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Summary

This thesis is a collection of articles which are accepted or submitted
for publication or are already published. It is divided in two independent
parts which begin with original introductions.

The first part of this thesis is devoted to symmetrizations. Sym-
metrizations are tranformations of functions that preserve many prop-
erties of functions and enhance their symmetry. In the calculus of vari-
ation they are a simple and powerful tool to prove that minimizers of
functionals are symmetric functions. In this work, the approximation of
symmetrizations by simpler symmetrizations is investigated: The exis-
tence of a universal approximating sequence is proved, sufficient condi-
tions for deterministic and random sequences to be approximating are
given. These approximation methods are then used to prove some sym-
metry properties of critical points obtained by minimax methods: For
example if there is a solution obtained by the mountain pass theorem,
then there is a symmetric solution with the same energy. This part
ends with a study of the properties of anisotropic symmetrizations i.e.
symmetrizations performed with respect to noneuclidean norms.

The second part is devoted to L1 estimates. In general, the second
derivative of the solution of the Poisson equation with L1 data fails to
be in L1. Recently it was proved that if the data is a L1 divergence-free
vector-field, then even if in general it is false that the second derivative of
the solution is in L1, all the consequences thereof by Sobolev embeddings
hold. Elementary proofs of such results, as well as a generalization with
a second order operator replacing the divergence, are given.
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Part 1

Symmetrizations and symmetry
of critical points





Introduction

1. Symmetry of solutions of partial differential equations

Consider a semilinear elliptic problem of the form

∆u = f(x, u) in Ω,

together with some boundary condition on ∂Ω. When Ω, f and the
boundary conditions have some symmetries, the question whether u in-
herits those symmetries comes naturally. For example, if Ω is a ball or
an annulus, f(x, u) = f(|x|, u) and u = 0 on ∂Ω, is a solution u a radial
function? In general, u does not need to be radial: For f(x, u) = λu,
there are nonsymmetric solutions u for suitable values of λ. Additional
conditions on Ω, f and u are thus required to ensure the symmetry
of u. This was done for example by Gidas, Ni and Nirenberg who
proved with the maximum principle and the moving-plane method, that
if f ∈ C([0, 1]×R), ∂f/∂u ∈ C([0, 1]×R), f is increasing with respect
to its first argument, u ∈ C2(Ω̄), u > 0 on Ω and

{
∆u = f(|x|, u) in B(0, 1),
u = 0 on ∂B(0, 1).

then u is spherically symmetric and radially decreasing [10,11].
When the problem is variationnal, i.e. when the solutions are critical

points of a functional ϕ, the symmetries of minimizing solutions can be
investigated. Symmetry breaking can still occur [6,21]. In some cases, to
any function u, a more symmetric function u∗ such that ϕ(u∗) 6 ϕ(u) is
associated. Then, if there is a minimizer of ϕ, there is a symmetric mini-
mizer of ϕ. The symmetrization by rearrangement yields such a function
u∗ for many functionals ϕ. Moreover it is a nonlinear transformation of
functions well suited to nonlinear problems.

2. Symmetrization

While the idea of symmetrizing sets goes back to Steiner as a tool for
the proof of the classical isoperimetric theorem and the symmetrization
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8 INTRODUCTION

of functions was defined by Hardy, Littlewood and Pólya [12], the use of
symmetrization in elliptic variational problem was introduced by Pólya
and Szegő [18]. Since then it has been widely studied and exposed
[4, 13, 15, 17, 26]. We recall some basic definitions and properties for
classical symmetrizations.

The definition of the symmetrization of functions can be based on
the symmetrization of sets. We present successively the Schwarz sym-
metrization, the Steiner symmetrization and the cap symmetrization.

In the simplest setting, the Schwarz symmetrization of any Lebesgue
measurable set A ⊂ RN is an open ball centered at the origin, which has
the same Lebesgue measure as A and which is denoted by A∗. A function
u is admissible if it is nonnegative, measurable, and if the measure of
the set {

x ∈ RN : u(x) > c
}

is finite for every c > 0. The symmetrization of an admissible function
u : RN → R is the unique function u∗ such that for every c > 0,

{
x ∈ RN : u∗(x) > c

}
=
{
x ∈ RN : u(x) > c

}∗
.

Alternative definitions of the symmetrization of sets yield alternative
symmetrizations of functions. In particular, the Steiner symmetrization
of a set A with respect to a plane T is the unique set whose intersection
with every maximal plane L orthogonal to T is a ball of L centered on the
intersection of T and L which has the same measure as the intersection
of L and A.

Similarly, the cap symmetrization of a set A with respect to a half-
plane T is the unique set which has the same intersection with the bound-
ary of T as A, and whose intersection with any sphere L of a maximal
orthogonal plane to the boundary of T whose center is in the boundary
of T , is an open ball of L centered around the intersection of L and T
which has the same measure as the intersection of L and A.

The symmetrization of a set prescribes a measure and a shape for
the symmetrized set. The properties of the symmetrizations can be
classified as measure-theoretical and geometrical depending on whether
their proof relies on the shape of the symmetrized set.

The mesaure-theoretical properties can be deduced from two fun-
damental properties: Rearrangements preserve the inclusions and the
measures of sets. These properties are sufficient to ensure that for every
admissible function u and for every nonnegative Borel function f ,

(C)
∫

RN

f(u∗) dx =
∫

RN

f(u) dx,
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(Cavalieri principle) and that for any 1 6 p 6∞ and for any admissible
functions u, v ∈ Lp(RN ),

‖u∗ − v∗‖p 6 ‖u− v‖p.
When p = 2, the latter is equivalent to the classical Hardy–Littlewood
inequality [12, 15]:

(HL)
∫

RN

u∗v∗ dx >
∫

RN

uv dx.

The proofs of these properties of the rearrangement of functions are
based on simple measure-theoretical arguments [8, 13,15,25,26].

The properties of the symmetrization given above did not use the
shape of the symmetrized sets, which ensure the geometrical properties
of the symmetrization of functions. For example, for any Steiner or cap
symmetrization ∗, if u ∈W1,p(RN ) is nonnegative, then u∗ ∈W1,p(RN )
and

(PS)
∫

RN

|∇u∗|p dx 6
∫

RN

|∇u|p dx.

This is the Pólya–Szegő inequality, which was first proved when p =
2 [18]. If ∗ is a Steiner symmetrization with respect to a plane that
contains the origin, then the Riesz–Sobolev rearrangement inequality also
holds:

(RS)
∫

RN

∫

RN

u(x)v(y)w(x− y) dx dy

6
∫

RN

∫

RN

u∗(x)v∗(y)w∗(x− y) dx dy.

When ∗ is a cap symmetrization, this is still true when w(z) = w(|z|)
and w is decreasing [3, 7], but as shown in Corollary IV.4.3, it does not
hold for a general nonnegative compactly supported continuous function
w.

In contrast with the measure-theoretical properties, the geometrical
properties of the symmetrization of function are not consequences of ele-
mentary properties of the symmetrization of sets. There are elementary
necessary conditions: A Pólya–Szegő inequality implies that the sym-
metrization of a ball should be a ball and a Riesz–Sobolev rearrange-
ment inequality implies that the symmetrization of an ellipsoid should
be an ellipsoid. Sufficient conditions are more complicated: For the
Pólya–Szegő inequality, the capacity of condensators should decrease by
symmetrization [24] while for the Riesz–Sobolev inequality, the inequal-
ity should hold for characteristic functions of sets [15]. These sufficient
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conditions are not powerful enough to reduce the proofs to elementary
arguments. Another tool is thus needed.

For the Steiner symmetrizations with respect to hyperplanes, the
Pólya–Szegő inequality can be proved directly [13]. The inequality is
then extended to other Steiner symmetrizations by an approximation
argument: For the Steiner symmetrization ∗, a sequence of simpler
symmetrizations S1, S2, . . . is constructed such that for every function
u ∈ Lp(RN )

uS1···Sn → u∗ in Lp(RN ).
Finally, using the fact that the Polyá-Szegő inequality holds for the
symmetrizations Sn, the weak convergence uS1···Sn ⇀ u∗ in W1,p(RN )
follows and

(2.1)
∫

RN

|∇u∗|p dx 6 lim
n→∞

∫

RN

|∇uS1···Sn |p dx 6
∫

RN

|∇u|p dx,

by the weak lower semi-continuity of the norm [7]. A similar approach
is possible for the Riesz–Sobolev inequality [5, 15].

3. Approximation of symmetrizations

Approximation of symmetrization originated in proofs of the isoperi-
metric theorem. Once it was known that the Steiner symmetrization de-
creases the perimeter of compact convex sets, it was sufficient to prove
that for any compact convex set of the plane K, there is a sequence of
Steiner symmetrizations (Sn)n>1 such that the sequence KS1···Sn con-
verges to a ball in Hausdorff distance. The approximation by Steiner
symmetrizations was an essential ingredient for the proof of the Riesz–
Sobolev rearrangement inequality in N–dimensional space [5]. Sarvas
established isoperimetric inequalities for condensators by the approxi-
mation of cap symmetrizations by simpler cap symmetrizations [20].

A still simpler rearrangement is the polarization. The polarization
uH of a function u : RN → R with respect to an affine halfspace H is
defined by

uH(x) =

{
max

(
u(x), u(xH)

)
if x ∈ H,

min
(
u(x), u(xH)

)
if x 6∈ H,

where xH denotes the reflection of x with respect to the boundary of
H. Is is also called “two-point rearrangement” and it is the simplest
non-trivial rearrangement of functions. Its properties are easy to prove
and to understand since it operates essentially on two-points sets. Po-
larizations were introduced by Wolontis to study the behaviour of the
capacity of condensators in R2 under the cap symmetrization [27]. This
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result was extended by Dubinin to other symmetrizations in higher di-
mensions [9]. Both proofs considered a set of condensators which could
be symmetrized by a finite number of polarizations and then concluded
by a density argument. Baernstein used the polarization in a compact-
ness argument in the proof of his “master inequality”

(3.1)
∫

RN

∫

RN

u(x)v(y)w(|x− y|) dx dy

6
∫

RN

∫

RN

u∗(x)v∗(y)w(|x− y|) dx dy,

where w is a nonincreasing function [3]. He deduced the Pólya–Szegő
inequality (2.1) from the inequality (3.1).

The approach of symmetrization by polarization was subsequently
developped by Brock and Solynin [7]. They proved that for every non-
negative function u ∈ Lp(RN ) and every Steiner symmetrization ∗, there
is a sequence of polarizations (Hn)n>1 such that

uH1···Hn → u∗, in Lp(RN ) as n→∞.

Smets and Willem extended this to cap symmetrizations ∗ [22].

4. Universal approximation

In chapter I, we prove that the sequence of polarizations approximat-
ing a given symmetrization can be chosen independently of the function
u. We also extend the approximation by polarizations to the increas-
ing rearrangement, which transforms functions into increasing functions.
More precisely the increasing rearrangement of a set A ⊂ Ω ×R is the
unique set A∗ such that for every x ∈ Ω,

A∗ ∩ ({x} ×R) = {x} × (c(x,A),+∞)

where

c(x,A) = H1
(
({x} × (0,+∞)) \A)−H1

(
({x} × (−∞, 0]) ∩A)

(c(x,A) = −∞ if the definition does not make sense). It is extended to
functions as in section 2.

We prove that if ∗ is the Steiner, the cap symmetrization or the in-
creasing rearrangement, then there is a sequence of polarizations (Hn)n>1

such that for every 1 6 p < ∞ and for every admissible function
u ∈ Lp(RN ),

uH1···Hn → u∗, in Lp(RN ) as n→∞.
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We adapt the arguments of Brock and Solynin, and of Smets and Willem
in order to approximate simultaneously the symmetrizations of a count-
able set of functions. The conclusion comes from a density argument
based on the nonexpansiveness of symmetrizations and polarizations.

We also show that the same arguments provide proofs of the approx-
imation of Steiner symmetrizations by Steiner or cap symmetrizations
and of cap symmetrizations by cap symmetrizations in a unified frame-
work (Section I.5). These results can be stated in an elegant way by
introducing the partial order ≺ on the set of affine planes and half-
planes S defined by S ≺ T if S ⊆ T and ∂S ⊆ ∂T . Given S ∈ S and
T ⊂ S, there is a sequence (Tn)n>1 in T that approximates S, provided
for every polarization H with S ≺ H, there exists T ∈ T such that
S ≺ T ≺ H (Theorem III.2.28). This gives a common framework to the
Steiner symmetrizations, the cap symmetrizations and the polarizations.

A further question is which sequences are approximating. We give in
chapter III a sufficient condition: If S and T satisfy the assumptions of
the preceding paragraph, and if the sequence (Tn)n>1 in T contains as a
contiguous subsequence any finite subsequence of T up to an arbitrary
small error, then the sequence (Tn)n>1 approximates the symmetrization
S (Theorem III.3.2). While this sufficient condition is not necessary, it
is satisfied by many sequences: If the elements of the sequence are cho-
sen randomly and independently, and if the probability that Tn is in a
nonempty open set is bounded from 0 uniformly in n, then almost ev-
ery sequence (Tn)n>1 approximates S. Mani-Levitska proved previously
that for every compact convex set, almost every sequence of Steiner
symmetrization converges to a ball in Hausdorff distance dH , which is
defined for A,B ⊂ RN by

dH(A,B) = max
(
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(y, x)
)
.

He asked whether the same held for nonconvex sets [16]. We give a
positive answer in Theorem III.3.13.

5. Symmetry of critical points

As explained above, the symmetrization by rearrangement is a pow-
erful method to prove that a functional achieves its minimum on sym-
metric functions. It is not directly applicable to critical points which are
not minimizers. In chapters II and III we adapt the method to critical
points obtained by minimax methods.

In chapter II we apply symmetrization methods to critical points
obtained by the mountain-pass Theorem of Ambrosetti and Rabinowitz
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and its generalizations. This theorem can be stated roughly as follows:
Suppose ϕ is a functional defined on a Banach space such that ϕ(0) = 0,
the functional has a positive lower bound on the boundary of a neigh-
bourdhood of 0, and there is e outside of this neighbourhood such that
ϕ(e) < 0. Let

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}
and

c = inf
γ∈Γ

sup
t∈[0,1]

ϕ(γ(t)).

If ϕ satisfies an additional Palais–Smale compactness condition, then
there is a critical point u such that ϕ(u) = c > 0.

When the functional ϕ decreases by symmetrization, it seems natural
that the infimum should be the same if only symmetric functions were
considered since any path γ can be replaced by a symmetrized path γ̃
defined by γ̃(t) = γ(t)∗. Unfortunately, in general γ̃ is not in Γ because
the symmetrization is not a continuous transformation of Sobolev spaces
[1]. On the other hand, the polarizations are continuous in Sobolev
spaces. Using the fact that Steiner and cap symmetrizations can be
approximated by polarizations, we prove that if the function ϕ decreases
by polarizations compatible with a Steiner or cap symmetrization ∗ and
if ϕ satisfies the hypotheses of the mountain-pass Theorem, then there
is a critical point u such that ϕ(u) = c and u∗ = u.

In chapter III, we obtain similarly some symmetry results for critical
points obtained using Krasnoselskii genus. The Krasnoselskii genus of a
subset A of a vector space such that A = −A is the least integer m such
that there is a continuous odd mapping of A in Sm−1. It is denoted by
γ(A). If ϕ is a functional defined on a Banach space and

β` = inf
A is closed
A=−A
γ(A)>`

sup
u∈A

ϕ(u),

then it is classical that under an additional Palais–Smale compactness
condition, ϕ has a critical point u` such that ϕ(u`) = β` [19, 23]. As
for the mountain-pass Theorem, it is possible to ensure that there are
symmetric critical points on the level β`. Suppose ϕ is defined on a
Sobolev space of functions defined on Ω ⊂ RN and ϕ is invariant by all
the polarizations whose boundary contains 0. We prove that if ` 6 N ,
then there is a critical point still denoted u` such that ϕ(u`) = β` and
u∗` = u`, where ∗ is the cap symmetrization with respect to a half straight
line in RN .
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The key idea of the proof is to replace any set A appearing in the
definition of β` by a set Ã of functions which are almost invariant by
spherical cap symmetrization: Given ε > 0, there is Ã such that for
every u ∈ Ã there is a cap symmetrization ∗ such that

‖u− u∗‖p 6 ε.
The dependence of ∗ on u is essential in order to be able to ensure
Ã = −Ã. Moreover,

sup
ũ∈Ã

ϕ(ũ) 6 sup
u∈A

ϕ(u).

This set Ã is constructed by polarizations. In order to approximate
different cap symmetrizations simulaneously, we need the sufficient con-
dition for a sequence of polarization to approximate a symmetrization
that was presented in the preceding section.

6. Anisotropic symmetrization

It was assumed implicitly above that the ambiant space RN was
endowed with the standard Euclidean norm. One can wonder what
happens to the Steiner symmetrization when the Euclidean norm is re-
placed by a general norm. Alvino, Ferone, Lions and Trombetti initiated
this study for symmetrizations with respect to a point [2]. We study the
properties of symmetrizations with respect to general norms in chap-
ter IV.

