BOUNDARY ESTIMATES FOR ELLIPTIC SYSTEMS WITH
LI-DATA

HAIM BREZIS ) AND JEAN VAN SCHAFTINGEN ®

ABSTRACT.

1. INTRODUCTION

Recently, new estimates for L'-vector fields have been discovered by Bour-
gain and Brezis |1, 2], which yield in particular improved estimates for the
solutions of elliptic systems in RY or in a cube Q@ € R with periodic
boundary conditions. Simplified proof of some of the results have been given
by Van Schaftingen [8]. Here are two typical results:

Theorem 1.1. Let f € LYRY;RN), N > 3. Ifdiv f =0, then the system
—Au=f in RV,
admits a unique solution u € LN/(N=2(RN; RN) with Vu € LN/ (V=1

A similar concluion holds for the same problem in a cube with periodic
boundary conditions.

Theorem 1.2. Let f € LY(R?;R?). Ifdiv f = 0, then the system
—Au=f in RV,
admits a unique solution u € (L™ N C)(R?; R?) with Vu € L2.

Our main goal in this paper is to address similar questions in domains
Q c RY with Dirichlet or Neumann boundary conditions. Interior estimates
can be easily derived from the results in [1,2,8]. However the question of
estimates up to the boundary requires some further work.

In section 2, we study the system

—Au=f inQcCR?

together with the Dirichlet boundary condition v = 0 on 92 or the Neumann
boundary condition du/0n = 0 on 9f2. For the Dirichlet problem, we show
that if f € L1(;R?) and div f = 0, then v € C(; R?) N W12(Q; R?). For
the Neumann problem, we get the same conclusion under the additionnal
assumption that (f-n) = 0 on 0€; such a condition plays an essential role,
see Remark 2.3. The proofs are elementary; they involve sharp estimates for
the Green’s functions. These are well-known to the experts and are presented
in Appendix A for the convenience of the reader.
In section 3, we start with the system

{—Au: f oinQ,

(1.1)
u=20 on 0L},



2 HATM BREZIS AND JEAN VAN SCHAFTINGEN

with Q ¢ RN, N > 2 and f € LYRN;RY). If div f = 0, the heart of the
matter is the inequality

(12 [ 1| < UfIiDetn,

for every ¢ € (Wé’N N L) (;RY), which we derive from similar estimates
in [1,2,8]. Therefore it admits an elementary proof in the spirit of [8].
Next we combine (1.2) with standard L regularity theory to conclude that
u e WHV/IN=D(Q: RN) when f € LY(Q; RY) and div f = 0.

A much more delicate result asserts that if f € LY(Q;R?) and div f €
(W2N —l—Wé’N)*, one still has u € WIY/(N=D(Q; RN). The main ingredient
is due to Bourgain and Brezis and asserts that every vector field in W(l)’N
belongs to L> modulo gradients (see the precise statements in Theorem 3.2
and Lemma 3.3).

The remainder of section 3 is devoted to the pure Neumann boundary
conditions and to various mixtures of Dirichlet and Neumann boundary con-
ditions. We also consider the problem

—Au=0 in,
u=>0 on 0f).

In section 4, we present estimates up to the boundary for the problem

divZ =0 in €,
curl Z =Y in Q,

where Q C R3?, together with the boundary conditions Z-n = 0 or Zxn = 0.
Next we present some results for first-order systems of k forms, 2 < k <
N — 2, such as

dw =« in €,
dw=p0 in .

2. ELLIPTIC SYSTEMS IN R2

Theorem 2.1. Let Q C R? be a smooth simply-connected domain and let
f e LY (Q;R2). Ifdiv f = 0 in the sense of distributions, i.e.,

/f'VC=0, V¢ € CL(@),
Q

then the problem

—Au=f inQ,
u=0 on 051,

has a unique solution u € WH2(Q; R?) N C(Q; R?) satisfying
(2.1) [ullwr2 + [lullLee < O flls-

Proof. By classical regularity estimates, there is a solution u € W, for
q < 2. Since div f = 0, there exists FF € WH1(Q) such that f = (=09 F, 0, F)
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and [, F = 0. By Sobolev’s inequality, ||F|[2 < C||f|[L1. For every ¢ €
C°(Q; R?), one has

/vUv¢ /fw / F(0yp1 — 0102) < C| f |Vl

Therefore u € WH2(Q; R?) with the required estimate.

