
BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH
L1�DATAHAÏM BREZIS (1),(2) AND JEAN VAN SCHAFTINGEN (3)Abstrat. 1. IntrodutionReently, new estimates for L1�vetor �elds have been disovered by Bour-gain and Brezis [1, 2℄, whih yield in partiular improved estimates for thesolutions of ellipti systems in R

N or in a ube Q ⊂ R
N with periodiboundary onditions. Simpli�ed proof of some of the results have been givenby Van Shaftingen [8℄. Here are two typial results:Theorem 1.1. Let f ∈ L1(RN ;RN ), N ≥ 3. If div f = 0, then the system

−∆u = f in R
N ,admits a unique solution u ∈ LN/(N−2)(RN ;RN ) with ∇u ∈ LN/(N−1).A similar onluion holds for the same problem in a ube with periodiboundary onditions.Theorem 1.2. Let f ∈ L1(R2;R2). If div f = 0, then the system

−∆u = f in R
N ,admits a unique solution u ∈ (L∞ ∩ C)(R2;R2) with ∇u ∈ L2.Our main goal in this paper is to address similar questions in domains

Ω ⊂ R
N with Dirihlet or Neumann boundary onditions. Interior estimatesan be easily derived from the results in [1, 2, 8℄. However the question ofestimates up to the boundary requires some further work.In setion 2, we study the system

−∆u = f in Ω ⊂ R
2,together with the Dirihlet boundary ondition u = 0 on ∂Ω or the Neumannboundary ondition ∂u/∂n = 0 on ∂Ω. For the Dirihlet problem, we showthat if f ∈ L1(Ω;R2) and div f = 0, then u ∈ C(Ω;R2) ∩ W1,2(Ω;R2). Forthe Neumann problem, we get the same onlusion under the additionnalassumption that (f · n) = 0 on ∂Ω; suh a ondition plays an essential role,see Remark 2.3. The proofs are elementary; they involve sharp estimates forthe Green's funtions. These are well-known to the experts and are presentedin Appendix A for the onveniene of the reader.In setion 3, we start with the system(1.1) {

−∆u = f in Ω,

u = 0 on ∂Ω,1



2 HAÏM BREZIS AND JEAN VAN SCHAFTINGENwith Ω ⊂ R
N , N ≥ 2 and f ∈ L1(RN ;RN ). If div f = 0, the heart of thematter is the inequality(1.2) ∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ ‖f‖L1‖Dϕ‖LN ,for every ϕ ∈ (W1,N

0 ∩ L∞)(Ω;RN ), whih we derive from similar estimatesin [1, 2, 8℄. Therefore it admits an elementary proof in the spirit of [8℄.Next we ombine (1.2) with standard Lp regularity theory to onlude that
u ∈ W1,N/(N−1)(Ω;RN ) when f ∈ L1(Ω;RN ) and div f = 0.A muh more deliate result asserts that if f ∈ L1(Ω;R2) and div f ∈

(W2,N +W1,N
0 )∗, one still has u ∈ W1,N/(N−1)(Ω;RN ). The main ingredientis due to Bourgain and Brezis and asserts that every vetor �eld in W1,N

0belongs to L∞ modulo gradients (see the preise statements in Theorem 3.2and Lemma 3.3).The remainder of setion 3 is devoted to the pure Neumann boundaryonditions and to various mixtures of Dirihlet and Neumann boundary on-ditions. We also onsider the problem
{

−∆u = 0 in Ω,

u = 0 on ∂Ω.In setion 4, we present estimates up to the boundary for the problem
{

divZ = 0 in Ω,

curlZ = Y in Ω,where Ω ⊂ R
3, together with the boundary onditions Z ·n = 0 or Z×n = 0.Next we present some results for �rst-order systems of k�forms, 2 ≤ k ≤

N − 2, suh as
{

dω = α in Ω,

δω = β in Ω.2. Ellipti systems in R
2Theorem 2.1. Let Ω ⊂ R

2 be a smooth simply-onneted domain and let
f ∈ L1(Ω;R2). If div f = 0 in the sense of distributions, i.e.,

∫

Ω
f · ∇ζ = 0, ∀ζ ∈ C1

0 (Ω),then the problem
{

−∆u = f in Ω,

u = 0 on ∂Ω,has a unique solution u ∈ W1,2(Ω;R2) ∩ C(Ω;R2) satisfying(2.1) ‖u‖W1,2 + ‖u‖L∞ ≤ C‖f‖L1 .Proof. By lassial regularity estimates, there is a solution u ∈ W1,q , for
q < 2. Sine div f = 0, there exists F ∈ W1,1(Ω) suh that f = (−∂2F, ∂1F )



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 3and ∫

Ω F = 0. By Sobolev's inequality, ‖F‖L2 ≤ C‖f‖L1 . For every ϕ ∈

C∞
c (Ω;R2), one has

∫

Ω
∇u · ∇ϕ =

∫

Ω
f · ϕ =

∫

Ω
F (∂2ϕ1 − ∂1ϕ2) ≤ C‖f‖L1‖∇ϕ‖L2 .Therefore u ∈ W1,2(Ω;R2) with the required estimate.We now prove that u ∈ L∞. Let G denote the Green's funtion assoiatedto Dirihlet boundary ondition for Ω. Integrating by parts, one has, forevery x ∈ Ω,(2.2) u(x) =

