PERIODIC HOMOGENIZATION OF MONOTONE
MULTIVALUED OPERATORS

ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGEN

ABsTrACT. Using the unfolding method of Cioranescu, Damlamian and
Griso (CRAS, 2002), we study the homogenization for equations of the
form —div d. = f, with (Vue(z),d:(z)) € Ac(z) and where A. is a
function whose values are maximal monotone graphs. Under appropriate
growth and coercivity assumptions, if the sequence of unfolded maximal
monotone graphs (7:(A:)(z,y)) converges in the graphical sense to a
maximal monotone graph B(z,y) for almost every (z,y) € Q XY, as
e — 0, then (ue,d.) converges weakly in a suitable Sobolev space to a
solution (uo,do) of the problem —div do = f, with (Vuo(z),do()) €
A(z) and A satisfies the same assumptions as A.. This result includes
the case where A.(x) is a monotone continuous function for almost every
x € Q.

1. INTRODUCTION

This article is devoted to periodic homogenization for nonlinear partial dif-
ferential equations with oscillating coefficients. This type of equation models
various physical problems arising in media with holes or heterogeneous ma-
terials with various competing length-scales.

In |16], using the unfolding method [9], the periodic homogenization was
considered for:

(1.1)

—div (as(z, Vu.)) = f in D'(Q),
u. € Wo(Q),

where € is a Lipschitz open bounded set of RN, 1 < p < oo, p~ ' +¢7 1 =1,
fe € Wh4(Q) and a. : Q x RY — RY is such that a. is of Carathédodory
type, monotone, and has its growth controlled. If the unfolded functions
Te(as)(z,y,&) converge for almost everywhere, then the sequence of solutions
(ue)e converges, as € — 0, to the solution ug of a problem which satisfies the
same hypotheses and where ag only depends on the limit of 7;(a;).

A natural generalization of problem (1.1) is the problem

—divd. = f in D'(Q),
(1.2) (Vug(ﬂj), d€($)) € Ac(z),
ue € Wy(Q).
Now A, : Q — MRY x RY) is a measurable map taking its values in the

set M(RN x RY) of maximal monotone graphs from R to RM. If there
exists a > 0 and m € L'(Q) such that for almost every € 2, and for every

(&,n) € Ac(m),

(1.3) a([lEl” + 1nll?) < (0, &) +m(x),
1
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then the problem (1.2) has at least one solution |7, 13|. This solution need
not be unique.

We consider here the homogenization of (1.2). Let (ue,d:) € W(;Lp(ﬂ) X
LP(Q; RY) be solutions of the problem (1.2). If the functions A, satisfy
assumption (1.3) uniformly and if the sequence of unfolded graphs 7.¥ (A.)
converges almost everywhere, every cluster point (ug,dp) of the sequence
(ue, de) for the weak topology in Wol’p(Q) x LP(2, RY) is a solution of

—div d() = f in D/(Q),
(Vuo(:n),do(x)) € Ag(x),
ug € WyP(Q).

where Ag : © — MRY x RY) satisfies (1.3) and is defined in terms of
the limit of 7. (A.). In [16] the hypotheses were stronger and implied the
strong convergence of the correctors, which is not obtained here. The best
convergence in this direction is (4.19). If the functions A, satisfy additional
assumptions, one recovers the strong convergence of the correctors (Theo-
rem 4.6).

This problem is intimately connected to the convergence of maximal mono-
tone operators, the theory of which was actively developed in the 1970’s,
most particularly in the Hilbert space case ([3], [1] and [2]|). At the time, the
first author had studied it in the case of reflexive Banach space, especially in
view of the renorming result of Trojanski (keeping in mind that monotonicity
is norm independent). This led to a paper which also included the case of
subdifferentials of lower semi-continuous proper convex functions, but was
never submitted for publication [10].

In combination with the unfolding method, a main tool here are condi-
tions under which the local convergence of graphs implies global convergence.
More precisely, denoting by ~— the convergence in the graphical sense, we
look for conditions on A, A™ : Q — M(X x X') that satisfy A"(t) — A(¢)
under which A" — A where

A={(u,v) € LP(Q; X) x LY(Q; X') | (u(t),v(t)) € A(t) for ae. t € Q}

and a similar definition for A".

The outline of the paper is as follows. In Section 2, we recall the definition
of maximal monotone operators and of the notion of convergence of maximal
monotone graphs. Using [10], we consider sequences of maximal monotone
valued measurable functions, their canonical extensions and we prove key
results about their convergence.

In section 3 we recall the definition of the unfolding operator, averaging
operator and the corresponding convergence properties (cf. 9], [11] as well
as [15], [16]).

In section 4 we consider the homogenization problem and we state our
main result in Theorem 4.1.

Some of the results of this paper were announced in [16|. The case where
Ac(z) is the subdifferential of convex function with suitable growth and
coercivity conditions will be presented in a forthcoming paper [12].
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Note that there are many papers in the litterature under the study of
G-convergence and homogenization which concern the non-linear case. We
only refer to [8] and the bibliography therein.

2. MAXIMAL MONOTONE GRAPHS

2.1. Notations. In this section we recall some basics notations about mono-
tone and maximal monotone graphs and functions in a Banach space. For
more details see [3, 4, 5].

Let X be a reflexive Banach space and let X’ be its dual. The duality
product in X’ x X is denoted by (-, ). According to [21], there is an equivalent
norm on X such that both X and X’ are locally uniformly convex. This will
be assumed from now on. It is to be noted that on a locally uniformly
convex space, weak convergence together with the convergence of the norms
implies strong convergence. The duality pairing associated to the norm of
X is denoted by F and maps £ € X to the unique F(§) € X’ such that
|E©)]|x = [|€]lx and (F(€),€) = ||€]|%- By the local uniform convexity of
X and of X'/, F is a homeomorphism. Its inverse is the duality mapping
from X’ to X. In the sequel, for simplicity, ||.|| will denote either |.||x or
||l.llx’ since the context will make the notation clear.

We consider set-valued operators A : X — X', that is maps which take
every point £ € X to some set A C X'. These applications are simply called
operators when no confusions may arise. Similarly when no ambiguities arise,
A will also denote the graph of the operator A, that is the set {({,n) €
X x X' : ne A&}. The domain of a graph A is the set,

D(A) = {x € X such that Az # 0}.

The operator A is single-valued on some set C C X, if for every £ € C,
A& contains at most one element; it is nonexpansive if |71 —n2|| < [|&1 — &2||
for every (£1,m), (§2,m2) € A. Every nonexpansive operator is clearly single-
valued on X. For operators A, B, we write A C B whenever A§ C B¢ for
every £ € X.

Monotone and maximal monotone graphs can now be defined:

Definition 2.1. The set A € X x X' is a monotone graph (or monotone
operator) if for every (£1,11), (§2,72) € A,

(m —mn2,61 — &) > 0.

The monotone graph A is a mazimal monotone graph (or maximal mono-
tone operator), if for every monotone graph B C X x X’| the inclusion A C B
implies A = B.

Ezample 1. Let A : X — X' be a single-valued map with D(4) = X. If
A is continuous and monotone then it is maximal monotone. In particular
the duality mapping F' : X — X’ defines a maximal monotone graph. Since
||l.llx is strictly convex, F' is strictly monotone in the sense that (F(x) —
F(2'),z —2') = 0 implies z = 2.

The following result plays a fundamental role in the theory of maximal
monotone operators.
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Theorem 2.2 (Browder |5]). Let A C X x X' be a monotone graph. The
graph A is mazimal monotone if and only if A+ F is a surjective map, i.e.

for every n € X', there is £ € X such that ({,77 — F({)) e A.