A Steiner symmetrization with respect to an arbitrary norm still
preserves the inclusions and the measures of sets. Therefore, as stated
in section 2, for every admissible function u and every nonnegative Borel
function f , ∫

RN

f(u∗) dx =
∫

RN

f(u) dx

and for every 1 6 p 6∞ and for every admissible u, v ∈ Lp(RN ),

‖u∗ − v∗‖p 6 ‖u− v‖p.
Given an anisotropic symmetrization ∗, there is in general no non-

trivial simpler symmetrization ? such that for any set A

A∗? = A∗.

Therefore, anisotropic symmetrization can not be approximated by sim-
pler symmetrizations, and the methods to prove geometrical inequalities
used above for the isotropic Steiner symmetrization fail.
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A striking difference between isotropic and anisotropic symmetriza-
tions is that there is no equivalent of the Riesz–Sobolev inequality pre-
sented in section 2. In fact, if the inequality

∫

RN

∫

RN

u(x)v(y)w(x− y) dx dy

6
∫

RN

∫

RN

u∗(x)v∗(y)w∗(x− y) dx dy.

holds for every nonnegative compactly supported continuous functions
u, v and w, then ∗ must be a Steiner symmetrization with respect to an
Euclidean norm. Indeed, the Riesz–Sobolev inequality is very delicate
and it was already mentioned that it does not hold for cap symmetriza-
tions and polarizations. More surprisingly, there is neither a weakened
Riesz–Sobolev inequality like (3.1): Theorem IV.4.4 states that if for
some Radon measure µ the inequality

(6.1)
∫

RN

∫

RN

u(x− y)v(y) dµ(x) dy

6
∫

RN

∫

RN

u∗(x− y)v∗(y) dµ(x) dy

holds for every compactly supported continuous function u and v, then
either ∗ is a symmetrization with respect to an Euclidean norm or µ is
concentrated on the subspace of RN parallel to the plane with respect to
which the symmetrization is performed. In the latter case the inequal-
ity is an easy consequence of the classical Hardy-Littlewood inequality.
There is thus no nontrivial generalization of the known convolution in-
equalities to anisotropic symmetrizations.

The picture is different for the Pólya–Szegő inequality. Let H be a
positively homogeneous and lower-semicontinuous function, let

H◦(x) = sup
t 6=0

〈t, x〉
H(t)

.

and let ∗ be the symmetrization with respect to H◦(−·). If u is admissi-
ble and u ∈W1,p(RN ), then u∗ ∈W1,p(RN ). If moreover J : R+ → R+

is convex and J(0) = 0, then
∫

RN

J(H(∇u∗)) dx 6
∫

RN

J(H(∇u)) dx.

As explained in chapter IV, such inequalities appear in the study of
variationnal problems which have an anisotropic energy, e.g. models of
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cristalline materials. They also yield optimal inequalities in Sobolev
spaces when RN is endowed with a general norm (section IV.7.2).

Alvino et al. proved this when the symmetrization is performed with
respect to a point by the coarea formula and an isoperimetric theorem
for an anisotropic surface measure [2]. Our method can deal with gen-
eral isotropic symmmetrization and is based on a generalization of an
inequality of Klimov [14], valid for any isotropic Steiner symmetriza-
tion ?, ∫

RN

ϕ?(∇u?) dx 6
∫

RN

ϕ(∇u) dx.

Where the Legendre–Fenchel transform ϕ of ϕ is defined by

ϕ(y) = sup
x∈RN

y · x− ϕ(x).

and the increasing symmetrization ϕ? is given by

ϕ?(t) = −(−ϕ)?(t).

We first prove this inequality for Steiner symmetrizations with respect
to a hyperplane before being extended by approximation to general
isotropic Steiner symmetrizations. The final result is a general Pólya–
Szegő inequality, in which the integrand is a function of x, u and Du
and is convex in Du. This result is also interesting for isotropic Steiner
symmetrizations.

On a more technical level, our proof of the Pólya–Szegő inequality
for anisotropic symmetrizations required to develop a good pointwize
definition of the symmetrization of functions based on Lebesgue’s outer
measure. This definition is well-suited for the study of the symmetriza-
tion of measurable sets. It coincides with the classical definition for open
sets, but it does not for compact sets. As explained in section III.3.3, the
classical definition and properties of the symmetrization of a compact
set can be easily recovered from our definition.
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[18] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics,
Princeton University Press, Princeton, N. J., 1951.

[19] P. H. Rabinowitz, Minimax methods in critical point theory with applications to
differential equations, CBMS Regional Conference Series in Mathematics, vol. 65,
Published for the Conference Board of the Mathematical Sciences, Washington,
DC, 1986.

[20] J. Sarvas, Symmetrization of condensers in n-space., Ann. Acad. Sci. Fenn., Ser.
A I 522 (1972), 44 p.

[21] D. Smets, J. Su, and M. Willem, Non-radial ground states for the Hénon equation,
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CHAPTER I

Universal approximation of symmetrizations by
polarizations

1. Introduction

A symmetrization ∗ (or rearrangement) maps any function u : Ω→
R to a more symmetrical function u∗ : Ω∗ → R. Under some technical
assumptions, it has the following properties:∫

Ω
f(u) dx =

∫

Ω∗
f(u∗) dx,(C)

∫

Ω∗
|u∗ − v∗|p dx 6

∫

Ω
|u− v|p dx,(HL)

∫

Ω
|∇u|p dx 6

∫

Ω∗
|∇u∗|p dx.(PS)

Rearrangements are used to prove the symmetry and the existence of
solutions of some variational problems.

The symmetrization is defined for sets before being extended to func-
tions. The inequalities (C) and (HL) are straightforward consequences of
the preservation of both the inclusions and the measure after rearrange-
ment of sets. Pólya–Szegő’s inequality (PS) involves the gradient, and
a proof that uses directly the definition of the rearrangement relies on
an isoperimetric inequality for sets and on the coarea formula. The in-
equality (PS) can also be proved using approximation by polarizations,
as Brock and Solynin did [5] and as we do in Corollary 6.3. Lieb and
Loss [9] and Baernstein [3] deduced it from Riesz-like inequalities that
they obtained using approximations.

The first approximation of symmetrizations by simpler symmetriza-
tions appeared in the proof of the classical isoperimetric Theorem. A
well-chosen sequence of Steiner symmetrization of a convex body con-
verges with respect to the Hausdorff distance to a ball of the same

This chapter is an article accepted for publication in the Proceedings of the
American Mathematical Society.
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volume. Mani-Levitska proved that random sequences of Steiner sym-
metrizations converge [10]. Brascamp, Lieb and Luttinger approximated
in measure the Schwarz symmetrization of sets by lower order sym-
metrizations in order to prove a generalized Riesz rearrangement in-
equality [4,9]. Sarvas approximated the symmetrization of sets by spher-
ical cap and Steiner symmetrizations [12], while Baernstein [3], Brock
and Solynin used polarizations [5]. This result was extended to the cap
symmetrization by Smets and Willem [13].

For all the methods of approximations of symmetrizations by po-
larizations quoted above, the sequence of polarizations depends on the
function that has to be symmetrized. Our main result (Theorem 4.4)
is that there exists a sequence that depends neither on the function nor
on the function space, and that the increasing rearrangement can also
be approximated by polarizations. This symmetrization coincides in the
one-dimensional case, with the rearrangement introduced by Carbou [6]
and studied by Alberti [1]. The increasing rearrangement inequalities
allow to prove the existence of solutions of variational problems that
increase in some direction. Badiale obtained with the moving plane
method similar results concerning the monotonicity of solutions of some
elliptic systems [2].

By the same method, we prove that cap and Steiner symmetriza-
tions approximate higher order Steiner and cap symmetrization. The
approximating symmetrizations can be of any order, but they must be
compatible with the symmetrization that they approximate.

The definitions and basic properties of symmetrizations (Section 2)
and of polarizations (Section 3) are recalled. Section 4 is devoted to
the proof of the main result. Finally the method is briefly extended
to approximation by symmetrization (Section 5) and a Pólya–Szegő in-
equality is proven (Section 6).

2. Symmetrizations

The Lebesgue outer measure on RN is denoted LN , the Hausdorff k-
dimensional outer measure on RN is denoted by Hk, the scalar product
between x and y, x ·y, and the Euclidean norm |x| =

√
x · x. If x ∈ RN ,

0 6 r 6 +∞, then

B(p, r) =
{
x ∈ RN : |x− p| < r

}
.

The characteristic function of a set A is denoted χA, and the symmetric
difference of the sets A and B is denoted

A∆B = (A \B) ∪ (B \A) .
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Definition 2.1. If T is a proper affine subspace of RN , the Steiner
symmetrization of a set A ⊂ RN with respect to T is the unique set AT

for which the following holds: for any p ∈ T , if L is the maximal affine
subspace orthogonal to T that contains p, then

AT ∩ L = B(p, r) ∩ L ,
where r is defined such that

HN−dimT (B(p, r) ∩ L) = HN−dimT (A ∩ L) .

Remark 2.2. The Schwarz symmetrization with respect to p ∈ RN is
the Steiner symmetrization with respect to {p}, it is also sometimes the
Steiner symmetrization with respect to a straight line [9, 11].

Definition 2.3. A set S ⊂ RN is a closed half affine subspace of RN if it
is a closed affine halfspace with respect to its affine span. The boundary
of S with respect to its affine span is denoted ∂S and its dimension is
dimS = dim ∂S + 1.

Definition 2.4. If S is a closed half affine subspace RN and 0 < dimS <
N , the cap symmetrization of a set A with respect to S is the unique set
AS for which the following holds: AS ∩∂S = A∩∂S and, for any q ∈ ∂S
and any s > 0, if L is the maximal affine subspace orthogonal to ∂S that
contains q, and p is the only point in the intersection S ∩ (L∩ ∂B(q, s)),
then

AS ∩ L ∩ ∂B(q, s) = B(p, r) ∩ L ∩ ∂B(q, s) ,
where 0 6 r 6 +∞ is defined by

HN−dimS
(
B(p, r) ∩ L ∩ ∂B(q, s)

)
= HN−dimS

(
A ∩ L ∩ ∂B(q, s)

)
.

Definition 2.5. Let A ⊆ RN and v ∈ RN ∩ ∂B(0, 1),

cv(A) = H1
({x ∈ (A+ vR) \A : v · x > 0})

−H1
({x ∈ A : v · x 6 0}) ,

if the formula makes sense and cv(A) = −∞ otherwise.

Definition 2.6. The increasing rearrangement of A ⊂ RN with respect
to v ∈ RN ∩∂B(0, 1) is the unique set A(v,∞) such that for any x ∈ RN ,

(x+ vR) ∩A(v,∞) =
{
y ∈ (x+ vR) : v · y > cv

(
A ∩ (x+ vR)

)}
.

In the sequel, ∗ denotes indifferently a Steiner or cap symmetrization,
or an increasing rearrangement.

For any sets A,B ⊆ RN ,

(2.1) A ⊆ B =⇒ A∗ ⊆ B∗.
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Proposition 2.7. If A ⊂ RN is measurable, then A∗ is measurable.

Proof. If ∗ is the increasing rearrangement with respect to v ∈ RN ∩
∂B(0, 1), A∗ can be written by definition as

A∗ =
{
x ∈ RN : v · x > cv(A ∩ (x+ vR))

}
.

Fubini’s theorem implies that the function x 7→ cv(A ∩ (x + vR))
is measurable. Hence A∗ is measurable. The proof is similar for the
Steiner and cap symmetrizations. �
Definition 2.8. A set A is admissible for a Steiner or cap symmetriza-
tion ∗ if A is measurable, and LN (A) < +∞. If ∗ is the increasing
rearrangement with respect to v, A is admissible if and only if

LN (A∆
{
x ∈ RN : v · x > 0

}
) <∞.

If A ⊂ B ⊂ RN are admissible sets, then

(2.2) LN (B∗ \A∗) = LN (B \A).

When the sets A and B may have infinite measure, which is the case for
the increasing rearrangement, the second condition is more restrictive
than the preservation of the measure of sets (LN (A) = LN (A∗)). If
A,B ⊂ RN are admissible sets, then

(2.3) LN (B∗ \A∗) 6 LN (B \A).

Notation 2.9. For any function u : Ω→ R and c ∈ R, we write

{u > c} = {x ∈ Ω : u(x) > c} .
Definition 2.10. The symmetrization of a function u : RN → R is, for
y ∈ RN ,

u∗(y) = sup {c ∈ R : y ∈ {u > c}∗} .
Proposition 2.11. If ∗ is a rearrangement and u : RN → R is mea-
surable, then u∗ is measurable.

Proof. Since ∗ is monotone on sets, {u∗ > c} = ∪n>1{u > c + 1/n}∗,
and the conclusion follows from Proposition 2.7. �
Definition 2.12. A function u : Ω→ R is admissible if for any c with
ess inf u < c < ess sup u the set {u > c} is admissible.

Definition 2.13. If ∗ is a Steiner or cap symmetrization and 1 6 p <
+∞, we define Lp∗(RN ) = Lp+(RN ) to be the set of nonnegative functions
of Lp(RN ), C∗(RN ) = C0,+(RN ) to be the set of nonnegative continuous
functions whose limit at the infinity is 0 and K∗(RN ) = K+(RN ) to be
the set of nonnegative continuous functions with compact support. If ∗
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is the increasing rearrangement with respect to v ∈ RN ∩ ∂B(0, 1), we
write

Lp∗(R
N ) ={u : RN → [0, 1] : ∃h : R→ R such that h is increasing,

(h− χR+) ∈ Lp(R), and (h(v · .)− u) ∈ Lp(RN )},
C∗(RN ) ={u : RN → [0, 1] : u is continuous,

lim
v·x→−∞u(x) = 0, and lim

v·x→+∞u(x) = 1}

and

K∗(RN ) ={u ∈ C∗(RN ) : ∃h : R→ R such that h is increasing,

(h− χR+) has compact support, and (h(v · .)− u) ∈ K(RN )}.
The functions of the sets K∗(RN ), C∗(RN ) and Lp∗(RN ) are all ad-

missible. If u ∈ K∗(RN ), then u∗ ∈ K∗(RN ) and, for any c ∈ R,

(2.4) {u > c}∗ = {u∗ > c}.
The preservation of inclusions (2.1) and measure (2.2) imply that the

symmetrization of functions is nonexpansive for any Lp norm, 1 6 p 6
∞. The ideas of Crowe, Zweibel and Rosenbloom [7], and of Alberti [1]
can be generalized to encompass the case of the increasing rearrange-
ment.
Proposition 2.14. For any 1 6 p 6∞, we have

‖u∗ − v∗‖p 6 ‖u− v‖p.
Proof. If 1 6 p <∞, for any admissible functions u and v, we have
∫

Ω
|u− v|p dx =

∫

σ6τ
(LN ({v > τ} \ {u > σ})

+ LN ({u > τ} \ {v > σ}))p(p− 1)|σ − τ |p−2 dσ dτ.

The properties (2.4) and (2.3) yield the conclusion. If p = ∞, the
conclusion follows from preservation of inclusions. �

3. Polarizations

Definition 3.1. A polarizer is a closed affine halfspace of RN .

Remark 3.2. A set H is a polarizer if and only if there exists a ∈ RN ,
|a| = 1 and b ∈ R such that H =

{
x ∈ RN : a · x > b}.

Notation 3.3. If x ∈ RN and H ⊆ RN is a polarizer, xH denotes the
reflection of x with respect to ∂H. Using the description of Remark 3.2,
xH = x− 2(a · x− b)a.
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Definition 3.4. The polarization of a function u : RN → R by a
polarizer H is the function uH : RN → R defined by

uH(x) =

{
max {u(x), u(xH)} if x ∈ H,
min {u(x), u(xH)} if x 6∈ H.

Remark 3.5. The polarization is also called two-point rearrangement.
The polarization byH is the natural extension of the cap symmetrization
with respect to S = H when dimS = N (compare with Definition 2.4).

Notation 3.6. If T is an affine subspace, let

HT =
{
H ⊂ RN : H is a polarizer and T ⊂ H} ,

if S is a closed half affine subspace, let

HS =
{
H ⊂ RN : H is a polarizer, S ⊂ H and ∂S ⊂ ∂H}

and, if v ∈ RN ∩ ∂B(0, 1), let

H(v,∞) =
{
H ⊂ RN : H is a polarizer

and a = v in the description of Remark 3.2
}
.

For any symmetrization ∗ and for any function u : RN → R,

u = u∗ ⇐⇒ ∀H ∈ H∗, u = uH .

Polarizations satisfy the properties (2.1) and (2.2). Thus they are
nonexpansive. For u ∈ Lp∗(RN ) and H ∈ H∗, the inequality

‖uH − u∗‖p = ‖uH − (u∗)H‖p 6 ‖u− u∗‖p
suggests that well chosen polarization can approximate the symmetriza-
tion ∗ for a given function. The proof goes in two steps: first the rela-
tive compactness of any sequence of iterated polarizations is established
(Lemma 3.7), then a convergence condition ensures the convergence to
the symmetrized function (Lemma 3.9).
Lemma 3.7. Let u ∈ K∗(RN ) and (Hm)m>0 ⊂ H∗ be a sequence of
polarizers and um = uH1···Hm. Then, there is v ∈ K∗(RN ) and an
increasing sequence (mk)k∈N in N such that, for any 1 6 p 6∞,

lim
k→∞
‖v − umk‖p = 0.

