most of the results of this paper 
an be easily lo
alized. Hereis a typi
al lo
alization: Let u ∈ W1,1(Ω∩B(x0, R);RN ) and let f ∈ L1(Ω∩

B(x0, R);RN ). If
{

−∆u = f in Ω ∩B(x0, R),
u = 0 on (∂Ω) ∩B(x0, R),and

sup
{

∫

Ω
f · ∇ζ : ζ ∈ C2

(

Ω ∩B(x0, R)
),

ζ = 0 on ∂(

Ω ∩B(x0, R)
) and ‖D2ζ‖LN ≤ 1

}

<∞then u ∈ W1,N/(N−1)
(

Ω ∩B(x0, R/2);R
N

).



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 73.2. The Lapla
e equation with Neumann boundary 
ondition.Theorem 3.6. Let Ω ⊂ R
N be a smooth and bounded domain. Let f ∈

L1(Ω;RN ) and g ∈ L1(∂Ω;RN ). If(3.4) [f, g] = sup
{

∫

Ω
f · ∇ζ +

∫

∂Ω
g · ∇ζ : ζ ∈ C2(Ω)and ‖D2ζ‖LN ≤ 1

}

<∞,then the system










−∆u = f in Ω,
∂u
∂n = g on ∂Ω,
∫

Ω u = 0,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) and
‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f, g]).Remark 3.4. If div f = 0 in Ω, f · n = 0, g · n = 0 and div g = 0 on ∂Ω,then [f, g] = 0. As explained in Remark 2.3, the 
onditions g = 0 on ∂Ω,

div f = 0 in Ω and ∫

Ω f = 0 do not imply the 
on
lusion of Theorem 3.6.A �rst thing to note is that the ne
essary 
ondition for the existen
e ofsolution ∫

Ω f +
∫

∂Ω g = 0 is satis�ed.Lemma 3.7. If Ω ⊂ R
N be a smooth and bounded domain, then f ∈

L1(Ω;RN ) and g ∈ L1(∂Ω;RN ) satisfy the assumptions of Theorem 3.6 ifand only if ∫

Ω f +
∫

∂Ω g = 0 and(3.5) [f, g]′ = sup
{

∫

Ω
f · ∇ζ +

∫

∂Ω
g · ∇ζ : ζ ∈ C2(Ω)and ‖ζ‖W2,N ≤ 1

}

<∞.Proof. First assume f satis�es the assumptions of Theorem 3.6. It is then
lear that [f, g] <∞. Moreover, for every 1 ≤ i ≤ N , taking ζi(x) = xi, onehas D2ζi = 0, so that sin
e K <∞, ∫

Ω fi +
∫

∂Ω gi = 0.On the other hand, assume ∫

Ω f+
∫

∂Ω g = 0 and (3.5) holds. For every ζ ∈

C2(Ω), there is ζ ′ su
h that D2ζ ′ = D2ζ, ∫

Ω ζ
′ = 0 and ∫

Ω ∇ζ ′ = 0, so that
∇ζ − ∇ζ ′ is 
onstant and by Poin
aré's inequality, ‖ζ ′‖W2,N ≤ C‖D2ζ‖LN .Therefore,

∫

Ω
f · ∇ζ +

∫

∂Ω
g · ∇ζ =

∫

Ω
f · ∇ζ ′ +

∫

∂Ω
g · ∇ζ ′

≤ [f, g]′‖ζ ′‖W2,N ≤ C[f, g]′‖D2ζ‖W2,N .

�In order to prove Theorem 3.1, also re
allTheorem 3.8 (Bourgain and Brezis [2℄). For every ϕ ∈ W1,N (Q;RN ), thereexist ψ ∈ (W1,N ∩ L∞)(Q;RN ) and η ∈ W2,N (Q) su
h that
ϕ = ψ + ∇η.