∫

Ω
G(x, y)f(y) dy

= −

∫

Ω
(x− y)(∇yG(x, y) · f(y)) dy −

∫

Ω
G(x, y)(x − y) div f(y) dy

= −

∫

Ω
(x− y)(∇yG(x, y) · f(y)) dy,sine div f = 0. By Proposition A.1, |∇G(x, y)||x− y| is uniformly boundedfor x, y ∈ Ω. Hene u satis�es the required estimate. To prove that uis ontinuous, assume that xn → x. Then u(xn) → u(x) by (2.2) andLebesgue's dominated onvergene Theorem. �Remark 2.1. In the more general ase where f ∈ L1(Ω;R2) and div f ∈

L1(Ω), one obtains the ontinuity and the boundedness of u from the bound-edness of |∇yG(x, y)||x − y| on Ω × Ω. Using the the estimate
∫

Ω
|∇u|2 =

∫

Ω
u · f ≤ ‖u‖L∞‖f‖L1 ≤ C(‖f‖L1 + ‖div f‖L1)‖f‖L1 ,one onludes u ∈ W1,2(Ω;R2). Theorem 3.1 in the next setion gives W1,2(but not L∞!) estimates under the weaker ondition div f ∈ (W2,2 ∩W1,2

0 )∗.Remark 2.2. The onlusion of Theorem 2.1 remains valid if f is a measure(more preisely, f belongs to the dual spae of C0(Ω)). The proof of thebounds in W1,2 and in L∞ are unhanged. To prove that u is ontinuous,assume that xn → x ∈ Ω. Then
(xn − y)(∇yG(xn, y)) → (x− y)(∇yG(x, y))for every y ∈ Ω \{0}. On the other hand, the measure f belongs to the dualspae of W1,2

0 (Ω) and thus it does not harge points. One an onlude asbefore by Lebesgue's dominated onvergene Theorem.Theorem 2.2. Let Ω ⊂ R
2 be a smooth simply-onneted domain and let

f ∈ L1(Ω;R2). If div f = 0 in Ω and f · n = 0 on ∂Ω in the sense that
∫

Ω
f · ∇ζ = 0, ∀ζ ∈ C1(Ω),then ∫

Ω f = 0 and the problem










−∆u = f in Ω,
∂u
∂n = 0 on ∂Ω,
∫

Ω u = 0,



4 HAÏM BREZIS AND JEAN VAN SCHAFTINGENhas a unique solution u ∈ W1,2(Ω;R2) ∩ C(Ω;R2) and satisfying (2.1).Proof. The proof of Theorem 2.2 is similar to the proof of Theorem 2.1.Sine f · n = 0 on ∂Ω, one an onstrut F suh that F = 0 on ∂Ω (in plaeof ∫

Ω F = 0 in the previous proof). Sine F ∈ W1,2
0 (Ω), one has

∫

Ω
f =

∫

Ω
(∇F )⊥ = 0.One onludes as before that u ∈ W1,2 and, using Proposition A.3, that u isbounded and ontinuous up to the boundary. �Remark 2.3. If one replaes the ondition f · n = 0 on ∂Ω in Theorem 2.2by ∫

Ω f = 0, the onlusion is not neessarily true. Assume without loss ofgenerality that 0 ∈ ∂Ω and that the normal to the boundary at 0 is parallelto the �rst oordinate axis. Choose a funtion ρ ∈ C∞
c (R2) suh that ρ ≥ 0and ∫

R
ρ(0, x2) dx2 = 1. De�ne ρε(x) = ρ(x/ε)/ε and

fε = (∇ρε)
⊥ −

1

|Ω|

∫

Ω
(∇ρε)

⊥.For every ϕ ∈ C(Ω;R2),
∫

Ω
fεϕ→ e1

(

ϕ(0) −
1

|Ω|

∫

Ω
ϕ
)

.Let now uε ∈ W1,2(Ω;R2) be the solution of










−∆uε = fε in R
2,

∂uε
∂n = 0 on ∂Ω,
∫

Ω uε = 0,and assume by ontradition that ‖∇uε‖L2 remains bounded as ε→ 0. Onehas then, for every ϕ ∈ C∞(Ω;R2),
∣

∣

∣
ϕ(0) −

1

|Ω|

∫

Ω
ϕ
∣

∣

∣
= lim

ε→0

∣

∣

∣

∫

Ω
fεϕ

∣

∣

∣
= lim

ε→0

∣

∣

∣

∫

Ω
∇uε · ∇ϕ

∣

∣

∣
≤ C‖∇ϕ‖L2 .This is not possible, sine W1,2(R2) is not imbedded in L∞(R2). Note that