We now prove that u € L*°. Let G denote the Green’s function associated
to Dirichlet boundary condition for 2. Integrating by parts, one has, for
every x € €,

(m>wm=AG@wﬂw@

Z—/kw—wG@G@w%f@D@r:/G@wﬂ$—wdwﬂwdy
Q Q
=—Aw—wwwmwwﬂwm%

since div f = 0. By Proposition A.1, [VG(z,y)||x — y| is uniformly bounded
for z,y € Q. Hence u satisfies the required estimate. To prove that u
is continuous, assume that z, — z. Then u(x,) — u(z) by (2.2) and
Lebesgue’s dominated convergence Theorem. U

Remark 2.1. In the more general case where f € LY(Q;R?) and div f €
LY(Q), one obtains the continuity and the boundedness of u from the bound-
edness of |V,G(z,y)||z —y| on Q x Q. Using the the estimate

/quF = / w- f < ulleee 1 F e < CUf e + [Idiv flloll il
Q Q

one concludes u € W12(Q; R?). Theorem 3.1 in the next section gives W12
(but not L>!) estimates under the weaker condition div f € (W??2 OW(I)’2)*.

Remark 2.2. The conclusion of Theorem 2.1 remains valid if f is a measure
(more precisely, f belongs to the dual space of Cy(2)). The proof of the
bounds in W2 and in L are unchanged. To prove that u is continuous,
assume that z,, — x € Q. Then

(@n = y)(VyG(zn, ) — (x —y)(VyG(z,y))
for every y € 2\ {0}. On the other hand, the measure f belongs to the dual

space of W(l)’2(Q) and thus it does not charge points. One can conclude as
before by Lebesgue’s dominated convergence Theorem.

Theorem 2.2. Let Q C R? be a smooth simply-connected domain and let
FELYQR2). Ifdivf=0inQ and f-n =0 on OQ in the sense that

[rve=0 wec@,
Q
then fQ f =0 and the problem

—Au=f in €,
gz =0 on 082,
Jqu=0,
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has a unique solution u € WH2(Q; R?) N C(Q;R?) and satisfying (2.1).

Proof. The proof of Theorem 2.2 is similar to the proof of Theorem 2.1.
Since f-n =0 on 92, one can construct F' such that F' = 0 on 9 (in place
of fQ F =0 in the previous proof). Since F' € W(l)’2(Q), one has

/sz/Q(VF)i:o.

One concludes as before that u € W2 and, using Proposition A.3, that wu is
bounded and continuous up to the boundary. (]

Remark 2.3. If one replaces the condition f-n = 0 on 92 in Theorem 2.2
by fQ f =0, the conclusion is not necessarily true. Assume without loss of
generality that 0 € 9Q2 and that the normal to the boundary at 0 is parallel
to the first coordinate axis. Choose a function p € C°(R?) such that p > 0
and [ p(0,22) dzy = 1. Define p.(z) = p (x/e)/e and

For every ¢ € C(Q; R?),

/facp—wal wO)—ﬁ/ﬂw

Let now u. € WH2(Q; R?) be the solution of

—Au, = f. in R?,

Que — on 99,

Joue =0,
and assume by contradiction that [[Vuc||;2 remains bounded as € — 0. One
has then, for every ¢ € C°(Q; R?),

o) = o [ o] = | [ | = im| [ Ve 9| < IV
This is not possible, since WH2(R?) is not imbedded in L>°(R?). Note that

/Q Vael? < 1ol e e,

and thus [Juc||Lee is not bounded as e — 0.

3. SECOND-ORDER SYSTEMS IN HIGHER DIMENSIONS
In this section, assume N > 2.

3.1. The Laplace equation with zero Dirichlet boundary condition.

Theorem 3.1. Let Q C RY be a smooth bounded domain and let f €
LYQ;RN). If

1) [f=sw{ [ 7V s Cec*@,

¢ =0 on dQ and | D*¢|| v < 1} < 00,
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then the system

—Au=f inQQ,
u=0 on 082,

has a unique weak solution u € Wl’N/(N_l)(Q; RY) satisfying
l[ullwrvyo-n < C(1f Il + [F])-

Remark 3.1. If div f = 0 in the sense of distributions, then [f] = 0. More
generally,

[f]= ”dinH(wz,waé,N)*-
In order to prove Theorem 3.1, first recall

Theorem 3.2 (Bourgain and Brezis [2]). For every ¢ € Wé’N(Q; RN), there
exist 1 € (W(l)’N NL®)(Q;RN) and n € WS’N(Q) such that

