
PERIODIC HOMOGENIZATION OF MONOTONEMULTIVALUED OPERATORSALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENAbstrat. Using the unfolding method of Cioranesu, Damlamian andGriso (CRAS, 2002), we study the homogenization for equations of theform −div dε = f , with `

∇uε(x), dε(x)
´

∈ Aε(x) and where Aε is afuntion whose values are maximal monotone graphs. Under appropriategrowth and oerivity assumptions, if the sequene of unfolded maximalmonotone graphs `

Tε(Aε)(x, y)
´ onverges in the graphial sense to amaximal monotone graph B(x, y) for almost every (x, y) ∈ Ω × Y , as

ε → 0, then (uε, dε) onverges weakly in a suitable Sobolev spae to asolution (u0, d0) of the problem −div d0 = f , with `

∇u0(x), d0(x)
´

∈

A(x) and A satis�es the same assumptions as Aε. This result inludesthe ase where Aε(x) is a monotone ontinuous funtion for almost every
x ∈ Ω. 1. IntrodutionThis artile is devoted to periodi homogenization for nonlinear partial dif-ferential equations with osillating oe�ients. This type of equation modelsvarious physial problems arising in media with holes or heterogeneous ma-terials with various ompeting length-sales.In [16℄, using the unfolding method [9℄, the periodi homogenization wasonsidered for:(1.1) {

−div
(

aε(x,∇uε)
)

= f in D′(Ω),

uε ∈W 1,p
0 (Ω),where Ω is a Lipshitz open bounded set of R

N , 1 < p <∞, p−1 + q−1 = 1,
fε ∈ W−1,q(Ω) and aε : Ω × R

N → R
N is suh that aε is of Carathédodorytype, monotone, and has its growth ontrolled. If the unfolded funtions

Tε(aε)(x, y, ξ) onverge for almost everywhere, then the sequene of solutions
(uε)ε onverges, as ε→ 0, to the solution u0 of a problem whih satis�es thesame hypotheses and where a0 only depends on the limit of Tε(aε).A natural generalization of problem (1.1) is the problem(1.2) 









−div dε = f in D′(Ω),
(

∇uε(x), dε(x)
)

∈ Aε(x),

uε ∈W 1,p
0 (Ω).Now Aε : Ω → M(RN × R

N ) is a measurable map taking its values in theset M(RN × R
N ) of maximal monotone graphs from R

N to R
N . If thereexists α > 0 and m ∈ L1(Ω) suh that for almost every x ∈ Ω, and for every

(ξ, η) ∈ Aε(x),(1.3) α
(

‖ξ‖p + ‖η‖q
)

≤ 〈η, ξ〉 +m(x),1



2 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENthen the problem (1.2) has at least one solution [7, 13℄. This solution neednot be unique.We onsider here the homogenization of (1.2). Let (uε, dε) ∈ W 1,p
0 (Ω) ×

Lp(Ω;RN ) be solutions of the problem (1.2). If the funtions Aε satisfyassumption (1.3) uniformly and if the sequene of unfolded graphs T Y
ε (Aε)onverges almost everywhere, every luster point (u0, d0) of the sequene

(uε, dε) for the weak topology in W 1,p
0 (Ω) × Lp(Ω,RN ) is a solution of











−div d0 = f in D′(Ω),
(

∇u0(x), d0(x)
)

∈ A0(x),

u0 ∈W 1,p
0 (Ω).where A0 : Ω → M(RN × R

N ) satis�es (1.3) and is de�ned in terms ofthe limit of T Y
ε (Aε). In [16℄ the hypotheses were stronger and implied thestrong onvergene of the orretors, whih is not obtained here. The bestonvergene in this diretion is (4.19). If the funtions Aε satisfy additionalassumptions, one reovers the strong onvergene of the orretors (Theo-rem 4.6).This problem is intimately onneted to the onvergene of maximal mono-tone operators, the theory of whih was atively developed in the 1970's,most partiularly in the Hilbert spae ase ([3℄, [1℄ and [2℄). At the time, the�rst author had studied it in the ase of re�exive Banah spae, espeially inview of the renorming result of Trojanski (keeping in mind that monotoniityis norm independent). This led to a paper whih also inluded the ase ofsubdi�erentials of lower semi-ontinuous proper onvex funtions, but wasnever submitted for publiation [10℄.In ombination with the unfolding method, a main tool here are ondi-tions under whih the loal onvergene of graphs implies global onvergene.More preisely, denoting by  the onvergene in the graphial sense, welook for onditions on A,An : Ω → M(X × X ′) that satisfy An(t)  A(t)under whih An

 A where
A =

{

(u, v) ∈ Lp(Ω;X) × Lq(Ω;X ′) |
(

u(t), v(t)
)

∈ A(t) for a.e. t ∈ Ω
}and a similar de�nition for An.The outline of the paper is as follows. In Setion 2, we reall the de�nitionof maximal monotone operators and of the notion of onvergene of maximalmonotone graphs. Using [10℄, we onsider sequenes of maximal monotonevalued measurable funtions, their anonial extensions and we prove keyresults about their onvergene.In setion 3 we reall the de�nition of the unfolding operator, averagingoperator and the orresponding onvergene properties (f. [9℄, [11℄ as wellas [15℄, [16℄).In setion 4 we onsider the homogenization problem and we state ourmain result in Theorem 4.1.Some of the results of this paper were announed in [16℄. The ase where

Aε(x) is the subdi�erential of onvex funtion with suitable growth andoerivity onditions will be presented in a forthoming paper [12℄.



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 3Note that there are many papers in the litterature under the study of
G-onvergene and homogenization whih onern the non-linear ase. Weonly refer to [8℄ and the bibliography therein.2. Maximal monotone graphs2.1. Notations. In this setion we reall some basis notations about mono-tone and maximal monotone graphs and funtions in a Banah spae. Formore details see [3, 4, 5℄.Let X be a re�exive Banah spae and let X ′ be its dual. The dualityprodut inX ′×X is denoted by 〈·, ·〉. Aording to [21℄, there is an equivalentnorm on X suh that both X and X ′ are loally uniformly onvex. This willbe assumed from now on. It is to be noted that on a loally uniformlyonvex spae, weak onvergene together with the onvergene of the normsimplies strong onvergene. The duality pairing assoiated to the norm of
X is denoted by F and maps ξ ∈ X to the unique F (ξ) ∈ X ′ suh that
‖F (ξ)‖X′ = ‖ξ‖X and 〈F (ξ), ξ〉 = ‖ξ‖2

X . By the loal uniform onvexity of
X and of X ′, F is a homeomorphism. Its inverse is the duality mappingfrom X ′ to X. In the sequel, for simpliity, ‖.‖ will denote either ‖.‖X or
‖.‖X′ sine the ontext will make the notation lear.We onsider set-valued operators A : X → X ′, that is maps whih takeevery point ξ ∈ X to some set Aξ ⊂ X ′. These appliations are simply alledoperators when no onfusions may arise. Similarly when no ambiguities arise,
A will also denote the graph of the operator A, that is the set {(ξ, η) ∈
X ×X ′ : η ∈ Aξ}. The domain of a graph A is the set,

D(A) =
{

x ∈ X suh that Ax 6= ∅
}

.The operator A is single-valued on some set C ⊂ X, if for every ξ ∈ C,
Aξ ontains at most one element; it is nonexpansive if ‖η1 − η2‖ ≤ ‖ξ1 − ξ2‖for every (ξ1, η1), (ξ2, η2) ∈ A. Every nonexpansive operator is learly single-valued on X. For operators A,B, we write A ⊆ B whenever Aξ ⊆ Bξ forevery ξ ∈ X.Monotone and maximal monotone graphs an now be de�ned:De�nition 2.1. The set A ⊂ X × X ′ is a monotone graph (or monotoneoperator) if for every (ξ1, η1), (ξ2, η2) ∈ A,

〈η1 − η2, ξ1 − ξ2〉 ≥ 0.The monotone graph A is a maximal monotone graph (or maximal mono-tone operator), if for every monotone graph B ⊂ X×X ′, the inlusion A ⊆ Bimplies A = B.Example 1. Let A : X → X ′ be a single-valued map with D(A) = X. If
A is ontinuous and monotone then it is maximal monotone. In partiularthe duality mapping F : X → X ′ de�nes a maximal monotone graph. Sine
‖.‖X is stritly onvex, F is stritly monotone in the sense that 〈F (x) −
F (x′), x− x′〉 = 0 implies x = x′.The following result plays a fundamental role in the theory of maximalmonotone operators.