Remark 1. Since F is strictly monotone, for every n € X’ there is at most
one £ € X such that (&,n— F(&)) € A.

If A is a maximal monotone graph, then for every ¢ € X, A% defined as
AS = A(. +€) is also a maximal monotone graph. Hence for A > 0, there
exists a unique (a, 3) € A%, ie. (o — &, 3) € A, such that 0 = F(a) + A3
This justifies the definition:

Definition 2.3. Let A C X x X’ be a maximal monotone graph. For every
e X and X >0, (Jf{, Ay§) denotes the unique pair in A such that

F(& — J6) = M)¢.

Remark 2. When X is a Hilbert space, F : X — X’ is its Riesz isometric
isomorphism. In that case, to every maximal monotone graph A C X x X',
a nonexpansive map ¢4 : X — X is associated such that (£,n) € A if and
only if

F7 () — €= da(F~(n) +€).
Conversely, every nonexpansive function ¢4 : X +— X defines a maximal
monotone graph in that way [17]. The maps ¢4 and J{‘ are linked as

(2.1) $a(¢) = ¢ —2J{'¢.

Proposition 2.4. The mappings J;f‘ X - X and Ay : X — X' are
continuous. The graph Ay is single-valued and mazimal monotone.

The proof of Proposition 2.4 relies on the following Lemma:

Lemma 2.5. Let A C XX X' be a mazimal monotone operator and (§,,m,) €
A. Suppose that, as n — +00,

& — & weakly in X,
M —n  weakly in X',

(2.2 lim inf (10, 0) < (7,)

then (§,m) € A and
lim inf(n,,, &) = (0, €).

n—-—+00
Proof. For every (a, ) € A, by the monotonicity of A,
Therefore

Since A is maximal and («, 3) € A is arbitrary, (£,n) € A.
The fact that (£,7) € A and the monotonicity of A now yield

lim inf (1, §n) > i (9,,€) + lm (,&n) = (0,€) = (1,€).- O
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Proof of Proposition 2.4. Let (a,3) € A. By the monotonicity of A, for
every £ € X, we have
(F(€ = ), a = J€) < MB, Ji€ — a),

hence,

(2.3) I = e < MBI TS — all + lla = €]l T = €]l

therefore, J;f‘ is bounded on bounded sets.
Assume &, — & strongly in X. The monotonicity of A and of F' imply
that

(F(&n = J3'6n) = F(&m — J{&m), I — Ji6m) > 0,
(F(én = J{n) = F(Em — Ji6m), (€n — I{n) = (Em — I{m)) 2 0.
Summing the two previous inequalities gives
(F(&n = J36n) = F&m — J{m),6n — &m) = 0.
By (2.3), the left-hand side tends to 0 as m,n — co. Consequently,

Hm  (F(& — JE) — F(&m — J{6m), J2&n — JLEm) = 0.

m,n—-+00

Let (a, ) be a weak cluster point of (J{!&,, A\&,). One has
lim (Ax&n — B, J6n — a) = 0.

n—-+o00

By Lemma 2.5, (a, 8) € A and A3 = F(£ —a). Therefore a = J{¢, 3= A\¢
and (a, 3) is the unique weak cluster point of (Jfﬁn,A)\ﬁn). By Lemma 2.5
one also has

Jim (AxEn, & — J6n) = (AN € = J1'€)
Since [|E—JRE|? = A2||ANE]? = (ANE, €= L), one concludes that (J{E,, ArE,) —

(o, ) in X x X',
For &1,& € X, one has

MANE — AnE, & — &) = (F(& — J&) — F(& — J6),& — &)
= (F(& — J{&1) — F(& — J{6), (&1 — JL&) — (& — JL&))
+ (P& — JL&) — F(& — J{€), J{6 — J{e) >0

thanks to the monotonicity of A and F.
Since A, is single-valued and continuous, it is maximal. O

Remark 3. When X is a Hilbert space, J§' is nonexpansive, see [17] and (2.1)
in Remark 2.

2.2. Convergence of maximal monotone graphs [10]. Following Brezis
[3] and Attouch [2], the convergence of maximal monotone graphs is defined
as follows:

Definition 2.6. Let A", A C X x X’ be maximal monotone graphs. The
sequence A™ converges to A as n — oo, (A" — A), if for every (§,n) € A
there exists a sequence (&,,7m,) € A™ such that (&,,n,) — (§,n) strongly in
X x X" as n — oo.
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Example 2. If A™ and A are everywhere defined, continuous and monotone
(see Example 1), and if for every z € X, A"(x) — A(z), then A" — A.

The converse is true in finite-dimensional spaces

Proposition 2.7. Let A" € C(RY;R”Y) and A € C(RY;RY) be monotone.
The following are equivalent
(i) A" — A,
(ii) for every compact set K C RN, A™ — A uniformly on K,
(iii) for every € € RN, A™(€) — A(€).

Proof. Let us first prove that (i) implies (ii). Suppose A™ — A and let
K be a compact set of RY. Choose ¢, i € {0,..., N} such that K lies in
the interior of the convex hull of (¢!). Since A" »— A, there are sequences
(& )n>1 such that (&), A™(&L)) — (£, A(£)). In particular, K lies in the
interior of the convex hull of (£%) for large n. Let (£,) be a sequence in K
such that &, — & € K. By the monotonicity of A™,

lim sup(A™ (&), & — &n) < (A(E). €' — ).

Since there is > 0 such that for large n, B(0,0) is contained in the convex
hull of the points (&), —&n)o<i<n, the sequence (A™(&,)), -, is bounded. Let

n be a cluster point of A™(&,). Up to a subsequence, one has (A™(&,), &) —
(n,&). Since A is continuous, it is maximal, and therefore, by Lemma 2.8,

n = A(§).

The other implications are trivial. O

Remark 4. (i) = (i1) in Proposition 2.7 fails if the dimension of X and X" is
infinite. Let X = [?(N) and A™(§) = f(n(en,&))en, where (e,) is a basis of
I2(N) and f : R — R is nondecreasing continuous, f(0) = 0 and such that
f(1) # 0. We see that A™ (€ — (en, &)en) = 0 and (e, E)en, — 0 but (iii) is not
true. Taking £ = > N %em, we have the weak convergence A™(§) — 0,
but the strong convergence does not hold.

The convergence of graphs ensures that weak limits of elements of A™ are
in A provided the duality product of the pairs is preserved at the limit.

Theorem 2.8. Let A", A C X x X' be mazimal monotone graphs, and let
(&nymn) € A™ and (§,m) € X x X'. If, as n — +o0,

A" — A,
& — & weakly in X,
Ny —1n  weakly in X',

(2.4 lim inf (10, ) < (7,)

then (§,n) € A and
lim inf(n,, &) = (0, €).

n—-+o0o

Remark 5. If (&,,m,) — (&,7n) strongly in X x X' then (2.4) is satisfied,
i.e. every strongly converging sequence of elements of A™ is in A. The same
holds when only (&) (resp. (1,)) converges strongly in X (resp. in X’).
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The proof of Theorem 2.8 is similar to that of Lemma 2.5.

Theorem 2.9. Let A", A C X x X' be mazimal monotone graphs and
A > 0. The following are equivalent:

2 (i) A" — A, asn — o0,

: (1) V¢ € X, JAnC—> JfC as n — 00,

2 (1) V¢ e X, AV — Ax( as n — o0,

() AY — Ay, as n — oo.
Moreover, the convergences J;f‘nC — J;f‘( and AYC — Ax( are uniform on
strongly compact sets of X.