=1+ Vn,
where @ denotes the unit cube in RY. Moreover,
[¥llwrx + ¥l + [[nllwan < Cllellw

Theorem 3.2 can be extended to any smooth domain:

Lemma 3.3. Let Q@ C RY be a smooth domain. For every o € Wé’N(Q; RM),
there exist ¢ € (Wé’N NL®) (G RY) and n € WS’N(Q) such that

p =Y+ V.
Mortreover,

[Plwrs + [Pl + Inllw2y < Cllellw

Proof. In the case where there is a bi-Lipschitzian homeomorphism H from
Q to Q and G is its inverse, consider ¢ defined by

N
. OH;
j=1 7"

By Theorem 3.2, there is 1) € (Wé’N NL®)(Q;RN) and 7 € Wg’N(Q). One
checks immediately that n = 70 G and

N
- oG
b= 3 (40 G)
; L
J=1
satisfy the conclusion with estimates independent of ¢. The case of a general

smooth domain follows then by partition of unity. O

With Lemma 3.3, we can now prove that the data f is in the dual of
1,N .
Wy " (€2), more precisely:

Lemma 3.4. Let Q C RY be a smooth bounded domain and let f € L1 (Q; RY)
be such that (3.1) holds. For every ¢ € (W(l]’N N L>®)(;RN),

‘AfWFJWﬂM+UMme,
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Proof. Write ¢ € (W(l)’NﬁL‘X’)(Q; RM) as ¢ = ¢+Vn according to Lemma 3.3.
One has

/f-soz/f-(erVn)
Q Q
< Iflluallllie + D nlley < CUF Il + DDl

O
Remark 3.2. Starting from the estimate
62 |[ 1ee <CUIDely +div o)
which has an elementary proof [8], it is possible to obtain
(3.3) [ £-] < CU el +div flallel),

for every f € LY(Q;R”Y) and ¢ € (W(l]’N N L) (Q;RY). This is proved
by extension of f to a small neighbourhood of € and multiplication of this
extension by a suitable cutoff function. Note that, trivially,

[f1 < Clldiv flls,

and thus (3.3) is an immediate consequence of Lemma 3.4. However, we call
the attention of the reader to the fact that (3.2) has an elementary proof,
while the proof of Lemma 3.3 is quite elaborate.

The other tool to obtain our regularity result is an elliptic regularity result
for data in W=1P(Q) that is well-known to the experts, but difficult to find
in the litterature. Much more general estimates are obtained e.g. in [4].

Lemma 3.5. Let Q C RY be a smooth domain. Let F € LP(Q), 1 < p < <.
There is a unique u € W(l)’p(Q) that solves

—Au=—divF inQ
u=20 on OS2.

Mortreover,
[ullwrr < ClLF[Lr.

The proof of Theorem 3.1 is a direct consequence of Lemmas 3.4 and 3.5.

Remark 3.3. Most of the results of this paper can be easily localized. Here
is a typical localization: Let u € WH1(QN B(zg, R); RY) and let f € L1(QN
B(xzo, R);RN). If

—Au=f in QN B(xg, R),
u=0 on (0Q) N B(xg, R),

and
sun{ [ £-9¢ : ¢ e CP@N Bl B))
¢ =0o0n d(QN B(xo, R)) and | DX |ln < 1} <
then u € WY/ (V=1(Q N B(xy, R/2); RY).
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3.2. The Laplace equation with Neumann boundary condition.

Theorem 3.6. Let Q@ C RN be a smooth and bounded domain. Let f €
LYQ;RY) and g € LY(0Q; RY). If

64) (ol =sw{ [ 1Vt [ 4-vC: cecr@
and || D[~ < 1} < o0,

then the system

—Au=f inQ,
g—Z:g on 052,
fQu =0,

has a unique weak solution u € WHN/WN=D(Q: RN) and

lullwrvv-n < C(Ifller + [ 9])-

Remark 34. If divf =0in Q, f-n=0,g-n =0 and divg = 0 on 01,
then [f,g] = 0. As explained in Remark 2.3, the conditions g = 0 on 912,
div f =0 in  and fQ f =0 do not imply the conclusion of Theorem 3.6.

A first thing to note is that the necessary condition for the existence of
solution fQ f+ fagg = 0 is satisfied.