4 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENTheorem 2.2 (Browder [5℄). Let A ⊂ X × X ′ be a monotone graph. Thegraph A is maximal monotone if and only if A+ F is a surjetive map, i.e.for every η ∈ X ′, there is ξ ∈ X suh that (

ξ, η − F (ξ)
)

∈ A.Remark 1. Sine F is stritly monotone, for every η ∈ X ′ there is at mostone ξ ∈ X suh that (

ξ, η − F (ξ)
)

∈ A.If A is a maximal monotone graph, then for every ξ ∈ X, Aξ de�ned as
Aξ = A(. + ξ) is also a maximal monotone graph. Hene for λ > 0, thereexists a unique (α, β) ∈ Aξ, i.e. (α − ξ, β) ∈ A, suh that 0 = F (α) + λβ.This justi�es the de�nition:De�nition 2.3. Let A ⊂ X ×X ′ be a maximal monotone graph. For every
ξ ∈ X and λ > 0, (JA

λ ξ,Aλξ) denotes the unique pair in A suh that
F (ξ − JA

λ ξ) = λAλξ.Remark 2. When X is a Hilbert spae, F : X → X ′ is its Riesz isometriisomorphism. In that ase, to every maximal monotone graph A ⊂ X ×X ′,a nonexpansive map φA : X → X is assoiated suh that (ξ, η) ∈ A if andonly if
F−1(η) − ξ = φA(F−1(η) + ξ).Conversely, every nonexpansive funtion φA : X 7→ X de�nes a maximalmonotone graph in that way [17℄. The maps φA and JA

1 are linked as(2.1) φA(ζ) = ζ − 2JA
1 ζ.Proposition 2.4. The mappings JA

λ : X → X and Aλ : X → X ′ areontinuous. The graph Aλ is single-valued and maximal monotone.The proof of Proposition 2.4 relies on the following Lemma:Lemma 2.5. Let A ⊂ X×X ′ be a maximal monotone operator and (ξn, ηn) ∈
A. Suppose that, as n→ +∞,

ξn ⇀ ξ weakly in X,
ηn ⇀ η weakly in X ′,(2.2) lim inf
n→+∞

〈ηn, ξn〉 ≤ 〈η, ξ〉,then (ξ, η) ∈ A and
lim inf
n→+∞

〈ηn, ξn〉 = 〈η, ξ〉.Proof. For every (α, β) ∈ A, by the monotoniity of A,
〈β − ηn, α− ξn〉 ≥ 0.Therefore

0 ≤ lim inf
n→∞

〈β − ηn, α− ξn〉 ≤ 〈β − η, α− ξ〉.Sine A is maximal and (α, β) ∈ A is arbitrary, (ξ, η) ∈ A.The fat that (ξ, η) ∈ A and the monotoniity of A now yield
lim inf
n→∞

〈ηn, ξn〉 ≥ lim
n→∞

〈ηn, ξ〉 + lim
n→∞

〈η, ξn〉 − 〈η, ξ〉 = 〈η, ξ〉. �



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 5Proof of Proposition 2.4. Let (α, β) ∈ A. By the monotoniity of A, forevery ξ ∈ X, we have
〈F (ξ − JA

λ ξ), α − JA
λ ξ〉 ≤ λ〈β, JA

λ ξ − α〉,hene,(2.3) ‖ξ − JA
λ ξ‖

2 ≤ λ‖β‖ ‖JA
λ ξ − α‖ + ‖α− ξ‖ ‖JA

λ ξ − ξ‖,therefore, JA
λ is bounded on bounded sets.Assume ξn → ξ strongly in X. The monotoniity of A and of F implythat
〈F (ξn − JA

λ ξn) − F (ξm − JA
λ ξm), JA

λ ξn − JA
λ ξm〉 ≥ 0,

〈F (ξn − JA
λ ξn) − F (ξm − JA

λ ξm), (ξn − JA
λ ξn) − (ξm − JA

λ ξm)〉 ≥ 0.Summing the two previous inequalities gives
〈F (ξn − JA

λ ξn) − F (ξm − JA
λ ξm), ξn − ξm〉 ≥ 0.By (2.3), the left-hand side tends to 0 as m,n→ ∞. Consequently,

lim
m,n→+∞

〈F (ξn − JA
λ ξn) − F (ξm − JA

λ ξm), JA
λ ξn − JA

λ ξm〉 = 0.Let (α, β) be a weak luster point of (JA
λ ξn, Aλξn). One has

lim
n→+∞

〈Aλξn − β, JA
λ ξn − α〉 = 0.By Lemma 2.5, (α, β) ∈ A and λβ = F (ξ−α). Therefore α = JA

λ ξ, β = Aλξand (α, β) is the unique weak luster point of (JA
λ ξn, Aλξn). By Lemma 2.5one also has

lim
n→∞

〈Aλξn, ξn − JA
λ ξn〉 = 〈Aλξ, ξ − JA

λ ξ〉Sine ‖ξ−JA
λ ξ‖

2 = λ2‖Aλξ‖
2 = 〈Aλξ, ξ−J

A
λ ξ〉, one onludes that (JA

λ ξn, Aλξn) →
(α, β) in X ×X ′.For ξ1, ξ2 ∈ X, one has
λ〈Aλξ1 −Aλξ2, ξ1 − ξ2〉 = 〈F (ξ1 − JA

λ ξ1) − F (ξ2 − JA
λ ξ2), ξ1 − ξ2〉

= 〈F (ξ1 − JA
λ ξ1) − F (ξ2 − JA

λ ξ2), (ξ1 − JA
λ ξ1) − (ξ2 − JA

λ ξ2)〉

+ 〈F (ξ1 − JA
λ ξ1) − F (ξ2 − JA

λ ξ2), J
A
λ ξ1 − JA

λ ξ2〉 ≥ 0thanks to the monotoniity of A and F .Sine Aλ is single-valued and ontinuous, it is maximal. �Remark 3. When X is a Hilbert spae, JA
λ is nonexpansive, see [17℄ and (2.1)in Remark 2.2.2. Convergene of maximal monotone graphs [10℄. Following Brezis[3℄ and Attouh [2℄, the onvergene of maximal monotone graphs is de�nedas follows:De�nition 2.6. Let An, A ⊂ X × X ′ be maximal monotone graphs. Thesequene An onverges to A as n → ∞, (An

 A), if for every (ξ, η) ∈ Athere exists a sequene (ξn, ηn) ∈ An suh that (ξn, ηn) → (ξ, η) strongly in
X ×X ′ as n→ ∞.



6 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENExample 2. If An and A are everywhere de�ned, ontinuous and monotone(see Example 1), and if for every x ∈ X, An(x) → A(x), then An
 A.The onverse is true in �nite-dimensional spaesProposition 2.7. Let An ∈ C(RN ;RN ) and A ∈ C(RN ;RN ) be monotone.The following are equivalent(i) An

 A,(ii) for every ompat set K ⊂ R
N , An → A uniformly on K,(iii) for every ξ ∈ R

N , An(ξ) → A(ξ).Proof. Let us �rst prove that (i) implies (ii). Suppose An
 A and let

K be a ompat set of R
N . Choose ξi, i ∈ {0, ...,N} suh that K lies inthe interior of the onvex hull of (ξi

n). Sine An
 A, there are sequenes

(ξi
n)n≥1 suh that (

ξi
n, A

n(ξi
n)

)

→
(

ξi, A(ξi)
). In partiular, K lies in theinterior of the onvex hull of (ξi

n) for large n. Let (ξn) be a sequene in Ksuh that ξn → ξ ∈ K. By the monotoniity of An,
lim sup

n→∞
〈An(ξn), ξi

n − ξn〉 ≤ 〈A(ξi), ξi − ξ〉.Sine there is δ > 0 suh that for large n, B(0, δ) is ontained in the onvexhull of the points (ξi
n − ξn)0≤i≤N , the sequene (

An(ξn)
)

n≥1
is bounded. Let

η be a luster point of An(ξn). Up to a subsequene, one has 〈An(ξn), ξn〉 →
〈η, ξ〉. Sine A is ontinuous, it is maximal, and therefore, by Lemma 2.8,
η = A(ξ).The other impliations are trivial. �Remark 4. (i) ⇒ (ii) in Proposition 2.7 fails if the dimension of X and X ′ isin�nite. Let X = l2(N) and An(ξ) = f

(

n〈en, ξ〉
)

en, where (en) is a basis of
l2(N) and f : R → R is nondereasing ontinuous, f(0) = 0 and suh that
f(1) 6= 0. We see that An

(

ξ−〈en, ξ〉en
)

= 0 and 〈en, ξ〉en → 0 but (iii) is nottrue. Taking ξ =
∑

m∈N

1
mem, we have the weak onvergene An(ξ) ⇀ 0,but the strong onvergene does not hold.The onvergene of graphs ensures that weak limits of elements of An arein A provided the duality produt of the pairs is preserved at the limit.Theorem 2.8. Let An, A ⊂ X ×X ′ be maximal monotone graphs, and let

(ξn, ηn) ∈ An and (ξ, η) ∈ X ×X ′. If, as n→ +∞,
An

 A,

ξn ⇀ ξ weakly in X,
ηn ⇀ η weakly in X ′,(2.4) lim inf
n→+∞

〈ηn, ξn〉 ≤ 〈η, ξ〉,then (ξ, η) ∈ A and
lim inf
n→+∞

〈ηn, ξn〉 = 〈η, ξ〉.Remark 5. If (ξn, ηn) → (ξ, η) strongly in X × X ′, then (2.4) is satis�ed,i.e. every strongly onverging sequene of elements of An is in A. The sameholds when only (ξn) (resp. (ηn)) onverges strongly in X (resp. in X ′).