Remark 6. Note that A does not play any role in (i). Therefore if there exists
Ao > 0 such that any of (ii)-(iv) holds, then (ii)-(iv) hold for every A > 0.

Proof. Let us prove that (i) implies that JJ ¢ — J;f‘( and AY( — Ax(
uniformly on compact subsets of X. This will imply (ii) and (iii). Let
(Cn)n>1 € X be such that ¢, — ¢ strongly in X. Define (&,7) = (J{¢, Ax().
Since A™ — A as n — oo, there is a sequence (&,,n,) € A" such that
(&nymn) — (&, 1) strongly in X x X’. By the monotonicity of A",

A ARGl = (AXCns G — TR Ca)
<y &n — L Ca) + (ARG, Co — €0) < ARGl M lnll + 1S — EnlD-

Hence the sequences AY(, and Jf" (n are bounded in X and X'. Let (o, 3) €
X x X' be a weak cluster point of the sequence (J;‘"gn, AR(p), i.e., up to a
subsequence, (J;fxn Cny A%Cn) — (v, B) weakly in X x X’. By the monotonicity
of F,

( S\Lgn - TCma (Cn - JA nCn) - (Cm - JA mgm)> > 0.

Letting m — oo gives

< S\LCnnynCn>+hmsup< TCmaJ;\qum> < < KCnaCn_C“‘OO

m—+0o0
_<ﬁ’ Cn - C - J)\ 7LCn>-

Letting now n — oo, we obtain

limsup (A, J& ) < (6, a).

n—-+o0o

By Theorem 2.8, (o, 8) € A, and lim inf,, oo (A%, J5 Cn) > (B, «r). Hence,
lim supl| AYGn | |G — T3¢l =

lim sup(A%Cn, G — J5 Ga) < (8,¢ —a) < 18] ¢ — all.

n—~o0

Therefore (¢ — J{" Cny A%C) — (¢ — a,B) strongly in X x X'. By the
continuity of F, AF(8) = ¢ — a, and therefore (a,3) = (J{¢, Ax¢). One
concludes that (J{" ¢, A%C,) — (J3¢, AxC) in X x X as n — oo.

The equivalence between (ii) and (iii) comes from the continuity of the
duality mapping F'.

Assertion (iii) implies (iv) (see Example 2).

Finally, (iv) implies (i): Let (&,7) € A, and define ¢ = & + F~1(\n).
By the assumption, there is a sequence ¢, € X such that ({,, A%(,) —
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(¢, AxC) in X x X', By the continuity of F~1, J{"¢, = ¢, — F~'(AAYC,) —
¢ — F7Y(AAXQ) = J§I¢. Therefore, (J{" (o, A%Cn) — (¢, AN = (§,m)
strongly in X x X' O

Remark 7. If X is a Hilbert space, ¢pan : X — X and ¢4 : X — X are
the nonexpansive functions associated to A™ and A in Remark 2, then the
propositions of the Theorem are equivalent with:

For every £ € X, ¢an(§) — ¢a(§) as n — oo.

2.3. Graph valued measurable functions. From now on, we shall assume
that X, and hence X', is separable. The set of maximal monotone operators
from X to X’ is denoted by 9(X x X’). In this section (2,7, u) will be
a o-finite p-complete measure-space. The characteristic function associated
to the set A, is denoted by x4.

The following definition can be found in [6].

Definition 2.10. A function A : Q — 9MM(X x X') is measurable if and only
if for every open set U C X x X’ (resp closed set, Borel set, open ball, closed
ball),

{teQ:A)NU #£0}
is measurable in €.

The following proposition was proved in [1] for the Hilbert case, using
results of [6].

Proposition 2.11. Let A: Q — IMM(X x X'), let A > 0 and let E be dense
in X. The following are equivalent:

(i) A is measurable,

(ii) for every ( € E, t — Jf(t)ﬁ 1s measurable,
(iii) for every ¢ € E, t — A(t)r(C is measurable.

Remark 8. Note that neither A nor E play any role in (i). Therefore if there
exists A9 > 0 and a dense set F such that either of (ii) or (iii) holds, then
(ii) and (iii) hold for every A > 0 and for every ¢ € X.

Proof. Without loss of generality, set A = 1.
Assume (i). Let G C X be closed. For every ¢ € X, set

Ce = {(5,77) S G><X’:§~|—F_1(17) :g}.

From the continuity of F~1, it follows that C¢ is closed. Now we have

{teq:JV¢ceal={teq: At)nC. #0},

the latter is measurable by (i), so that (ii) is satisfied.
To show that (iii) implies (i), we can assume that E is countable. For

(€,m) € A(t), setting ¢ = &+ F~1(n) gives £ = J{q(t)g“ and n = A(t)1C.
Therefore by the continuity of Jf‘(t)C and of A(t);¢ with respect to ¢ and
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the density of F, one has
{teQ:A)NU #£0}
= J{tea: (11 Aw¢) e U}

(eX

= J{teq: (¢ A@n¢) e U},

Cer
thus, the left-hand side is measurable. O

Remark 9. If X is a Hilbert space, then A : Q — 9M(X x X') is measurable if
and only if the associated function ¢ — ¢ 4y (¢) (by Remark 2) is measurable
for every ¢ € X (see [13, Remark 2.2]).

2.4. Canonical extensions of maximal monotone graphs. Given a
function A : Q@ — 9M(X x X'), one can define a monotone graph from
LP(Q; X) to LI(Q2; X'), where 1/p+1/q = 1, as follows:

Definition 2.12. Let A : Q — (X x X'), the canonical extension of A
from LP(Q; X) to LI(Q; X'), where 1/p+ 1/q = 1, is defined by:
(2.5)

A= {(u,v) € LP(Q; X) x LI(Q; X') : (u(t),v(t)) € A(t) for ae. t € Q}.

One readily checks that A is monotone.

Proposition 2.13. Let A: Q — 9M(X x X') be measurable. If A+ 0, then
A is mazimal monotone.

Remark 10. The maximality of A(t) for almost every ¢ € € is not sufficient in
order to ensure the maximality of A as the latter could be empty: @ = (0,1)
and A(t) = {(&,n) e RN x RN 1 =¢7Ya}.
Proof. Since A # (), there exists (o, 3) € A. Suppose (u,v) € LP(Q; X) x
L9(Q; X') is such that for every (u/,v) € A,

/Q<v’(t) —v(t),u/(t) — u(t)) du > 0.
For every t € Q, set
un(t) = O (u(t) + FL (),
v (t) = A(t)1 (u(t) + F~ (v(t))).

By construction, (u.(t),v(t)) € A(t) for almost every ¢t € Q. For k > 0,
define

Qe ={t € Q: [[uc (O < Kllu@)]| and [lv. (@) < Ellv@)]]}
and

(ug, vi) = X (Ui V1) + X000, (@, B).
One has (ug,vx) € A, so that

/Q (0r(t) — v(t), k() — u(t)) dpx >0,
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which reads
/ (vi(t) = v(t), us () — u(t)) dp > —/ (B(t) = v(t), a(t) —u(t)) dpu
Qp O\Q
Since w, (t) + F 1 (v, (t)) = u(t) + F~(v(t)), we have for a.e. t € Q, by the
monotonicity of F,

(u(t) = ve(t), u(t) — u(t)) = (v(t) = va(t), F (0a(t)) = F7H (v(?))) <0,

and

0> /Q (0(8) — (), F (un(8)) — F (0(8))) dis
> — /Q\Qk<ﬂ(t) —v(t), a(t) —u(t)) du.