∫

Ω
|∇uε|

2 ≤ ‖fε‖L1‖uε‖L∞ ,and thus ‖uε‖L∞ is not bounded as ε→ 0.3. Seond-order systems in higher dimensionsIn this setion, assume N ≥ 2.3.1. The Laplae equation with zero Dirihlet boundary ondition.Theorem 3.1. Let Ω ⊂ R
N be a smooth bounded domain and let f ∈

L1(Ω;RN ). If(3.1) [f ] = sup
{

∫

Ω
f · ∇ζ : ζ ∈ C2(Ω),

ζ = 0 on ∂Ω and ‖D2ζ‖LN ≤ 1
}

<∞,



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 5then the system
{

−∆u = f in Ω,
u = 0 on ∂Ω,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) satisfying

‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f ]).Remark 3.1. If div f = 0 in the sense of distributions, then [f ] = 0. Moregenerally,
[f ] = ‖div f‖

(W2,N∩W1,N
0 )∗

.In order to prove Theorem 3.1, �rst reallTheorem 3.2 (Bourgain and Brezis [2℄). For every ϕ ∈ W1,N
0 (Q;RN ), thereexist ψ ∈ (W1,N

0 ∩ L∞)(Q;RN ) and η ∈ W2,N
0 (Q) suh that

ϕ = ψ + ∇η,where Q denotes the unit ube in R
N . Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Theorem 3.2 an be extended to any smooth domain:Lemma 3.3. Let Ω ⊂ R
N be a smooth domain. For every ϕ ∈ W1,N

0 (Ω;RN ),there exist ψ ∈ (W1,N
0 ∩ L∞)(Ω;RN ) and η ∈ W2,N

0 (Ω) suh that
ϕ = ψ + ∇η.Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Proof. In the ase where there is a bi-Lipshitzian homeomorphism H from
Ω to Q and G is its inverse, onsider ϕ̃ de�ned by

ϕ̃i(x) =
N

∑

j=1

∂Hj

∂xi
(ϕj ◦H).By Theorem 3.2, there is ψ̃ ∈ (W1,N

0 ∩ L∞)(Q;RN ) and η̃ ∈ W2,N
0 (Q). Oneheks immediately that η = η̃ ◦G and

ψ̃i =
N

∑

j=1

∂Gj

∂xi
(ψj ◦G)satisfy the onlusion with estimates independent of ϕ. The ase of a generalsmooth domain follows then by partition of unity. �With Lemma 3.3, we an now prove that the data f is in the dual of

W 1,N
0 (Ω), more preisely:Lemma 3.4. Let Ω ⊂ R

N be a smooth bounded domain and let f ∈ L1(Ω;RN )be suh that (3.1) holds. For every ϕ ∈ (W1,N
0 ∩ L∞)(Ω;RN ),

∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ C(‖f‖L1 + [f ])‖Dϕ‖LN .



6 HAÏM BREZIS AND JEAN VAN SCHAFTINGENProof. Write ϕ ∈ (W1,N
0 ∩L∞)(Ω;RN ) as ϕ = ψ+∇η aording to Lemma 3.3.One has

∫

Ω
f · ϕ =

∫

Ω
f · (ψ + ∇η)

≤ ‖f‖L1‖ψ‖L∞ + [f ]‖D2η‖LN ≤ C(‖f‖L1 + [f ])‖Dϕ‖LN .

�Remark 3.2. Starting from the estimate(3.2) ∣

∣

∣

∫

RN

f · ϕ
∣

∣

∣
≤ C(‖f‖L1‖Dϕ‖LN + ‖div f‖L1‖ϕ‖L1),whih has an elementary proof [8℄, it is possible to obtain(3.3) ∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ C(‖f‖L1‖ϕ‖W1,N + ‖div f‖L1‖ϕ‖L1),for every f ∈ L1(Ω;RN ) and ϕ ∈ (W1,N

0 ∩ L∞)(Ω;RN ). This is provedby extension of f to a small neighbourhood of Ω and multipliation of thisextension by a suitable uto� funtion. Note that, trivially,
[f ] ≤ C‖div f‖L1 ,and thus (3.3) is an immediate onsequene of Lemma 3.4. However, we allthe attention of the reader to the fat that (3.2) has an elementary proof,while the proof of Lemma 3.3 is quite elaborate.The other tool to obtain our regularity result is an ellipti regularity resultfor data in W−1,p(Ω) that is well-known to the experts, but di�ult to �ndin the litterature. Muh more general estimates are obtained e.g. in [4℄.Lemma 3.5. Let Ω ⊂ R

N be a smooth domain. Let F ∈ Lp(Ω), 1 < p <∞.There is a unique u ∈ W1,p
0 (Ω) that solves
{

−∆u = − divF in Ω

u = 0 on ∂Ω.Moreover,
‖u‖W1,p ≤ C‖F‖Lp .The proof of Theorem 3.1 is a diret onsequene of Lemmas 3.4 and 3.5.Remark 3.3. Most of the results of this paper an be easily loalized. Hereis a typial loalization: Let u ∈ W1,1(Ω∩B(x0, R);RN ) and let f ∈ L1(Ω∩

B(x0, R);RN ). If
{

−∆u = f in Ω ∩B(x0, R),
u = 0 on (∂Ω) ∩B(x0, R),and

sup
{

∫

Ω
f · ∇ζ : ζ ∈ C2

(

Ω ∩B(x0, R)
),

ζ = 0 on ∂(

Ω ∩B(x0, R)
) and ‖D2ζ‖LN ≤ 1

}

<∞then u ∈ W1,N/(N−1)
(

Ω ∩B(x0, R/2);R
N

).