Lemma 3.7. If Q@ Cc RY be a smooth and bounded domain, then f €
LYQ;RY) and g € LY(0QRY) satisfy the assumptions of Theorem 3.6 if
and only if [ f+ [509 =0 and

5) (ol =swf [ 1-9¢+ [ g-9¢: cecr@
and ||C||lywa.n < 1} < 0.

Proof. First assume f satisfies the assumptions of Theorem 3.6. It is then
clear that [f, g] < co. Moreover, for every 1 < i < N, taking (;(x) = x;, one
has D?(; = 0, so that since K < 00, fQ fi+ fag gi = 0.

On the other hand, assume [, f+faﬂ g = 0 and (3.5) holds. For every ¢ €
C?(Q), there is ¢’ such that D*¢' = D*(, [, ¢’ =0 and [, V(' =0, so that
V¢ — V(' is constant and by Poincaré’s inequality, ||¢’[|w2~ < C||D?¢||pn.
Therefore,

/Qf-vc+/mg-vc=/Qf-vc’+/mg-vc’

< [£.9VI¢ llwzw < CLF, g |1 D*C e
O

In order to prove Theorem 3.1, also recall

Theorem 3.8 (Bourgain and Brezis [2]). For every ¢ € WHYV(Q; RY), there
exist 1 € (WEN ALY (Q; RY) and n € W2V (Q) such that

=1+ Vn.
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Moreowver,
[Yllwrx + [¥llLe + [[nllwey < Cllellw
Theorem 3.8 can be extended to any smooth domain:

Lemma 3.9. Let Q@ C RN be a smooth domain. For every o € WHN (Q; RY),
there exist 1 € (WLN N L2)(Q;RY) and n € WAN(Q) such that
=1+ Vn.
Moreover,
[llwrn + 19l + [[nllwen < Cllellwn.

Proof. Since €2 is bounded, up to translation and scaling, Q C @. The conclu-
sion is obtained by extending ¢ to @, applying Theorem 3.8 and restricting
1 and 7 to Q. O

With Lemma 3.9, we can now prove

Lemma 3.10. Let Q C RY be a smooth and bounded domain. Let f €
LYQ;RY) and g € LY(OQ; RN). If (3.4) holds, then for every ¢ € (WLN N
L=)(:RY),

[ 10+ [ gve| <l + lglha + (£ DIDolr
Q o0

Proof. Write ¢ € (WHVNL®)(Q; RY) as ¢ = 1+ Vn according to Lemma 3.9.
One has

/Qf-wr/mgw:/gf-(¢+V77)+/899-(¢+V77)

< (1fller + glle)llelluee + [, gD nll
< Ol + ligliue + [, gDl Dl -
(]

Remark 3.5. As in Remark 3.2, using the estimate (3.2), one can obtain the
weaker estimate

[0+ [ a-¢| <CU I+ gDl
Q oN

+ (Idiv flles + [1f - i) + I1div gl o) el ),
for every f € LY(;RN), g € LY(Q;RYN) and ¢ € (WHY 0 L®)(Q; RN).
The proof consists in noting that (3.2) remains valid for measures and in
extending f to RY by 0 and taking a W'Y extension of u to R and
applying the estimate (3.2) on RV,

The last tool to obtain our regularity result is the counterpart of Lemma
3.5 for Neumann boundary condition.

Lemma 3.11. Let Q € RY be a bounded smooth domain and let 1 < p < oco.
If F € LP(Q;RY), there is a unique u € W'P(Q) such that [u = 0 that

solves
/Vu-w:/F-w, Yo e CL(Q).
Q Q

Moreover,
[ullwrr < ClLF[Lr.
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3.3. The Laplace equation with nonzero Dirichlet boundary condi-
tion.

Theorem 3.12. Let Q C RY be a smooth and bounded open set. Let g €
LYo RN). If

lg] = sup{/émg V¢ CeCH) and ||C|lwan < 1} < 00,

then the system

—Au=0 in§,
u=g on 052,
has a unique weak solution u € LN/N=1(Q: RN) and

[ullLvv-n < C(llgllLr + [9))-

In particular, when g is tangent to 92 and divg = 0 on 0f) in the sense
of distributions, i.e.,

/ g-Vo=0 Vo € C1(09),
o0

then u € LY/ OV-D(Q; RN) and
lull,v/ov-1 < Cligllee-

Proof. Assume without loss of generality that faﬂ g = 0. By classical regu-
larity estimates, there exists a solution u € L? for ¢ < N/(N —1). Let now
0 € C®(Q;RY) and let ® be the solution of

—Ad=¢p inQ,
®=0 on 0S.