Lebesgue’s monotone convergence theorem now gives

0= /(v(t) (), P (un(0) — F(u(8))) du
Q

so that by definition of F~!
0= / (<l = [0 + (e (0). F @) + (w0, P~ ((0))) ds
Q
2
< /Q (@)l — o) dp.

This implies [[v(t)| = [lv«(¢)]| for almost every t € Q and (v, (t), F~!(v(t))) =
o)l ||ve(t)]]. Therefore, (u,v) = (ux,vs). Since (u,v) € LP(Q;X) x
L9(Q; X') and (us(t),v.(t)) € A(t), for almost every ¢, one concludes that
(u,v) belongs to A. O

A particular important class of maximal graphs is defined by

Definition 2.14. For m measurable from Q to R, @« € R and p > 1,
M(Q, X, p,a,m) is the set of A : Q@ — M(X x X') such that A is measurable
and such that for almost every t € Q, for every (£,n) € A(t),

€117

(2.6) a(T n W) < (0, €) +m(t),

where p~t 4+ ¢! = 1.

Remark 11. If o > 1, then M(Q, X, p, o, m) is empty: By Young’s inequality,
the graph A(t) should be bounded in X x X’ for almost every ¢t € Q, in
contradiction with the maximality of A(¢).

Remark 12. If —1 < a < 1, then M(Q, X, p, a,m) is not empty if and only
if m > 0. The graph-valued function A(t) = {(&,[|¢|IP72F(€)) : € € X}
is in IM(Q, X,p,a,m) for every a < 1 and m > 0. Conversely, suppose
A e MQ, X, p,a,m). Since A(t) is maximal almost everywhere, by Theo-
rem 2.18 (see below), there is (£,1) € A(t) such that n = —||£||P72F (). By
(2.6), m(t) > 0.
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Remark 13. By Young’s inequality, if « < —1 and m > 0, then 9(Q, X, p, o, m)
is the set of measurable graph-valued functions. The condition m > 0 is nec-
essary: If m(t) < 0, then (0,0) ¢ A(t), which means that in this case, any
graph which contains (0,0) is not in (2, X, p, a, m).

Remark 14. If a« < —1 and X # {0}, then 9(Q, X, p, o, m) is never empty
since it always contains the graph-valued function A(t) = {(&,7(¢)) : £ € X},
where 7(t) € X' is such that —(«a+ 1)[|77(¢)]|7/q > m(t).

Corollary 2.15. Let a > 0 and m € LY(Q). If A € M(Q, X, p, o, m), then
A is mazimal monotone.

Moreover, D(A) = LP(Q; X) and A is surjective.

Remark 15. For the maximality of A, @ > 0 can be weakened to o >
—1 (Proposition 2.20 below). The condition a > 0 is optimal for A to
be everywhere defined and onto. Indeed, let A(t) = {(0,n) : n € X}
Condition 2.6 is satisfied with m = 0 and a = 0, and D(A) = {0}. Similarly,
with A(t) = {(£,0) : £ € X}, A is not surjective.

Proof. Let uw € LP(€; X) and let for A > 0,
(ur(t),vr(t)) = (Jf(t)u(t),A(t)Av(t)).
By definition, (ux(t),va(t)) € A(¢) for almost every t € Q. By (2.6), one has

(L Iy
p q
< {(oa(t), ua (1)) +m(t) = =AlJoal* + (oa(t), u(t)) +m(t)
< (oA(t), u(t)) + m(?).
Hence, there is C' > 0 such that for almost every ¢t € Q,
a / ||ux(®)]|? va(t)]|?
2 p q
In particular, (uy,vy) € LP(Q; X) x L9(Q; X'). The set A is not empty hence
maximal by Proposition 2.13.
Integrating (2.7), gives

o / Joalle du < € / lullP dp + / m dp.

lim Avy||? dp = 0,
tim [ w7
and up to a subsequence, for almost every t € {2,

ux(t) — u(t) = AF 7 (vA(t)) — 0,

as A — 0. Together with (2.7), Lebesgue’s dominated convergence Theorem
implies then uy — w in LP(2; X). Since the sequence vy is bounded in
L9(2; X'), it is weakly compact, and there is v € LI(Q2; X') such that vy — v
weakly in L9(€Q; X’). Since A is maximal, Lemma 2.5 is applicable, and
(u,v) € A.

Note that A" = {(v,u) : (u,v) € A} satisfies the same assumptions as
A (with p and q reversed). By the proof above, D(A~!) = X', which is
equivalent with the surjectivity of A. O

Therefore
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2.5. Convergence of canonical extensions. Given functions A, A™ :
Q — M(X x X') and their canonical extensions A, A" (by (2.5)), we con-
sider the question whether the pointwise convergence A"(t) — A(t) implies
the convergence of the induced graphs A™ »— A.

Theorem 2.16. Let A, A" : Q — IMM(X x X') be measurable. Assume

(i) for almost every t € Q, A™(t) — A(t) as n — oo,

(ii) A and A™ are mazimal monotone,

(iii) there exists (an,Bn) € A" and (o, 8) € LP(Q; X) x LI(Q; X') such

that (o, Brn) — (o, B) strongly in LP(Q; X) x LI1(Q; X') as n — oo,
then A" — A.
Remark 16. Assumption (iii) cannot be dropped. One can have A™(t) —
A(t) for every t € Q While A"/~ A. For example, let X = R, and let
Q = (0,1). Define A™(t) = {(z,y) : y = nl/qx(()’l/n)(t)} and A(t) =
{(z,y) : y =0}. One has A"( ) — A(t) for every t € Q. On the other hand
for every (un,vy) € A" and (u,v) € A, one has ||v,||ze = 1 and ||v||ze =0
so that v, can not converge to v in L?(Q2) as n — oo, whence A" — A is
impossible.
Proof. Let (u,v) € A. For t € Q, let w(t) = u(t) + F~1(v(t)), so that
A

(u(t),0(t) = (7" (wt (0, A0 (ult). Defioe

Q' = {t e Q:[l5]" Dw(@)] < 2u@)] and [|A” )rw(b)]| < 2]v@)]},
and, for n > 1,

(un<t>,vn<t>>={(JA D w(®), Ao (w(n)) e,

(an(t), Ba(t)) if o Q).
By construction, (uy,v,) is in A" By dominated convergence, (uy,v,) —
(u,v) strongly in LP(Q; X) x LI(Q; X7). O

Corollary 2.17. Assume a > 0, m, € L*(Q), A® € M(Q, X, p,a, m,,) and
A Q — M(X x X') measurable. If m,, converges strongly to m in L' () and
if for almost every t in Q, A™(t) — A(t) holds, then A € M(Q, X,p, ,m)
and A" — A.

Proof. We apply Theorem 2.16. Hypothesis (i) is satisfied. By Corol-
lary 2.15, A™ is maximal monotone. Up to a subsequence (not relabeled), m,,
converge to m a.e. and remains dominated in L'(£2). Hence, A™(t) — A(t),
for a.e. t €  implies that A € M(Q, X, p, a,m) so A is maximal.