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 73.2. The Laplae equation with Neumann boundary ondition.Theorem 3.6. Let Ω ⊂ R
N be a smooth and bounded domain. Let f ∈

L1(Ω;RN ) and g ∈ L1(∂Ω;RN ). If(3.4) [f, g] = sup
{

∫

Ω
f · ∇ζ +

∫

∂Ω
g · ∇ζ : ζ ∈ C2(Ω)and ‖D2ζ‖LN ≤ 1

}

<∞,then the system










−∆u = f in Ω,
∂u
∂n = g on ∂Ω,
∫

Ω u = 0,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) and
‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f, g]).Remark 3.4. If div f = 0 in Ω, f · n = 0, g · n = 0 and div g = 0 on ∂Ω,then [f, g] = 0. As explained in Remark 2.3, the onditions g = 0 on ∂Ω,

div f = 0 in Ω and ∫

Ω f = 0 do not imply the onlusion of Theorem 3.6.A �rst thing to note is that the neessary ondition for the existene ofsolution ∫

Ω f +
∫

∂Ω g = 0 is satis�ed.Lemma 3.7. If Ω ⊂ R
N be a smooth and bounded domain, then f ∈

L1(Ω;RN ) and g ∈ L1(∂Ω;RN ) satisfy the assumptions of Theorem 3.6 ifand only if ∫

Ω f +
∫

∂Ω g = 0 and(3.5) [f, g]′ = sup
{

∫

Ω
f · ∇ζ +

∫

∂Ω
g · ∇ζ : ζ ∈ C2(Ω)and ‖ζ‖W2,N ≤ 1

}

<∞.Proof. First assume f satis�es the assumptions of Theorem 3.6. It is thenlear that [f, g] <∞. Moreover, for every 1 ≤ i ≤ N , taking ζi(x) = xi, onehas D2ζi = 0, so that sine K <∞, ∫

Ω fi +
∫

∂Ω gi = 0.On the other hand, assume ∫

Ω f+
∫

∂Ω g = 0 and (3.5) holds. For every ζ ∈

C2(Ω), there is ζ ′ suh that D2ζ ′ = D2ζ, ∫

Ω ζ
′ = 0 and ∫

Ω ∇ζ ′ = 0, so that
∇ζ − ∇ζ ′ is onstant and by Poinaré's inequality, ‖ζ ′‖W2,N ≤ C‖D2ζ‖LN .Therefore,

∫

Ω
f · ∇ζ +

∫

∂Ω
g · ∇ζ =

∫

Ω
f · ∇ζ ′ +

∫

∂Ω
g · ∇ζ ′

≤ [f, g]′‖ζ ′‖W2,N ≤ C[f, g]′‖D2ζ‖W2,N .

�In order to prove Theorem 3.1, also reallTheorem 3.8 (Bourgain and Brezis [2℄). For every ϕ ∈ W1,N (Q;RN ), thereexist ψ ∈ (W1,N ∩ L∞)(Q;RN ) and η ∈ W2,N (Q) suh that
ϕ = ψ + ∇η.



8 HAÏM BREZIS AND JEAN VAN SCHAFTINGENMoreover,
‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Theorem 3.8 an be extended to any smooth domain:Lemma 3.9. Let Ω ⊂ R

N be a smooth domain. For every ϕ ∈ W1,N (Ω;RN ),there exist ψ ∈ (W1,N ∩ L∞)(Ω;RN ) and η ∈ W2,N (Ω) suh that
ϕ = ψ + ∇η.Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .Proof. Sine Ω is bounded, up to translation and saling, Ω ⊂ Q. The onlu-sion is obtained by extending ϕ to Q, applying Theorem 3.8 and restriting
ψ and η to Ω. �With Lemma 3.9, we an now proveLemma 3.10. Let Ω ⊂ R

N be a smooth and bounded domain. Let f ∈
L1(Ω;RN ) and g ∈ L1(∂Ω;RN ). If (3.4) holds, then for every ϕ ∈ (W1,N ∩
L∞)(Ω;RN ),

∣

∣

∣

∫

Ω
f · ϕ+

∫

∂Ω
g · ϕ

∣

∣

∣
≤ C(‖f‖L1 + ‖g‖L1 + [f, g])‖Dϕ‖LN .Proof. Write ϕ ∈ (W1,N∩L∞)(Ω;RN ) as ϕ = ψ+∇η aording to Lemma 3.9.One has

∫

Ω
f · ϕ+

∫

∂Ω
g · ϕ =

∫

Ω
f · (ψ + ∇η) +

∫

∂Ω
g · (ψ + ∇η)

≤ (‖f‖L1 + ‖g‖L1)‖ψ‖L∞ + [f, g]‖D2η‖LN

≤ C(‖f‖L1 + ‖g‖L1 + [f, g])‖Dϕ‖LN .