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 7The proof of Theorem 2.8 is similar to that of Lemma 2.5.Theorem 2.9. Let An, A ⊂ X × X ′ be maximal monotone graphs and
λ > 0. The following are equivalent:: (i) An

 A, as n→ ∞,: (ii) ∀ζ ∈ X, JAn

λ ζ → JA
λ ζ as n→ ∞,: (iii) ∀ζ ∈ X, An

λζ → Aλζ as n→ ∞,: (iv) An
λ  Aλ, as n→ ∞.Moreover, the onvergenes JAn

λ ζ → JA
λ ζ and An

λζ → Aλζ are uniform onstrongly ompat sets of X.Remark 6. Note that λ does not play any role in (i). Therefore if there exists
λ0 > 0 suh that any of (ii)-(iv) holds, then (ii)-(iv) hold for every λ > 0.Proof. Let us prove that (i) implies that JAn

λ ζ → JA
λ ζ and An

λζ → Aλζuniformly on ompat subsets of X. This will imply (ii) and (iii). Let
(ζn)n≥1 ∈ X be suh that ζn → ζ strongly in X. De�ne (ξ, η) = (JA

λ ζ,Aλζ).Sine An
 A as n → ∞, there is a sequene (ξn, ηn) ∈ An suh that

(ξn, ηn) → (ξ, η) strongly in X ×X ′. By the monotoniity of An,
λ‖An

λζn‖
2 = 〈An

λζn, ζn − JAn

λ ζn〉

≤ 〈ηn, ξn − JAn

λ ζn〉 + 〈An
λζn, ζn − ξn〉 ≤ ‖An

λζn‖(λ‖ηn‖ + ‖ζn − ξn‖).Hene the sequenes An
λζn and JAn

λ ζn are bounded in X and X ′. Let (α, β) ∈
X ×X ′ be a weak luster point of the sequene (JAn

λ ζn, A
n
λζn), i.e., up to asubsequene, (JAn

λ ζn, A
n
λζn) ⇀ (α, β) weakly inX×X ′. By the monotoniityof F ,

〈An
λζn −Am

λ ζm, (ζn − JAn

λ ζn) − (ζm − JAm

λ ζm)〉 ≥ 0.Letting m→ ∞ gives
〈An

λζn, J
An

λ ζn〉 + lim sup
m→+∞

〈Am
λ ζm, J

Am

λ ζm〉 ≤ 〈An
λζn, ζn − ζ + α〉

−〈β, ζn − ζ − JAn

λ ζn〉.Letting now n→ ∞, we obtain
lim sup
n→+∞

〈An
λζn, J

An

λ ζn〉 ≤ 〈β, α〉.By Theorem 2.8, (α, β) ∈ A, and lim infn→∞〈An
λζn, J

An

λ ζn〉 ≥ 〈β, α〉. Hene,
lim sup

n→∞
‖An

λζn‖ ‖ζn − JAn

λ ζ‖ =

lim sup
n→∞

〈An
λζn, ζn − JAn

λ ζn〉 ≤ 〈β, ζ − α〉 ≤ ‖β‖ ‖ζ − α‖.Therefore (ζ − JAn

λ ζn, A
n
λζn) → (ζ − α, β) strongly in X × X ′. By theontinuity of F , λF (β) = ζ − α, and therefore (α, β) = (JA

λ ζ,Aλζ). Oneonludes that (JAn

λ ζn, A
n
λζn) → (JA

λ ζ,Aλζ) in X ×X ′ as n→ ∞.The equivalene between (ii) and (iii) omes from the ontinuity of theduality mapping F .Assertion (iii) implies (iv) (see Example 2).Finally, (iv) implies (i): Let (ξ, η) ∈ A, and de�ne ζ = ξ + F−1(λη).By the assumption, there is a sequene ζn ∈ X suh that (ζn, A
n
λζn) →



8 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGEN
(ζ,Aλζ) in X×X ′. By the ontinuity of F−1, JAn

λ ζn = ζn −F
−1(λAn

λζn) →
ζ − F−1(λAλζ) = JA

λ ζ. Therefore, (JAn

λ ζn, A
n
λζn) → (JA

λ ζ,Aλζ) = (ξ, η)strongly in X ×X ′. �Remark 7. If X is a Hilbert spae, φAn : X → X and φA : X → X arethe nonexpansive funtions assoiated to An and A in Remark 2, then thepropositions of the Theorem are equivalent with:For every ξ ∈ X, φAn(ξ) → φA(ξ) as n→ ∞.2.3. Graph valued measurable funtions. From now on, we shall assumethat X, and hene X ′, is separable. The set of maximal monotone operatorsfrom X to X ′ is denoted by M(X × X ′). In this setion (Ω,T , µ) will bea σ-�nite µ-omplete measure-spae. The harateristi funtion assoiatedto the set A, is denoted by χA.The following de�nition an be found in [6℄.De�nition 2.10. A funtion A : Ω → M(X ×X ′) is measurable if and onlyif for every open set U ⊂ X×X ′ (resp losed set, Borel set, open ball, losedball),
{

t ∈ Ω : A(t) ∩ U 6= ∅
}is measurable in Ω.The following proposition was proved in [1℄ for the Hilbert ase, usingresults of [6℄.Proposition 2.11. Let A : Ω → M(X ×X ′), let λ > 0 and let E be densein X. The following are equivalent:(i) A is measurable,(ii) for every ζ ∈ E, t 7→ J

A(t)
λ ζ is measurable,(iii) for every ζ ∈ E, t 7→ A(t)λζ is measurable.Remark 8. Note that neither λ nor E play any role in (i). Therefore if thereexists λ0 > 0 and a dense set E suh that either of (ii) or (iii) holds, then(ii) and (iii) hold for every λ > 0 and for every ζ ∈ X.Proof. Without loss of generality, set λ = 1.Assume (i). Let G ⊂ X be losed. For every ζ ∈ X, set

Cζ =
{

(ξ, η) ∈ G×X ′ : ξ + F−1(η) = ζ
}

.From the ontinuity of F−1, it follows that Cζ is losed. Now we have
{

t ∈ Ω : J
A(t)
1 ζ ∈ G

}

=
{

t ∈ Ω : A(t) ∩ Cζ 6= ∅
}

,the latter is measurable by (i), so that (ii) is satis�ed.To show that (iii) implies (i), we an assume that E is ountable. For
(ξ, η) ∈ A(t), setting ζ = ξ + F−1(η) gives ξ = J

A(t)
1 ζ and η = A(t)1ζ.Therefore by the ontinuity of JA(t)

1 ζ and of A(t)1ζ with respet to ζ and



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 9the density of E, one has
{

t ∈ Ω : A(t) ∩ U 6= ∅
}

=
⋃

ζ∈X

{

t ∈ Ω :
(

J
A(t)
1 ζ,A(t)1ζ

)

∈ U
}

=
⋃

ζ∈E

{

t ∈ Ω :
(

J
A(t)
1 ζ,A(t)1ζ

)

∈ U
}

,thus, the left-hand side is measurable. �Remark 9. If X is a Hilbert spae, then A : Ω → M(X×X ′) is measurable ifand only if the assoiated funtion t 7→ φA(t)(ζ) (by Remark 2) is measurablefor every ζ ∈ X (see [13, Remark 2.2℄).2.4. Canonial extensions of maximal monotone graphs. Given afuntion A : Ω → M(X × X ′), one an de�ne a monotone graph from
Lp(Ω;X) to Lq(Ω;X ′), where 1/p + 1/q = 1, as follows:De�nition 2.12. Let A : Ω → M(X × X ′), the anonial extension of Afrom Lp(Ω;X) to Lq(Ω;X ′), where 1/p+ 1/q = 1, is de�ned by:(2.5)
A =

{

(u, v) ∈ Lp(Ω;X) × Lq(Ω;X ′) :
(

u(t), v(t)
)

∈ A(t) for a.e. t ∈ Ω
}

.One readily heks that A is monotone.Proposition 2.13. Let A : Ω → M(X ×X ′) be measurable. If A 6= ∅, then
A is maximal monotone.Remark 10. The maximality of A(t) for almost every t ∈ Ω is not su�ient inorder to ensure the maximality of A as the latter ould be empty: Ω = (0, 1)and A(t) =

{

(ξ, η) ∈ R
N × R

N : η = t−1/q
}.Proof. Sine A 6= ∅, there exists (α, β) ∈ A. Suppose (u, v) ∈ Lp(Ω;X) ×

Lq(Ω;X ′) is suh that for every (u′, v′) ∈ A,
∫

Ω
〈v′(t) − v(t), u′(t) − u(t)〉 dµ ≥ 0.For every t ∈ Ω, set
u∗(t) = J

A(t)
1

(

u(t) + F−1(v(t))
)

,

v∗(t) = A(t)1
(

u(t) + F−1(v(t))
)

.By onstrution, (u∗(t), v∗(t)) ∈ A(t) for almost every t ∈ Ω. For k > 0,de�ne
Ωk = {t ∈ Ω : ‖u∗(t)‖ ≤ k‖u(t)‖ and ‖v∗(t)‖ ≤ k‖v(t)‖} ,and

(uk, vk) = χΩk
(u∗, v∗) + χΩ\Ωk

(α, β).One has (uk, vk) ∈ A, so that
∫

Ω
〈vk(t) − v(t), uk(t) − u(t)〉 dµ ≥ 0,
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∫

Ωk

〈v∗(t) − v(t), u∗(t) − u(t)〉 dµ ≥ −

∫

Ω\Ωk

〈β(t) − v(t), α(t) − u(t)〉 dµSine u∗(t) + F−1
(

v∗(t)
)

= u(t) + F−1
(

v(t)
), we have for a.e. t ∈ Ω, by themonotoniity of F ,

〈

v(t) − v∗(t), u(t) − u∗(t)
〉

=
〈

v(t) − v∗(t), F
−1

(

v∗(t)
)

− F−1
(

v(t)
)〉

≤ 0,and
0 ≥

∫

Ωk

〈

v(t) − v∗(t), F
−1

(

v∗(t)
)

− F−1
(

v(t)
)〉

dµ

≥ −

∫

Ω\Ωk

〈

β(t) − v(t), α(t) − u(t)
〉

dµ.Lebesgue's monotone onvergene theorem now gives
0 =

∫

Ω

〈

v(t) − v∗(t), F
−1

(

v∗(t)
)

− F−1
(

v(t)
)〉

dµso that by de�nition of F−1

0 =

∫

Ω

(

−‖v∗(t)‖
2 − ‖v(t)‖2 + 〈v∗(t), F

−1(v(t))〉 +
〈

v(t), F−1
(

v∗(t)
)〉

)

dµ

≤

∫

Ω
−

(

‖v(t)‖ − ‖v∗(t)‖
)2

dµ.This implies ‖v(t)‖ = ‖v∗(t)‖ for almost every t ∈ Ω and 〈

v∗(t), F
−1

(

v(t)
)〉

=
‖v(t)‖ ‖v∗(t)‖. Therefore, (u, v) = (u∗, v∗). Sine (u, v) ∈ Lp(Ω;X) ×
Lq(Ω;X ′) and (

u∗(t), v∗(t)
)

∈ A(t), for almost every t, one onludes that
(u, v) belongs to A. �A partiular important lass of maximal graphs is de�ned byDe�nition 2.14. For m measurable from Ω to R, α ∈ R and p > 1,
M(Ω,X, p, α,m) is the set of A : Ω → M(X×X ′) suh that A is measurableand suh that for almost every t ∈ Ω, for every (ξ, η) ∈ A(t),(2.6) α

(‖ξ‖p

p
+

‖η‖q

q

)

≤ 〈η, ξ〉 +m(t),where p−1 + q−1 = 1.Remark 11. If α > 1, then M(Ω,X, p, α,m) is empty: By Young's inequality,the graph A(t) should be bounded in X × X ′ for almost every t ∈ Ω, inontradition with the maximality of A(t).Remark 12. If −1 ≤ α ≤ 1, then M(Ω,X, p, α,m) is not empty if and onlyif m ≥ 0. The graph-valued funtion A(t) =
{(

ξ, ‖ξ‖p−2F (ξ)
)

: ξ ∈ X
}is in M(Ω,X, p, α,m) for every α ≤ 1 and m ≥ 0. Conversely, suppose

A ∈ M(Ω,X, p, α,m). Sine A(t) is maximal almost everywhere, by Theo-rem 2.18 (see below), there is (ξ, η) ∈ A(t) suh that η = −‖ξ‖p−2F (ξ). By(2.6), m(t) ≥ 0.