We now check hypothesis (iii). Define

(un(t). va(®)) = (510, 47(t),0).
Clearly, (un(t), va(t)) € A™(¢) fora.e. t € Qand (v, (t), un(t)) = —[lun(t)]|? <
0. Combined with (2.6), this yields
[un NP on @]
a + < mp(t).
(™ ) <mal)
Therefore, (un,v,) € LP(Q; X) x L1(Q; X') for every n > 0 and (up,v,) €
A™. By Theorem 2.9 applied, for almost every ¢ € Q, to A™(t),
(un(t), vn(t)) — (u(t),v(t)), strongly in X x X',
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where (u(t),v(t)) = ( f(t)O,A(t);[O). Now Lebesgue’s dominated conver-

gence Theorem implies that for any sequenc ny — oo, there is a subsequence
n; such that

(Uny, Vn,, ) — (u,v) strongly in LP(Q; X) x LI(Q; X').
J J

The argument above implies the convergence of the whole sequence (uy,,v,)

to (u,v). O

2.6. Changing the duality mapping. Theorem 2.2 is a particular case of
a more general result [5]: F is a monotone continuous coercive map, and there
is uniqueness when F' is strictly monotone, i.e. (F(&) — F(&),&1 — &) >0
when & # & € X. In view of the proof of Proposition 4.2, we consider F),
defined for £ € X by

Fy(&) = FO)|€|IP~2, V€ € X.
It satisfies
(Fp(€),€) = lIElIP = 1 Fp ()7

The case of Theorem 2.2 corresponds to p = 2. Browder’s results in this case
are

Proposition 2.18 (Browder [4]). Let A C X x X' be a monotone graph.
The graph A is mazimal monotone if and only if A+ F, is a surjective map,
i.e. for every n € X', there is € € X such that (&,n — Fy(£)) € A.

Similarly to the case p = 2, the following definition makes sense:

Definition 2.19. Let A C X x X’ be a maximal monotone graph. For every
e X and A >0, (prg,AM,g) denotes the unique pair in A such that

Fp(€ — J3H8) = My L.

With the previous definition and Theorem 2.18, all the results of section 2
in the case of the F}, duality mapping hold with obvious modifications in the
proofs.

The use of F}, yields improvements of Corollaries 2.15 and 2.17:

Proposition 2.20. The first parts of Corollary 2.15, and Corollary 2.17 are
valid under the hypothesis a > —1 (instead of a > 0).

Proof. This is based on the fact that if

(u(t), v()) = (J70, A(£); ,0),

one has v(t) = —F,(u(t)), and under hypothesis (2.6), this gives

le@IP | 01 _ o o (@I @l
= e u) < ml) o S+ B ). O

Remark 17. By Young’s inequality, every graph A satisfies (2.6) with « = —1.
Together with Remarks 10 and 16 this means that the condition o« > —1 is
optimal.
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3. THE PERIODIC UNFOLDING

The periodic unfolding operator was introduced by Cioranescu, Damlamian
and Griso |9]. We recall the definitions and properties of this operator. The
proofs can be found in [9, 11, 16].

3.1. Definition of the periodic unfolding operator and properties.
In RV, let Y be a reference cell (e.g. ]0,1[", or more generally a set having
the paving property with respect to a basis (b1, ..., by ) defining the periods).
For y € RV, [y]y denotes the unique integer combination Zj\le k;bj, with
k; € Z, of the periods such that y — [y]y belongs to Y and define

by =y —[yly €Y.

Definition 3.1. Let Y be a reference cell, € a positive number, S a set and
amap u : RN — S. The unfolding operator T is defined by

TY(w) : RV xRN = 8
(2,y) = T (u)(2,y) = u(elz/ely +ey).
One readily sees that for every z € RV,
T (u)(x, {z/e}) = u(z).
Moreover, 7.¥ (u) is invariant under the following action of Z": for k € Z",
T (u)(x + ek,y — k) = T (u)(z,y).
Ifu:RYN - Sand f: 8 — 9, then
T (fou) =foTX (u)

In particular if u : RN — S and v : RN — T, the preceding property applied
to the projections P : (u,v) — w and @ : (u,v) — v yields

TEY((U’?U)) = (,TEY(U’)?,T:SY(U))
Therefore, if F: S xT — R,
(3.1) 'ZE:Y(F(U,’U)) = F(,Z;:Y(u)vlz:;‘y(v))

Useful particular cases are when S = R, T'= R and F : (s,t) — st and
when S = RN, T'= R" and F is the dot product.

Proposition 3.2. If u € LYRY), then TV (u) € L*(R™ x Y) and
1
[ de= o [ T () dody.
RN Y| Jryxy
In particular, if 1 < p < +o0o0 and u € LP(RY), then T (u) € LP(RN x Y),
and
HTaY(u)HLP(RNXY) = |Y|1/p||u||LP(RN)'
Remark 18. In the sequel, a function which is defined on a set A of RV,

can be viewed as a function defined on RY, if we consider its extension by
0 outside of A.

The combination of Proposition 3.2 together with (3.1) yields:
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Proposition 3.3. Let A C RY be measurable. If u € L'(A), then T.Y (x )T (u)
is well-defined on RN x RN, T (xa)T (u) € LYRN xY), and

1

[ty do= o [ T ()T () do dy.
A Y] Jrvxy

Moreover, if 1 < p < +oo and u € LP(A), then T (xa)T.Y (u) is well-defined

on RN x RN, TY (x4)TY (u) € LP(RN x Y) and

17 ()T ()o@ vy = 1Y VPl o)

Since the unfolding operator has a local action, it is natural to examine
its effect on locally summable functions.

Proposition 3.4. For every 1 < p < oo, TEY 18 o linear and continuous
operator from L (RN) to LF (RN x RN).

loc loc

We turn now to the L{)OC convergence properties for 1 < p < +o0.

Theorem 3.5. Let (uc)e,u in LT
in L (RN) then

loc
TY () »u®1 strongly in L (RN x RY) as e — 0.

loc

(RY), 1 < p < +oo. If uc — u strongly

Global convergences follow easily.

Theorem 3.6. Let A C RN be measurable (u):,u in LP(RN), 1 < p < +o0.
If u. — u strongly in LP(RY), then

T (xA)TY (uz) — (xau) @ 1 strongly in LP(RN x Y) as € — 0,
and

’Tay(ua)mxy — u® 1 strongly in LP(AXY) as e — 0.

The following result states that the limit (if it exists) of an unfolded se-
quence is periodic.

Lemma 3.7. Let u. € L{ (RY) (resp L (R")) and @ € L} (R x RY)
(resp LY (RM)). If

loc

TY (us) — 4 * weakly in M(RN x RN), (resp weakly in L? (RN)).

loc

where M(RYN xRN) denotes the Radon measure space, then @ is Y -periodic.

Next, we recall the properties of the unfolding operator applied on the
gradient of some functions. If u € I/Vli’f(RN) then by Proposition 3.4,
T (u) € LI (RN x RY) and 7Y (Vu) € L (RN x RY). Moreover, for
every test function ¢ € D(RN x RY)

Lo VT @drdy= [ Vyplay) ulelo/ely +ey) do dy

RN xRN

RN xRN

- —/ o(z,y) eVu(e[z/ely +ey) dz dy
RN xRN

=- /RN " TV (Vu) dz dy,
X
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Therefore 7Y (u) is weakly differentiable with respect to y, and
(3.2) T (Vu) = V, (T2 ().

The following result gives a relation between the limit of an unfolded
sequence and the limit of the sequence:

Proposition 3.8. Let (u.). be a sequence of L, (R™) and letu € LY (RY),

loc

ae L (RN xRY). Assume that u. — u weakly in LY (RY) and T u. — 4

weakly in LY (RN x RY), then

1 .
ule) = 7 /Y ix.y) dy.

The following proposition is an important tool for the sequel.