By the classical regularity estimates, ® € W2~ (RY;RY) and

[®]lw2~ @y ryy < lelluy @y gy

Combining the definitions of ® and u, one has

od
>0 / ¢ / on’
(3.6) Q 4 an on

Since €2 is smooth, the smooth vector field n defined on 92 can be extended
smoothly to ; we denote it 7. The vector field g satisfies the assumptions
of Lemma 3.10 with f = 0, one has therefore

0P _
| 950 < Cllghs + gDl - DBl
o0 n

< C'(llglis + gD 1@ llw=n < C"(llglliy + [aDll el -

Combining this with (3.6), one deduces, since ¢ is arbitrary, that u €
WLN/(N=1) with the desired estimate. O
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3.4. The Laplace equation with other boundary conditions. Since
we are dealing with systems, we can prescribe Dirichlet on some components
and Neumann on the others. The assumptions on f on the boundary have
to be made accordingly. The condition on the tangential component plays a
distinguished role.

Theorem 3.13. Let Q C RYN be a bounded smooth domain and let f €
LYQ;RN). If (3.1) holds, then the system

—Au=f mn €,
(3.7) u—(u-n)n=0 on 0N,
% -n=20 on 0f),

has a unique weak solution u € WHN/WN=D(Q: RN) and
[ullwrvsa-n < Ul + [F)-

Theorem 3.14. Let Q@ C RY be a bounded Lipschitz domain. Let f €
LY RN). If (3.4) holds with g = 0, then the system

—Au=f in §Q,

u-n=>0 on 08,

%—(%'n)nzo on 09,
has a unique weak solution u € WHN/WN=D(Q: RN) and

[ullwrviov-n < C(I1f [l + [ 0])-
Problem (3.7) is weakly formulated as

/QDU-DsDZ/Qf'%

for every ¢ € C®(;RY) such that ¢ — (¢ -n)n = 0 on 9. In order to
pursue the strategy of the proof of Theorem 3.1, we need to refine Lemma
3.4 into

Lemma 3.15. Let Q C RN be a smooth bounded domain and let f €
LYQ;RY) be such that (3.1) holds. For every p € (WHN 0 L®)(Q; RY)
such that o — (¢ -n)n =0 on 09,

‘/Qf ' ‘P\ <O fllr + DD -

Lemma 3.15 is proved as Lemma 3.4, using, instead of Lemma 3.3, the
following

Lemma 3.16. Let Q C RY be a smooth domain. For every ¢ € WHY (Q; RY)
such that o — (¢ -n)n =0 on 0N), there exist ¢ € (W(l)’N NL®)(Q;RY) and
n € W2N(Q), such that n =0 on 9Q and
=1+ Vn.
Moreover,
[Yllwrx + ¥l + [[nllwey < Cllellwa
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Proof. There is ¢ € W(l)’N(Q; RY) and § € W2V (Q) such that
p=¢+Vb
and 6 = 0 on 0N (see e.g. |2, Lemma 2|). By applying Lemma 3.3 to ¢, one

obtains the conclusion. O

4. FIRST-ORDER ELLIPTIC SYSTEMS

4.1. div — curl systems in 3—d. Here we consider the system

div Z = 0,

curl Z =Y,
together with boundary conditions either on the normal or on the tangential
part of Z.

Theorem 4.1. Let Q C R? be a contractible smooth domain, and let Y €
LY(Q;R3). IfdivY = 0, then there ewists a unique Z € L3?(Q;R3) such
that

divZ =0 1in(,

curlZ =Y in Q,

Z-n=0 on 0.

Proof. The classical construction yields a solution Z € LI(€; R3), for ¢ <
3/2. Let X € C*°(Q;RY). By the classical Hodge decomposition, there are
0 € C®(Q) and A € C*°(Q; RY) such that

X =Vep+curl A,

Axn=0on09Q,and |¢||ws + [|Allwis < C||X||3. Integrating by parts,
and applying Lemma 3.15, one obtains,

/Z-X:/Z-(Vgp+cur1A):/Y-A
Q Q Q
< CIY [ llAllwrs < CY I [| X lge.-

Since X is arbitrary, Z € L3/2 with the required estimate. O

Remark 4.1. Since these estimates can be localized (see Remark 3.3), the
result extends to smooth domains which are not contractible provided the
suitable conditions of orthogonality with harmonic fields are met by the data.