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 11Remark 13. By Young's inequality, if α ≤ −1 andm ≥ 0, then M(Ω,X, p, α,m)is the set of measurable graph-valued funtions. The ondition m ≥ 0 is ne-essary: If m(t) < 0, then (0, 0) 6∈ A(t), whih means that in this ase, anygraph whih ontains (0, 0) is not in M(Ω,X, p, α,m).Remark 14. If α < −1 and X 6= {0}, then M(Ω,X, p, α,m) is never emptysine it always ontains the graph-valued funtion A(t) = {(ξ, η̄(t)) : ξ ∈ X},where η̄(t) ∈ X ′ is suh that −(α+ 1)‖η̄(t)‖q/q ≥ m(t).Corollary 2.15. Let α > 0 and m ∈ L1(Ω). If A ∈ M(Ω,X, p, α,m), then
A is maximal monotone.Moreover, D(A) = Lp(Ω;X) and A is surjetive.Remark 15. For the maximality of A, α > 0 an be weakened to α >
−1 (Proposition 2.20 below). The ondition α > 0 is optimal for A tobe everywhere de�ned and onto. Indeed, let A(t) = {(0, η) : η ∈ X}.Condition 2.6 is satis�ed with m = 0 and α = 0, and D(A) = {0}. Similarly,with A(t) = {(ξ, 0) : ξ ∈ X}, A is not surjetive.Proof. Let u ∈ Lp(Ω;X) and let for λ > 0,

(

uλ(t), vλ(t)
)

=
(

J
A(t)
λ u(t), A(t)λv(t)

)

.By de�nition, (

uλ(t), vλ(t)
)

∈ A(t) for almost every t ∈ Ω. By (2.6), one has
α
(‖uλ(t)‖p

p
+

‖vλ(t)‖q

q

)

≤ 〈vλ(t), uλ(t)〉 +m(t) = −λ‖vλ‖
2 + 〈vλ(t), u(t)〉 +m(t)

≤ 〈vλ(t), u(t)〉 +m(t).Hene, there is C > 0 suh that for almost every t ∈ Ω,(2.7) α

2

(‖uλ(t)‖p

p
+

‖vλ(t)‖q

q

)

≤ C‖u(t)‖p +m(t).In partiular, (uλ, vλ) ∈ Lp(Ω;X)×Lq(Ω;X ′). The set A is not empty henemaximal by Proposition 2.13.Integrating (2.7), gives
α

2q

∫

Ω
‖vλ‖

q dµ ≤ C

∫

Ω
‖u‖p dµ+

∫

Ω
m dµ.Therefore

lim
λ→0

∫

Ω
‖λvλ‖

q dµ = 0,and up to a subsequene, for almost every t ∈ Ω,
uλ(t) − u(t) = λF−1

(

vλ(t)
)

→ 0,as λ→ 0. Together with (2.7), Lebesgue's dominated onvergene Theoremimplies then uλ → u in Lp(Ω;X). Sine the sequene vλ is bounded in
Lq(Ω;X ′), it is weakly ompat, and there is v ∈ Lq(Ω;X ′) suh that vλ ⇀ vweakly in Lq(Ω;X ′). Sine A is maximal, Lemma 2.5 is appliable, and
(u, v) ∈ A.Note that A−1 =

{

(v, u) : (u, v) ∈ A
} satis�es the same assumptions as

A (with p and q reversed). By the proof above, D(A−1) = X ′, whih isequivalent with the surjetivity of A. �



12 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGEN2.5. Convergene of anonial extensions. Given funtions A, An :
Ω → M(X ×X ′) and their anonial extensions A, An (by (2.5)), we on-sider the question whether the pointwise onvergene An(t)  A(t) impliesthe onvergene of the indued graphs An

 A.Theorem 2.16. Let A,An : Ω → M(X ×X ′) be measurable. Assume(i) for almost every t ∈ Ω, An(t)  A(t) as n→ ∞,(ii) A and An are maximal monotone,(iii) there exists (αn, βn) ∈ An and (α, β) ∈ Lp(Ω;X) × Lq(Ω;X ′) suhthat (αn, βn) → (α, β) strongly in Lp(Ω;X) × Lq(Ω;X ′) as n→ ∞,then An
 A.Remark 16. Assumption (iii) annot be dropped. One an have An(t) 

A(t) for every t ∈ Ω while An 6 A. For example, let X = R, and let
Ω = (0, 1). De�ne An(t) =

{

(x, y) : y = n1/qχ(0,1/n)(t)
} and A(t) =

{(x, y) : y = 0}. One has An(t)  A(t) for every t ∈ Ω. On the other handfor every (un, vn) ∈ An and (u, v) ∈ A, one has ‖vn‖Lq = 1 and ‖v‖Lq = 0so that vn an not onverge to v in Lq(Ω) as n → ∞, whene An
 A isimpossible.Proof. Let (u, v) ∈ A. For t ∈ Ω, let w(t) = u(t) + F−1(v(t)), so that

(u(t), v(t)) = (J
A(t)
1 (w(t)), A(t)1(w(t)). De�ne

Ω′ =
{

t ∈ Ω : ‖J
An(t)
1 w(t)‖ ≤ 2‖u(t)‖ and ‖An(t)1w(t)‖ ≤ 2‖v(t)‖

}

,and, for n ≥ 1,
(

un(t), vn(t)
)

=

{

(

J
An(t)
1

(

w(t)
)

, An(t)1
(

w(t)
)) if t ∈ Ω′,

(

αn(t), βn(t)
) if t 6∈ Ω′.By onstrution, (un, vn) is in An. By dominated onvergene, (un, vn) →

(u, v) strongly in Lp(Ω;X) × Lq(Ω;X ′). �Corollary 2.17. Assume α > 0, mn ∈ L1(Ω), An ∈ M(Ω,X, p, α,mn) and
A : Ω → M(X×X ′) measurable. If mn onverges strongly to m in L1(Ω) andif for almost every t in Ω, An(t)  A(t) holds, then A ∈ M(Ω,X, p, α,m)and An

 A.Proof. We apply Theorem 2.16. Hypothesis (i) is satis�ed. By Corol-lary 2.15, An is maximal monotone. Up to a subsequene (not relabeled), mnonverge to m a.e. and remains dominated in L1(Ω). Hene, An(t)  A(t),for a.e. t ∈ Ω implies that A ∈ M(Ω,X, p, α,m) so A is maximal.We now hek hypothesis (iii). De�ne
(

un(t), vn(t)
)

=
(

J
An(t)
1 0, An(t)10

)

.Clearly, (un(t), vn(t)
)

∈ An(t) for a.e. t ∈ Ω and 〈vn(t), un(t)〉 = −‖un(t)‖2 ≤
0. Combined with (2.6), this yields

α
(‖un(t)‖p

p
+

‖vn(t)‖q

q

)

≤ mn(t).Therefore, (un, vn) ∈ Lp(Ω;X) × Lq(Ω;X ′) for every n ≥ 0 and (un, vn) ∈
An. By Theorem 2.9 applied, for almost every t ∈ Ω, to An(t),

(

un(t), vn(t)
)

→
(

u(t), v(t)
)

, strongly in X ×X ′,
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A(t)
1 0, A(t)10). Now Lebesgue's dominated onver-gene Theorem implies that for any sequen nk → ∞, there is a subsequene

nkj
suh that

(unkj
, vnkj

) → (u, v) strongly in Lp(Ω;X) × Lq(Ω;X ′).The argument above implies the onvergene of the whole sequene (un, vn)to (u, v). �2.6. Changing the duality mapping. Theorem 2.2 is a partiular ase ofa more general result [5℄: F is a monotone ontinuous oerive map, and thereis uniqueness when F is stritly monotone, i.e. 〈F (ξ1) − F (ξ2), ξ1 − ξ2〉 > 0when ξ1 6= ξ2 ∈ X. In view of the proof of Proposition 4.2, we onsider Fpde�ned for ξ ∈ X by
Fp(ξ) = F (ξ)‖ξ‖p−2,∀ξ ∈ X.It satis�es
〈Fp(ξ), ξ〉 = ‖ξ‖p = ‖Fp(ξ)‖

q.The ase of Theorem 2.2 orresponds to p = 2. Browder's results in this aseareProposition 2.18 (Browder [4℄). Let A ⊂ X × X ′ be a monotone graph.The graph A is maximal monotone if and only if A+Fp is a surjetive map,i.e. for every η ∈ X ′, there is ξ ∈ X suh that (

ξ, η − Fp(ξ)
)

∈ A.Similarly to the ase p = 2, the following de�nition makes sense:De�nition 2.19. Let A ⊂ X×X ′ be a maximal monotone graph. For every
ξ ∈ X and λ > 0, (JA

λ,pξ,Aλ,pξ) denotes the unique pair in A suh that
Fp(ξ − JA

λ,pξ) = λAλ,pξ.With the previous de�nition and Theorem 2.18, all the results of setion 2in the ase of the Fp duality mapping hold with obvious modi�ations in theproofs.The use of Fp yields improvements of Corollaries 2.15 and 2.17:Proposition 2.20. The �rst parts of Corollary 2.15, and Corollary 2.17 arevalid under the hypothesis α > −1 (instead of α > 0).Proof. This is based on the fat that if
(u(t), v(t)) = (J

A(t)
1,p 0, A(t)1,p0),one has v(t) = −Fp(u(t)), and under hypothesis (2.6), this gives

‖u(t)‖p

p
+

‖v(t)‖q

q
= −〈v(t), u(t)〉 ≤ m(t) − α

(‖u(t)‖p

p
+

‖v(t)‖q

q

)

. �Remark 17. By Young's inequality, every graph A satis�es (2.6) with α = −1.Together with Remarks 10 and 16 this means that the ondition α > −1 isoptimal.