Proposition 3.9. Let (u:): be a sequence of VV&)’?(RN) and let € LY (RY;RMN).

loc

If (ue)e is bounded in LY (RY), (eVue). is bounded in L} (RY;RY) and
T (ue) — @ weakly in LY. (RN x RY) as e — 0,
then
eT.Y (Vue) — Vi weakly in L. (RN x RY) as e — 0.
Moreover 4 1s Y -periodic in y.
The following theorem is the main result.

Theorem 3.10. Let (u:). be a sequence of Wli’p(RN) such that, u. — u

C
weakly in VVli’f(RN). Then, there exists a subsequence (not relabeled) and a

function @ in LD (RN; I/Vll’p(RN)) such that the following convergence holds:

loc oc
(3.3) T (Vue) = Vu® 1+ Vi,
weakly in LV (RN x RN) as ¢ — 0. Additionally, @ is Y -periodic.

loc

When Q@ C RV, A: Q — M(X x X') is unfolded as follows:

Definition 3.11. Let Q C RV and A : Q — 9M(X x X'), first A is extended
by [|€||P~2¢. This extension is still denoted by A. The unfolded graph 7. (A)
is now defined on R x R,

3.2. Averaging operator.

Definition 3.12. Let ¢ > 0, Y be a reference cell and u in L}, (RY x RY)
the averaging operator U is defined as follows

W (W) = 7 [ ulela/ely +eveta/ely ) du

Y

The averaging operator has the following properties (see |9, 11] for the
proofs).

Proposition 3.13. For every u € L} (RY), one has

loc

U (T (u) () = u(z).
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Proposition 3.14. If 1 < p < oo and w € LY (RN x RY) then

loc
7V (U (w) = w

strongly in LY (RN x RN) as e — 0.

loc

We turn now to the LP locally convergence equivalence properties for
1<p<+o0.

Theorem 3.15. Let (u.). in LY (RY) and @ € LI (RN xRY), 1 <p<

loc
+00. The following strong convergences are equivalent:
i) TY (ue) — @ strongly in LfOC(RN xRY) ase — 0,
i) u. —UY (@) — 0 strongly in LY. (RY) as e — 0.

4. HOMOGENIZATION RESULTS

In this section we state our main homogenization result. First we give
the result and the proof of the convergence. Then we study the properties
of the homogenized operator. Finally we give some energy convergence and
corrector result.

4.1. Convergence results.

Theorem 4.1. Assume 1 <p < oo, p 1 +q 1 =1, m. in LY(Q), @ > 0 and
let Q be a bounded open set of RY. Let A. € M(Q, RN, p, o, m.) for every
e>0.

Assume that there exists a cell Y C RN, a measurable B : Q x Y —
MRN xRY) and m € LY(Q xY) such that for almost every (z,y) € QxY,

(4.1) 7' (As)(w,y) — Blz,y)

and T.(m.) converges to m strongly in L'(Q x Y) as & goes to 0.
Assume f. — fo strongly in W~=54(Q) as e — 0.
Consider a (not necessarily unique) solution u. € Wol’p(Q) of the problem

—div d. = f. in D'(Q),
(4.2) (Vug(x),dg(:n)) € A-(x)
u. € WyP(Q).
Then, the family (ue,d:)e=o is weakly compact in Wol’p(Q) x LI(Q;RN).
Moreover, if (ug, dp) is one of its limit points, i.e. there is (ep)p>1 such that
en — 0
Ue, — ug weakly in Wol’p(Q),
d., — dy weakly in L9(Q; RYN),

—div d(] = f(] mn D,(Q)
(4.3) (Vuo(:n),do(:n)) € A(x),
ug € WyP(Q)
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where, for almost every x € (,

@) ={ & n) e RY xRV : 3(a d) e WIR(Y) x LYY;RY),

per

(4.4) V] /yﬁ(y) W=y / ) du=0,

€+ Va(y), n+d(y )) € B(z,y) for a.e. yeY
and —divd =0 in (Coa) (Y )}

Moreover Ay € M(Q, RN, p,a,m), where

m(x) ]Y! / m(z,y)d
Remark 19. Theorem 4.1 apphes to the particular case where A.(z) =
A(z/e), provided A € M(Q, RN, p,a,m) and m € LL _(RY) are Y-periodic.
In such a case, 7.¥ (A.)(x,y) = A(y), so that (4.1) immediately follows. Note
that this case was treated by [8].
Remark 20. The family of maximal monotone graphs Ag(z) defined in the
previous Theorem 4.1 is the H-limit (see [18] and [20]) of the sequence of
graphs A.(z). Our results are in accordance with the fact that 9(Q, RN, p, o, m)
is closed under H-limit |7].

By Theorem 3.11 and Remark 3.12 in [7], for every (up,dp) in Wol’p(ﬂ) X
LI RY), (Vuo(z),do(z)) belongs to A(z) almost everywhere. There ex-
ists (ue,de)es0 € Wol’p(Q) x LY(Q;RY) such that (uc(z),d:(z)) € Ac(z),
ue — u weakly in Wol’p(Q) and div d. — div dg strongly in W=19(Q; RN).
Remark 21. For every € > 0, the existence of (at least) one solution of
problem (4.2) follows from [13] or [7|. Indeed, using [13], one should check
that there exists d. € L9(€; R") such that (0,d.(z)) € A-(z). This is always
the case by Corollary 2.15.

Proof of Theorem 4.1. First we establish the weak compactness of the un-
folded sequences (’Z;(Vua),’lg(da)). Extend u. and d. by 0 outside of Q.
From inequality (2.6) and taking u. as a test function in equation (4.2), we
deduce that the sequences (u.). is bounded in WHP(R”) and the sequence
(d.)e is bounded in LY(RY; RY). Hence they are weakly compact.

Assume now u., — ug weakly in Wol’p(Q) and d., — do in LY(RN;RM).
By Theorem 3.10, there is @ € LP(£; Wpléf(Q)) such that

T (Vue,) = Vaug + Vil
weakly in LP(RY x Y;RY). The sequence 7. (d., ) is bounded in L(R" x
Y). There exists n e Lq(RN x Y), so that, up to a subsequence 7Y (d.,) —
n. Then dy = |Y| Jy n(y) dy so setting d=n— ‘Y‘ Jy n(y) dy, one has
7Y (de,,) — do + d weakly in LY(RY x Y).

Let ¢ € C°(R2). By the weak convergence of d., and the strong conver-
gence of fe , letting n — oo in (4.2) yields

(4.5) /Q (do(z), Vip(a)) da = /Q fop da.
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ie. —div dy = fo in D'(Y). Next, let ¢ € D(Q) and ¥ € C®(RY), such
that ¢ is Y-periodic. Defining ¢, (x) = e o(x)¢(x/e,), one has, by the
equation 4.2 and Proposition 3.3,

1
s AT (Ve ) dedy = [ o, do
|Y| RN XY Q

Letting £, — 0, one has ¢., — 0 weakly in W'P(Q) and 7} (Ve,,) —
o(z)Vip(y) strongly in LP(Q; WiZ(Y)), so that

1 R

|Y| QxY
Since ¢ is arbitrary, one concludes that for almost every z € €, for every

P € Wk (Y),
1 ~
(4.6) i / (d(a,y), V() dy =0,

i.e. —div d(z,) = 0 in (€)' (V).
Letting B., = 7.Y (A.,), one has by Corollary 2.17, B, — B as n — oo.
One also has

(47) /N (IZ:;‘);(dan) TY vuan /f57lu5n dx
RY XY

— / foug dor = / (do + d,Vaug + Vya) dz dy,
Q RN xY

where the last equality comes from (4.5) and (4.6), together with the fact
that 7 [y Vyit dy = 0 and 37 [y d dy = 0. By Theorem 2.8, (V,uo(x) +
Vya(z,y),do(x) + J(:E,y)) € B(z,y). This, together with (4.6), implies that
(Vug(x),do(z)) € A(z) for almost every x € Q.