Remark 3.8. This lemma is essentially due to Brock and Solynin [5,
Lemmas 6.1 and 6.2], and the main part of the arguments was given by
Baernstein [3]. Smets and Willem proved it for the cap symmetrization
[13].
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Proof. The compactness of the sequence (um)m>1 is proven by Arzelá–
Ascoli’s Theorem. The sequence is equibounded: for any polarization
H, ‖uH‖∞ = ‖u‖∞ and thus, by induction, ‖um‖∞ = ‖u‖∞ < +∞.

Secondly, the sequence is equicontinuous. Let

ωv(δ) = sup {v(x)− v(y) : d(x, y) 6 δ}
be the modulus of continuity of a function v. By a tedious analysis of
the possible different cases, it can be proved that for any polarization
H, ωuH 6 ωu, and thus, by induction, ωum 6 ωu. Since u ∈ K∗(RN ) is
uniformly continuous, the sequence is equicontinuous.

It remains to prove that the supports are uniformly bounded. For
the Steiner or the cap symmetrizations, u ∈ K∗(RN ) implies that, for
some p in T or in ∂S, and for some R > 0, {u > 0} ⊆ B(p,R). Thus,
because polarizations are monotone, {uH > 0} ⊆ B(p,R)H = B(p,R)
and, by induction, {um > 0} ⊆ B(p,R).

For the increasing rearrangement with respect to v, we have, for
some c ∈ R,

{u > 0} ⊆ {x ∈ RN : v · x > c
}

and

{uH > 0} ⊆ {x ∈ RN : v · x > c
}H

=
{
x ∈ RN : v · x > c

}
.

Therefore we have

{um > 0} ⊆ {x ∈ RN : v · x > c
}

and similarly there exists d ∈ R such that
{
x ∈ RN : v · x > d

} ⊆ {um < 1}.
There exists R > 0 such that um(x) 6= h(x) implies dist(x, x + vR) 6
R. Therefore, there is a bounded set B ⊂ RN such that supp(um −
h) ⊂ B for m ∈ N. We conclude, by Arzelá–Ascoli’s Theorem that
any subsequence has a subsequence converging uniformly to some v ∈
K∗(RN ).

The convergence for 1 6 p < +∞ follows from the convergence for
p = +∞ and from the fact that all the supports of the functions of the
sequence (um − v) lie in the same compact set. �

A second lemma states that for any nonsymmetrical function, there
exists a polarizer H ∈ H∗ that makes it closer to its symmetrization.
Lemma 3.9. Let u ∈ K∗(RN ). If u 6= u∗, then there is a polarizer
H ∈ H∗ such that, for any 1 6 p < +∞,

‖uH − u∗‖p < ‖u− u∗‖p.
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Remark 3.10. This lemma is due to Brock and Solynin [5] for the Steiner
symmetrization and to Smets and Willem [13] for the cap symmetriza-
tion.

Proof. Since u 6= u∗, there exists c > 0 such that the set {u > c}∆ {u∗ >
c} is not empty. Choose a point y ∈ {u∗ > c} \ {u > c}. There is a
polarizer H ∈ H∗ such that yH ∈ {u > c} \ {u∗ > c}. In a sufficiently
small neighborhood N ⊂ H of y, we have then

uH(x) = u(xH) > c > u∗(xH) and u∗(x) > c > u(x) = uH(xH),

whence, for p > 1,

|u(x)− u∗(x)|p + |u(xH)− u∗(xH)|p
> |uH(x)− u∗(x)|p + |uH(x)− u∗(xH)|p.

If x ∈ N , the corresponding nonstrict inequality holds. The integral
inequality is obtained by integration of the preceding inequality over N
and of the nonstrict inequality on H \N . �

4. Approximation by polarizations

We first establish the convergence of a sequence of polarizations for
a single function.
Lemma 4.1. Let u ∈ K∗(RN ), 0 < κ < 1, let (mk)k>1 ⊂ N be an in-
creasing sequence of indices, and (Hm)m>1 ⊂ H∗ a sequence of polarizers
such that for all k ∈ N,

(4.1) ‖umk − u∗‖1 − ‖umkHmk − u∗‖1
> κ sup

H∈H∗

(‖umk − u∗‖1 − ‖umkH − u∗‖1
)
.

Then the sequence um = uH1...Hm converges to u∗ for any 1 6 p 6 +∞.

Remark 4.2. For any function u ∈ K∗(RN ), a sequence of polarizers
verifying condition (4.1) can be constructed.

Remark 4.3. We use the same strategy of proof that Smets and Willem
[13], except that the inequality (4.1) is weaker than imposing to (Hm)
to be optimal as they do.

Proof. By Lemma 3.7, there exists a subsequence um′k of (umk)k>1 that
converges to v ∈ K∗ for any Lp norm. Since the rearrangement ∗ is
nonexpansive,

‖u∗ − v∗‖p = lim
k→∞
‖um′k

∗ − v∗‖p 6 lim
k→∞
‖um′k − v‖p = 0,
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and v∗ = u∗. For any polarizer H ∈ H∗, using the nonexpansiveness of
polarizations and equation (4.1), we have then

‖um′k+1
− u∗‖1 6 ‖um′k+1 − u∗‖1
6 ‖um′k − u

∗‖1 + κ(‖um′k
H − u∗‖1 − ‖um′k − u

∗‖1)

= (1− κ)‖um′k − u
∗‖1 + κ‖um′k

H − u∗‖1 6 ‖um′k − u
∗‖1.

Passing to the limit, we obtain

‖v − u∗‖1 6 (1− κ)‖v − u∗‖1 + κ‖vH − u∗‖1 6 ‖v − u∗‖1.
Hence and since u∗ = v∗, we obtain ‖v − v∗‖1 = ‖vH − v∗‖1. By
Lemma 3.9 this is absurd if v 6= u∗ . Therefore the subsequence (um′k)k∈N

converges to u∗ for any Lp norm. The nonexpansiveness of polarizations
allows to conclude

lim
k→∞
‖uk − u∗‖p 6 lim

k→∞
‖um′k − u

∗‖p = 0. �

Theorem 4.4. For any symmetrization ∗, there exists a sequence of
polarizers (H)m>0 ⊂ H∗ such that, for any 1 6 p < ∞, if u ∈ Lp∗(RN ),
the sequence

um = uH1···Hm

converges to u∗ :
lim
m→∞‖um − u

∗‖p = 0.

If u ∈ C∗(RN ), the sequence converges for p =∞.

Proof of Theorem 4.4. If ∗ is a Steiner or spherical cap symmetrization,
first note that there is a countable set N ⊂ K∗(RN ) dense in Lp∗(RN )
and in C∗(RN ) (see [14]). Choose a sequence (Hm) for which (4.1)
holds for all u ∈ N . The sequence of iterated polarizations approaches
the symmetrization for any u ∈ N .

Let u ∈ Lp∗(RN ) and ε > 0. By density, there is v ∈ N such
that ‖u − v‖p 6 ε/3. By contraction, for m sufficiently large and if
vm = vH1···Hn we obtain

‖um − u∗‖p 6 ‖um − vm‖p + ‖vm − v∗‖p + ‖v∗ − u∗‖p
6 2‖u− v‖p + ‖vm − v∗‖p 6 ε.

If ∗ is the increasing rearrangement with respect to v and h : R →
[0, 1] is a nondecreasing continuous function such that supp(h−χR+) is
compact, then the same reasoning shows the convergence for any w ∈
Lp∗(RN ) ∩ (h(v · .) + Lp(RN )). Let u ∈ Lp∗(RN ) and

CR =
{
x ∈ RN : |(v · x)v − x| 6 R} .
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Consider the function uR which is equal to u on CR and equal to h
outside of it. Then uR ∈ Lp∗(RN )∩(h(v · .)+Lp(RN )) and thus

∫
CR
|um−

u∗|p dx→ 0. Since
∫

RN\CR
|um − u∗|p dx 6 2

∫

RN\CR
|u− h|p dx,

um → u∗ follows.
The proof is similar for u ∈ C∗(RN ). �

Remark 4.5. Theorem 4.4 implies that the symmetrization of any set
can be approximated in measure and in Hausdorff distance [5, Lemma
7.2]. Conversely, if the symmetrization of any set can be approximated
in measure by some fixed sequence of polarizations, then Theorem 4.4
follows by the approximation of functions in Lp(RN ) by simple functions.

5. Approximation by symmetrizations

The method of proof of Theorem 4.4 can be extended to approxi-
mations of Steiner or cap symmetrizations by lower order Steiner or cap
symmetrizations.

Definition 5.1. Let T be an affine subspace. A set of affine subspaces
T approximates T if, for any T ′ ∈ T , T ⊂ T ′, and for any affine subspace
T ′′ ⊂ RN of codimension 1 such that T ⊂ T ′′, there exists T ′ ∈ T such
that T ′ ⊂ T ′′.
Theorem 5.2. Let T be an affine subspace of RN and T be a set of
affine subspaces. If T approximates T , there is a sequence (Tm)m>1 in
T such that uT1···Tm → uT for u ∈ Lp+(RN ) or u ∈ C0(RN ).

Definition 5.3. Let T be an affine subspace. A set S of closed half
affine subspaces of RN approximates T if, for any S′ ∈ S, T ⊂ S′, and
for any affine subspace T ′′ ⊂ RN of codimension 1 which is parallel to
T , there exists S′ ∈ S such that ∂S′ ⊂ T ′′.
Example 5.4. If T = {T}, then T trivially approximates T . If T = {0},
the set of polarizers HT and the set of closed halflines containing 0 both
approximate T .

Definition 5.5. Let S be a closed half affine subspace. A set S of closed
half affine subspaces of RN approximates S if, for any S′ ∈ S, S ⊂ S′
and ∂S ⊂ S′, and for any affine subspace T ′′ ⊂ RN of codimension 1
which is parallel to T , there exists S′ ∈ S such that ∂S′ ⊂ T ′′.
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Theorem 5.6. Let T be an affine subspace of RN (resp. S be a half
affine subspace of RN ) and S be a set of closed half affine subspaces
of RN . If S approximates T (resp. S), then there exists a sequence
(Sm)m>1 in S such that uS1···Sm → uT (resp. uS1···Sm → uS) for u ∈
Lp+(RN ) or u ∈ C0(RN ).

Proof. The proofs of Theorems 5.2 and 5.6 are similar. The proof is es-
sentially the same as the proof of Theorem 4.4. The modifications in the
lemmas are sketched for a closed half affine subspace S in Theorem 5.6.
Suppose u ∈ K+(RN ). It is clear that for any S′ ∈ S, uSS

′
= uS and

‖uS′−uS‖p 6 ‖u−uS‖p. Therefore the sequence ‖uS1...Sn−uS‖p is nonin-
creasing. Theorem 4.4 implies that the modulus of continuity decreases
along the sequence. This allows to prove an analogue to Lemma 3.7.
An analogue of Lemma 3.9 is also needed. Suppose u 6= uS . Then by
Lemma 3.9 there exists H ∈ HS such that ‖uH − uS‖p < ‖u − uS‖p.
Since ∂H is parallel to ∂S and S approximates S, there exists S′ such
that S′ ⊂ H and ∂S′ ⊂ ∂H ′. Hence uHS

′
= uS

′
and

‖uS′ − uS‖p 6 ‖uH − uS‖p < ‖u− uS‖p.
The remaining part of the proof is the same as the proof of Lemma 4.1
and of Theorem 4.4. �

6. Pólya–Szegő’s inequality

Definition 6.1. A set Ω is totally invariant with respect to a sym-
metrization ∗ if for any H ∈ H∗, Ω is invariant under the reflection with
respect to ∂H.

Definition 6.2. If ∗ is a symmetrization, Ω is a totally invariant set
and u : Ω→ R is a function, then the symmetrization of u is u∗ = ũ∗|Ω,
where ũ is any extension of u to RN .

The definition of the symmetrization of u : Ω→ R does not depend
on the extension ũ because Ω is totally invariant.

Corollary 6.3. If Ω is a totally invariant open set, ∗ is a Steiner or
cap symmetrization, if u ∈ W1,1

loc(Ω) is admissible, 1 < p < +∞ and
∇u ∈ Lp(Ω), then

(6.1) ‖∇u∗‖p 6 ‖∇u‖p.
Proof. Suppose first u ∈ Lp∗(Ω). Let um be the restrictions to Ω of the
sequence of iterated polarizations of Theorem 4.4 applied to an extension
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ũ ∈ Lp∗(RN ) of u to RN . For any compactly supported smooth function
h ∈ D(Ω)N ,

−
∫

Ω
u∗ div h dx = − lim

m→∞

∫

Ω
um div h dx = lim

m→∞

∫

Ω
∇umh dx

6 lim inf
m→∞ ‖∇um‖p‖h‖p′ = ‖∇u‖p‖h‖p′ ,

since ‖∇uH‖Ω,p = ‖∇u‖Ω,p [5] for any u ∈ W1,1
loc(Ω) such that ∇u ∈

Lp(RN ), and for any polarizer H. There exist thus v ∈ Lp(Ω)N that is
the weak limit of ∇um and the weak gradient of u∗.

In general, if ∗ is an increasing rearrangement, for m > 3, let

um(x) =
m

m− 2
min(max(0, u(x)− 1/m), 1− 2/m).

Since u is admissible, um ∈ L1∗(Ω). From the first part of the proof,
‖∇um∗‖p 6 ‖∇um‖p. Since m−2

m |∇um| ↗ |∇u| and m−2
m |∇um∗| ↗|∇u∗| almost everywhere, the conclusion comes from the monotone con-

vergence Theorem. The end of the proof is similar for the Steiner and
cap symmetrizations. �
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CHAPTER II

Symmetrization and minimax principles

1. Introduction

We are concerned by symmetry properties of symmetric elliptic par-
tial differential equations. Our model problem is

(1.1)

{
−∆u = f(|x|, u) in Ω,
u = 0 on ∂Ω,

where Ω is a ball and u is a real-valued function. When the function
f is decreasing in |x| and u is a positive solution continuous up to the
boundary, then Gidas, Ni and Nirenberg’s celebrated result [6, 7] says
that u is radial and ∂u

∂r < 0.
Solutions of (1.1) can be obtained as critical points of the Euler-

Lagrange functional ϕ defined on the Sobolev space H1
0 (Ω) by

ϕ(u) =
∫

Ω

|∇u|2
2
− F (|x|, u) dx,

where F (r, t) =
∫ t

0 f(r, s) ds. In particular one can inquire about the
properties of the minimizers of ϕ. The Schwarz symmetrization maps
a nonnegative function u ∈ H1

0 (Ω) to a more symmetric one u∗. It can
be shown that if ∂f

∂r 6 0, then ϕ(u∗) 6 ϕ(u). This proves that if there
is a minimizer, then there is a symmetric minimizer. If ϕ is Gateaux-
differentiable, then the minimizer is a critical point. Similarly, using
the spherical cap symmetrization, one can ensure that without any sign
restriction on u or on ∂f

∂r , the minimum of ϕ is attained by a function
which depends only on the radius and of one angular variable [11].

Continuous symmetrization — a homotopy linking a function to its
symmetrization — was used by Brock in order to prove that if ∂f

∂r 6 0,
then any nonnegative critical point is locally symmetric, i.e. its domain

This chapter is an article accepted for publication in Communications in Con-
temporary Mathematics
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is the union of annuli on which it is radial and of a set on which ∇u = 0
almost everywhere [3].

In this paper we consider critical points obtained by minimax princi-
ples. We modify a general minimax principle of Willem in order to obtain
Palais–Smale sequences whose elements are more and more symmetric.
This can be applied to prove that some critical levels are achieved by
symmetric functions. It also provides an alternative to concentration-
compactness.

The paper is organized as follows. Section 2 is devoted to the defi-
nition and properties of symmetrizations and polarizations. We briefly
recall the classical properties needed for our purpose. In particular, the
Schwarz symmetrization and the spherical cap symmetrization can be
both approximated by polarizations. We prove that polarizations are
continuous in Sobolev spaces. The essential properties are summarized
in an axiomatic framework (section 2.4) for the Schwarz symmetriza-
tion and the spherical cap symmetrization. Under these assumptions, a
homotopy linking a polarization of a function with its symmetrization
is constructed. These axioms are easily verified for many variants, e.g.
problems in Sobolev-Orlicz spaces and in weighted spaces, and approx-
imation of the Schwarz symmetrization by Steiner symmetrizations.

Section 3 is devoted to our symmetric minimax principle (Theo-
rem 3.5) in the abstract framework of section 2.4. The proof is based on
a minimax principle of Willem [15]. The idea of the proof is to replace
a path by its symmetrization. The main difficulty is the fact that sym-
metrizations are not continuous in Sobolev spaces; it is overcome by the
approximation of the symmetrization by polarizations.

Finally, section 4 gives examples of applications to semi-linear el-
liptic partial differential equations. We prove the symmetry of critical
points at some critical levels obtained by the mountain pass Theorem of
Ambrosetti and Rabinowitz and by Rabinowitz’s linking Theorem. We
also show how the symmetric minimax principle provides an alternative
to concentration-compactness methods in symmetric settings.