�Remark 3.5. As in Remark 3.2, using the estimate (3.2), one an obtain theweaker estimate
∣

∣

∣

∫

Ω
f · ϕ+

∫

∂Ω
g · ϕ

∣

∣

∣
≤ C

(

(‖f‖L1 + ‖g‖L1(∂Ω))‖Dϕ‖LN

+ (‖div f‖L1 + ‖f · n‖L1(∂Ω) + ‖div g‖L1(∂Ω))‖ϕ‖LN

)

,for every f ∈ L1(Ω;RN ), g ∈ L1(Ω;RN ) and ϕ ∈ (W1,N ∩ L∞)(Ω;RN ).The proof onsists in noting that (3.2) remains valid for measures and inextending f to R
N by 0 and taking a W1,N extension of u to R

N andapplying the estimate (3.2) on R
N .The last tool to obtain our regularity result is the ounterpart of Lemma3.5 for Neumann boundary ondition.Lemma 3.11. Let Ω ⊂ R

N be a bounded smooth domain and let 1 < p <∞.If F ∈ Lp(Ω;RN ), there is a unique u ∈ W1,p(Ω) suh that ∫

Ω u = 0 thatsolves
∫

Ω
∇u · ∇ϕ =

∫

Ω
F · ∇ϕ, ∀ϕ ∈ C1(Ω).Moreover,

‖u‖W1,p ≤ C‖F‖Lp .



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 93.3. The Laplae equation with nonzero Dirihlet boundary ondi-tion.Theorem 3.12. Let Ω ⊂ R
N be a smooth and bounded open set. Let g ∈

L1(∂Ω;RN ). If
[g] = sup

{

∫

∂Ω
g · ∇ζ : ζ ∈ C2(Ω) and ‖ζ‖W2,N ≤ 1

}

<∞,then the system
{

−∆u = 0 in Ω,
u = g on ∂Ω,has a unique weak solution u ∈ LN/(N−1)(Ω;RN ) and

‖u‖LN/(N−1) ≤ C(‖g‖L1 + [g]).In partiular, when g is tangent to ∂Ω and div g = 0 on ∂Ω in the senseof distributions, i.e.,
∫

∂Ω
g · ∇ϕ = 0 ∀ϕ ∈ C1(∂Ω),then u ∈ LN/(N−1)(Ω;RN ) and
‖u‖LN/(N−1) ≤ C‖g‖L1 .Proof. Assume without loss of generality that ∫

∂Ω g = 0. By lassial regu-larity estimates, there exists a solution u ∈ Lq for q < N/(N − 1). Let now
ϕ ∈ C∞(Ω;RN ) and let Φ be the solution of

{

−∆Φ = ϕ in Ω,

Φ = 0 on ∂Ω.By the lassial regularity estimates, Φ ∈W 2,N(RN ;RN ) and
‖Φ‖W 2,N (RN ;RN ) ≤ ‖ϕ‖LN (RN ;RN ).Combining the de�nitions of Φ and u, one has(3.6) ∫

Ω
u · ϕ = −

∫

∂Ω
g ·

∂Φ

∂n
.Sine Ω is smooth, the smooth vetor �eld n de�ned on ∂Ω an be extendedsmoothly to Ω; we denote it ñ. The vetor �eld g satis�es the assumptionsof Lemma 3.10 with f = 0, one has therefore

∫

∂Ω
g ·

∂Φ

∂n
≤ C(‖g‖L1 + [g])‖ñ ·DΦ‖W1,N

≤ C ′(‖g‖L1 + [g])‖Φ‖W 2,N ≤ C ′′(‖g‖L1 + [g])‖ϕ‖LN .Combining this with (3.6), one dedues, sine ϕ is arbitrary, that u ∈

W1,N/(N−1) with the desired estimate. �



10 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN3.4. The Laplae equation with other boundary onditions. Sinewe are dealing with systems, we an presribe Dirihlet on some omponentsand Neumann on the others. The assumptions on f on the boundary haveto be made aordingly. The ondition on the tangential omponent plays adistinguished role.Theorem 3.13. Let Ω ⊂ R
N be a bounded smooth domain and let f ∈

L1(Ω;RN ). If (3.1) holds, then the system(3.7) 









−∆u = f in Ω,
u− (u · n)n = 0 on ∂Ω,
∂u
∂n · n = 0 on ∂Ω,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) and

‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f ]).Theorem 3.14. Let Ω ⊂ R
N be a bounded Lipshitz domain. Let f ∈

L1(Ω;RN ). If (3.4) holds with g = 0, then the system










−∆u = f in Ω,

u · n = 0 on ∂Ω,
∂u
∂n − (∂u

∂n · n)n = 0 on ∂Ω,has a unique weak solution u ∈ W1,N/(N−1)(Ω;RN ) and
‖u‖W1,N/(N−1) ≤ C(‖f‖L1 + [f, 0]).Problem (3.7) is weakly formulated as