By Proposition 4.2 below, for almost every z € Q, Ap(x) is maximal
monotone and satisfies (2.6). Its measurability comes from Lusin’s Theorem,
together with Proposition 4.4. Therefore, A € M(Q, RN, p, a,m) as claimed.

O

Remark 22. The previous proof easily extends to different boundary condi-
tions for which a variational formulation holds.

Remark 23. The proof can be extended to the reiterated case as in |16].

4.2. Properties of the homogenized graph. In this section, we prove
some properties of the homogenized graph A.

Proposition 4.2. Let o > 0, m € LY(Q), and B € MY, RN, p,a,m).
Define

:{(g n) e RV x RN : 3(4,d) e WLE(Y) x LI(Y;RYN),

per

(4.8) W/ya(y) W !Y!/ ) & =0,

(£+Vu()17+d( )) (y) ae. yeY
and — divd =0 in (Coar)' (Y ),},
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then A belongs to M(RN x RN), and for every (£,n) € A,
1€l” -, limll /

4.9 al —— + —— m(y

(49) ( p q ) T

Proof. First, one checks the monotonicity of A. Let (&;,n;) € A, fori=1,2
and let @; and d; be associated to (&;,7;) by the definition. One has then

(m — ?72751
=V / m +di(y) — e — da(y), & + Vi (y) — & — Viia(y)) dy.

By the monotonicity of B, the right-hand side is nonnegative. Therefore A
is monotone.

By Theorem 2.18 the maximality of A will follow from the surjectivity of
A+ F,. For a.e. y €Y and for every ¢ > 0 and A > 0, set

Bea(y) = eFp(y) + B(Y)ap,

according to Definition 2.19. For almost every y € Y, B, (y) is maximal
monotone, continuous and coercive. We are now going to build an approxi-
mation Bg \ of B and then let (¢, X) go to zero. For € and A small enough,
the fact that B, € M(Y,RY,p, a/2,m) follows from Lemma 4.3 below.
Since B ) satisfies the hypotheses of Leray-Lions [14], we know that for

every £ € RY there exists a unique 4 € Wg&?(Y) such that

(4.10) { wr Jy 800) dy =0
—div B&)\( ) (Vii(y) +¢&) = 0in (Cpe,)' (V).

Define d = B, \(y)(Va(y )+§ ) and

(4.11) 99 =~ [ Ber (Vi) +¢) dy
By (2.6), one has
(4.12)

HVU+€H” Hqu 1 / 5 on 1/
o y<— [ ({d,Vi+& dy+ — [ mdy
2\Y\/ p A W ),

1
R

By Jensen’s inequality, since fY Via dy =0,

(4.13) %(W - lg(€ )Hq> < —(£,9(9) +/Ym dy.

p q
From (4.12) follows an explicit bound of ||g(§)|| in terms [|]].
Let us show that ¢ : RY — R is continuous. Assume &, — & as
n — oo. Let 4, be the unique solution of problem (4.10) associated to &,
and let d,, = B. \(y) (Vi (y) +€). By (4.12) the sequences (dy) and ()

are bounded. Therefore there exists ((%, 4(y) such that, up to a subsequence,

(4.14) dy, — dj) weakly in LI(Y),
(4.15) Qy, — iy weakly in W 22(Y).
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Recalling that —div d,, = 0, —div dj = 0, in (Coer)'(Y') together with (4.14)
and &, — &, this gives

/ (o, Vit + &) dy = / (dns60) dy
Y Y
- / (dh. &) dy = / (), Vil + &) dy
Y Y

By Lemma 2.5, we deduce that (Vig(y) + 50,620( )) € Ba)\(y). By the
uniqueness of the solution of problem (4.10), (uo, d\) = (@i, do). In particular

(4.16) g(&)z,?l, /Y dydy = Jim_ / ddy= lm_g(E).

n—-4oo ‘

Let us now check the hypothesis of Schaefer’s fixed point theorem (see
[19]). First, g is continuous. Next, assume there are > 1 and £ € R such
that g(§) +n = p& and p > 1. By (4.13) one has then

o/(”ﬁp“” ||g<q>||q) /mdyq, / m dy.

and therefore ||£]| < C, where C depends only on p, @ and m. The previous
statement means that for every n € RY, there is ¢ € R such that ¢ =
g(€) + n by Schaefer’s fixed point theorem.
By definition of g, there exists (4, d) in Wr}éf(Y) x L4(Y') such that
—div d=0in (C)(Y),
(4.17) d = B:\(y)(Vily) +¢€) dy,
n=E+ w7 Jy Bea(v)(Valy) +€) dy
Consider now sequences €, — 0, A, — 0 as n — oo . Let ﬂn,cin,fn
be defined by (4.17), for n associated to €,,A,. By (4.12) and (4.13), the
sequences (3,), (i) and (d,) are bounded in RN, WpE(Y) and LI(Y)
respectively. Up to subsequences, it follows that
&n — o in RY,

Qi — fig weakly in WE(Y),

A~

dy, — dy weakly in LI(Y).

Furthermore, recalling Corollary 2.17, B;, », — B, as n — +00.
Recalling that fy<cfn, V) dy = 0, for every ¢ € Wg&?(Y), we deduce that

/ <CZny Vi, + £n> dy = / <Jn7£n> dy,
Y Y
and since &, — &, czn — c?o, passing to the limit as n — oo, we deduce that
/<620,Vﬂ0 +&o) dy = / (do, &) d
Y Y
Consequently, by Theorem 2.8, we have (Vio(y) + &o, Jo(y)) € B(y) for a.e.

y €Y, —divdy = 0in (€)' (Y) and [, do dy = &. This means that
Ay + &y = 1, and therefore A + F' is surjective.
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In order to prove (4.9),let (§,m) € A, and let @, dbe given by the definition
of A. Since ‘Y‘ Jy Vi dy = 0 by periodicity and |Y| [y d(y) dy = 0, we have,
by Jensen’s inequality,

P q nenk ()2
Oé(||£|| 4 Il Si/ l€+Va@)lP  ln+d@l?
p Y q
Together with (2.6), this yields

€11 H??Hq / /
ol — + —— +d, 6+ V) dy+ — [ mdy.
5 =L P
Using again that \Y\ fY Vi dy = 0 and |Y\ fY ) dy = 0 together with
—divd =0 in (C,)(Y), one obtains (4.9). O

per

)

Lemma 4.3. Let o > 0. For every § > 0, there is g9 > 0 and \g > 0 such
that if m € R and B € M(X x X') are such that for every (§,7n) € B,

p q
(Y

then for every £ € X, 0 <e <egg and 0 < X < Ay,

(a_5)<Hi)”p + ||B)\7p£ +q€Fp(£)||q) S (B)\7p€+EFp(€)7€> +m

Proof. Let £ € X, n = eF,(§)+Byp§ and ( = prﬁ. One has (¢,n—<eFp(§)) €
B. Therefore
P _eF q
(IS RO i s
Since F,(€ — ¢) = AW~ — eF,(£)), one can develop

(n—eFp(€),0) = (n,6) = NPl = ¢IP — 7l Fp (€)1
Bringing this together gives

P lE=clP =Rl | JEFp©)]0
Oé(”p” n ”a)\p_|1’ + ||77 €qp( )H + ||5a§q(_3|| )§<77’£>+m'

By convexity, for every u € (0,1),

||£||p < ”C”p H€ B CHP
T L=
L@ [HERE) —nll”
pat (I—p)t
Choose g € (0,1) such that (o — §) max(uP~%, u4=!) < 1. The required
inequality holds with \g = (p/a)Y®=1(1 — ) and gy = (¢/a)/(@=D(1 —
q)- 0

Il <

Let us now establish the following result which gives the measurability of
A(z) (using Lusin’s theorem) in Theorem 4.1.