14 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGEN3. The periodi unfoldingThe periodi unfolding operator was introdued by Cioranesu, Damlamianand Griso [9℄. We reall the de�nitions and properties of this operator. Theproofs an be found in [9, 11, 16℄.3.1. De�nition of the periodi unfolding operator and properties.In R
N , let Y be a referene ell (e.g. ]0, 1[N , or more generally a set havingthe paving property with respet to a basis (b1, ..., bN ) de�ning the periods).For y ∈ R

N , [y]Y denotes the unique integer ombination ∑N
j=1 kjbj , with

kj ∈ Z, of the periods suh that y − [y]Y belongs to Y and de�ne
{y}Y = y − [y]Y ∈ Y.De�nition 3.1. Let Y be a referene ell, ε a positive number, S a set anda map u : R

N → S. The unfolding operator T Y
ε is de�ned by

T Y
ε (u) : R

N ×R
N → S

(x, y) 7→ T Y
ε (u)(x, y) = u

(

ε[x/ε]Y + εy
)

.One readily sees that for every x ∈ R
N ,

T Y
ε (u)(x, {x/ε}) = u(x).Moreover, T Y

ε (u) is invariant under the following ation of Z
N : for k ∈ Z

N ,
T Y

ε (u)(x+ εk, y − k) = T Y
ε (u)(x, y).If u : RN → S and f : S → S′, then

T Y
ε (f ◦ u) = f ◦ T Y

ε (u).In partiular if u : RN → S and v : RN → T , the preeding property appliedto the projetions P : (u, v) 7→ u and Q : (u, v) 7→ v yields
T Y

ε

(

(u, v)
)

=
(

T Y
ε (u),T Y

ε (v)
)

.Therefore, if F : S × T → R,(3.1) T Y
ε

(

F (u, v)
)

= F
(

T Y
ε (u),T Y

ε (v)
)

.Useful partiular ases are when S = R, T = R and F : (s, t) → st andwhen S = R
N , T = R

N and F is the dot produt.Proposition 3.2. If u ∈ L1(RN ), then T Y
ε (u) ∈ L1(Rn × Y ) and

∫

RN

u(x) dx =
1

|Y |

∫

RN×Y
T Y

ε (u)(x, y) dx dy.In partiular, if 1 ≤ p < +∞ and u ∈ Lp(RN ), then T Y
ε (u) ∈ Lp(RN × Y ),and

‖T Y
ε (u)‖Lp(RN×Y ) = |Y |1/p‖u‖Lp(RN ).Remark 18. In the sequel, a funtion whih is de�ned on a set A of R

N ,an be viewed as a funtion de�ned on R
N , if we onsider its extension by

0 outside of A.The ombination of Proposition 3.2 together with (3.1) yields:
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N be measurable. If u ∈ L1(A), then T Y

ε (χA)T Y
ε (u)is well-de�ned on R

N × R
N , T Y

ε (χA)T Y
ε (u) ∈ L1(RN × Y ), and

∫

A
u(x) dx =

1

|Y |

∫

RN×Y
T Y

ε (χA)T Y
ε (u) dx dy.Moreover, if 1 ≤ p < +∞ and u ∈ Lp(A), then T Y

ε (χA)T Y
ε (u) is well-de�nedon R

N × R
N , T Y

ε (χA)T Y
ε (u) ∈ Lp(RN × Y ) and

‖T Y
ε (χA)T Y

ε (u)‖Lp(RN×Y ) = |Y |1/p‖u‖Lp(A).Sine the unfolding operator has a loal ation, it is natural to examineits e�et on loally summable funtions.Proposition 3.4. For every 1 ≤ p < ∞, T Y
ε is a linear and ontinuousoperator from Lp

loc(R
N ) to Lp

loc(R
N × R

N ).We turn now to the Lp
loc onvergene properties for 1 ≤ p < +∞.Theorem 3.5. Let (uε)ε, u in Lp

loc(R
N ), 1 ≤ p < +∞. If uε → u stronglyin Lp

loc(R
N ) then

T Y
ε (uε) → u⊗ 1 strongly in Lp

loc(R
N ×R

N ) as ε→ 0.Global onvergenes follow easily.Theorem 3.6. Let A ⊂ R
N be measurable (uε)ε, u in Lp(RN ), 1 ≤ p < +∞.If uε → u strongly in Lp(RN ), then

T Y
ε (χA)T Y

ε (uε) → (χAu) ⊗ 1 strongly in Lp(RN × Y ) as ε→ 0,and
T Y

ε (uε)|A×Y → u⊗ 1 strongly in Lp(A× Y ) as ε→ 0.The following result states that the limit (if it exists) of an unfolded se-quene is periodi.Lemma 3.7. Let uε ∈ L1
loc(R

N ) (resp Lp
loc(R

N )) and û ∈ L1
loc(R

N × R
N )(resp Lp

loc(R
N )). If

T Y
ε (uε) ⇀ û ∗�weakly in M(RN × R

N ), (resp weakly in Lp
loc(R

N )).where M(RN ×R
N ) denotes the Radon measure spae, then û is Y -periodi.Next, we reall the properties of the unfolding operator applied on thegradient of some funtions. If u ∈ W 1,p

loc (RN ) then by Proposition 3.4,
T Y

ε (u) ∈ Lp
loc(R

N × R
N ) and T Y

ε (∇u) ∈ Lp
loc(R

N × R
N ). Moreover, forevery test funtion ϕ ∈ D(RN × R

N )
∫

RN×RN

∇yϕ T Y
ε (u) dx dy =

∫

RN×RN

∇yϕ(x, y) u(ε[x/ε]Y + εy) dx dy

= −

∫

RN×RN

ϕ(x, y) ε∇u(ε[x/ε]Y + εy) dx dy

= −

∫

RN×RN

ϕ εT Y
ε (∇u) dx dy,



16 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENTherefore T Y
ε (u) is weakly di�erentiable with respet to y, and(3.2) εT Y

ε (∇u) = ∇y

(

T Y
ε (u)

)

.The following result gives a relation between the limit of an unfoldedsequene and the limit of the sequene:Proposition 3.8. Let (uε)ε be a sequene of Lp
loc(R

N ) and let u ∈ Lp
loc(R

N ),
û ∈ Lp

loc(R
N×R

N ). Assume that uε ⇀ u weakly in Lp
loc(R

N ) and T Y
ε uε ⇀ ûweakly in Lp

loc(R
N ×R

N ), then
u(x) =

1

|Y |

∫

Y
û(x, y) dy.The following proposition is an important tool for the sequel.Proposition 3.9. Let (uε)ε be a sequene ofW 1,p

loc (RN ) and let û ∈ Lp
loc(R

N ;RN ).If (uε)ε is bounded in Lp
loc(R

N ), (ε∇uε)ε is bounded in Lp
loc(R

N ;RN ) and
T Y

ε (uε) ⇀ û weakly in Lp
loc(R

N × R
N ) as ε→ 0,then

εT Y
ε (∇uε) ⇀ ∇yû weakly in Lp

loc(R
N × R

N ) as ε→ 0.Moreover û is Y -periodi in y.The following theorem is the main result.Theorem 3.10. Let (uε)ε be a sequene of W 1,p
loc (RN ) suh that, uε ⇀ uweakly in W 1,p

loc (RN ). Then, there exists a subsequene (not relabeled) and afuntion û in Lp
loc

(

R
N ;W 1,p

loc (RN )
) suh that the following onvergene holds:(3.3) T Y

ε (∇uε) ⇀ ∇u⊗ 1 + ∇yû,weakly in Lp
loc(R

N ×R
N ) as ε→ 0. Additionally, û is Y -periodi.When Ω ( R

N , A : Ω → M(X ×X ′) is unfolded as follows:De�nition 3.11. Let Ω ( R
N and A : Ω → M(X×X ′), �rst A is extendedby ‖ξ‖p−2ξ. This extension is still denoted by A. The unfolded graph T Y

ε (A)is now de�ned on R
N × R

N .3.2. Averaging operator.De�nition 3.12. Let ε > 0, Y be a referene ell and u in L1
loc(R

N ×R
N ),the averaging operator UY

ε is de�ned as follows
UY

ε (u)(x) =
1

|Y |

∫

Y
u
(

ε[x/ε]Y + εy, ε{x/ε}Y

)

dy.The averaging operator has the following properties (see [9, 11℄ for theproofs).Proposition 3.13. For every u ∈ L1lo(RN ), one has
UY

ε

(

T Y
ε (u)

)

(x) = u(x).
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loc(R

N × R
N ) then

T Y
ε

(

UY
ε (w)

)