All the results in this paper hold for partial symmetrizations ((N, k)–
Steiner symmetrization or k–spherical cap symmetrizations). For the
sake of clarity, the exposition is made for the Schwarz and (N − 1)–
spherical cap symmetrization, but this restriction can always be re-
moved with no modification in the arguments. Similarly, the results
of section 4.1 concerning the spherical cap symmetrization remain valid
without any modification for the Neumann boundary conditions.
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2. Symmetrization and polarization

2.1. Schwarz symmetrization

For f : A → R̄ = R ∪ {−∞,+∞} and c ∈ R̄, let {u > c} = {x ∈
A : u(x) > c}. The set of infinitely differentiable (resp. continuous)
functions whose support is compact in Ω ⊆ RN is denoted D(Ω) (resp.
K(Ω)).
Definition 2.1. The Schwarz symmetrization of a set A ⊂ RN is
the unique open ball centered at the origin A∗ such that LN (A∗) =
LN (A), where LN denotes the N -dimensional outer Lebesgue measure.
If LN (A) = 0, then A∗ = φ while A∗ = RN if LN (A) =∞.

Definition 2.2. The Schwarz symmetrization of a measurable nonneg-
ative function u : Ω→ R̄ is the unique function u∗ : Ω∗ → R̄ such that
for all c ∈ R,

{u∗ > c} = {u > c}∗.
Remark 2.3. The function u∗ is also characterized by u∗(y) = sup{c ∈
R : y ∈ {u > c}∗}.
Definition 2.4. A measurable function u vanishes at the infinity if for
all ε > 0, LN ({|u| > ε}) <∞.

Definition 2.5. A function is admissible for the Schwarz symmetriza-
tion if it is nonnegative and it vanishes at the infinity.

Proposition 2.6. If u : Ω→ R̄ is admissible, then u∗ is admissible and
for any Borel measurable function f : R+ → R+ such that f(0) = 0,∫

RN

f(u∗(x)) dx =
∫

RN

f(u(x)) dx.

In particular, if u ∈ Lp(Ω) is nonnegative, then u∗ ∈ Lp(Ω∗) and ‖u‖p =
‖u∗‖p.
Remark 2.7. The Steiner symmetrization is an analogue of the Schwarz
symmetrization that symmetrizes functions only with respect to certain
variables. The (k,N)–Steiner symmetrization of a set A ∈ RN is the
unique set A∗ such that for all x′′ ∈ RN−k, {x′ ∈ Rk : (x′, x′′) ∈ A∗} =
{x′ ∈ Rk : (x′, x′′) ∈ A}∗. (The ∗ on the right-hand side denotes
the Schwarz symmetrization in Rk of Definition 2.1.) It is extended
to functions as in Definition 2.2; Proposition 2.6 still holds. Steiner-
symmetrized functions have cylindrical symmetry: they can be written
as u∗(x′, x′′) = v(|x′|, x′′) where v(·, x′′) is a decreasing function for each
x′′ ∈ RN−k.
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2.2. Spherical cap symmetrization

The spherical cap symmetrization is defined following Sarvas [9] (see
also [11,13,14]).

Definition 2.8. Let P ∈ ∂B(0, 1)∩RN . The spherical cap symmetriza-
tion of the set A with respect to P is the unique set A∗ such that
A∗ ∩ {0} = A ∩ {0} and, for any r > 0,

A∗ ∩ ∂B(0, r) = Bg(rP, ρ) ∩ ∂B(0, r) for some ρ > 0 ,

HN−1(A∗ ∩ ∂B(0, r)) = HN−1(A ∩ ∂B(0, r)) ,

where HN−1 is the outer Hausdorff (N − 1)-dimensional measure and
Bg(rP, ρ) denotes the geodesic ball on the sphere ∂B(0, r) of center rP
and radius ρ. (By definition, Bg(rP, 0) = φ.)

Definition 2.9. The spherical cap symmetrization of a function u :
Ω→ R̄ is the unique function u∗ : Ω∗ → R̄ such that, for all c ∈ R,

{u∗ > c} = {u > c}∗ .
The result of a spherical cap symmetrization is a function that de-

pends on two variables: u∗(x) = v(|x|, P · x), where v(r, ·) is a nonde-
creasing function for any r > 0.

Definition 2.10. A set Ω ⊂ RN is invariant with respect to ∗ if Ω∗ = Ω.
It is totally invariant if Ω∗ = Ω and (RN \ Ω)∗ = (RN \ Ω).

Definition 2.11. A function u : Ω→ R̄ is admissible for the spherical
cap symmetrization if it is measurable and either Ω is totally invariant
or u is nonnegative.

As for the Schwarz symmetrization, we have

Proposition 2.12. If u : Ω → R̄ is admissible, then u∗ is measurable
and for any Borel measurable function f : R+ × R̄→ R+

∫

Ω
f(|x|, u∗(x)) dx =

∫

Ω∗
f(|x|, u(x)) dx.

In particular, if u ∈ Lp(Ω), then u∗ ∈ Lp(Ω∗).

Remark 2.13. The equivalent of Steiner symmetrization for the spherical
cap symmetrization is the k-spherical cap symmetrization with respect
to P ∈ Rk+1. The process is the same as in Remark 2.7 and yields
symmetrized functions of the form u∗(x′, x′′) = v(|x′|, P · x′, x′′).
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2.3. Polarizations

Definition 2.14. A set H ⊂ RN is a polarizer if it is a closed affine
half-space of RN , i.e. H is the set of all points verifying a · x 6 b for
some a ∈ Rk, b ∈ R, |a|2 = 1.

Notation 2.15. For any x ∈ RN and any polarizer H ⊆ Ω, xH denotes
the reflection of x with respect to ∂H. With the notation of Defini-
tion 2.14, xH = x− 2(a · x− b)a.
Definition 2.16. The polarization of a function u : RN → R by the
polarizer H is the function uH : Ω→ R, with

uH(x) =

{
max {u(x), u(xH)} if x ∈ H,
min {u(x), u(xH)} if x 6∈ H.

Definition 2.17 (Extended polarizers). The set of polarizers is com-
pactified by the addition of two polarizers at the infinity, defined by
uH+∞ = u+ and uH−∞ = −u−, such that Hn → H+∞ if bn → ∞ and
Hn → H−∞ if bn → −∞ in the representation of Definition 2.14. The
compactified set of polarizers is denoted H and is homeomorphic to SN .

Definition 2.18. IfH ∈ H∗ and Ω ⊂ RN , the polarization of u : Ω→ R̄
with respect to H is defined as uH = ũH |Ω, where ũ is the extension of
u to RN by 0 outside of Ω.

Proposition 2.19. Let H ∈ H. Suppose Ω = ΩH ⊆ RN , u, v : Ω→ R̄
are measurable and nonnegative.

If g : Ω×R̄→ R̄+ is a Borel measurable function such that g(xH , s) =
g(x, s) for each (x, s) ∈ Ω× R̄, then

∫

Ω
g(x, uH) dx =

∫

Ω
g(x, u) dx.

If G : Ω × R̄ × R̄ → R̄+ is a Borel measurable function such that
G(xH , s, t) = G(x, s, t) for each (x, s, t) ∈ Ω × R̄ and for any x ∈ Ω,
a 6 b and c 6 d, G(x, a, c) +G(x, b, d) > G(x, a, d) +G(x, b, c), then

∫

Ω
G(x, uH , vH) dx >

∫

Ω
G(x, u, v) dx.

In particular, ‖uH − vH‖p 6 ‖u− v‖p.
If u ∈W1,p

0 (Ω), then u ∈W1,p
0 (Ω) and ‖∇uH‖p = ‖∇u‖p.

If moreover, (RN \ Ω)H = RN \ Ω, the results remain valid without
any sign restriction on u and v and if u ∈W1,p(Ω), then uH ∈W1,p(Ω)
and ‖∇uH‖p = ‖∇u‖p.
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For any symmetrization ∗ defined above, the subset of admissible
functions in a function space Y is denoted Y∗, and there is a set H∗ ⊂ H
of polarizers such that for any admissible function u : Ω→ R̄,

u = u∗ ⇐⇒ ∀H ∈ H∗, u = uH .

If ∗ is the (N, k)–Steiner symmetrization,

H∗ =
{
H ∈ H : {0} ×RN−k ⊂ H or H = H+∞

}
.

If ∗ is the k-spherical cap symmetrization,

H∗ =
{
H ∈ H : R+ × {0} ×RN−k−1 ⊂ H

and {0} ×RN−k−1 ⊂ ∂H}.
Because polarizations are contractions in Lp(RN ), for any H ∈ H∗

and u ∈ Lp(RN ), ‖uH −u∗‖p 6 ‖u−u∗‖p. In fact they can approximate
symmetrizations: in [13], it was shown:
Theorem 2.20. For any symmetrization ∗, there exists a sequence of
polarizers (Hm)m>1 ⊂ H∗ such that, for any 1 6 p < ∞, Ω ⊂ RN

invariant with respect to ∗ and u ∈ Lp∗(Ω), the sequence um = uH1···Hm
converges to u∗ :

lim
m→∞ ‖um − u

∗‖p = 0.

Theorem 2.20 was proved for a fixed function by Brock and Solynin
for the Steiner symmetrizations [4] and by Smets and Willem for the
spherical cap symmetrization [11].
Lemma 2.21. If 1 6 p <∞, the map

h : H̄ × Lp(RN )→ Lp(RN ) : (H,u) 7→ uH

is continuous at (u,H) if and only if (u,H) ∈ H(Lp(RN )), where

H(X) =
{

(u,H) ∈ X × H̄ : u > 0 if H = H+∞
and u 6 0 if H = H−∞

}
.

Proof. If (u,H) and (v, L) are in H(Lp(RN )), then

‖uH − vL‖p 6 ‖uH − vH‖p + ‖vH − vL‖p.
The first term is bounded by ‖u− v‖p because polarizations are nonex-
pansive. For the second term, since polarizations are nonexpansive we
can suppose without loss of generality that v is a compactly supported
continuous function. In the latter case vH → vL uniformly on RN if
(v, L) ∈ H(K(RN )) and thus in Lp(RN ). �
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Proposition 2.22. If ∗ is a symmetrization, Ω is open and invariant
with respect to ∗, then the map h is continuous from Lp∗(Ω) × H∗ to
Lp∗(Ω).

Proof. This is a direct consequence of Lemma 2.21 and of Theorem 2.20.
�

The continuity in Sobolev spaces relies on the next standard lemma.
Lemma 2.23. Let 1 < p <∞, (un)n∈N and u be in W1,p(Ω) and |·| be
a strictly convex norm in RN . Then un → u in W1,p(Ω) if and only if
un → u in Lp(Ω) and ‖|∇un|‖p → ‖|∇u|‖p.
Proof. This is a consequence of the strict convexity of the norm ‖|·|‖p.

�

Proposition 2.24. If ∗ is a symmetrization, Ω is open and is invari-
ant with respect to ∗ and 1 < p < ∞, the map h is continuous from
W1,p

0,+(Ω)×H∗ to W1,p
0 (Ω).

Moreover, if Ω is totally invariant with respect to ∗ and ∗ is a spher-
ical cap symmetrization, the map h is continuous from W1,p

0 (Ω)×H∗ to
W1,p

0 (Ω) and from W1,p(Ω)×H∗ to W1,p(Ω).

Proof. This is a consequence of Lemma 2.23, together with Proposi-
tion 2.22 and the fact that ‖|∇uH |‖p = ‖|∇u|‖p. �

2.4. Abstract symmetrizations and polarizations

Assumption 2.25. Let X, V be Banach spaces, ∗ : S ⊂ X → V : u 7→
u∗, H∗ be a path-connected topological space and h : S × H∗ → S :
(u,H) 7→ uH . Assume

(i) X is continuously embedded in V ,
(ii) the mapping h is continuous,
(iii) for each u ∈ S and H ∈ H∗, u∗H = uH∗ = u∗ and uHH = uH ,
(iv) there is a sequence (Hm)m>1 ⊂ H∗ such that for each u ∈ S,

uH1...Hm → u∗ in V as m→∞,
(v) for each u, v ∈ S and H ∈ H∗, ‖uH − vH‖V 6 ‖u− v‖V .

Example 2.26 (Schwarz symmetrization for nonnegative functions). Let
Ω = B(0, 1) ⊂ RN , X = W1,p

0 (Ω), V = (Lp ∩ Lp
∗
)(Ω)), with p∗ =

Np/(N − p), S be the set of nonnegative functions of W1,p
0 (Ω), ∗ de-

note the Schwarz symmetrization and H∗ be defined as above. Assump-
tion 2.25 is satisfied by Proposition 2.19, Theorem 2.20 and Proposi-
tion 2.24.
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Example 2.27 (Schwarz symmetrization). Let Ω = B(0, 1) ⊂ RN , X =
W1,p

0 (Ω), V = (Lp ∩ Lp
∗
)(Ω)), with p∗ = Np/(N − p), S = W1,p

0 (Ω),
u∗ = |u|? where ? denotes the Schwarz symmetrization and H∗ is de-
fined as above for the Schwarz symmetrization, but h(u,H) = |u|H .
Assumption 2.25 is satisfied by Proposition 2.19, Theorem 2.20 and
Proposition 2.24.

Example 2.28 (Spherical cap symmetrization with Dirichlet boundary
condition). Let Ω ⊂ RN be a ball or an annulus, X = W1,p

0 (Ω), V =
(Lp ∩ Lp

∗
)(Ω)), with p∗ = Np/(N − p), ∗ denote the spherical cap sym-

metrization and H∗ be defined as above. Assumption 2.25 is satisfied
by Proposition 2.19, Theorem 2.20 and Proposition 2.24.

Example 2.29 (Spherical cap symmetrization with Neumann boundary
condition). Let Ω ⊂ RN be a ball or an annulus, X = W1,p(Ω), V =
(Lp ∩ Lp

∗
)(Ω)), with p∗ = Np/(N − p), ∗ denote the spherical cap sym-

metrization and H∗ be defined as above. Assumption 2.25 is satisfied
by Proposition 2.19, Theorem 2.20 and Proposition 2.24.

Example 2.30 (Schwarz symmetrization approximated by Steiner sym-
metrization). Let Ω = B(0, 1) ⊂ RN , X = W1,p

0 (Ω), V = (Lp∩Lp
∗
)(Ω)),

with p∗ = Np/(N −p), S be the set of nonnegative function of W1,p
0 (Ω),

∗ denote the Schwarz symmetrization, H∗ denote the set of hyperplanes
passing through the origin and uH be the Steiner symmetrization with
respect to H. Assumption 2.25 is satisfied (see [5] and [13]).

Proposition 2.31. Under Assumption 2.25, for any u, v ∈ S, ‖u∗ −
v∗‖V 6 ‖u− v‖V .

Proof. By Assumption 2.25, for any m > 1,

‖u∗ − v∗‖V
6 ‖u∗ − uH1...Hm‖V + ‖uH1...Hm − vH1...Hm‖V + ‖vH1...Hm − v∗‖V

6 ‖u∗ − uH1...Hm‖V + ‖u− v‖V + ‖vH1...Hm − v∗‖V .
The conclusion comes from the property (iv) as m→∞. �

Proposition 2.32. Under Assumption 2.25, for any H0 ∈ H∗, there
exists a continuous mapping (u, t) ∈ S×R+ 7→ ut such that limt→∞ ut =
u∗ in V . Furthermore, for each t > 0, there exists Ht ∈ H∗ such that
ut = uH0H1···HbtcHt, where btc denotes the largest integer less or equal to
t.
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Proof. Let Ht be a such that t 7→ Ht is continuous in H∗. For t ∈
[n− 1, n], n ∈ N, let

ut = uH0···Hn−1Ht .

This map is well-defined since un = uH0···Hn−1Hn = uH0···Hn−1HnHn . It
is clear that for any u ∈ V

‖ut − u∗‖V 6 ‖ubtc − u∗‖V → 0 as t→∞.

The continuity of (u, t) 7→ ut in X comes from the continuity of (u,H) 7→
uH and of t 7→ Ht. �

3. Symmetry and variational principles

Symmetrization allows to restrict the search of a minimizer to the
subset of symmetric functions. Similarly we show here that on certain
critical levels, there is a critical point which is symmetric. Let us first
recall a general minimax principle.
Theorem 3.1 (Willem [15]). Let X be a Banach space. Let M0 be a
closed subspace of the metric space M and Γ0 ⊂ C(M0, X). Define

Γ = {γ ∈ C(M,X) : γ|M0 ∈ Γ0} .
If ϕ ∈ C1(X,R) satisfies

∞ > c = inf
γ∈Γ

sup
t∈M

ϕ(γ(t)) > a = sup
γ0∈Γ0

sup
t∈M0

ϕ(γ0(t))

then for every ε ∈]0, (c− a)/2[, δ > 0 and γ ∈ Γ such that

sup
M

ϕ ◦ γ 6 c+ ε,

there exists u ∈ X such that
a) c− 2ε 6 ϕ(u) 6 c+ 2ε,
b) dist(u, γ(M)) 6 2δ,
c) ‖ϕ′(u)‖ 6 8ε/δ.