8 HAÏM BREZIS AND JEAN VAN SCHAFTINGENMoreover,
‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Theorem 3.8 
an be extended to any smooth domain:Lemma 3.9. Let Ω ⊂ R

N be a smooth domain. For every ϕ ∈ W1,N (Ω;RN ),there exist ψ ∈ (W1,N ∩ L∞)(Ω;RN ) and η ∈ W2,N (Ω) su
h that
ϕ = ψ + ∇η.Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Proof. Sin
e Ω is bounded, up to translation and s
aling, Ω ⊂ Q. The 
on
lu-sion is obtained by extending ϕ to Q, applying Theorem 3.8 and restri
ting
ψ and η to Ω. �With Lemma 3.9, we 
an now proveLemma 3.10. Let Ω ⊂ R

N be a smooth and bounded domain. Let f ∈
L1(Ω;RN ) and g ∈ L1(∂Ω;RN ). If (3.4) holds, then for every ϕ ∈ (W1,N ∩
L∞)(Ω;RN ),

∣

∣

∣

∫

Ω
f · ϕ+

∫

∂Ω
g · ϕ

∣

∣

∣
≤ C(‖f‖L1 + ‖g‖L1 + [f, g])‖Dϕ‖LN .Proof. Write ϕ ∈ (W1,N∩L∞)(Ω;RN ) as ϕ = ψ+∇η a

ording to Lemma 3.9.One has

∫

Ω
f · ϕ+

∫

∂Ω
g · ϕ =

∫

Ω
f · (ψ + ∇η) +

∫

∂Ω
g · (ψ + ∇η)

≤ (‖f‖L1 + ‖g‖L1)‖ψ‖L∞ + [f, g]‖D2η‖LN

≤ C(‖f‖L1 + ‖g‖L1 + [f, g])‖Dϕ‖LN .

�Remark 3.5. As in Remark 3.2, using the estimate (3.2), one 
an obtain theweaker estimate
∣

∣

∣

∫

Ω
f · ϕ+

∫

∂Ω
g · ϕ

∣

∣

∣
≤ C

(

(‖f‖L1 + ‖g‖L1(∂Ω))‖Dϕ‖LN

+ (‖div f‖L1 + ‖f · n‖L1(∂Ω) + ‖div g‖L1(∂Ω))‖ϕ‖LN

)

,for every f ∈ L1(Ω;RN ), g ∈ L1(Ω;RN ) and ϕ ∈ (W1,N ∩ L∞)(Ω;RN ).The proof 
onsists in noting that (3.2) remains valid for measures and inextending f to R
N by 0 and taking a W1,N extension of u to R

N andapplying the estimate (3.2) on R
N .The last tool to obtain our regularity result is the 
ounterpart of Lemma3.5 for Neumann boundary 
ondition.Lemma 3.11. Let Ω ⊂ R

N be a bounded smooth domain and let 1 < p <∞.If F ∈ Lp(Ω;RN ), there is a unique u ∈ W1,p(Ω) su
h that ∫

Ω u = 0 thatsolves
∫

Ω
∇u · ∇ϕ =

∫

Ω
F · ∇ϕ, ∀ϕ ∈ C1(Ω).Moreover,

‖u‖W1,p ≤ C‖F‖Lp .



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 93.3. The Lapla
e equation with nonzero Diri
hlet boundary 
ondi-tion.Theorem 3.12. Let Ω ⊂ R
N be a smooth and bounded open set. Let g ∈

L1(∂Ω;RN ). If
[g] = sup

{

∫

∂Ω
g · ∇ζ : ζ ∈ C2(Ω) and ‖ζ‖W2,N ≤ 1

}

<∞,then the system
{

−∆u = 0 in Ω,
u = g on ∂Ω,has a unique weak solution u ∈ LN/(N−1)(Ω;RN ) and

‖u‖LN/(N−1) ≤ C(‖g‖L1 + [g]).In parti
ular, when g is tangent to ∂Ω and div g = 0 on ∂Ω in the senseof distributions, i.e.,
∫

∂Ω
g · ∇ϕ = 0 ∀ϕ ∈ C1(∂Ω),then u ∈ LN/(N−1)(Ω;RN ) and
‖u‖LN/(N−1) ≤ C‖g‖L1 .Proof. Assume without loss of generality that ∫

∂Ω g = 0. By 
lassi
al regu-larity estimates, there exists a solution u ∈ Lq for q < N/(N − 1). Let now
ϕ ∈ C∞(Ω;RN ) and let Φ be the solution of

{

−∆Φ = ϕ in Ω,

Φ = 0 on ∂Ω.By the 
lassi
al regularity estimates, Φ ∈W 2,N(RN ;RN ) and
‖Φ‖W 2,N (RN ;RN ) ≤ ‖ϕ‖LN (RN ;RN ).Combining the de�nitions of Φ and u, one has(3.6) ∫