Proposition 4.4. Let o > 0, m,, € LY (). Let B, € MY, RN, p,a,m,)
and B € MR xRN) be measurable. Let A™ and A be the graphs associated
by (4.8). If my, — m strongly in L' () and B"(y) — B(y), then A" — A,

as n — oQ.
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Proof. By Theorem 2.9, it is sufficient to show that for every ¢ € R, A7¢ —
AiC. Let (&n,mn) = (J{"¢, AC). Since F is the identity mapping, one has
&n + M = ¢ and (&,,n,) € A™. By definition of A", there exists (4, d,) €
Wpléf(Y) x LI(Y; RY) associated to A™ by the definition (4.8).

By (2.6), one has

7 P d q
Y p q

dy < <"7n7£n> =+ /Ymn dy.

By Jensen’s inequality and since 0, = — &,,
D q
p q Y

so that the sequences &, and 7, are bounded in RY. By (4.18), the se-
quences d,,, and @, are bounded in LI(Y) and WpZ(Y) respectively. Up to
a subsequence, (&,,7,) — (£,1) in RY x RN and (i,,d,) — (@, d) weakly

in WI}%’(Y) x LA(Y). In particular, 77 [y Vi dy = 0, 5 [, d dy = 0 and
—divd =0in (C3,) (Y). Therefore,

per
/<dn+nn,van+£n> dy = (s Ea) — (1,6) =/<d+n,va+£> dy.
Y Y

Since, by Corollary 2.17, B™ — B, Theorem 2.8 gives (Vﬁ(y)—k&ci(y)—i—n) €
B(y) for almost every in Y. Therefore (£,77) € A. Noting £ +n = (, this
implies (£,1) = (J{¢, A1¢). Thus, one has AP¢ — A;( forevery ¢ € RY. O

4.3. Correctors. In this section we first study the convergence fﬂ(d€ —
do, Vue — Vug) dz and then a corrector result.

Proposition 4.5. UnderAhypotheses of Theorem 4.1, assume there exists
@ e LP(Q;Wpk(Q)) and d € LI(Q x Y;RYN) such that Jyddy =0 and a
sequence (e,) with £, — 0

TV (Vue,) = Vaug + Vi weakly in LP(RY x Y;RY),

7.V (de,) — do + d weakly in LY(RYN x Y;RN),
then

(4.19) / (e, — do —UY (d), Ve, — Vug — U (V@) dz — 0.
Q

n

Remark 24. Given a sequence (g,,), the conditions of Proposition 4.5 are
always satisfied up to a subsequence.

Proof. One has

/ (e, — do —UY (d), Ve, — Vg — UY. (Vi) da =
Q
1 .
57 o T~ T o) = QD). T (V) = T (V)
X

— T (U (Vya))) dz dy.

En

The convergence then follows from (4.7), together with Theorems 3.5 and 3.15.
O
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As in [16] one can recover strong convergences as follows:

Theorem 4.6. Let A, Ay be as in Theorem 4.1 and Proposition 4.5. If
there exists ¢ > 0, 3 > p and k. € L'(Q) such that for almost every x € Q,

f(JT every (517771)7 (527772) € A6($);

(4.20) (& — &ll° < e(re(@) + &) + 1lP) PP o = may &1 — &),

If sup,sol|ell 1 < oo, then
Vaue —UY (Dyit) — Vug

strongly in LP(€2) as € — 0.
Moreover, for every (£1,m), (§2,m2) € Ac(x),

alr &l G-/
16— &|° < C(Ho(l’) + % + %)

(m —m2,61 — &2),
with
ey 2p _
ko(z) = [ lminf 77 (ke)(z,y) dy + —m(z).
Y e—0 (6%

Proof. We use the notations of Theorem 4.1. First note that by (4.20), (ug, @)
does not depend on the subsequence (g,). Therefore, the whole sequences
converge: ue — u in Wol’p(Q) and 7Y (Vu:) — Vug + Vyi as e — 0.
Since B. — B, there exists a sequence (&,n:) € B. such that (&,n.) —
(Vaug + Vyii, do + d) strongly in LP(RY x V;RN) x LIRN x Y;RN).

By Hoélder’s inequality,

/ 1T (Vuo) — & de dy
RN xY

< ( / |7 (Vue) — &
~ \Jrvgy (T (ko) 4+ |TY (Vue)||P + ||&|[P)@/p)—1

([ et T (P + el a ay)
RN xY

du dy)p/ﬁ

1-p/B

By the boundedness 7. (Vu.) in LP(2 x Y;RY) and the inequality (4.20),
there is C' > 0 such that

B/p
([, I (V) -l o ay)
RN xY
<cC / (T(de) — 1o, TY (Vue) — &) da dy
RN xY

Using successively the strong and weak convergences of (&.,7.) and
(T (Vue), 7-(d:)) to (Vauo + Vi, do + d), and the convergence (4.7), we
have that

lim (Te(de) — naaTaY(VUa) — &) dx dy
e—0 JRN vy

= lim (T2(d.), T (Vo)) — (do + d, Vpug + Vya) dz dy = 0.
e=0 JRN xy
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This implies ||7:(Due) — &l L@y xy) — 0. Since & — Vyug+ Vi strongly
in LP(RY x Y), one has TV (Vu.) — V,ug + V4. Theorem 3.15 and
Proposition 3.14 give the conclusion.

Since 7Y (A.) ~ B, inequality 4.20 is satisfied with
k(z,y) = liminf. o 7Y (k.)(z,y) in place of k.(x) for every (£,n) € B(x,y).
For i = 1,2, consider (&;,7;) € A and (4, d;) associated by definition (4.4).
By Jensen’s and Holder’s inequalities,

B/
-l < (o [ e+ Vi) - & - Vas(1” )"

ol / 161 + Vi (y) — & — Vao(y)||®
Y] Sy (B + |1 + V] + [|& + Vag||p)(B/p)-1

dy
1 ) ) . (B/p)—1
(7 7+ s+ Vil + o+ Vil )
Y

The first factor on the right-hand side is controlled by inequality (4.20) for
B:

/ &1 + Vi (y) — & — Vas(y)|)? _ dy
Y] H+ &1+ Vi ||P + [|€2 + Vig||P)B/p)=
< Cm (m +di(y) — 2 — da(y), & + Vi (y) — & — Viia(y)) dy

=c(m —n2, & — &2).

In order to bound the second factor, note that, by (2.6) and Young’s and
Jensen’s inequalities,

p

1
< - DW/M+dH®+mU el + mo).

O

Remark 25. Similarly, if there exists C' > 0 and § > ¢ such that for every
(517 771)7 (527 772) € Az—:(gj)a

(421) i —ml® < e(re(@) + Il + lel?) Oy — o, &),
then

de — U (d) — do
strongly in LI(Q2) as € — 0.

Remark 26. The convergence d. — Z/[EY(CZ) — do follows from Theorem 4.6
when A. and A are single-valued by Proposition 2.7 and Lebesgue’s dom-
inated convergence Theorem. A similar result holds when A, and A are
injective and satisfy (4.21), Vu. —UY (Dyt) — Vuo.

€
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