Remark 3.2. A slight modification of the proof gives the better estimate

dist(u, γ(M) ∩ ϕ−1([c− 2ε, c+ 2ε]) 6 2δ.

Theorem 3.1 yields a Palais–Smale sequence (un)n>1, i.e. such that
ϕ′(un)→ 0 and ϕ(un)→ c. This is an important step in order to prove
that c is a critical value of ϕ. This is the case if ϕ satisfies the (PS)c
condition: any sequence (un) such that ϕ′(un) → 0 and ϕ(un) → c
contains a subsequence that converges strongly.

It should be possible to have more information on the symmetry of u
under Assumption 2.25 provided ϕ(u∗) 6 ϕ(u). A naive idea consists in
replacing the path γ by is its symmetrization γ∗ : t ∈M 7→ γ(t)∗. Then
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u given by Theorem 3.1 would be near of the set γ∗(M). Unfortunately,
when N > 1, X = W1,p(RN ) and ∗ is the Schwarz symmetrization, ∗
is not continuous on X [1] so that the symmetrized path γ∗ could be
discontinuous.

This idea works if the symmetrization is approximated uniformly
by continuous transformations. The convergence of the approximation
scheme of the symmetrization ∗ by polarizations of Theorem 2.32 is not
uniform; it becomes uniform by an appropriate change of variable.
Proposition 3.3. Suppose M is a metric space, M0 and M1 are disjoint
closed sets of M and γ ∈ C(M,X). Suppose that X, V , ∗ and H∗ satisfy
Assumption 2.25, H0 ∈ H∗ and γ(M) ⊂ S. For any ε > 0, there exists
γ̃ ∈ C(M,X) such that

(3.1)

γ̃(t) = γ(t)H1...HbθcHθ ∀t ∈M,with θ > 0
and Hτ ∈ H∗ for τ > 0,

γ̃(t) = γ(t)H0 ∀t ∈M0,
‖γ̃(t)− γ(t)∗‖V 6 ε ∀t ∈M1.

Proof. For any t ∈ M1, let δt be such that B(t, δt) ∩M0 = φ and such
that for all s ∈ B(t, δt), ‖γ(s)− γ(t)‖V 6 ε/3 (this is possible because γ
is continuous and X is continuously embedded in V ). For every t ∈M1,
there exists θt such that ‖γ(t)θ−γ(t)∗‖V 6 ε/3 for θ > θt, with the nota-
tion of Proposition 2.32. The collection O = {M \M1} ∪ {B(t, δt)}t∈M1

forms an open covering of the metric space M . There exists thus a par-
tition of the unity (ρi)i∈O subordinate to this covering [10, Theorems
(T2, XXII, 5; 1) and (T2, XXII, 5; 5)]. Let Θ(t) =

∑
s∈M1

ρs(t)θs. The
function Θ is continuous. Let γ̃(t) = γ(t)Θ(t). If t ∈ M0, then Θ(t) = 0
and γ̃(t) = γ(t)H0 . If t ∈ M1, there exists s ∈ M such that ρs(t) > 0
and θs 6 Θ(t); hence by Proposition 2.31

‖γ̃(t)− γ(t)∗‖V
6 ‖γ̃(t)− γ̃(s)‖V + ‖γ̃(s)− γ(s)∗‖V + ‖γ(s)∗ − γ(t)∗‖V

6 ‖γ(s)Θ(t) − γ(s)∗‖V + 2‖γ(s)− γ(t)‖V 6 ε
since t ∈ B(s, δs) implies ‖γ(s)− γ(t)‖V 6 ε/3. �

Corollary 3.4 (Uniform approximation of symmetrization). For
any ε > 0, there exists a continuous mapping T : S → S such that
‖Tu− u∗‖V < ε for each u ∈ S.

Proof. Apply Proposition 3.3 with M0 = φ, M = M1 = S and γ(u) = u.
Let Tu = γ̃(u). �
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We can now state and prove a symmetric variational principle.
Theorem 3.5 (Symmetric variational principle). Suppose X, V ,
∗ and H∗ satisfy Assumption 2.25. Let M0 be a closed subspace of the
metric space M and Γ0 ⊂ C(M0, X). Define

Γ = {γ ∈ C(M,X) : γ|M0 ∈ Γ0} .
If ϕ ∈ C1(X,R) satisfies

∞ > c = inf
γ∈Γ

sup
t∈M

ϕ(γ(t)) > a = sup
γ0∈Γ0

sup
t∈M0

ϕ(γ0(t))

and if for any H ∈ H∗ and u ∈ S, ϕ(uH) 6 ϕ(u), then for every
ε ∈]0, (c− a)/2[, δ > 0 and γ ∈ Γ such that

(i) supM ϕ ◦ γ 6 c+ ε,
(ii) γ(M) ⊂ S,

(iii) there exists H0 ∈ H∗ such that γ|M0
H0 ∈ Γ0,

there exists u ∈ X such that
a) c− 2ε 6 ϕ(u) 6 c+ 2ε,
b) ‖u− u∗‖V 6 2(2K + 1)δ,
c) ‖ϕ′(u)‖X′ 6 8ε/δ,
where K is the norm of the injection of X into V .

Proof. Without loss of generality, we can assume that c − 2ε > a. Let
M1 = (ϕ ◦ γ)−1([c − 2ε, c + ε]). This set is clearly closed. Proposition
3.3, yields a path γ̃ ∈ C(M,X) such that (3.1) holds with δ in place of
ε. Theorem 3.1 with γ̃ in place of γ gives u such that
a) c− 2ε 6 ϕ(u) 6 c+ 2ε,
b) dist(u, γ̃(M1)) 6 dist(u, γ̃(M) ∩ ϕ−1([c− 2ε, c+ 2ε])) 6 2δ,
c) ‖ϕ′(u)‖ 6 8ε/δ.
Since the symmetrization ∗ is a contraction in V by Proposition 2.31,

‖u− u∗‖V
6 inf

t∈M1

(‖u− γ̃(t)‖V + ‖γ̃(t)− γ(t)∗‖V + ‖γ(t)∗ − u∗‖V
)

6 2(2K + 1)δ. �
Informally Theorem 3.5 says that when a functional does not increase

by any polarization and if the minimax construction is invariant by one
polarization (existence of H0 that preserves Γ0), then there exists an
almost symmetric Palais–Smale sequence.

It is not equivalent for a functional to decrease by symmetrization
and to decrease by polarizations. In fact, many symmetrization inequal-
ities can be proved by polarization inequalities [4]; but some inequalities,
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e.g. the Riesz–Sobolev inequality, hold for the symmetrization, but they
do not hold for polarizations [12].

The condition γ|H0
M0
∈ Γ0 on the paths may seem weak, since it does

not require invariance by symmetrization. In applications, finding such a
polarizer can be impossible because of the highly noninjective character
of the polarization. This imposes some kind of minimality to the energy
levels on which it is possible to ensure the existence of symmetric critical
points.

4. Applications

4.1. Symmetric critical points

We first investigate the symmetry properties of solutions of the semi-
linear elliptic problem

(4.1)

{
−∆u+ a(x)u = f(x, u) in Ω,
u = 0 on ∂Ω,

where Ω is a ball or an annulus and f(x, u) = f̃(|x|, u) and a(x) = ã(|x|)
are continuous. Those are critical points of the functional

ϕ(u) =
∫

Ω

|∇u|2
2

+
a(x)u2

2
− F (x, u) dx,

defined on H1
0 (Ω), where F (x, t) =

∫ t
0 f(x, s) ds if t > 0 and F (x, t) = 0

if t 6 0.
Here we assume

(a1) a ∈ LN/2(Ω) if N > 3, a ∈ Lq(Ω) for q > 1 if N = 2 and a ∈ L1(Ω)
if N = 1.

Under assumption (a1), the operator u 7→ −∆u + a(x)u has a nonde-
creasing sequence of eigenvalues λ1 6 λ2 6 . . . 6 λi 6 . . . , repeated
according to their multiplicity and with associated orthonormal eigen-
functions (ei)i>1 in L2(Ω) [15].

We also assume
(f1) f ∈ C(Ω×R) and for some 1 < p < 2∗ = 2N/(N − 2) and C > 0,

|f(x, u)| 6 C(1 + |u|p−1),

(f2) there exists α > 2 and R > 0 such that

|u| > R⇒ 0 < αF (x, u) 6 uf(x, u),

(f3) |f(x, u)| = o(|u|), |u| → 0, uniformly on Ω.
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Under assumption (f1), the functional ϕ is of class C1(H1
0 (Ω),R).

Under assumptions (f1) and (f2), the functional ϕ satisfies the Palais–
Smale condition: Any sequence (un)n∈N ⊂ H1

0 (Ω) such that

d = sup
n
ϕ(un) <∞

and ϕ′(un)→ 0 contains a convergent subsequence [15].
Consider the class

Γ =
{
γ ∈ C([0, 1],H1

0 (Ω) : γ(0) = 0 and ϕ(γ(1)) < 0
}
,

and let
c = inf

γ∈Γ
sup
t∈[0,1]

ϕ(γ(t)).

By the mountain pass Theorem, there is a critical point such that ϕ(u) =
c [15]. Under symmetry assumptions, we obtain slightly more symmetry.
Theorem 4.1. Under assumptions (a1) and (f123), if λ1 > 0, Ω is a
ball, a(x) 6 a(y) and −f(x,−s) = f(x, s) > f(y, s) for x, y ∈ Ω with
|x|2 6 |y|2 and s ∈ R+, then there exists a nonnegative critical point u
invariant by Schwarz symmetrization such that ϕ(u) = c.

Proof. For each n > 1, let γ ∈ Γ be such that

max
t∈[0,1]

ϕ(γ(t)) 6 c+ 1/n.

Since ϕ(u+) 6 ϕ(u), we can assume γ(t) > 0 for each t ∈ [0, 1]. Theo-
rem 3.5 with δ = 1/n1/2 and ε = 1/n yields un ∈ H1

0 (Ω) such that

|ϕ(un)− c| 6 2/n,

‖ϕ′(un)‖H−1
0 (Ω) 6 8/n1/2

and

‖un − u∗n‖L2(Ω) 6 2(2K + 1)/n1/2,

where ∗ denotes the Schwarz symmetrization. Since ϕ satisfies the
Palais–Smale condition, up to a subsequence, un → u in H1

0 (Ω), with
ϕ(u) = c, ϕ′(u) = 0 and u = u∗. �

Remark 4.2. The method of proof is robust with respect to changes in
the minimax principle. If Γ was defined as

Γ = {γ ∈ C([0, 1] : γ(0) = 0 and γ(1) = e} ,
where e ∈ H1

0 (Ω) is a fixed nonnegative function and ϕ(e) < 0, then the
conclusions of Theorem 4.1 would remain valid.
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If a and f are slightly more regular, the moving plane method proves
that any nonnegative critical point is invariant by Schwarz symmetriza-
tion. Theorem 4.1 sheds some light on the limit case where a and f are
merely continuous functions.

If Ω is not a ball, a and f are not both monotone, or f(x, ·) is not
even anymore, then the moving plane method fails, but there is still
some symmetry in the solutions.
Theorem 4.3. Under assumptions (a1) and (f123), if λ1 > 0, Ω is a
ball or an annulus, a(x) = a(y) and f(x, s) = f(y, s) if x, y ∈ Ω with
|x|2 = |y|2 and s ∈ R, then there exists a nonnegative critical point u
invariant by spherical cap symmetrization such that ϕ(u) = c.

Proof. The proof is similar to the proof of Theorem 4.1. �
Remark 4.4. The method of proof is robust with respect to changes in
the minimax principle. Assume e ∈ H1

0 (Ω) is a fixed function, ϕ(e) < 0
and that there exists a polarizer H0 with 0 ∈ ∂H0 and uH0 = u. If Γ is
defined as

Γ = {γ ∈ C([0, 1] : γ(0) = 0 and γ(1) = e} ,
then the conclusions of Theorem 4.3 remain valid.

Theorem 4.3 generalizes the symmetry result of Smets and Willem
for homogeneous problems [11].

If λ1 6 0, it is not possible anymore to obtain solutions by the
mountain pass Theorem. Let k be such that λk 6 0 < λk+1. Solutions
of (4.1) can be obtained by Rabinowitz’s linking Theorem.
Theorem 4.5 (Rabinowitz). Let X = Y ⊕Z be a Banach space with
dimY <∞. Let ρ > r > 0 and let z ∈ Z be such that ‖z‖ = r. Define

M = {u = y + λz : ‖u‖ 6 ρ, λ > 0, y ∈ Y } ,
M0 = {u = y + λz : y ∈ Y, ‖u‖ = ρ and λ > 0

or ‖u‖ 6 ρ and λ = 0},
N = {u ∈ Z : ‖u‖ = r} .

Let ϕ ∈ C1(X,R) be such that

b = inf
N
ϕ > a = max

M0

ϕ.

If ϕ satisfies the (PS)c condition with

c = inf
γ∈Γ

max
u∈M

ϕ(γ(u))(4.2)

Γ = {γ ∈ C(M,X) : γ|M0 = id} ,(4.3)
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then c is a critical value of ϕ.

It is a particular case of the general minimax Theorem 3.1 [15]. In
order to find solutions of (4.1) assume

(f4) λk u
2

2 6 F (x, u) for u ∈ R.
Let

Y = span(e1, e2, . . . , ek),

Z =
{
u ∈ X : ∀v ∈ Y,

∫

Ω
uv = 0

}
,

z = ek+1.

For some 0 < r < ρ, c defined by (4.2) is a critical value under assump-
tions (a1) and (f1234) [15].
Theorem 4.6. Under assumptions (a1) and (f1234), suppose that Ω is
a ball or an annulus, a is Hölder-continuous and that a(x) = a(y) and
f(x, s) = f(y, s), for each x, y ∈ Ω with |x|2 = |y|2 and s ∈ R. If
e1, . . . , ek are radial functions, then there exists a nonnegative critical
point u invariant by spherical cap symmetrization u such that ϕ(u) = c.

Proof. For each n > 1, let γ ∈ Γ be such that

max
t∈M

ϕ(γ(t)) 6 c+ 1/n.

Since e1, . . . , ek are radial and since by Lemma 4.7 ek+1 is invariant with
respect to a spherical cap symmetrization, there exists H0 such that for
any u ∈ (Y + R+ek+1), uH0 = u. Hence if γ0 ∈ Γ0, then γH0

0 ∈ Γ0.
Theorem 3.5 with δ = 1/n1/2 and ε = 1/n yields un ∈ H1

0 (Ω) such that

|ϕ(un)− c| 6 2/n,

‖ϕ′(un)‖H−1
0 (Ω) 6 8/n1/2

and

‖un − u∗n‖L2(Ω) 6 K/n1/2,

where ∗ denotes a spherical cap symmetrization. Since ϕ satisfies the
Palais–Smale condition, up to a subsequence un → u in H1

0 (Ω), with
ϕ(u) = c, ϕ′(u) = 0 and u = u∗. �

Lemma 4.7. If a is Hölder-continuous and radial, and ei is radial for
each 1 6 i 6 k, there exists P ∈ SN−1 such that ek+1 is invariant under
the spherical cap symmetrization with respect to P .
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Proof. The proof is a slight variation on a proof of Bartsch, Weth and
Willem [2]. Recall that ek+1 minimizes

R(u) =
∫

Ω
|∇u|2 + a(x)

on the set

V =
{
u ∈ H1

0 (Ω) : ‖u‖L2(Ω) = 1 and
∫

Ω
uei = 0 for 1 6 i 6 k

}
.

Any minimizer u of R on V satisfies the equation

(4.4) −∆u+ a(x)u = λk+1u,

with R(u) = λk+1. Since a is Hölder continuous, by standard regularity
estimates, u is twice differentiable and is continuous up to the boundary.

Let H be a polarizer such that 0 ∈ ∂H. One checks that eHk+1 ∈ V
since the eigenfunctions ei are radial for 1 6 i 6 k and that R(eHk+1) =
R(ek+1). Therefore eHk+1 is a minimizer of R on V , and it satisfies
the equation (4.4). The function ek+1 and eHk+1 are thus both twice
continuously differentiable and continuous up to the boundary. For x ∈
H∩Ω, |ek+1(x)−ek+1(xH)| = 2ek+1

H−(ek+1(x)+ek+1(xH)). Therefore
|ek+1−ek+1

H | ∈ C2(H∩Ω)∩C0(H ∩ Ω). Since ek+1(·H) also solves (4.4),

−∆|ek+1(x)− ek+1(xH)|+ (aH(x)− λk+1)+|ek+1(x)− ek+1(xH)|
= (a(x)− λk+1)−|ek+1(x)− ek+1(xH)| > 0.

By the strong maximum principle either |u−uH | = 0 on Ω, or |u−uH | >
0 on the interior of H ∩ Ω.