Ω
u · ϕ = −

∫

∂Ω
g ·

∂Φ

∂n
.Sin
e Ω is smooth, the smooth ve
tor �eld n de�ned on ∂Ω 
an be extendedsmoothly to Ω; we denote it ñ. The ve
tor �eld g satis�es the assumptionsof Lemma 3.10 with f = 0, one has therefore

∫

∂Ω
g ·

∂Φ

∂n
≤ C(‖g‖L1 + [g])‖ñ ·DΦ‖W1,N

≤ C ′(‖g‖L1 + [g])‖Φ‖W 2,N ≤ C ′′(‖g‖L1 + [g])‖ϕ‖LN .Combining this with (3.6), one dedu
es, sin
e ϕ is arbitrary, that u ∈

W1,N/(N−1) with the desired estimate. �



10 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN3.4. The Lapla
e equation with other boundary 
onditions. Sin
ewe are dealing with systems, we 
an pres
ribe Diri
hlet on some 
omponentsand Neumann on the others. The assumptions on f on the boundary haveto be made a

ordingly. The 
ondition on the tangential 
omponent plays adistinguished role.Theorem 3.13. Let Ω ⊂ R
N be a bounded smooth domain and let f ∈

L1(Ω;RN ). If (3.1) holds, then the system(3.7) 









−∆u = f in Ω,
u− (u · n)n = 0 on ∂Ω,
∂u
∂n · n = 0 on ∂Ω,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) and

‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f ]).Theorem 3.14. Let Ω ⊂ R
N be a bounded Lips
hitz domain. Let f ∈

L1(Ω;RN ). If (3.4) holds with g = 0, then the system










−∆u = f in Ω,

u · n = 0 on ∂Ω,
∂u
∂n − (∂u

∂n · n)n = 0 on ∂Ω,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) and
‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f, 0]).Problem (3.7) is weakly formulated as

∫

Ω
Du ·Dϕ =

∫

Ω
f · ϕ,for every ϕ ∈ C∞(Ω;RN ) su
h that ϕ − (ϕ · n)n = 0 on ∂Ω. In order topursue the strategy of the proof of Theorem 3.1, we need to re�ne Lemma3.4 intoLemma 3.15. Let Ω ⊂ R

N be a smooth bounded domain and let f ∈
L1(Ω;RN ) be su
h that (3.1) holds. For every ϕ ∈ (W1,N ∩ L∞)(Ω;RN )su
h that ϕ− (ϕ · n)n = 0 on ∂Ω,

∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ C(‖f‖L1 + [f ])‖Dϕ‖LN .Lemma 3.15 is proved as Lemma 3.4, using, instead of Lemma 3.3, thefollowingLemma 3.16. Let Ω ⊂ R

N be a smooth domain. For every ϕ ∈ W1,N (Ω;RN )su
h that ϕ− (ϕ · n)n = 0 on ∂Ω, there exist ψ ∈ (W1,N
0 ∩ L∞)(Ω;RN ) and

η ∈ W2,N (Ω), su
h that η = 0 on ∂Ω and
ϕ = ψ + ∇η.Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .
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0 (Ω;RN ) and θ ∈ W2,N (Ω) su
h that

ϕ = ϕ̃+ ∇θand θ = 0 on ∂Ω (see e.g. [2, Lemma 2℄). By applying Lemma 3.3 to ϕ̃, oneobtains the 
on
lusion. �4. First-order ellipti
 systems4.1. div− curl systems in 3�d. Here we 
onsider the system
{

divZ = 0,

curlZ = Y,together with boundary 
onditions either on the normal or on the tangentialpart of Z.Theorem 4.1. Let Ω ⊂ R
3 be a 
ontra
tible smooth domain, and let Y ∈

L1(Ω;R3). If div Y = 0, then there exists a unique Z ∈ L3/2(Ω;R3) su
hthat










divZ = 0 in Ω,
curlZ = Y in Ω,
Z · n = 0 on ∂Ω.Proof. The 
lassi
al 
onstru
tion yields a solution Z ∈ Lq(Ω;R3), for q <

3/2. Let X ∈ C∞(Ω;RN ). By the 
lassi
al Hodge de
omposition, there are
ϕ ∈ C∞(Ω) and A ∈ C∞(Ω;RN ) su
h that

X = ∇ϕ+ curlA,

A× n = 0 on ∂Ω, and ‖ϕ‖W1,3 + ‖A‖W1,3 ≤ C‖X‖L3 . Integrating by parts,and applying Lemma 3.15, one obtains,
∫