→ wstrongly in Lp
loc(R

N × R
N ) as ε→ 0.We turn now to the Lp loally onvergene equivalene properties for

1 ≤ p < +∞.Theorem 3.15. Let (uε)ε in Lp
loc(R

N ) and ũ ∈ Lp
loc(R

N × R
N ), 1 ≤ p <

+∞. The following strong onvergenes are equivalent:i) T Y
ε (uε) → ũ strongly in Lp

loc(R
N × R

N ) as ε→ 0,ii) uε − UY
ε (ũ) → 0 strongly in Lp

loc(R
N ) as ε→ 0.4. Homogenization resultsIn this setion we state our main homogenization result. First we givethe result and the proof of the onvergene. Then we study the propertiesof the homogenized operator. Finally we give some energy onvergene andorretor result.4.1. Convergene results.Theorem 4.1. Assume 1 < p <∞, p−1 + q−1 = 1, mε in L1(Ω), α > 0 andlet Ω be a bounded open set of R

N . Let Aε ∈ M(Ω,RN , p, α,mε) for every
ε > 0.Assume that there exists a ell Y ⊂ R

N , a measurable B : Ω × Y →
M(RN ×R

N ) and m ∈ L1(Ω×Y ) suh that for almost every (x, y) ∈ Ω×Y ,(4.1) T Y
ε (Aε)(x, y)  B(x, y)and Tε(mε) onverges to m strongly in L1(Ω × Y ) as ε goes to 0.Assume fε → f0 strongly in W−1,q(Ω) as ε→ 0.Consider a (not neessarily unique) solution uε ∈W 1,p

0 (Ω) of the problem(4.2) 









−div dε = fε in D′(Ω),
(

∇uε(x), dε(x)
)

∈ Aε(x)

uε ∈W 1,p
0 (Ω).Then, the family (uε, dε)ε>0 is weakly ompat in W 1,p

0 (Ω) × Lq(Ω;RN ).Moreover, if (u0, d0) is one of its limit points, i.e. there is (εn)n≥1 suh that
εn → 0

uεn ⇀ u0 weakly in W 1,p
0 (Ω),

dεn ⇀ d0 weakly in Lq(Ω;RN ),then(4.3) 









−div d0 = f0 in D′(Ω)
(

∇u0(x), d0(x)
)

∈ A(x),

u0 ∈W 1,p
0 (Ω)



18 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENwhere, for almost every x ∈ Ω,
A(x) =

{

(ξ, η) ∈ R
N ×R

N : ∃(û, d̂) ∈W 1,p
per(Y ) × Lq(Y ;RN ),

1

|Y |

∫

Y
û(y) dy = 0,

1

|Y |

∫

Y
d̂(y) dy = 0,

(

ξ + ∇û(y), η + d̂(y)
)

∈ B(x, y) for a.e. y ∈ Yand − div d̂ = 0 in (C∞
per)

′(Y )
}

.

(4.4)Moreover A0 ∈ M(Ω,RN , p, α, m̄), where
m̄(x) =

1

|Y |

∫

Y
m(x, y) dy.Remark 19. Theorem 4.1 applies to the partiular ase where Aε(x) =

A(x/ε), provided A ∈ M(Ω,RN , p, α,m) and m ∈ L1
loc(R

N ) are Y -periodi.In suh a ase, T Y
ε (Aε)(x, y) = A(y), so that (4.1) immediately follows. Notethat this ase was treated by [8℄.Remark 20. The family of maximal monotone graphs A0(x) de�ned in theprevious Theorem 4.1 is the H-limit (see [18℄ and [20℄) of the sequene ofgraphs Aε(x). Our results are in aordane with the fat that M(Ω,RN , p, α,m)is losed under H-limit [7℄.By Theorem 3.11 and Remark 3.12 in [7℄, for every (u0, d0) in W 1,p

0 (Ω)×
Lq(Ω;RN ), (

∇u0(x), d0(x)
) belongs to A(x) almost everywhere. There ex-ists (uε, dε)ε>0 ∈ W 1,p

0 (Ω) × Lq(Ω;RN ) suh that (

uε(x), dε(x)
)

∈ Aε(x),
uε ⇀ u weakly in W 1,p

0 (Ω) and div dε → div d0 strongly in W−1,q(Ω;RN ).Remark 21. For every ε > 0, the existene of (at least) one solution ofproblem (4.2) follows from [13℄ or [7℄. Indeed, using [13℄, one should hekthat there exists d̄ε ∈ Lq(Ω;RN ) suh that (

0, d̄ε(x)
)

∈ Aε(x). This is alwaysthe ase by Corollary 2.15.Proof of Theorem 4.1. First we establish the weak ompatness of the un-folded sequenes (

Tε(∇uε),Tε(dε)
). Extend uε and dε by 0 outside of Ω.From inequality (2.6) and taking uε as a test funtion in equation (4.2), wededue that the sequenes (uε)ε is bounded in W 1,p(RN ) and the sequene

(dε)ε is bounded in Lq(RN ;RN ). Hene they are weakly ompat.Assume now uεn ⇀ u0 weakly in W 1,p
0 (Ω) and dεn ⇀ d0 in Lq(RN ;RN ).By Theorem 3.10, there is û ∈ Lp

(

Ω;W 1,p
per(Ω)

) suh that
T Y

εn
(∇uεn) ⇀ ∇xu0 + ∇yûweakly in Lp(RN × Y ;RN ). The sequene T Y

εn
(dεn) is bounded in Lq(RN ×

Y ). There exists η ∈ Lq(RN ×Y ), so that, up to a subsequene, T Y
εn

(dεn) ⇀

η. Then d0 = 1
|Y |

∫

Y η(y) dy so setting d̂ = η − 1
|Y |

∫

Y η(y) dy, one has
T Y

εn
(dεn) ⇀ d0 + d̂ weakly in Lq(RN × Y ).Let ϕ ∈ C∞

c (Ω). By the weak onvergene of dεn and the strong onver-gene of fεn , letting n→ ∞ in (4.2) yields(4.5) ∫

Ω
〈d0(x),∇ϕ(x)〉 dx =

∫

Ω
f0ϕ dx,



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 19i.e. −div d0 = f0 in D′(Y ). Next, let ϕ ∈ D(Ω) and ψ ∈ C∞(RN ), suhthat ψ is Y -periodi. De�ning ϕεn(x) = εnϕ(x)ψ(x/εn), one has, by theequation 4.2 and Proposition 3.3,
1

|Y |

∫

RN×Y
〈T Y

εn
(dεn),T Y

εn
(∇ϕεn)〉 dx dy =

∫

Ω
fεnϕεn dx.Letting εn → 0, one has ϕεn ⇀ 0 weakly in W 1,p(Ω) and T Y

εn
(∇ϕεn) →

ϕ(x)∇ψ(y) strongly in Lp(Ω;W 1,p
per(Y )), so that

1

|Y |

∫

Ω×Y
〈d0(x) + d̂(x, y), ϕ(x)∇ψ(y)〉 dx dy = 0.Sine ϕ is arbitrary, one onludes that for almost every x ∈ Ω, for every

ψ ∈W 1,p
per(Y ),(4.6) 1

|Y |

∫

Y
〈d̂(x, y),∇yψ(y)〉 dy = 0,i.e. −div d̂(x, ·) = 0 in (C∞

per)
′(Y ).Letting Bεn = T Y

εn
(Aεn), one has by Corollary 2.17, Bεn  B as n → ∞.One also has(4.7) ∫

RN×Y
〈T Y

εn
(dεn),T Y

εn
(∇uεn)〉 =

∫

Ω
fεnuεn dx

→

∫

Ω
f0u0 dx =

∫

RN×Y
〈d0 + d̂,∇xu0 + ∇yû〉 dx dy,where the last equality omes from (4.5) and (4.6), together with the fatthat 1

|Y |

∫

Y ∇yû dy = 0 and 1
|Y |

∫

Y d̂ dy = 0. By Theorem 2.8, (

∇xu0(x) +

∇yû(x, y), d0(x) + d̂(x, y)
)

∈ B(x, y). This, together with (4.6), implies that
(

∇u0(x), d0(x)
)

∈ A(x) for almost every x ∈ Ω.By Proposition 4.2 below, for almost every x ∈ Ω, A0(x) is maximalmonotone and satis�es (2.6). Its measurability omes from Lusin's Theorem,together with Proposition 4.4. Therefore, A ∈ M(Ω,RN , p, α, m̄) as laimed.
�Remark 22. The previous proof easily extends to di�erent boundary ondi-tions for whih a variational formulation holds.Remark 23. The proof an be extended to the reiterated ase as in [16℄.4.2. Properties of the homogenized graph. In this setion, we provesome properties of the homogenized graph A.Proposition 4.2. Let α > 0, m ∈ L1(Ω), and B ∈ M(Y,RN , p, α,m).De�ne

A =
{

(ξ, η) ∈ R
N × R

N : ∃(û, d̂) ∈W 1,p
per(Y ) × Lq(Y ;RN ),

1

|Y |

∫

Y
û(y) dy = 0,

1

|Y |

∫

Y
d̂(y) dy = 0,

(

ξ + ∇û(y), η + d̂(y)
)

∈ B(y) a.e. y ∈ Yand − div d̂ = 0 in (C∞
per)

′(Y ),
}

,

(4.8)
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N ), and for every (ξ, η) ∈ A,(4.9) α

(‖ξ‖p

p
+

‖η‖q

q

)

≤ 〈η, ξ〉 +
1

|Y |

∫

Y
m(y) y.Proof. First, one heks the monotoniity of A. Let (ξi, ηi) ∈ A, for i = 1, 2and let ûi and d̂i be assoiated to (ξi, ηi) by the de�nition. One has then