Now take x0 in the interior of Ω such that

ek+1(x0) = max {u(x) : x ∈ Ω, |x| = |x0|} .
For any polarizer such that x0 is in the interior of H and 0 ∈ ∂H, by
the preceding reasoning, uH = u. Hence u is invariant by spherical cap
symmetrization with respect to P = x0/|x0|. �

It is not possible to go further in the analysis of symmetry breaking.
In fact, if Ω is a ball and ei is not radial for some 1 6 i 6 k but is spherical
cap symmetric, then Theorem 3.5 is not applicable anymore since ei and
all its rotations can not be invariant under the same spherical cap sym-
metrization. This obstruction remains even when the (N − 1)–spherical
cap symmetrization is replaced by any k–spherical cap symmetrization.
This is not surprising when compared with the situation of spherical
harmonics: the first eigenfunction of the Laplace-Beltrami operator on
the sphere is the constant function. Then the eigenfunctions associated
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to the second eigenvalue are restrictions of linear functions, and depend
on only one variable. For the third eigenvalue, the eigenfunctions are
restrictions of harmonic polynomials of degree two: among these some
depend up to rotation on only one variable (the zonal harmonics), but
some others depend on all the variables (since spherical harmonics of de-
gree n are restrictions of homogeneous harmonic polynomials of degree
n, this follows from Proposition 4.8). This explains why it is not possi-
ble to prove any symmetry properties of eigenfunctions of −∆+a(x) for
eigenvalues above the first nonradial eigenfunction. This suggests that
when ei, for some 1 6 i 6 k is not radial, a critical point of a nonlinear
problem could be noninvariant with respect to any nontrivial rotation
group.

Proposition 4.8. There exists a homogeneous harmonic polynomial h
of degree two such that the group G of linear isometries T of RN that
satisfy h◦T = h is generated by the reflections with respect to N orthog-
onal hyperplanes. In particular, G is finite.

Proof. In general if a function f ∈ C1(RN ) is invariant with respect to
a linear isometry T if and only if for any x ∈ RN , ∇f = T ∗∇f(Tx),
where T ∗ denotes the adjoint of T . If h is a second order harmonic
polynomial, it can be written as h(x) = x ·Ax, where A : RN → RN is
linear and selfadjoint. The polynomial h is invariant with respect to T
if and only if for each x ∈ RN , 2Ax = 2T ∗ATx, i.e. TA = AT . Choose
A with eigenvalues of multiplicity one and vanishing trace. Since A and
T commute, the eigenvectors of A must be eigenvectors of T . Since T is
an isometry, Tv = v or Tv = −v for each eigenvector v of A. Therefore
if h is invariant with respect to T , then T is in the group generated by
reflections with respect to hyperplanes orthogonal to the eigenvectors of
A. �

The method of this section is also adapted to Neumann boundary
conditions. If the functional ϕ is defined on the set H1(Ω) in place of
H1

0 (Ω), then the critical points of ϕ are weak solutions of
{
−∆u+ a(x)u = f(x, u) in Ω,
∂u/∂n = 0 on ∂Ω.

We are in the setting of Example 2.29; Theorems 4.3 and 4.6 remain
valid for the new functional ϕ.

4.2. Noncompact problems
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Consider the following semilinear partial differential equation:{
−∆u+ V (x)u = f(x, u) in RN ,

u > 0,

where f ∈ C(RN ×R+). Solutions are critical points of

ϕ : H1(RN )→ R : u 7→ 1
2

∫

RN

|∇u|2 + V (x)|u|2 dx−
∫

RN

F (x, u) dx,

where F (x, t) =
∫ t

0 f(x, s) ds if t > 0 and F (x, t) = 0 if t 6 0.
Such problems were treated by Rabinowitz [8] without symmetry

assumptions. When the problem is invariant by rotations, solutions
may be found in the space of radial functions by Palais’s symmetric
criticality principle [15]. But then global minimizing properties are lost.
In our approach, we consider the minimax principle for the unrestricted
functional

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

where

Γ =
{
γ ∈ C([0, 1],H1(RN )) : γ(0) = 0 and ϕ(γ(1)) < 0

}
.

Therefrom, we construct an almost symmetric Palais–Smale sequence.
This proves that c is a symmetric critical level, i.e. there exists a sym-
metric u ∈ H1(RN ) such that ϕ′(u) = 0 and ϕ(u) = c. This provides
an alternative in some cases to concentration-compactness.

Our assumptions are:
(f1) There exist C > 0, 2 < p < 2∗ = 2N/(N − 2), such that for all

s ∈ R+ and x ∈ RN

f(x, s) 6 C(|s|+ |s|p−1)

(f2) there exists x ∈ RN and s > 0 such that F (x, s) > 0,
(f3) there exists α > 2 such that for each x ∈ RN and s ∈ R+,

αF (x, s) 6 sf(x, s),

(f4) for x, y ∈ RN , if |x| 6 |y| then for all s ∈ R+, f(x, s) > f(y, s),
(f5) f(x, s) = o(|s|), as |s| → 0, uniformly in x ∈ RN ,
(V1) there exists m,M ∈ R such that for any x ∈ RN , 0 < m 6 V (x) 6

M ,
(V2) for x, y ∈ RN , if |x| 6 |y| then V (x) 6 V (y).
Remark 4.9. The condition V (x) 6 M can be dropped provided that
the functional ϕ is defined on the subset of functions u of H1

0 (Ω) such
that

∫
Ω V (x)u2 dx <∞.
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Theorem 4.10. Under the preceding assumptions, c is a critical value
and there is a radial symmetric decreasing critical point u such that
ϕ(u) = c.

Lemma 4.11. Under assumptions (f12345) and (V12), there exists a
sequence (un)n>1 ⊂ H1(RN ) such that

ϕ(un)→ c,

ϕ′(un)→ 0 strongly in H−1(RN ),

un − u∗n → 0 in (L2 ∩ L2∗)(Ω),

where ∗ denotes the Schwarz symmetrization.

Proof. Note first that the set

Γ =
{
γ ∈ C([0, 1],H1(RN )) : γ(0) = 0 and ϕ(γ(1)) < 0

}

is not empty. From assumptions (f2) and (f3), there exists K1 and an
open set U ⊂ RN such that for x ∈ U and s ∈ R+,

F (x, s) > K1(|s|α − 1),

Let u ∈ D+(U) be nonzero. For any τ > 0

ϕ(τu) 6 τ2

2

∫

RN

|∇u|2 + V (x)u2 dx− ταK1‖u‖αα +K1LN (suppu).

Since α > p, there exists τ̄ > 0 such that ϕ(τ̄u) < 0. Let γ(t) = ut/τ̄ .
It is clear that γ ∈ Γ.

By assumptions (f4) and (f5), there is C ′ > 0 such that |f(x, s)| 6
m|s|/2 + C ′|s|p−1. That implies

ϕ(u) > min(1,m)
‖u‖2H1

2
− ‖u‖

2
L2

2
− C ′ ‖u‖

p
Lp

p

> (min(1,m)−m/2)
‖u‖2H1

2
− C ′′ ‖u‖

p
H1

p
.

Therefore, there exists ρ > 0 such that ϕ(u) > 0 if ‖u‖H1 6 ρ and
ϕ(u) > µ > 0 if ‖u‖H1 = ρ. Hence if γ ∈ Γ, ‖γ(1)‖H1 > ρ and so
maxt∈[0,1] ϕ(γ(t)) > µ > 0. This shows that c > a in Theorem 3.5.
For any polarizer, by Proposition 2.19, ϕ(uH) = ϕ(u). Let H0 be any
fixed polarizer. Then γ(0)H0 = 0 = γ(0) and ϕ(γ(1)H0) 6 ϕ(γ(1)).
The conclusions follow from the symmetric minimax principle (Theorem
3.5). �
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Proof of Theorem 4.10. Let (un)n>1 be the sequence given by Lemma
4.11. For sufficiently large n, we have

1 + c+ ‖un‖H1(RN ) > ϕ(un)− 1
α
〈ϕ′(un), un〉

>
(

1
2
− 1
α

)
‖un‖2H1(RN );

since α > 2, the sequence (un) is bounded in H1(RN ).
The sequence (u∗n) is also bounded in H1(RN ) by the Pólya–Szegő

inequality (see e.g. [4]) and by Strauss’ Theorem [15], (u∗n) is compact in
Lp(RN ). Finally, since ‖un−u∗n‖p → 0, the sequence (un) is also compact
in Lp(RN ). We can thus suppose that un → u weakly in H1(RN ) and
strongly in Lp(RN ).

Finally, we need to prove that∫

RN

(f(x, un)− f(x, u))(un − u) dx→ 0

as n→∞. By (f4) and (f5), for any ε > 0, there is cε such that

|f(x, s)| 6 ε|s|+ cε|s|p−1.

Then

lim sup
n→∞

∣∣∣∣
∫

RN

(f(x, un)− f(x, u))(un − u) dx
∣∣∣∣

6 2ε‖u‖2H1(RN ) + 2cε‖u‖p−1
Lp(RN )

lim sup
n→∞

‖un − u‖Lp(RN ),

and our claim is proved since u is in H1(RN ) and converges in Lp(RN ).
Since the sequence (un) is Palais–Smale, by standard arguments, un → u
in H1(RN ) and thus u is a critical point of ϕ and ϕ(u) = c. Furthermore
u∗ = u. �
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CHAPTER III

Approximation of symmetrizations and
symmetry of critical points

1. Introduction

A symmetrization by rearrangement transforms a set or a function
into a more symmetric one, while some quantities remain under control.
For example, for each u ∈ W1,p

0 (B(0, R)) with 1 6 p < ∞ and u > 0,
one can construct a radial and radially decreasing function u∗ such that
for every Borel-measurable function f : R→ R+,

∫

B(0,R)
f(u∗) dx =

∫

B(0,R)
f(u) dx .

In particular, u∗ ∈ Lp(B(0, R)) and ‖u∗‖p = ‖u‖p. While the map u 7→
u∗ is nonlinear, it is still non-expansive in Lp(B(0, R)). Furthermore,
u∗ ∈W1,p

0 (B(0, R)) and one has the Pólya–Szegő inequality:
∫

B(0,R)
|∇u∗|p dx 6

∫

B(0,R)
|∇u|p dx .

Other useful inequalities, such as the Riesz–Sobolev rearrangement in-
equality hold. For symmetrization inequalities, we refer to [12,16]. Sym-
metrizations were defined for sets in the nineteenth century by Steiner
and Schwarz. Symmetrizations of functions go back to Hardy, Little-
wood and Pólya [11] and to Pólya and Szegő [19].

Applications of symmetrization by rearrangement are multiple. Sym-
metrizations were used by Talenti and Aubin to compute the optimal
constants for the Sobolev inequality [2,27]. They can be used to obtain
estimates on the first eigenvalue of the Laplacian with Dirichlet bound-
ary conditions (Faber-Krahn inequality [19,28,33]). By symmetrization
techniques, it is also possible to prove that solutions of problems in the

This chapter is an article accepted for publication in Topological Methods Non-
linear Analysis.
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56 III. APPROXIMATION OF SYMMETRIZATIONS

calculus of variations are symmetric functions [23]. In some cases they
provide also an alternative to concentration-compactness [8].

Since symmetrizations and symmetrization inequalities are useful,
it would be nice to have general, simple and elegant methods to con-
struct symmetrizations and prove the associated inequalities. The main
difficulty is that symmetrizations are nonlinear and nonlocal transfor-
mations. One way to manage these problems is the level-sets method.
The functional for which an inequality is needed is decomposed in in-
tegrals on level sets. For example, if u : Ω → R+ is nonnegative and
measurable and f ∈ C1(R+,R+), one has

∫

Ω
f(u) dx =

∫

R+

LN ({x ∈ Ω : f(x) 6 t})f ′(t) dt.

This can be thought as localizing the functional with respect to the
u variable. As long as the functionals in consideration do not involve
gradients or convolution products, the inequalities are proved trivially.
— For example, the proof of the Hardy-Littlewood inequality becomes
very elegant [10, 33]. — When it is not the case any more, the set
inequalities become nontrivial geometric inequalities. For example, the
Pólya–Szegő inequality follows from the classical isoperimetric inequality
[18], and the Riesz–Sobolev rearrangement inequality is a consequence
of the same inequality for characteristic functions of sets [16]. In those
cases the level set method does not essentially simplify the proof. The
method of level-sets is used extensively by Mossino [18].

Another method to study symmetrization is to approximate a sym-
metrization by a sequence of simpler symmmetrizations — which are
more localized than more elaborated symmetrizations. This goes back
to the original definition of the Steiner symmetrization as a tool to prove
the classical isoperimetric Theorem. Later, inequalities for capacitors
were proved by approximation of Steiner and cap symmetrizations by
lower-order Steiner and cap symmetrizations [21]; the Riesz–Sobolev in-
equality was proved by approximation of a Steiner symmetrization by
lower-order Steiner symmetrizations [5]; Recently, a still simpler trans-
formation, the polarization, was used to approximate many symmetriza-
tions in order to obtain simple proofs of the isoperimetric inequality, the
Pólya–Szegő inequality and a weak form of the Riesz–Sobolev rearrange-
ment inequality [3, 6, 23,31].

In a recent work [30], we used approximation of symmetrization in
order to investigate the symmetry properties of critical points obtained
by minimax methods. The key point was the use of polarizations to
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obtain a continuous approximation of a Steiner or cap symmetrization
which is not continuous in general in Sobolev spaces [1].

In this paper, we investigate further the approximation of sym-
metrizations by simpler symmetrizations. We study which sequences
of symmetrizations approximate a given symmetrization, and we give a
simple sufficient condition. Since almost every sequence of symmetriza-
tions in a well-chosen set satisfies this condition, we solve by the way
a conjecture of Mani-Levitska concerning random sequences of Steiner
symmetrizations [17]. This sufficient condition allows us to obtain some
information about the symmetry of critical points of symmetric func-
tionals obtained by minimax methods using the Krasnoselskii genus.

The paper begins by reviewing in section 2 the main facts about
symmetrizations used in the sequel. We define in section 2.1 the Steiner
with respect to an affine subspace and cap symmetrizations with respect
to a closed affine half subspace. The set of affine subspaces and closed
affine half subspaces is denoted by S, and the symmetrization of u with
respect to S ∈ S is denoted by uS . The simplest cap symmetrizations
are the polarizations; they are symmetrizations with respect to H ∈ H,
where H ⊂ H is the set of closed affine halfspaces. Many of their
properties are easy to prove (section 2.2). We introduce a partial order
≺, such that S ≺ T if the symmetrization with respect to T can be used
to approximate the symmetrization with respect to S (Definition 2.19
and Proposition 2.20). For S ∈ S, the set of T ∈ S (resp. ∈ H) such that
S ≺ T is denoted by SS (resp. HS). With these notations, we restate in
a common framework all the approximation results of [31]:

Theorem 2.28. Let S ∈ S and T ⊂ SS. If for every H ∈ HS, there
exists T ∈ T such that T ≺ H, then there exists a sequence (Tn)n>1 ⊂ T
such that if Ω ⊂ RN is open, u ∈ K(Ω) and (u, S) is admissible, then

‖uT1...Tn − uS‖∞ → 0.

The condition “(u, S) is admissible” simply means that the sym-
metrization uS is defined. In order to state a sufficient condition for a
sequence of symmetrizations to approximate a symmetrization, we de-
fine a metric d on S for which the mapping (u, S) 7→ uS is continuous
(Definition 2.35, Proposition 2.38 and Corollary 2.39).

With all the machinery of section 2, we can state and prove the main
result of Section 3,

Theorem 3.2. Let S ∈ S, T ⊂ SS and (Tn)n>1 ⊂ SS be such that

a) for every H ∈ HS, there exists T ∈ T such that T ≺ H,
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b) for each m > 1 and S1, . . . , Sm ∈ T , there exists k > 0 such that for
every 1 6 i 6 m, d(Si, Tk+i) 6 δ,

Then for each open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is
admissible,

‖uT1...Tn − uS‖∞ → 0, as n→∞.
The proof relies on the fact that for every m > 1 and δ > 0, the m

first terms of the sequence of Theorem 2.28 are contained up to an error
δ in the sequence (Tn)n>1.

Given T , it is easy to construct sequences satisfying the hypothe-
ses of Theorem 3.2. In fact, if the approximating symmetrizations are
symmetrization with respect to random variables that are distributed
throughout the whole of T , then the convergence occurs almost surely
(Theorem 3.4).

All the preceding results can be extended to the approximation of
the symmetrization of compact sets in Hausdorff distance dH (Propo-
sition 3.10). For example, if K(RN ) denotes the set of compact sets of
RN , one has:

Theorem 3.13. Let S ∈ S with ∂S = φ and let (E,Σ, P ) be a probability
space. Let ` > dimS and

T `S = {T ∈ SS : ∂T = φ and dimT = `} .
If (Tn)n>1 are independent random variables with values in T `S whose
distribution functions are invariant under isometries that preserve S,
then

P
(
sete ∈ E : ∀K ∈ K(RN ), lim

n→∞dH(KT1(e)...Tn(e),KS) = 0
)

= 1.

Finally, in section 4, Theorem 3.2 is applied to the proof of symmetry
properties of critical points obtained by minimax methods using the
Krasnoselskii genus. If A is a symmetric (i.e. A = −A) set in a Banach
space V , its Krasnoselkii genus γ(A) is the least integer k such that there
is an odd mapping in C(A,Sk−1). The properties of γ are developed in
section 4.1. For ϕ : M ⊂ V → R, let

β` = inf
A⊂M

A is closed
γ(A)>`

sup
u∈A

ϕ(u).