Ω
Z ·X =

∫

Ω
Z · (∇ϕ+ curlA) =

∫

Ω
Y · A

≤ C‖Y ‖L1‖A‖W1,3 ≤ C ′‖Y ‖L1‖X‖L3 .Sin
e X is arbitrary, Z ∈ L3/2 with the required estimate. �Remark 4.1. Sin
e these estimates 
an be lo
alized (see Remark 3.3), theresult extends to smooth domains whi
h are not 
ontra
tible provided thesuitable 
onditions of orthogonality with harmoni
 �elds are met by the data.One 
an also pres
ribe the tangential part of Z on ∂Ω:Theorem 4.2. Let Ω ⊂ R
3 be a 
ontra
tible smooth domain, let Y ∈

L1(Ω;R3) and V ∈ L1(∂Ω;R3) be su
h that V · n = 0 on ∂Ω. If div Y = 0in Ω and Y · n = div V on ∂Ω in the sense that(4.1) ∀ϕ ∈ C∞(Ω),

∫

Ω
Y · ∇ϕ = −

∫

∂Ω
V · ∇ϕ,then there exists Z ∈ L3/2(Ω;R3) su
h that(4.2) 









divZ = 0 in Ω,
curlZ = Y in Ω,
Z ∧ n = V on ∂Ω.



12 HAÏM BREZIS AND JEAN VAN SCHAFTINGENRemark 4.2. Clearly (4.1) is a ne
essary 
ondition for the solvability of (4.2).4.2. Systems of di�erential forms. If ω : Ω → Λk
R

N is a di�erentialform, δω denotes its exterior 
odi�erential and tω its tangential 
omponenton the boundary. An extension to higher dimensions and to k�forms isTheorem 4.3. Let N ≥ 4, Ω ⊂ R
N be a 
ontra
tible smooth domain, 2 ≤

k ≤ N − 2, α ∈ L1(Ω;Λk+1), β ∈ L1(Ω;Λk−1
R

N ) and γ ∈ L1(∂Ω;Λk∂Ω). If
dα = 0, δβ = 0 and tα = dγ in the sense that

∫

Ω
α ∧ dϕ =

∫

∂Ω
γ ∧ dϕ ∀ϕ ∈ C1(Ω;ΛN−k−2

R
N ),(4.3)

∫

Ω
β ∧ δϕ = 0 ∀ϕ ∈ C1(Ω;ΛN−k+2

R
N ) s.t. nϕ = 0,then there exists a unique ω ∈ LN/(N−1)(Ω;Λk

R
N ) su
h that











dω = α in Ω,
δω = β in Ω,
tω = γ on ∂Ω.Remark 4.3. The 
ounterpart in the whole spa
e 
an be found in [2℄ and [5℄.The analogue of Lemma 3.3 for k-forms isLemma 4.4. Let Ω ⊂ R

N be a smooth domain and let 1 ≤ k ≤ N . Forevery ϕ ∈ W1,N (Ω;Λk
R

N ), there exist ψ ∈ (W1,N ∩ L∞)(Ω;Λk
R

N ) and
η ∈ W2,N (Ω;Λk+1) su
h that

ϕ = ψ + dη,satisfying
‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .If moreover tϕ = 0 on ∂Ω, then one 
an 
hoose ψ and η su
h that ψ = 0 on

∂Ω and η = 0 on ∂Ω.If, in addition, ϕ = 0 on ∂Ω, then one 
an take η ∈ W2,N
0 (Ω;Λk−1

R
N ).Proof. The k-form ϕ 
an be written as

ϕ =
∑

i1<···<ik

ϕi1...ikdxi1 ∧ · · · ∧ dxik .By Lemma 3.9, there exist ψi1...ik ∈ (W1,N∩L∞)(Ω;Λ1
R

N ) and η ∈ W2,N (Ω;Λ0
R

N )su
h that
ϕi1...ikdxi1 = ψi1...ik + dηi1...ik .The 
on
lusion now holds with

ψ =
∑

i1<···<ik

ψi1...ikdxi2 ∧ · · · ∧ dxik ,

η =
∑

i1<···<ik

ηi1...ikdxi2 ∧ · · · ∧ dxik .In the 
ase where ϕ = 0 on ∂Ω, if one uses Lemma 3.3 in pla
e of Lemma3.9, one 
onstru
ts ψ ∈ (W1,N
0 ∩L∞)(Ω;Λk