∫

Ω
Du ·Dϕ =

∫

Ω
f · ϕ,for every ϕ ∈ C∞(Ω;RN ) suh that ϕ − (ϕ · n)n = 0 on ∂Ω. In order topursue the strategy of the proof of Theorem 3.1, we need to re�ne Lemma3.4 intoLemma 3.15. Let Ω ⊂ R

N be a smooth bounded domain and let f ∈
L1(Ω;RN ) be suh that (3.1) holds. For every ϕ ∈ (W1,N ∩ L∞)(Ω;RN )suh that ϕ− (ϕ · n)n = 0 on ∂Ω,

∣

∣

∣

∫

Ω
f · ϕ

∣

∣

∣
≤ C(‖f‖L1 + [f ])‖Dϕ‖LN .Lemma 3.15 is proved as Lemma 3.4, using, instead of Lemma 3.3, thefollowingLemma 3.16. Let Ω ⊂ R

N be a smooth domain. For every ϕ ∈ W1,N (Ω;RN )suh that ϕ− (ϕ · n)n = 0 on ∂Ω, there exist ψ ∈ (W1,N
0 ∩ L∞)(Ω;RN ) and

η ∈ W2,N (Ω), suh that η = 0 on ∂Ω and
ϕ = ψ + ∇η.Moreover,

‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .
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0 (Ω;RN ) and θ ∈ W2,N (Ω) suh that

ϕ = ϕ̃+ ∇θand θ = 0 on ∂Ω (see e.g. [2, Lemma 2℄). By applying Lemma 3.3 to ϕ̃, oneobtains the onlusion. �4. First-order ellipti systems4.1. div− curl systems in 3�d. Here we onsider the system
{

divZ = 0,

curlZ = Y,together with boundary onditions either on the normal or on the tangentialpart of Z.Theorem 4.1. Let Ω ⊂ R
3 be a ontratible smooth domain, and let Y ∈

L1(Ω;R3). If div Y = 0, then there exists a unique Z ∈ L3/2(Ω;R3) suhthat










divZ = 0 in Ω,
curlZ = Y in Ω,
Z · n = 0 on ∂Ω.Proof. The lassial onstrution yields a solution Z ∈ Lq(Ω;R3), for q <

3/2. Let X ∈ C∞(Ω;RN ). By the lassial Hodge deomposition, there are
ϕ ∈ C∞(Ω) and A ∈ C∞(Ω;RN ) suh that

X = ∇ϕ+ curlA,

A× n = 0 on ∂Ω, and ‖ϕ‖W1,3 + ‖A‖W1,3 ≤ C‖X‖L3 . Integrating by parts,and applying Lemma 3.15, one obtains,
∫

Ω
Z ·X =

∫

Ω
Z · (∇ϕ+ curlA) =

∫

Ω
Y · A

≤ C‖Y ‖L1‖A‖W1,3 ≤ C ′‖Y ‖L1‖X‖L3 .Sine X is arbitrary, Z ∈ L3/2 with the required estimate. �Remark 4.1. Sine these estimates an be loalized (see Remark 3.3), theresult extends to smooth domains whih are not ontratible provided thesuitable onditions of orthogonality with harmoni �elds are met by the data.One an also presribe the tangential part of Z on ∂Ω:Theorem 4.2. Let Ω ⊂ R
3 be a ontratible smooth domain, let Y ∈

L1(Ω;R3) and V ∈ L1(∂Ω;R3) be suh that V · n = 0 on ∂Ω. If div Y = 0in Ω and Y · n = div V on ∂Ω in the sense that(4.1) ∀ϕ ∈ C∞(Ω),

∫

Ω
Y · ∇ϕ = −

∫

∂Ω
V · ∇ϕ,then there exists Z ∈ L3/2(Ω;R3) suh that(4.2) 









divZ = 0 in Ω,
curlZ = Y in Ω,
Z ∧ n = V on ∂Ω.



12 HAÏM BREZIS AND JEAN VAN SCHAFTINGENRemark 4.2. Clearly (4.1) is a neessary ondition for the solvability of (4.2).4.2. Systems of di�erential forms. If ω : Ω → Λk
R

N is a di�erentialform, δω denotes its exterior odi�erential and tω its tangential omponenton the boundary. An extension to higher dimensions and to k�forms isTheorem 4.3. Let N ≥ 4, Ω ⊂ R
N be a ontratible smooth domain, 2 ≤

k ≤ N − 2, α ∈ L1(Ω;Λk+1), β ∈ L1(Ω;Λk−1
R

N ) and γ ∈ L1(∂Ω;Λk∂Ω). If
dα = 0, δβ = 0 and tα = dγ in the sense that

∫

Ω
α ∧ dϕ =

∫

∂Ω
γ ∧ dϕ ∀ϕ ∈ C1(Ω;ΛN−k−2

R
N ),(4.3)