One can also prescribe the tangential part of Z on 9€:

Theorem 4.2. Let Q C R? be a contractible smooth domain, let Y €
LYQ;R3) and V € LY(0Q; R3) be such that V -n =0 on 0Q. IfdivY =0
inQandY -n=divV on 9 in the sense that

(4.1) Vi € C®(Q), /Y-V@z—/ V- Vo,
Q o0
then there ewists Z € L3/2(Q; R3) such that

divZ =0 in(,
(4.2) curlZ =Y in Q,
ZAn=V on 0.
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Remark 4.2. Clearly (4.1) is a necessary condition for the solvability of (4.2).

4.2. Systems of differential forms. If w : Q@ — A*RY is a differential
form, dw denotes its exterior codifferential and tw its tangential component
on the boundary. An extension to higher dimensions and to k forms is

Theorem 4.3. Let N > 4, Q c RY be a contractible smooth domain, 2 <
k< N-—2, acLi (A 3e LY(Q; AFIRN) and v € L1 (09; A*0Q). If
da =0, 08 =0 and ta = dv in the sense that

(4.3) /a/\dng:/ yAde Ve CHOANTFIRY)),
Q

Q 0
BASp=0 Vo e CHO AN FIRY) 5t np =0,
Q

then there exists a unique w € LN/ N=D(Q; AFRN) such that

dv=a 1in(,
w=p0 1,
tw=~v on 0.

Remark 4.3. The counterpart in the whole space can be found in [2| and [5].
The analogue of Lemma 3.3 for k-forms is

Lemma 4.4. Let Q ¢ RY be a smooth domain and let 1 < k < N. For
every @ € WHN(Q AFRN), there exist v € (WHYN 0 L2)(Q; A*FRY) and
n € W2N(Q; A*+1) such that
¢ = +dn,
satisfying
[¥llwry + [[¢llee + lInllwey < Cllellwy.
If moreover tio = 0 on 0N, then one can choose ¥ and n such that 1) =0 on
02 and n =0 on 0N2.
If, in addition, ¢ = 0 on 0X), then one can take n € WS’N(Q;Ak_lRN).
Proof. The k-form ¢ can be written as
p= Z iy i dwiy A\ - Ndxg,
i1 <<,
By Lemma 3.9, there exist v, ;, € (WHVAL®)(Q; AIRY) and n € W2V (Q; AORY)
such that
iy i ATy = Viy i A0y g
The conclusion now holds with

<<t
n= Z Niy.oipgATiy N\ -+ N dxy, .
i1 <<
In the case where ¢ = 0 on 01, if one uses Lemma 3.3 in place of Lemma
3.9, one constructs ¢ € (Wé’N NL®)(Q; AFRN) and 7 € WS’N(Q; AFIRN).
In the general case, as in the proof of Lemma 3.16, when ¢ € WHV(Q; AFRY)
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and ty = 0, there are ¢ € W(l)’N(Q;AkRN) and 77 such that ¢ = ¢ + dij and
7 = 0 on 0F). We are thus reduced to the previous case with ¢ replacing
®. (]

As Lemmas 3.10 and 3.15 followed from Lemmas 3.9 and 3.16, one deduces
from Lemma 4.4 the

Lemma 4.5. Let Q C RN be a smooth bounded domain and let 1 < k < n.
Let a € LY AMRY) let v € LY(Q; AR IRY). If da = 0 in Q, then for
every o € (WHY N LX) (Q; AN=FRN) such that to = 0,
|| ane| < Cllalul Dol
If da = 0 in Q and dy = ta on OQ in the sense of (4.3), then for every
@ € (WEN N L) (Q; AN-FRN)
[ anes [ vne| <ol + Dl

Proof of Theorem 4.3. Let ¢ € C®°(Q; AN"*RN). By the classical Hodge
decomposition for k-forms on domains [7], there are ¢ € C®°(Q; AN F=IRN)
and ¢ € C°(Q; AN"*+1RN) such that ¢ = dp + 61, nyp = 0 and

lelwry + [9llwix < Cli¢llu-

/Qw/\C:/Qw/\(dgo—{-5¢).