Theorem 3.2 allows us to construct, given a set of small Krasnoselskii
genus, a set of more symmetric functions that has not a smaller Kras-
noselskii genus (Propositions 4.7).
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The main result is that when the functional ϕ satisfies some symme-
try assumptions, then there are symmetric critical points on the levels
β` for small `:
Theorem 4.8. Let Ω = Ω′×Ω′′ ⊂ RN be open, with Ω′ ⊂ Rk invariant
under O(k). Let M ⊂ W1,p(Ω) \ {0} be a complete symmetric C1,1-
manifold. Suppose ϕ ∈ C1(M) is an even functional that satisfies the
Palais–Smale condition, and is bounded from below on M . Also suppose
that if H ∈ H, {0} × RN−k ⊂ ∂H and u ∈ M , then uH ∈ M and
ϕ(uH) 6 ϕ(u). If ` 6 k, then there is a critical point u ∈ M and
x ∈ Sk−1 such that ϕ(u) = β` and uSx = u.

Here Sx denotes the cap symmetrization with respect to Rx×RN−k.
We end with simple applications of this result. The method applies to
Dirichlet and Neumann problems (Theorems 4.9 and 4.10).

2. Symmetrizations

2.1. Definitions

In the following, Hk denotes the k-dimensional outer Hausdorff mea-
sure, while for x ∈ RN and 0 6 r 6∞,

B(x, r) =
{
y ∈ RN : |x− y| < r

}
.

The extended set of real numbers is denoted by R̄ = R ∪ {−∞,+∞}.
The set of compactly supported continuous functions on the open set Ω
is denoted by K(Ω) and the modulus of continuity of a function u ∈ K(Ω)
is the function ωu : R+ → R+ defined by

ωu(δ) = sup {|u(x)− u(y)| : x, y ∈ Ω and |x− y| 6 δ} .
We define the Steiner and spherical cap symmetrizations according

to Sarvas [21]. In contrast with Sarvas, our definition does not make
difference between compact and open sets, but is valid for any set, pos-
sibly non-measurable. This ensures a good pointwize definition of the
symmetrization of measurable sets and functions.
Definition 2.1 (Steiner symmetrization). Let S be a k-dimensional
affine subspace of RN , 0 6 k 6 N − 1. The symmetrization of a set
A ⊂ RN with respect to S is the unique set AS such that for any x ∈ S,
if L is the (N−k)-dimensional hyperplane orthogonal to S that contains
x,

AS ∩ L = B(x, r) ∩ L,
where 0 6 r 6∞ is defined by HN−k(B(x, r) ∩ L) = HN−k(A ∩ L).
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Remark 2.2. The symmetrization with respect to a 0-dimensional plane
is called point symmetrization or Schwarz symmetrization. (Some au-
thors call Schwarz symmetrization a symmetrization with respect to a
1-dimensional plane and Steiner symmetrization a symmetrization with
respect to a (N − 1)-dimensional plane [16].)

Definition 2.3 (Cap symmetrization). Let S be a k-dimensional
closed affine half subspace of RN , 1 6 k 6 N and let ∂S be the boundary
of S inside the affine plane generated by S. The symmetrization of a
set A ⊂ RN with respect to S is the unique set AS such that AS ∩
∂S = A ∩ ∂S and for each x ∈ ∂S, if L is the (N − k + 1)-dimensional
hyperplane orthogonal to ∂S that contains x and y is the unique point
of the intersection ∂B(x, %) ∩ S, then for every % > 0

AS ∩ ∂B(x, %) ∩ L = B(y, r) ∩ ∂B(x, %) ∩ L,
where r > 0 is defined by

HN−k(B(y, r) ∩ ∂B(x, %) ∩ L) = HN−k(A ∩ ∂B(x, %) ∩ L).

Remark 2.4. The symmetrization with respect to a one dimensional
closed affine subspace is also called foliated Schwarz symmetrization [23].

Definition 2.5. The set of all the k-dimensional affine subspaces of
RN for 0 6 k 6 N − 1, and of all the k-dimensional closed affine half
subspaces of RN for 1 6 k 6 N is denoted by S.

Symmetrizations have the following basic properties:
Proposition 2.6. Let A, B ⊂ RN and S ∈ S. If A ⊂ B, then AS ⊂
BS.
If A is measurable, then AS is measurable and LN (AS) = LN (A).
If A is open, then AS is open.

We need some condition to ensure that the symmetrization of a
function is meaningful.
Definition 2.7. Let Ω ⊂ RN , u : Ω→ R̄ and S ∈ S. The pair (u, S) is
admissible if ΩS = Ω, and, for every c > 0,

LN ({x ∈ Ω : |u(x)| > c}) <∞
and either u > 0, or ∂S 6= φ and (RN \ Ω)S = RN \ Ω.

Definition 2.8. Let Ω ⊂ RN , u : Ω → R̄ and S ∈ S. Suppose that
(u, S) is admissible. The symmetrization of u with respect to S is the
unique function uS such that for each c ∈ R̄,

{
x ∈ Ω : uS(x) > c

}
= {x ∈ Ω : u(x) > c}S .
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Remark 2.9. The function uS can be defined as

uS(x) = sup
{
c ∈ R : x ∈ {y ∈ Ω : u(y) > c}S

}
.

The definitions with open balls of symmetrization of sets are of crucial
importance in order to obtain the existence of uS satisfying Definition 2.8
(see [29]).

The symmetrization of a function does not essentially depend on the
domain:

Proposition 2.10. Let u : Ω→ R̄, ũ : RN → R̄ be defined by ũ|Ω = u
and ũ|RN\Ω = 0 and S ∈ S. If (u, S) is admissible, then (ũ, S) is
admissible and ũS |Ω = uS.

The symmetrization of functions in Lp is a non-expansive nonlinear
mapping that preserves the norm:

Proposition 2.11 (Lp properties of symmetrizations). Let 1 6
p 6 ∞, Ω ⊂ RN be measurable and u, v ∈ Lp(Ω). If (u, S) and (v, S)
are admissible, then uS , vS ∈ Lp(Ω), ‖uS‖p = ‖u‖p, ‖vS‖p = ‖v‖p and
‖uS − vS‖p 6 ‖u− v‖p.
Proof. See e.g. [10, 32]. �

Remark 2.12. If u ∈W1,p(Ω) then uS ∈W1,p(Ω) and ‖∇uS‖p 6 ‖∇u‖p,
but if ∂S = φ, the mapping u 7→ uS is continuous in W1,p(Ω) if and
only if dimS = N − 1 [1, 7, 9]. If ∂S 6= φ, u 7→ uS is continuous if
dimS = N (see [30] and Corollary 2.40 below). If dimS < N − 1, then
a reasoning in the spirit of Lemma 2.33 and the results of Almgren and
Lieb [1] shows that u 7→ uS is not continuous. The case dimS = N − 1
remains open, but it is likely that the method of Burchard would show
that the cap symmetrization is then continuous.

We introduce the complementary of a affine half subspace.

Definition 2.13. Let u ∈ S and S ∈ S with ∂S 6= φ. The comple-
mentary of S is the reflexion of S with respect to ∂S. It is denoted by
S∗.

As a straightforward consequence of the definitions, one has

Proposition 2.14. Let S ∈ S and u : Ω → R̄. If (u, S) and (−u, S∗)
are admissible, then

(−u)S
∗

= −(uS) .



62 III. APPROXIMATION OF SYMMETRIZATIONS

2.2. Polarizations

We recall briefly some facts about the simplest symmetrizations, the
polarizations.
Definition 2.15. The symmetrization with respect to H ∈ S is a po-
larization if ∂H is a hyperplane, or, equivalently, dimH = N . The
reflexion of x ∈ RN with respect to ∂H is denoted by xH . The set of
H ∈ S such that dimH = N is denoted by H.

Proposition 2.16. Let H ∈ H, Ω ⊂ RN and u : Ω → R̄. If (u,H) is
admissible, then

uH(x) =

{
max(u(x), u(xH)) if x ∈ H ,

min(u(x), u(xH)) if x 6∈ H .

Remark 2.17. The characterization of Proposition 2.16 is the classical
definition of the polarization of a function [6].

Proposition 2.18. Let H ∈ H, Ω ⊂ RN be open and u : Ω → R̄
be measurable. If (u,H) is admissible, f : Ω × R̄ → R+ is a Borel
measurable function, and for every t ∈ R̄ and x ∈ Ω such that xH ∈ Ω,
f(xH , t) = f(x, t), then∫

Ω
f(x, uH(x)) dx =

∫

Ω
f(x, u(x)) dx .

Furthermore, if 1 6 p < ∞, u ∈ W1,p
0 (Ω) (resp. (−u,H) is ad-

missible and u ∈ W1,p(Ω)) then uH ∈ W1,p
0 (Ω) (resp. uH ∈ W1,p(Ω))

and ∫

Ω
|∇uH |p dx =

∫

Ω
|∇u|p dx .

If u ∈ K(Ω), then uH ∈ K(Ω) and for any δ > 0,

ωuH (δ) 6 ωu(δ) .

Proof. See [6, 30]. �

2.3. Approximating symmetrization

In order to study the approximations of a symmetrization by other
symmetrizations we introduce a partial order ≺ on the symmetrizations
such that S ≺ T if the symmetrization with respect to T can be used to
approximate the symmetrization with respect to S.
Definition 2.19. Let S, T ∈ S. We write S ≺ T if S ⊆ T and ∂S ⊆ ∂T .
For S ∈ S, let

SS = {T ∈ S : S ≺ T}
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and
HS = {H ∈ H : S ≺ H} .

This definition is justified by the next proposition.
Proposition 2.20. Let S, T ∈ S and suppose S ≺ T . If A is Borel
measurable, then AST = ATS = AS.

If Ω ⊂ RN and u : Ω → R̄ are Borel measurable, and (u, S) is
admissible, then (u, T ), (uT , S) and (uS , T ) are admissible and uST =
uTS = uS.

Proof. The definitions yields ATS = AST = AS for any Borel measur-
able set A ⊂ RN . The conclusion follows from the definitions of the
admissibility and of the symmetrization of a function. �
Remark 2.21. By Proposition 2.11, if S ≺ T , then

‖uT − uS‖p 6 ‖u− uS‖p,
i.e. T does not increase the distance between u and uS and T 0can be
used to approximate S.

Remark 2.22. If A is merely measurable, its intersection with some affine
subspace could be Hk-non-measurable, resulting in ATS ) AS = AST .
However, one can still conclude thatAS ⊂ ATS and that LN (ATS\AS) =
0.

Many properties of the symmetrizations can be deduced from the
next
Theorem 2.23. Let S ∈ S. There exists a sequence (Hn)n>1 ⊂ HS
such that if Ω ⊂ RN is open, u ∈ K(Ω) and (u, S) is admissible, then

‖uH1...Hn − uS‖∞ → 0.

Proof. See [31]. �
Remark 2.24. Weaker forms of Theorem 2.23, where the sequence could
depend on the function to symmetrize were proved by Brock and Solynin
[6] and by Smets and Willem [23].

Corollary 2.25. Let S ∈ S and u ∈ K(Ω). If (u, S) is admissible, then
uS ∈ K(Ω) and for any δ > 0,

ωuS (δ) 6 ωu(δ).

Proof. This follows from Proposition 2.18 and Theorem 2.23. �
Among the consequences, there is the compactness of the set of func-

tions obtained by symmetrizations compatible with a given symmetriza-
tion:
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Proposition 2.26. Let S ∈ S, Ω ⊂ RN and u ∈ K(Ω). If (u, S) is
admissible, then

U =
{
uT1...Tn : n > 1, Ti ∈ SS for each 1 6 i 6 n

}

is totally bounded in L∞(Ω).

Proof. By Proposition 2.11, if v ∈ U , then ‖v‖∞ = ‖u‖∞. Since u is
compactly supported, there exists x ∈ ∂S (x ∈ S if u > 0) and r > 0 such
that suppu ⊂ B(x, r). Since S ≺ T , B(x, r)T = B(x, r)ST = B(x, r)S =
B(x, r). By Proposition 2.6, for each v ∈ U , one has supp v ⊂ B(x, r).
Finally, by Corollary 2.25, for every v ∈ U , we have v ∈ K(Ω) and

ωv(δ) 6 ωu(δ).

The conclusion comes from the Ascoli–Arzelá Theorem. �

Remark 2.27. In fact, U is totally bounded in Lp(RN ) for every 1 6 p 6
∞.

Proposition 2.26 is one of the ingredients of
Theorem 2.28. Let S ∈ S and T ⊂ SS. If for every H ∈ HS, there
exists T ∈ T such that T ≺ H, then there exists a sequence (Tn)n>1 ⊂ T
such that if Ω ⊂ RN is open, u ∈ K(Ω) and (u, S) is admissible, then

‖uT1...Tn − uS‖∞ → 0.

Proof. See [31]. �

Remark 2.29. For every 1 6 p < ∞, the convergence happens for any
u ∈ Lp(Ω) such that (u, S) is admissible.

2.4. The metric structure of S
In order to construct other sequences of symmetrizations approxi-

mating a symmetrization by some kind of perturbation, we give a metric
structure to the set S. Since the definition of the metric on S relies on
isometries of RN , we briefly investigate the relationship between sym-
metrizations and isometries. We call i : RN → RN an isometry provided
that for every x, y ∈ RN , one has |i(x)− i(y)| = |x− y|.
Proposition 2.30. Let i : RN → RN be an isometry and S ∈ S. If
A ⊂ RN , then i(AS) = i(A)i(S). If (u, i(S)) is admissible, then (u◦ i, S)
is admissible, and ui(S) ◦ i = (u ◦ i)S.

Proof. Since the definitions of the symmetrizations are invariant by
isometry, this is straightforward. �
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Remark 2.31. The isometries is the largest class of transformations of
RN for which Proposition 2.30 holds for every S ∈ S.

We need also some information about elements of S which are iden-
tical in a ball.

Proposition 2.32. There exist constants K1 > 1 and K2 > 0 that
depend only on the dimension of the space N such that the following
holds: Let r > 0, R > K1r, S, T ∈ S, x ∈ S, and u ∈ K+(Ω). If
(u, S) and (u, T ) are admissible, suppu ⊂ B(x, r) and B(x,R) ∩ S =
B(x,R) ∩ T , then

‖uS − uT ‖∞ 6 ωu(K2r
2/R) .

Proof. This follows from the next Lemma applied to u|B(x,r) and from
Proposition 2.10, since uS and uT are the extensions by 0 outside of
B(x, r) of (u|B(x,r))S and (u|B(x,r))T . �

Lemma 2.33. There exist constants K1 > 1 and K2 > 0 that depend
only on the dimension of the space N such that the following holds: Let
r > 0, R > K1r, S, T ∈ S, and x ∈ S. If B(x,R) ∩ S = B(x,R) ∩ T
then there exists an injective map g : B(0, r) → RN such that for each
x ∈ B(x, r), |g(x)− x| 6 K2r

2/R. Furthermore, for any A ⊂ B(x, r),
g(AS) = g(A)T and if Ω ⊂ B(x, r), u : Ω→ R and (u, T ) is admissible,
then (u ◦ g, S) is admissible and uT ◦ g = (u ◦ g)S.

Remark 2.34. This was proved by Sarvas when dimS = N − 1 [21].

Proof. If ∂S ∩ B(x,R) = ∂T ∩ B(x,R) 6= φ the proposition is trivial.
The result is also trivial when dimS = dimT = N . Assume thus ∂S ∩
B(x,R) = ∂T ∩ B(x,R) = φ and dimS < N . For any y, let CSy denote
the circle that contains y, whose center is in ∂S and that is contained
in an affine (two-dimensional) plane perpendicular to ∂S. If ∂S = φ,
define CSy to be the straight line perpendicular to S that contains y.
Define CTy analogously.

The mapping g is the unique mapping such that if y ∈ S ∩ B(x, r),
g(CSy ∩ B(x, r)) ⊂ CTx, and if A ⊂ CSy ∩ B(x, r) is Borel measurable,
then HN−k(A) = HN−k(g(A)), where k is the dimension of S and of T .
A direct computation shows that for sufficiently large K1 and K2, the
map g has the required properties. �

Now we define a distance on S.
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Definition 2.35. Let S, T ∈ S and

%(S, T ) = inf
{

ln
(

1 + sup
x∈RN

|x− i(x)|
1 + |x| + sup

x∈i(S) ∆T

1
1 + |x|

)
:

i : RN → RN is an isometry
}
.

The distance between S, T is

d(S, T ) = %(S, T ) + %(T, S).

Proposition 2.36. The pair (S, d) is a separable metric space.

Remark 2.37. The metric space (S,d) is not complete, but it is locally
compact.

The symmetrization is continuous with respect to this distance.
More precisely,
Proposition 2.38. Let Ω ⊂ RN be open. The mapping

{(u, S) ∈ (K(Ω), ‖ · ‖∞)× (S, d) : (u, S) is admissible}
→ (K(Ω), ‖ · ‖∞) : (u, S) 7→ uS

is continuous.