∫

Ω
β ∧ δϕ = 0 ∀ϕ ∈ C1(Ω;ΛN−k+2

R
N ) s.t. nϕ = 0,then there exists a unique ω ∈ LN/(N−1)(Ω;Λk

R
N ) suh that











dω = α in Ω,
δω = β in Ω,
tω = γ on ∂Ω.Remark 4.3. The ounterpart in the whole spae an be found in [2℄ and [5℄.The analogue of Lemma 3.3 for k-forms isLemma 4.4. Let Ω ⊂ R

N be a smooth domain and let 1 ≤ k ≤ N . Forevery ϕ ∈ W1,N (Ω;Λk
R

N ), there exist ψ ∈ (W1,N ∩ L∞)(Ω;Λk
R

N ) and
η ∈ W2,N (Ω;Λk+1) suh that

ϕ = ψ + dη,satisfying
‖ψ‖W1,N + ‖ψ‖L∞ + ‖η‖W2,N ≤ C‖ϕ‖W1,N .If moreover tϕ = 0 on ∂Ω, then one an hoose ψ and η suh that ψ = 0 on

∂Ω and η = 0 on ∂Ω.If, in addition, ϕ = 0 on ∂Ω, then one an take η ∈ W2,N
0 (Ω;Λk−1

R
N ).Proof. The k-form ϕ an be written as

ϕ =
∑

i1<···<ik

ϕi1...ikdxi1 ∧ · · · ∧ dxik .By Lemma 3.9, there exist ψi1...ik ∈ (W1,N∩L∞)(Ω;Λ1
R

N ) and η ∈ W2,N (Ω;Λ0
R

N )suh that
ϕi1...ikdxi1 = ψi1...ik + dηi1...ik .The onlusion now holds with

ψ =
∑

i1<···<ik

ψi1...ikdxi2 ∧ · · · ∧ dxik ,

η =
∑

i1<···<ik

ηi1...ikdxi2 ∧ · · · ∧ dxik .In the ase where ϕ = 0 on ∂Ω, if one uses Lemma 3.3 in plae of Lemma3.9, one onstruts ψ ∈ (W1,N
0 ∩L∞)(Ω;Λk

R
N ) and η ∈ W2,N

0 (Ω;Λk−1
R

N ).In the general ase, as in the proof of Lemma 3.16, when ϕ ∈ W1,N (Ω;Λk
R

N )
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0 (Ω;Λk

R
N ) and η̃ suh that ϕ = ϕ̃+ dη̃ and

η̃ = 0 on ∂Ω. We are thus redued to the previous ase with ϕ̃ replaing
ϕ. �As Lemmas 3.10 and 3.15 followed from Lemmas 3.9 and 3.16, one deduesfrom Lemma 4.4 theLemma 4.5. Let Ω ⊂ R

N be a smooth bounded domain and let 1 < k < n.Let α ∈ L1(Ω;Λk
R

N ) let γ ∈ L1(Ω;Λk−1
R

N ). If dα = 0 in Ω, then forevery ϕ ∈ (W1,N ∩ L∞)(Ω;ΛN−k
R

N ) suh that tϕ = 0,
∣

∣

∣

∫

Ω
α ∧ ϕ

∣

∣

∣
≤ C‖α‖L1‖Dϕ‖LN .If dα = 0 in Ω and dγ = tα on ∂Ω in the sense of (4.3), then for every

ϕ ∈ (W1,N ∩ L∞)(Ω;ΛN−k
R

N )
∣

∣

∣

∫

Ω
α ∧ ϕ+

∫

∂Ω
γ ∧ ϕ

∣

∣

∣
≤ C(‖α‖L1 + ‖γ‖L1)‖Dϕ‖LN .Proof of Theorem 4.3. Let ζ ∈ C∞(Ω;ΛN−k

R
N ). By the lassial Hodgedeomposition for k-forms on domains [7℄, there are ϕ ∈ C∞(Ω;ΛN−k−1

R
N )and ψ ∈ C∞(Ω;ΛN−k+1

R
N ) suh that ζ = dϕ+ δψ, nψ = 0 and

‖ϕ‖W1,N + ‖ψ‖W1,N ≤ C‖ζ‖LN .One has thus
∫

Ω
ω ∧ ζ =

∫

Ω
ω ∧ (dϕ+ δψ).One estimates then, by Lemma 4.5

∫

Ω
ω ∧ dϕ =

∫

∂Ω
γ ∧ ϕ+

∫

Ω
α ∧ ϕ

≤ C(‖α‖L1 + ‖γ‖L1)‖Dϕ‖LN ≤ C ′(‖α‖L1 + ‖γ‖L1)‖ζ‖LNSimilarly, sine d(∗β) = 0 and t ∗ ψ = 0, by Lemma 4.5 again
∫

Ω
ω ∧ δψ =

∫

Ω
∗β ∧ ∗ψ ≤ C‖β‖L1‖Dϕ‖LN ≤ C‖β‖L1‖ζ‖LN . �Appendix A. Estimates for Green's funtions in 2-dThroughout this appendix Ω is a smooth bounded domain in R

2.De�nition A.1. The Green's funtion G of Ω with Dirihlet boundary on-dition is de�ned by G(x, y) = 0 if x ∈ ∂Ω and G(·, y)− 1
2π log 1

·−y is harmoniin Ω for every y ∈ Ω.De�nition A.2. The Green's funtion G of Ω with Neumann boundary on-dition (also alled Neumann's funtion) is de�ned by
∇xG(x, y) · n = 0for (x, y) ∈ ∂Ω × Ω, where n denotes the normal to the boundary at x, and

−∆
(

G(·, y) −
1

2π
log

1

|· − y|

)

= −
1

|Ω|
,in Ω, where |Ω| denotes the area of Ω.