One estimates then, by Lemma 4.5

/w/\dgp:/ 7/\<,0~|—/oz/\<p
Q 0 Q

< C(lells + VL) Delly < C'(lallis + [1yle)l¢lley
Similarly, since d(x3) = 0 and t * ¢ = 0, by Lemma 4.5 again

/ WASY = / «B A < ClBlL | Dellur < ClBILICly. O
Q Q

One has thus

APPENDIX A. ESTIMATES FOR GREEN’S FUNCTIONS IN 2-D
Throughout this appendix € is a smooth bounded domain in R2.
Definition A.1. The Green’s function G of Q0 with Dirichlet boundary con-
dition is defined by G(z,y) = 0if z € 9Q and G(-,y) — % log _iy is harmonic
in Q for every y € €.
Definition A.2. The Green’s function G of Q) with Neumann boundary con-
dition (also called Neumann’s function) is defined by
V.G(z,y) - n=0
for (z,y) € 09 x Q, where n denotes the normal to the boundary at x, and
1 1 1
—A<G(',y) - —log—> = —157
2 7| =yl €2

in ©, where |Q| denotes the area of .
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The Green’s functions can be computed explicitly for the unit disk D C
R? = C: One has, for z,y € D,
1. [1— gz
G(z,y) = — lo ,
(z,y) = 5 log F—
where ¢ is the complex conjugate of y and g« is the product of 4 and z in
C. For the Neumann boundary condition one has

1 1 lz|? + |y|? + 1
Gz, :—(1 )
(@,y) = 5 -log |z — y|[1 — gz 2

One has the following estimate on the derivative of Green’s function with
Dirichlet boundary condition.

Proposition A.1 (Bramble and Payne). Let Q2 be a smooth bounded domain
and G be Green’s function with Dirichlet’s boundary condition. Then there
s a constant C such that for every x,y € €,

C
z =yl
This is proved by the maximum principle for the Green’s function with

Dirichlet boundary conditions, see [3].
Another method to obtain it is to express Green’s function by conformal

mapping.

(A1) IV, Gz, y)| <

Proposition A.2. Let Q be a simply-connected domain and G be the asso-
ciated Green’s function with Dirichlet boundary conditions. If ¥ : Q — D is
conformal, then

_ 1 1 —9@)d()|
o) = 5 8 ey — oty
Thus, in view of Theorem A.4, (A.1) holds.

Proposition A.3. Let Q be a bounded simply-connected domain and G be
the associated Green’s function with Neumann boundary conditions. If ¢ €
C*k(Q; D) is conformal, then there exists w € C*1(Q) such that

1 1
A2 G(z,y) = —1o — w(z) +w(y).
(A2) Gy =5 loe o —se) W)

In particular,

e
z,y€00 |$_y|

Proof. Let Gp denote Green’s function on the disk with Neumann boundary
condition and define

For every ¢ € C1(Q2) and y € Q, since 1 is conformal,
/ V.G(z,y) - Vu(z) dz = / VeGp(&,9(y)) - Vu(y™'(€)) dé
Q D

— ) = 5 [ @) de = ) — 5 [ [WOPue) de
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i.e., for every y € Q, G satisfies the equation:
~AG(z,y) =6, — [V (x)?/(27) in Q,
oG /on(z,y) =0 on 0f).

By the classical Schauder estimates, there is @ € C¥T1(Q) to be the solution
of the problem

—Aw = ¢ (x)[?/(27) = 1/|Q in Q,
ow/on =0 on 012,
wid:E =0.

Moreover, for every y € €2,

|Q|/ny da:—/Ga:y |Y' (z ]2dx+/G |Q| |1/),2(i)|2>da:

-5 [ Golevm)ds + [ Gla)dila)da

2
i)+ [ o) dr = i) - [ ate)Ai) o

2 [¢)

Therefore one has
G(z,y) = G(z,y) + w(z) + @(y) + / |V |? da.
Q
which yields the desired conclusion (A.2). O

Theorem A.4 (Kellogg (1912), Warschawski (1932)). Let Q@ C R? be a
bounded simply-connected domain and let ¢ : Q — D be a conformal map-

ping. If O is of class C*2, then 1 € CF*(Q) and =1 € CH*(Q).

A modern version of this can be found in [6], where Theorem 3.6 gives
the Hélder continuity of the derivatives of 1»~!, and Theorem 3.5 states that
(¥~ # 0, and therefore, by the implicit function Theorem 1 € C**(Q).
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