〈η1 − η2, ξ1 − ξ2〉

=
1

|Y |

∫

Y
〈η1 + d̂1(y) − η2 − d̂2(y), ξ1 + ∇û1(y) − ξ2 −∇û2(y)〉 dy.By the monotoniity of B, the right-hand side is nonnegative. Therefore Ais monotone.By Theorem 2.18 the maximality of A will follow from the surjetivity of

A+ Fp. For a.e. y ∈ Y and for every ε > 0 and λ > 0, set
Bε,λ(y) = εFp(y) +B(y)λ,p,aording to De�nition 2.19. For almost every y ∈ Y , Bε,λ(y) is maximalmonotone, ontinuous and oerive. We are now going to build an approxi-mation Bε,λ of B and then let (ε, λ) go to zero. For ε and λ small enough,the fat that Bε,λ ∈ M(Y,RN , p, α/2,m) follows from Lemma 4.3 below.Sine Bε,λ satis�es the hypotheses of Leray-Lions [14℄, we know that forevery ξ ∈ R

N there exists a unique û ∈W 1,p
per(Y ) suh that(4.10) {

1
|Y |

∫

Y û(y) dy = 0

−div Bε,λ(y)
(

∇û(y) + ξ
)

= 0 in (C∞
per)

′(Y ).De�ne d̂ = Bε,λ(y)(∇û(y) + ξ) and(4.11) g(ξ) = −
1

|Y |

∫

Y
Bε,λ(y)

(

∇û(y) + ξ
)

dy.By (2.6), one has
α

2

1

|Y |

∫

Y

‖∇û+ ξ‖p

p
+

‖d̂‖q

q
dy ≤

1

|Y |

∫

Y
〈d̂,∇û+ ξ〉 dy +

1

|Y |

∫

Y
m dy

= −〈ξ, g(ξ)〉 +
1

|Y |

∫

Y
m dy.

(4.12)
By Jensen's inequality, sine ∫

Y ∇û dy = 0,(4.13) α

2

(‖ξ‖p

p
+

‖g(ξ)‖q

q

)

≤ −〈ξ, g(ξ)〉 +

∫

Y
m dy.From (4.12) follows an expliit bound of ‖g(ξ)‖ in terms ‖ξ‖.Let us show that g : R

N → R
N is ontinuous. Assume ξn → ξ0 as

n → ∞. Let ûn be the unique solution of problem (4.10) assoiated to ξn,and let d̂n = Bε,λ(y)
(

∇ûn(y) + ξ
). By (4.12) the sequenes (d̂n) and (ûn)are bounded. Therefore there exists (d̂′0, û

′
0) suh that, up to a subsequene,

d̂n ⇀ d̂′0 weakly in Lq(Y ),(4.14)
ûn ⇀ û′0 weakly in W 1,p

per(Y ).(4.15)
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per)

′(Y ) together with (4.14)and ξn → ξ0, this gives
∫

Y
〈d̂n,∇ûn + ξn〉 dy =

∫

Y
〈d̂n, ξn〉 dy

→

∫

Y
〈d̂′0, ξ0〉 dy =

∫

Y
〈d̂′0,∇û

′
0 + ξ0〉 dy.By Lemma 2.5, we dedue that (

∇û′0(y) + ξ0, d̂
′
0(y)

)

∈ Bε,λ(y). By theuniqueness of the solution of problem (4.10), (û′0, d̂′0) = (û0, d̂0). In partiular(4.16) g(ξ0) =
1

|Y |

∫

Y
d̂0 dy = lim

n→+∞

1

|Y |

∫

Y
d̂n dy = lim

n→+∞
g(ξn).Let us now hek the hypothesis of Shaefer's �xed point theorem (see[19℄). First, g is ontinuous. Next, assume there are µ > 1 and ξ ∈ R

N suhthat g(ξ) + η = µξ and µ > 1. By (4.13) one has then
α′

(‖ξ‖p

p
+

‖g(ξ)‖q

q

)

≤ −〈ξ, g(ξ)〉 +

∫

Y
m dy ≤ 〈ξ, η〉 +

∫

Y
m dy.and therefore ‖ξ‖ ≤ C, where C depends only on p, α and m. The previousstatement means that for every η ∈ R

N , there is ξ ∈ R
N suh that ξ =

g(ξ) + η by Shaefer's �xed point theorem.By de�nition of g, there exists (û, d̂) in W 1,p
per(Y ) × Lq(Y ) suh that(4.17) 









−div d̂ = 0 in (C∞
per)

′(Y ),

d̂ = Bε,λ(y)
(

∇û(y) + ξ
)

dy,

η = ξ + 1
|Y |

∫

Y Bε,λ(y)
(

∇û(y) + ξ
)

dy.Consider now sequenes εn → 0, λn → 0 as n → ∞ . Let ûn, d̂n, ξnbe de�ned by (4.17), for n assoiated to εn, λn. By (4.12) and (4.13), thesequenes (βn), (ûn) and (d̂n) are bounded in R
N , W 1,p

per(Y ) and Lq(Y )respetively. Up to subsequenes, it follows that
ξn → ξ0 in R

N ,

ûn ⇀ û0 weakly in W 1,p
per(Y ),

d̂n ⇀ d̂0 weakly in Lq(Y ).Furthermore, realling Corollary 2.17, Bεn,λn
 B, as n→ +∞.Realling that ∫

Y 〈d̂n,∇ϕ〉 dy = 0, for every ϕ ∈W 1,p
per(Y ), we dedue that

∫

Y
〈d̂n,∇ûn + ξn〉 dy =

∫

Y
〈d̂n, ξn〉 dy,and sine ξn → ξ0, d̂n ⇀ d̂0, passing to the limit as n→ ∞, we dedue that

∫

Y
〈d̂0,∇û0 + ξ0〉 dy =

∫

Y
〈d̂0, ξ0〉 dy.Consequently, by Theorem 2.8, we have (

∇û0(y) + ξ0, d̂0(y)
)

∈ B(y) for a.e.
y ∈ Y , −div d̂0 = 0 in (C∞

per)
′(Y ) and ∫

Y d̂0 dy = ξ0. This means that
Aξ0 + ξ0 = η, and therefore A+ F is surjetive.



22 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENIn order to prove (4.9), let (ξ, η) ∈ A, and let û, d̂ be given by the de�nitionof A. Sine 1
|Y |

∫

Y ∇û dy = 0 by periodiity and 1
|Y |

∫

Y d̂(y) dy = 0, we have,by Jensen's inequality,
α
(‖ξ‖p

p
+

‖η‖q

q

)

≤
α

|Y |

∫

Y

‖ξ + ∇û(y)‖p

p
+

‖η + d̂(y)‖q

q
dy,Together with (2.6), this yields

α
(‖ξ‖p

p
+

‖η‖q

q

)

≤
1

|Y |

∫

Y
〈η + d̂, ξ + ∇û〉 dy +

1

|Y |

∫

Y
m dy.Using again that 1

|Y |

∫

Y ∇û dy = 0 and 1
|Y |

∫

Y d̂(y) dy = 0 together with
−div d̂ = 0 in (C∞

per)
′(Y ), one obtains (4.9). �Lemma 4.3. Let α > 0. For every δ > 0, there is ε0 > 0 and λ0 > 0 suhthat if m ∈ R and B ∈ M(X ×X ′) are suh that for every (ξ, η) ∈ B,
α
(‖ξ‖p

p
+

‖η‖q

q

)

≤ 〈η, ξ〉 +m,then for every ξ ∈ X, 0 < ε < ε0 and 0 < λ < λ0,
(α− δ)

(‖ξ‖p

p
+

‖Bλ,pξ + εFp(ξ)‖
q

q

)

≤ 〈Bλ,pξ + εFp(ξ), ξ〉 +m.Proof. Let ξ ∈ X, η = εFp(ξ)+Bλ,pξ and ζ = JB
λ,pξ. One has (ζ, η−εFp(ξ)) ∈

B. Therefore
α
(‖ζ‖p

p
+

‖η − εFp(ξ)‖
q

q

)

≤ 〈η − εFp(ξ), ζ〉 +m.Sine Fp(ξ − ζ) = λp−1(η − εFp(ξ)), one an develop
〈η − εFp(ξ), ζ〉 = 〈η, ξ〉 − λ1−p‖ξ − ζ‖p − ε1−q‖εFp(ξ)‖

q.Bringing this together gives
α
(‖ζ‖p

p
+

‖ξ − ζ‖p

αλp−1
+

‖η − εFp(ξ)‖
q

q
+

‖εFp(ξ)‖
q

αεq−1

)

≤ 〈η, ξ〉 +m.By onvexity, for every µ ∈ (0, 1),
‖ξ‖p ≤

‖ζ‖p

µp−1
+

‖ξ − ζ‖p

(1 − µ)p−1
,

‖η‖q ≤
‖Fp(ξ)‖

q

µq−1
+

‖Fp(ξ) − η‖p

(1 − µ)q−1
.Choose µ ∈ (0, 1) suh that (α − δ)max(µp−1, µq−1) ≤ 1. The requiredinequality holds with λ0 = (p/α)1/(p−1)(1 − µ) and ε0 = (q/α)1/(q−1)(1 −

q). �Let us now establish the following result whih gives the measurability of
A(x) (using Lusin's theorem) in Theorem 4.1.Proposition 4.4. Let α > 0, mn ∈ L1(Ω). Let Bn ∈ M(Y,RN , p, α,mn)and B ∈ M(RN ×R

N ) be measurable. Let An and A be the graphs assoiatedby (4.8). If mn → m strongly in L1(Ω) and Bn(y)  B(y), then An
 A,as n→ ∞.