R
N ) and η ∈ W2,N

0 (Ω;Λk−1
R

N ).In the general 
ase, as in the proof of Lemma 3.16, when ϕ ∈ W1,N (Ω;Λk
R

N )
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0 (Ω;Λk

R
N ) and η̃ su
h that ϕ = ϕ̃+ dη̃ and

η̃ = 0 on ∂Ω. We are thus redu
ed to the previous 
ase with ϕ̃ repla
ing
ϕ. �As Lemmas 3.10 and 3.15 followed from Lemmas 3.9 and 3.16, one dedu
esfrom Lemma 4.4 theLemma 4.5. Let Ω ⊂ R

N be a smooth bounded domain and let 1 < k < n.Let α ∈ L1(Ω;Λk
R

N ) let γ ∈ L1(Ω;Λk−1
R

N ). If dα = 0 in Ω, then forevery ϕ ∈ (W1,N ∩ L∞)(Ω;ΛN−k
R

N ) su
h that tϕ = 0,
∣

∣

∣

∫

Ω
α ∧ ϕ

∣

∣

∣
≤ C‖α‖L1‖Dϕ‖LN .If dα = 0 in Ω and dγ = tα on ∂Ω in the sense of (4.3), then for every

ϕ ∈ (W1,N ∩ L∞)(Ω;ΛN−k
R

N )
∣

∣

∣

∫

Ω
α ∧ ϕ+

∫

∂Ω
γ ∧ ϕ

∣

∣

∣
≤ C(‖α‖L1 + ‖γ‖L1)‖Dϕ‖LN .Proof of Theorem 4.3. Let ζ ∈ C∞(Ω;ΛN−k

R
N ). By the 
lassi
al Hodgede
omposition for k-forms on domains [7℄, there are ϕ ∈ C∞(Ω;ΛN−k−1

R
N )and ψ ∈ C∞(Ω;ΛN−k+1

R
N ) su
h that ζ = dϕ+ δψ, nψ = 0 and

‖ϕ‖W1,N + ‖ψ‖W1,N ≤ C‖ζ‖LN .One has thus
∫

Ω
ω ∧ ζ =

∫

Ω
ω ∧ (dϕ+ δψ).One estimates then, by Lemma 4.5

∫

Ω
ω ∧ dϕ =

∫

∂Ω
γ ∧ ϕ+

∫

Ω
α ∧ ϕ

≤ C(‖α‖L1 + ‖γ‖L1)‖Dϕ‖LN ≤ C ′(‖α‖L1 + ‖γ‖L1)‖ζ‖LNSimilarly, sin
e d(∗β) = 0 and t ∗ ψ = 0, by Lemma 4.5 again
∫

Ω
ω ∧ δψ =

∫

Ω
∗β ∧ ∗ψ ≤ C‖β‖L1‖Dϕ‖LN ≤ C‖β‖L1‖ζ‖LN . �Appendix A. Estimates for Green's fun
tions in 2-dThroughout this appendix Ω is a smooth bounded domain in R

2.De�nition A.1. The Green's fun
tion G of Ω with Diri
hlet boundary 
on-dition is de�ned by G(x, y) = 0 if x ∈ ∂Ω and G(·, y)− 1
2π log 1

·−y is harmoni
in Ω for every y ∈ Ω.De�nition A.2. The Green's fun
tion G of Ω with Neumann boundary 
on-dition (also 
alled Neumann's fun
tion) is de�ned by
∇xG(x, y) · n = 0for (x, y) ∈ ∂Ω × Ω, where n denotes the normal to the boundary at x, and

−∆
(

G(·, y) −
1

2π
log

1

|· − y|

)

= −
1

|Ω|
,in Ω, where |Ω| denotes the area of Ω.