14 HAÏM BREZIS AND JEAN VAN SCHAFTINGENThe Green's funtions an be omputed expliitly for the unit disk D ⊂
R

2 ≡ C: One has, for x, y ∈ D,
G(x, y) =

1

2π
log

|1 − ȳx|

|x− y|
,where ȳ is the omplex onjugate of y and ȳx is the produt of ȳ and x in

C. For the Neumann boundary ondition one has
G(x, y) =

1

2π

(

log
1

|x− y||1 − ȳx|
+

|x|2 + |y|2 + 1

2

)

.One has the following estimate on the derivative of Green's funtion withDirihlet boundary ondition.Proposition A.1 (Bramble and Payne). Let Ω be a smooth bounded domainand G be Green's funtion with Dirihlet's boundary ondition. Then thereis a onstant C suh that for every x, y ∈ Ω,(A.1) |∇yG(x, y)| ≤
C

|x− y|
.This is proved by the maximum priniple for the Green's funtion withDirihlet boundary onditions, see [3℄.Another method to obtain it is to express Green's funtion by onformalmapping.Proposition A.2. Let Ω be a simply-onneted domain and G be the asso-iated Green's funtion with Dirihlet boundary onditions. If ψ : Ω → D isonformal, then

G(x, y) =
1

2π
log

|1 − ψ(y)ψ(x)|

|ψ(x) − ψ(y)|Thus, in view of Theorem A.4, (A.1) holds.Proposition A.3. Let Ω be a bounded simply-onneted domain and G bethe assoiated Green's funtion with Neumann boundary onditions. If ψ ∈
Ck,α(Ω;D) is onformal, then there exists w ∈ Ck+1,α(Ω) suh that(A.2) G(x, y) =

1

2π
log

1

|ψ(x) − ψ(y)||1 − ψ(y)ψ(x)|
+ w(x) +w(y).In partiular,

sup
x,y∈∂Ω

∣

∣

∣
∇xG(x, y)

∣

∣

∣
≤

C

|x− y|
.Proof. Let GD denote Green's funtion on the disk with Neumann boundaryondition and de�ne

G̃(x, y) = GD(ψ(x), ψ(y)).For every ϕ ∈ C1(Ω) and y ∈ Ω, sine ψ is onformal,
∫

Ω
∇xG̃(x, y) · ∇u(x) dx =

∫

D
∇ξGD(ξ, ψ(y)) · ∇u(ψ−1(ξ)) dξ

= u(y) −
1

2π

∫

D
u(ψ−1(ξ)) dξ = u(y) −

1

2π

∫

Ω
|ψ′(ξ)|2u(ξ) dξ,



BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH L1�DATA 15i.e., for every y ∈ Ω, G̃ satis�es the equation:
{

−∆G̃(x, y) = δy − |ψ′(x)|2/(2π) in Ω,

∂G̃/∂n(x, y) = 0 on ∂Ω.By the lassial Shauder estimates, there is w̃ ∈ Ck+1(Ω) to be the solutionof the problem










−∆w̃ = |ψ′(x)|2/(2π) − 1/|Ω| in Ω,

∂w̃/∂n = 0 on ∂Ω,
∫

Ω w dx = 0.Moreover, for every y ∈ Ω,
1

|Ω|

∫

Ω
G̃(x, y) dx =

∫

Ω
G̃(x, y)|ψ′(x)|2 dx+

∫

Ω
G̃(x, y)

( 1

|Ω|
−

|ψ′(x)|2

2π

)

dx

=
1

2π

∫

Ω
GD(ξ, ψ(y)) dξ +

∫

Ω
G̃(x, y)∆w̃(x) dx

= −w̃(y) +

∫

Ω
w̃(x)

|ψ′(x)|2

2π
dx = w̃(y) −

∫

Ω
w̃(x)∆w̃(x) dx

= w̃(y) +

∫

Ω
|∇w̃(x)|2 dx.Therefore one has

G(x, y) = G̃(x, y) + w̃(x) + w̃(y) +

∫

Ω
|∇w̃|2 dx.whih yields the desired onlusion (A.2). �Theorem A.4 (Kellogg (1912), Warshawski (1932)). Let Ω ⊂ R

2 be abounded simply-onneted domain and let ψ : Ω → D be a onformal map-ping. If ∂Ω is of lass Ck,α, then ψ ∈ Ck,α(Ω) and ψ−1 ∈ Ck,α(Ω).A modern version of this an be found in [6℄, where Theorem 3.6 givesthe Hölder ontinuity of the derivatives of ψ−1, and Theorem 3.5 states that
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