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 23Proof. By Theorem 2.9, it is su�ient to show that for every ζ ∈ R, An
1ζ →

A1ζ. Let (ξn, ηn) = (JAn

1 ζ,An
1ζ). Sine F is the identity mapping, one has

ξn + ηn = ζ and (ξn, ηn) ∈ An. By de�nition of An, there exists (ûn, d̂n) ∈

W 1,p
per(Y ) × Lq(Y ;RN ) assoiated to An by the de�nition (4.8).By (2.6), one has(4.18) α

∫

Y

‖∇ûn + ξn‖
p

p
+

‖d̂n + ηn‖
q

q
dy ≤ 〈ηn, ξn〉 +

∫

Y
mn dy.By Jensen's inequality and sine ηn = ζ − ξn,

α
(‖ξn‖

p

p
+

‖ηn‖
q

q

)

≤ 〈ζ, ξn〉 +

∫

Y
mn dy,so that the sequenes ξn and ηn are bounded in R

N . By (4.18), the se-quenes d̂n, and ûn are bounded in Lq(Y ) and W 1,p
per(Y ) respetively. Up toa subsequene, (ξn, ηn) → (ξ, η) in R

N × R
N and (ûn, d̂n) ⇀ (û, d̂) weaklyin W 1,p

per(Y ) × Lq(Y ). In partiular, 1
|Y |

∫

Y ∇û dy = 0, 1
|Y |

∫

Y d̂ dy = 0 and
−div d̂ = 0 in (C∞

per)
′(Y ). Therefore,

∫

Y
〈d̂n + ηn,∇ûn + ξn〉 dy = 〈ηn, ξn〉 → 〈η, ξ〉 =

∫

Y
〈d̂+ η,∇û+ ξ〉 dy.Sine, by Corollary 2.17, Bn

 B, Theorem 2.8 gives (

∇û(y)+ξ, d̂(y)+η
)

∈
B(y) for almost every in Y . Therefore (ξ, η) ∈ A. Noting ξ + η = ζ, thisimplies (ξ, η) = (JA

1 ζ,A1ζ). Thus, one hasAn
1ζ → A1ζ for every ζ ∈ R

N . �4.3. Corretors. In this setion we �rst study the onvergene ∫

Ω〈dε −
d0,∇uε −∇u0〉 dx and then a orretor result.Proposition 4.5. Under hypotheses of Theorem 4.1, assume there exists
û ∈ Lp(Ω;W 1,p

per(Ω)) and d̂ ∈ Lq(Ω × Y ;RN ) suh that ∫

Y d̂ dy = 0 and asequene (εn) with εn → 0
{

T Y
εn

(∇uεn) ⇀ ∇xu0 + ∇yû weakly in Lp(RN × Y ;RN ),

T Y
εn

(dεn) ⇀ d0 + d̂ weakly in Lq(RN × Y ;RN ),then(4.19) ∫

Ω
〈dεn − d0 − UY

εn
(d̂),∇uεn −∇u0 − UY

εn
(∇yû)〉 dx→ 0.Remark 24. Given a sequene (εn), the onditions of Proposition 4.5 arealways satis�ed up to a subsequene.Proof. One has

∫

Ω
〈dεn − d0 − UY

εn
(d̂),∇uεn −∇u0 − UY

εn
(∇yû)〉 dx =

1

|Y |

∫

RN×Y
〈T Y

εn
(dεn) − T Y

εn
(d0) − T Y

εn
(UY

εn
(d̂)),T Y

εn
(∇uεn) − T Y

εn
(∇u0)

− T Y
εn

(UY
εn

(∇yû))〉 dx dy.The onvergene then follows from (4.7), together with Theorems 3.5 and 3.15.
�



24 ALAIN DAMLAMIAN, NICOLAS MEUNIER, AND JEAN VAN SCHAFTINGENAs in [16℄ one an reover strong onvergenes as follows:Theorem 4.6. Let Aε, A0 be as in Theorem 4.1 and Proposition 4.5. Ifthere exists c > 0, β ≥ p and κε ∈ L1(Ω) suh that for almost every x ∈ Ω,for every (ξ1, η1), (ξ2, η2) ∈ Aε(x),(4.20) ‖ξ1 − ξ2‖
β ≤ c

(

κε(x) + ‖ξ1‖
p + ‖ξ2‖

p
)(β/p)−1

〈η1 − η2, ξ1 − ξ2〉.If supε>0‖κε‖L1 <∞, then
∇uε − UY

ε (Dy û) → ∇xu0strongly in Lp(Ω) as ε→ 0.Moreover, for every (ξ1, η1), (ξ2, η2) ∈ Aε(x),
‖ξ1 − ξ2‖

β ≤ c
(

κ0(x) +
‖ξ1‖

p

αp
+

‖ξ2‖
p

αp

)(β−p)/p
〈η1 − η2, ξ1 − ξ2〉,with

κ0(x) =

∫

Y
lim inf

ε→0
T Y

ε (κε)(x, y) dy +
2p

α
m̄(x).Proof. We use the notations of Theorem 4.1. First note that by (4.20), (u0, û)does not depend on the subsequene (εn). Therefore, the whole sequenesonverge: uε ⇀ u in W 1,p

0 (Ω) and T Y
ε (∇uε) ⇀ ∇u0 + ∇yû as ε → 0.Sine Bε  B, there exists a sequene (ξε, ηε) ∈ Bε suh that (ξε, ηε) →

(∇xu0 + ∇yû, d0 + d̂) strongly in Lp(RN × Y ;RN ) × Lq(RN × Y ;RN ).By Hölder's inequality,
∫

RN×Y
‖T Y

ε (∇uε) − ξε‖
p dx dy

≤
(

∫

RN×Y

‖T Y
ε (∇uε) − ξε‖

β

(T Y
ε (κε) + ‖T Y

ε (∇uε)‖p + ‖ξε‖p)(β/p)−1
dx dy

)p/β

(

∫

RN×Y
κε + ‖T Y

ε (∇uε)‖
p + ‖ξε‖

p dx dy
)1−p/β

.By the boundedness T Y
ε (∇uε) in Lp(Ω × Y ;RN ) and the inequality (4.20),there is C > 0 suh that

(

∫

RN×Y
‖T Y

ε (∇uε) − ξε‖
p dx dy

)β/p

≤ C

∫

RN×Y
〈Tε(dε) − ηε,T

Y
ε (∇uε) − ξε〉 dx dyUsing suessively the strong and weak onvergenes of (ξε, ηε) and

(

T Y
ε (∇uε),Tε(dε)

) to (∇xu0 + ∇yû, d0 + d̂), and the onvergene (4.7), wehave that
lim
ε→0

∫

RN×Y
〈Tε(dε) − ηε,T

Y
ε (∇uε) − ξε〉 dx dy

= lim
ε→0

∫

RN×Y
〈Tε(dε),T

Y
ε (∇uε)〉 − 〈d0 + d̂,∇xu0 + ∇yû〉 dx dy = 0.



PERIODIC HOMOGENIZATION OF MONOTONE MULTIVALUED OPERATORS 25This implies ‖Tε(Duε)− ξε‖Lp(RN×Y ) → 0. Sine ξε → ∇xu0 +∇yû stronglyin Lp(RN × Y ), one has T Y
ε (∇uε) → ∇xu0 + ∇yû. Theorem 3.15 andProposition 3.14 give the onlusion.Sine T Y

ε (Aε)  B, inequality 4.20 is satis�ed with
κ̂(x, y) = lim infε→0 T

Y
ε (κε)(x, y) in plae of κε(x) for every (ξ, η) ∈ B(x, y).For i = 1, 2, onsider (ξi, ηi) ∈ A0 and (ûi, d̂i) assoiated by de�nition (4.4).By Jensen's and Hölder's inequalities,

‖ξ1 − ξ2‖
β ≤

( 1

|Y |

∫

Y
‖ξ1 + ∇û1(y) − ξ2 −∇û2(y)‖

p dy
)β/p

≤ c
1

|Y |

∫

Y

‖ξ1 + ∇û1(y) − ξ2 −∇û2(y)‖
β

(κ̂+ ‖ξ1 + ∇û1‖ + ‖ξ2 + ∇û2‖p)(β/p)−1
dy

( 1

|Y |

∫

Y
κ̂+ ‖ξ1 + ∇û1‖

p + ‖ξ2 + ∇û2‖
p dy

)(β/p)−1The �rst fator on the right-hand side is ontrolled by inequality (4.20) for
B:

1

|Y |

∫

Y

‖ξ1 + ∇û1(y) − ξ2 −∇û2(y)‖
β

(κ̂+ ‖ξ1 + ∇û1‖p + ‖ξ2 + ∇û2‖p)(β/p)−1
dy

≤ c
1

|Y |

∫

Y
〈η1 + d̂1(y) − η2 − d̂2(y), ξ1 + ∇û1(y) − ξ2 −∇û2(y)〉 dy

= c〈η1 − η2, ξ1 − ξ2〉.In order to bound the seond fator, note that, by (2.6) and Young's andJensen's inequalities,
α

p

1

|Y |

∫

Y
‖ξi + ∇ûi‖

p dy

≤ 〈ηi, ξi〉 −
α

q

1

|Y |

∫

Y
‖ηi + d̂i‖

p dy + m̄(x) ≤
1

pαp−1
‖ξi‖

p + m̄(x).

�Remark 25. Similarly, if there exists C > 0 and β ≥ q suh that for every
(ξ1, η1), (ξ2, η2) ∈ Aε(x),(4.21) ‖η1 − η2‖

β ≤ c
(

κε(x) + ‖η1‖
p + ‖η2‖

p
)(β−q)/q

〈η1 − η2, ξ1 − ξ2〉,then
dε − UY

ε (d̂) → d0strongly in Lq(Ω) as ε→ 0.Remark 26. The onvergene dε − UY
ε (d̂) → d0 follows from Theorem 4.6when Aε and A are single-valued by Proposition 2.7 and Lebesgue's dom-inated onvergene Theorem. A similar result holds when Aε and A areinjetive and satisfy (4.21), ∇uε − UY

ε (Dyû) → ∇xu0.
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