14 HAÏM BREZIS AND JEAN VAN SCHAFTINGENThe Green's fun
tions 
an be 
omputed expli
itly for the unit disk D ⊂
R

2 ≡ C: One has, for x, y ∈ D,
G(x, y) =

1

2π
log

|1 − ȳx|

|x− y|
,where ȳ is the 
omplex 
onjugate of y and ȳx is the produ
t of ȳ and x in

C. For the Neumann boundary 
ondition one has
G(x, y) =

1

2π

(

log
1

|x− y||1 − ȳx|
+

|x|2 + |y|2 + 1

2

)

.One has the following estimate on the derivative of Green's fun
tion withDiri
hlet boundary 
ondition.Proposition A.1 (Bramble and Payne). Let Ω be a smooth bounded domainand G be Green's fun
tion with Diri
hlet's boundary 
ondition. Then thereis a 
onstant C su
h that for every x, y ∈ Ω,(A.1) |∇yG(x, y)| ≤
C

|x− y|
.This is proved by the maximum prin
iple for the Green's fun
tion withDiri
hlet boundary 
onditions, see [3℄.Another method to obtain it is to express Green's fun
tion by 
onformalmapping.Proposition A.2. Let Ω be a simply-
onne
ted domain and G be the asso-
iated Green's fun
tion with Diri
hlet boundary 
onditions. If ψ : Ω → D is
onformal, then

G(x, y) =
1

2π
log

|1 − ψ(y)ψ(x)|

|ψ(x) − ψ(y)|Thus, in view of Theorem A.4, (A.1) holds.Proposition A.3. Let Ω be a bounded simply-
onne
ted domain and G bethe asso
iated Green's fun
tion with Neumann boundary 
onditions. If ψ ∈
Ck,α(Ω;D) is 
onformal, then there exists w ∈ Ck+1,α(Ω) su
h that(A.2) G(x, y) =

1

2π
log

1

|ψ(x) − ψ(y)||1 − ψ(y)ψ(x)|
+ w(x) +w(y).In parti
ular,

sup
x,y∈∂Ω

∣

∣

∣
∇xG(x, y)

∣

∣

∣
≤

C

|x− y|
.Proof. Let GD denote Green's fun
tion on the disk with Neumann boundary
ondition and de�ne

G̃(x, y) = GD(ψ(x), ψ(y)).For every ϕ ∈ C1(Ω) and y ∈ Ω, sin
e ψ is 
onformal,
∫

Ω
∇xG̃(x, y) · ∇u(x) dx =

∫

D
∇ξGD(ξ, ψ(y)) · ∇u(ψ−1(ξ)) dξ

= u(y) −
1

2π

∫

D
u(ψ−1(ξ)) dξ = u(y) −

1

2π

∫

Ω
|ψ′(ξ)|2u(ξ) dξ,



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 15i.e., for every y ∈ Ω, G̃ satis�es the equation:
{

−∆G̃(x, y) = δy − |ψ′(x)|2/(2π) in Ω,

∂G̃/∂n(x, y) = 0 on ∂Ω.By the 
lassi
al S
hauder estimates, there is w̃ ∈ Ck+1(Ω) to be the solutionof the problem










−∆w̃ = |ψ′(x)|2/(2π) − 1/|Ω| in Ω,

∂w̃/∂n = 0 on ∂Ω,
∫

Ω w dx = 0.Moreover, for every y ∈ Ω,
1

|Ω|

∫

Ω
G̃(x, y) dx =

∫

Ω
G̃(x, y)|ψ′(x)|2 dx+

∫

Ω
G̃(x, y)

( 1

|Ω|
−

|ψ′(x)|2

2π

)

dx

=
1

2π

∫

Ω
GD(ξ, ψ(y)) dξ +

∫

Ω
G̃(x, y)∆w̃(x) dx

= −w̃(y) +

∫

Ω
w̃(x)

|ψ′(x)|2

2π
dx = w̃(y) −

∫

Ω
w̃(x)∆w̃(x) dx

= w̃(y) +

∫

Ω
|∇w̃(x)|2 dx.Therefore one has

G(x, y) = G̃(x, y) + w̃(x) + w̃(y) +

∫

Ω
|∇w̃|2 dx.whi
h yields the desired 
on
lusion (A.2). �Theorem A.4 (Kellogg (1912), Wars
hawski (1932)). Let Ω ⊂ R

2 be abounded simply-
onne
ted domain and let ψ : Ω → D be a 
onformal map-ping. If ∂Ω is of 
lass Ck,α, then ψ ∈ Ck,α(Ω) and ψ−1 ∈ Ck,α(Ω).A modern version of this 
an be found in [6℄, where Theorem 3.6 givesthe Hölder 
ontinuity of the derivatives of ψ−1, and Theorem 3.5 states that
(ψ−1)′ 6= 0, and therefore, by the impli
it fun
tion Theorem ψ ∈ Ck,α(Ω).A
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