Proof. Let (u, S) ∈ (K(Ω), ‖ · ‖∞)× (S, d) be admissible, and let ε > 0.
By Proposition 2.10, we can assume Ω = RN .

First suppose u > 0. Let (u, S) ∈ K+(RN )×S be admissible. Let K1

and K2 be given by Proposition 2.32. Fix x ∈ S and r > εK1/K2 such
that suppu ∈ B(x, r). There exists δ > 0, depending only on ε, x and r,
such that if T ∈ S and d(S, T ) 6 δ, then there is an isometry i : RN →
RN with |y − i(y)| 6 ε for each y ∈ B(x, r) and i(T ) ∩ B(x,K2r

2/ε) =
S ∩ B(x,K2r

2/ε). By Proposition 2.32, since K2r
2/ε > K1r, ‖uS −

ui(T )‖∞ 6 ωu(ε). Moreover, since by Proposition 2.30, ui(T )◦i = (u◦i)T ,

‖ui(T ) − uT ‖∞ = ‖ui(T ) ◦ i− uT ◦ i‖∞ = ‖(u ◦ i)T − uT ◦ i‖∞
6 ‖(u ◦ i)T − uT ‖∞ + ‖uT − uT ◦ i‖∞.

Since the symmetrization is non-expansive in L∞(RN ) by Proposition
2.11,

‖(u ◦ i)T − uT ‖∞ 6 ‖u ◦ i− u‖∞ 6 ωu(ε).

By Corollary 2.25, the modulus of continuity does not increase by sym-
metrization:

‖uT − uT ◦ i‖∞ 6 ωTu(ε) 6 ωu(ε).
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For any (v, T ) ∈ K+(RN ) × S, if d(T, S) 6 δ and ‖u − v‖∞ 6 ε, then,
by the non-expansiveness of the symmetrizations,

‖uS − vT ‖∞ 6 ‖uS − uT ‖∞ + ‖uT − vT ‖∞ 6 3ωu(ε) + ε.

Since ε > 0 is arbitrary, our claim is proved.
If u 6> 0, then by definition of admissibility, ∂S 6= φ. Let x ∈ ∂S

and choose r > 0 such that suppu ⊂ B(x, r). By definition of d, there
is δ > 0 such that if d(S, T ) 6 δ, there exists an isometry i : RN → RN

such that |y − i(y)| 6 ε for y ∈ B(x, r) and i(T )∩B(x, r) = S ∩B(x, r).
Since x ∈ ∂S, S and T are closed affine half subspaces, and i is an
isometry, i(T ) = S. By Proposition 2.30,

‖uS − uT ‖∞ = ‖ui(T ) ◦ i− uT ◦ i‖∞ = ‖(u ◦ i)T − uT ◦ i‖∞.
The end of the proof is similar to the case when u > 0. �

Corollary 2.39. Let Ω ⊂ RN be open and 1 6 p <∞. The mapping
{

(u, S) ∈ (Lp(Ω), ‖ · ‖p)× (S, d) : (u, S) is admissible
}

→ (Lp(Ω), ‖ · ‖p) : (u, S) 7→ uS

is continuous.
This remains true if p =∞, provided Lp(Ω) is replaced by C0(Ω).

As in [30], we can obtain the

Corollary 2.40. Let Ω ⊂ RN be open and 1 < p <∞. The mapping
{

(u,H) ∈W1,p(Ω)× (H, d) : (u,H) and (−u,H) are admissible
}

→W1,p(Ω) : (u,H) 7→ uH

is continuous.

Proof. This is a consequence of Proposition 2.18, of Corollary 2.39 and
of the uniform convexity of the norm ‖∇u‖p. �

3. Constructing approximating sequences

3.1. A sufficient condition

Since the result of a symmetrization is stable under small pertur-
bations on the symmetrization (Proposition 2.38), we can prove that
some perturbations of an approximating sequence are approximating
sequences.
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Proposition 3.1. Let S ∈ S, (Sn)n>1 ⊂ SS and (Tn)n>1 ⊂ SS. If for
each open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is admissible,

‖uS1...Sn − uS‖ → 0, as n→∞,
and if for every δ > 0 and m > 1, there exists k > 0 such that for each
1 6 i 6 m,

d(Si, Tk+i) 6 δ,
then for each open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is admis-
sible,

‖uT1...Tn − uS‖ → 0, as n→∞.
Proof. Let u ∈ K(Ω) and ε > 0. Since by Proposition 2.26, the sequence
(uT1...Tn)n>1 is totally bounded in L∞(Ω) and since by hypothesis

uT1...TnS1...Sm → uS , as m→∞,
there exists m > 1 such that for every n > 0,

‖uT1...TnS1...Sm − uS‖∞ 6 ε.
By the continuity of symmetrization (Proposition 2.38) and the fact
that (uT1...Tn)n>1 is totally bounded, there exists δ > 0 such that for
each 1 6 i 6 m, for each n > 0 and for each T ∈ SS , if d(Si, T ) 6 δ,
then

‖uT1...TnSi − uT1...TnT ‖∞ 6 ε/m.
By hypothesis, there is k > 0 such that for each 1 6 i 6 m, d(Si, Tk+i) 6
δ. We can then use the non-expansiveness of symmetrizations (Propo-
sition 2.11) and the preceding estimates to obtain, for every ` > m+ k,

‖uS − uT1...T`‖∞ 6 ‖uS − uT1...Tm+k‖∞

6 ‖uS − uT1...TkS1...Sm‖∞ +
m∑

i=1

‖uT1...Tk+i−1Si...Sm − uT1...Tk+iSi+1...Sm‖

6 ‖uS − uT1...TkS1...Sm‖∞ +
m∑

i=1

‖uT1...Tk+i−1Si − uT1...Tk+i‖ 6 2ε. �

Theorem 3.2. Let S ∈ S, T ⊂ SS and (Tn)n>1 ⊂ SS be such that
a) for every H ∈ HS, there exists T ∈ T such that T ≺ H,
b) for each m > 1 and S1, . . . , Sm ∈ T , there exists k > 0 such that for

every 1 6 i 6 m, d(Si, Tk+i) 6 δ,
Then for each open set Ω ⊂ RN and u ∈ K(Ω) such that (u, S) is
admissible,

‖uT1...Tn − uS‖∞ → 0, as n→∞.
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Remark 3.3. Since (S, d) is separable, (T , d) is also separable so that
given a countable dense set of T it is possible to construct explicitly a
sequence (Tn)n>1 satisfying the hypotheses of Theorem 3.2.

Proof. This follows from Theorem 2.28 and Proposition 3.1. �

3.2. Random sequences of symmetrizations

As a first application of Theorem 3.2, we prove that symmetrizations
can be approximated by random sequences of symmetrizations.

Recall that if (E,Σ, P ) is a probability space, (M,d) is a metric space
and X : E →M is measurable, then X is called a random variable. The
sequence (Xn)n>1 is a sequence of independent random variables if for
any n > 1 and for any open sets U1, . . . , Un ⊂M ,

P ({e ∈ E : (X1(e), . . . , Xn(e)) ∈ U1 × · · · × Un})

=
n∏

i=1

P ({e ∈ E : Xi(e) ∈ Ui}).

(See e.g. Stromberg [24].)

Theorem 3.4. Let S ∈ S, T ⊂ SS, (E,Σ, P ) be probability space and
Tn : E → T , n > 1, be independent random variables. If for every
H ∈ HS, there exists T ∈ T such that T ≺ H and if for each T ∈ T and
δ > 0,

lim
n→∞

P
({e ∈ E : d(Tn(e), T ) 6 δ }) > 0,

then

P
({
e ∈ E : ∀ open set Ω ⊂ RN ,

∀u ∈ K(Ω) such that (u, S) is admissible,

lim
n→∞ ‖u

T1(e)...Tn(e) − uS‖ = 0
})

= 1.

Proof. This follows from Theorem 3.2 and from the next Lemma, since
(T ,d) is a separable metric spaces by Proposition 2.36. �

Lemma 3.5. Let (E,Σ, P ) be a probability space, (M,d) be a separable
metric space and Xn : E →M , n > 1, be independent random variables.
If for each x ∈M and δ > 0,

lim
n→∞

P ({e ∈ E : d(Xn(e), x) 6 δ}) > 0,
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then

P
({
e ∈ E : ∀m > 1, ∀r > 1,∀x1, . . . , xm ∈M,

∃k > 0,∀1 6 i 6 m,d(Xk+i(e), xi) 6 1/r
})

= 1.

Proof. Since M is separable, there exists a countable dense subset D ⊂
M . Since D is dense,

P
({
e ∈ E : ∀m > 1, ∀r > 1,∀x1, . . . , xm ∈M,

∃k > 0, ∀1 6 i 6 m, d(Xk+i(e), xi) 6 1/r
})

= P
({
e ∈ E : ∀m > 1,∀r > 1, ∀x1, . . . , xm ∈ D,

∃k > 0, ∀1 6 i 6 m,d(Xk+i(e), xi) 6 1/r
})

= 1− P ({e ∈ E : ∃m > 1,∃r > 1, ∃x1, . . . , xm ∈ D,
∀k > 0, ∃1 6 i 6 m,d(Xk+i(e), xi) > 1/r

})
.

Since D is countable,

P
({
e ∈ E : ∃m > 1, ∃r > 1,∃x1, . . . , xm ∈ D,

∀k > 0, ∃1 6 i 6 m,d(Xk+i(e), xi) > 1/r
})

6
∑

m>1
r>1

∑

x1,...,xn∈D
P ({e ∈ E : ∀k > 0,∃1 6 i 6 m,

d(Xk+i(e), xi) > 1/r}).

Let now m, r and x1, . . . , xm ∈ D be fixed. Since the random variables
(Xn)n>1 are independent,

P ({e ∈ E : ∀k > 0, ∃1 6 i 6 m,d(Xk+i(e), xi) > 1/r})
6 P ({e ∈ E : ∀` > 0, ∃1 6 i 6 m,d(X`m+i(e), xi) > 1/r})

=
∏

`>0

P ({e ∈ E : ∃1 6 i 6 m,d(X`m+i(e), xi) > 1/r}).
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Since by hypothesis

lim
`→∞

P ({e ∈ E : ∃1 6 i 6 m,d(X`m+i(e), xi) > 1/r})

= 1− lim
`→∞

m∏

i=1

P ({e ∈ E : d(X`m+i(e), xi) 6 1/r})

6 1−
m∏

i=1

lim
`→∞

P ({e ∈ E : d(X`m+i(e), xi) 6 1/r})

6 1−
m∏

i=1

lim
n→∞

P ({e ∈ E : d(Xn(e), xi) 6 1/r}) < 1,

the conclusion follows. �

3.3. Approximation of the symmetrization of sets

Proposition 3.6. Let u, v ∈ C(Ω), S ∈ S, c > 0. If (u, S) and (v, S)
are admissible and

{x ∈ Ω : u(x) > c} = {x ∈ Ω : v(x) > c} ,
then {

x ∈ Ω : uS(x) > c
}

=
{
x ∈ Ω : vS(x) > c

}
.

Definition 3.7. Let K ⊂ RN be compact and S. The compact sym-
metrization of K with respect to S is the set

{x : u(x) > 1}
for any function u ∈ K(RN ), such that u 6 1 and u(x) = 1 if and only
if x ∈ K.

This definition is equivalent to the classical definitions of symmetriza-
tion of compact sets [6, 19]. By an abuse of notation, throughout this
section, if K is compact, then KS denotes the compact symmetrization
of K. We recall some basic facts about the Hausdorff distance [14,15].
Definition 3.8. Let K1, K2 ⊂ RN be compact sets. The Hausdorff
distance between K1 and K2 is

dH(K1,K2)

= inf {r > 0 : K1 ⊆ K2 + B(0, r) and K2 ⊆ K1 + B(0, r)} .
The set of compact subsets of RN is denoted by K(RN ). The metric

space (K(RN ), dH) is complete. One has
Proposition 3.9. Let A ⊂ K(RN ). The following are equivalent
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(1) A is totally bounded,
(2) ∪K∈AK is bounded,
(3) A is bounded.

We are now in measure to prove how approximation of symmetriza-
tions of functions yields approximations of the symmetrizations of sets.
Proposition 3.10. Let S ∈ S, (Tn)n>1 ⊂ SS, u ∈ K+(RN ) such that
‖u‖∞ = 1 and K =

{
x ∈ RN : u(x) = 1

}
. If ‖uT1...Tn − uS‖∞ → 0 as

n→∞, then

dH(KT1...Tn ,KS)→ 0, as n→∞.
Remark 3.11. By Tietze’s extension Theorem, for every K ∈ K(RN ),
there exists u ∈ K+(RN ) such that ‖u‖∞ = 1 and

K =
{
x ∈ RN : u(x) = 1

}
.

Proof. Since u is compactly supported, there exists x ∈ S and r > 0
such that suppu ⊂ B(x, r). Hence KT1...Tn ⊂ suppuT1...Tn ⊂ B(x, r).
By Proposition 3.9 the sequence (KT1...Tn)n>1 is conditionally compact
in (K(RN ), dH).

Let K̃ be an accumulation point of the sequence (KT1...Tn)n>1, let
(Km)m>1 be a subsequence of (KT1...Tn)n>1 converging to K̃ and let
(um)m>1 denote the corresponding subsequence of (uT1...Tn)n>1. We are
going to show that K̃ = KS .

Let % > 0. Since by Corollary 2.25, uS ∈ K(RN ), there exists ε > 0
such that if uS(x) > 1 − ε, there is y ∈ KS with |x− y| < %. Since
um → uS in L∞(RN ), for sufficiently large m, ‖um − uS‖ 6 ε. By
definition of Km, one has Km ⊂ KS + B(0, %). Since this is valid for any
% > 0, we conclude that K̃ ⊆ KS .

For every x ∈ S \ ∂S, let Cx denote the (N − k)–dimensional sphere
that has its center on ∂S, is contained in an affine plane orthogonal to ∂S
and contains the point x. (If ∂S = φ, then Cx is the (N−k)–dimensional
plane orthogonal to S that contains the point x.) If K ∩ Cx = φ, then
KS ∩ Cx = φ ⊂ K̃ ∩ Cx. If K ∩ Cx 6= φ, then K̃ ∩ Cx 6= φ, the
set KS ∩ Cx is a closed geodesic ball (possibly degenerate to a point),
and, since the N−k-dimensional Hausdorff measure restricted to Cx is a
Radon measure, it is upper semicontinuous with respect to the Hausdorff
distance [4]

HN−k(K̃ ∩ Cx) > lim
m→∞H

N−k(Km ∩ Cx)

= HN−k(K ∩ Cx) = HN−k(KS ∩ Cx).
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Since K̃ ∩ Cx ⊆ KS ∩ Cx, one concludes that K̃ ∩ Cx = KS ∩ Cx.
Since Km ∩ ∂S = K ∩ ∂S = KS ∩ ∂S, one has KS ∩ ∂S ⊆ K̃ ∩ ∂S.

In view of RN = ∂S ∩ ∪x∈S\∂SCx, one has

K̃ = KS .

This proves that the set KS is the unique accumulation point of the
sequence (KT1...Tn)n>1. �

Remark 3.12. The proof of Proposition 3.10 is a simplification of a proof
of Brock and Solynin [6], who did not use the compactness of the se-
quence (KT1...Tn)n>1 in K(RN ). In particular, the proof of the inclusion
K̃ ⊂ KS is directly inspired by their proof.

As an easy consequence of Theorem 3.4 and Proposition 3.10, we
have

Theorem 3.13. Let S ∈ S with ∂S = φ and let (E,Σ, P ) be a probability
space. Let ` > dimS and

T `S = {T ∈ SS : ∂T = φ and dimT = `} .
If (Tn)n>1 are independent random variables with values in T `S whose
distribution functions are invariant under isometries that preserve S,
then

P
({
e ∈ E : ∀K ∈ K(RN ), lim

n→∞dH(KT1(e)...Tn(e),KS) = 0
})

= 1.

This solves a conjecture of Mani-Levitska. He proved Theorem 3.13
under the additional assumptions that K should be convex, S = {0}
and ` = N − 1 [17].

One can obtain similar theorems for the approximation by polariza-
tions or spherical cap symmetrizations.

4. Symmetry of critical points

This section is devoted to the proof of a symmetry result concerning
critical points obtained by a minimax theorem of Struwe based on the
Krasnoselskii genus [26]. First we recall the definition and basic prop-
erties of the Krasnoselskii genus (section 4.1). Then we symmetrize ap-
proximately sets of small Krasnoselskii genus (section 4.2) before going
on to a minimax theorem with symmetry information and an application
(section 4.3).
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4.1. Krasnoselskii genus

Let V be a Banach space. Define

A = {A ⊂ V : A is closed, A = −A} .
Definition 4.1. For A ∈ A, A 6= φ, let

γ(A) = inf
{
m : there exists h ∈ C(A,Sm−1) : h(−u) = h(u)

}
,

with γ(A) =∞ if the set on the right-hand side is empty and γ(φ) = 0.

The genus has the following properties
Proposition 4.2 (Krasnoselskii [13]). Let A, A1, A2 ∈ A, and let
h ∈ C(V, V ) be an odd map. Then the following hold

(1) γ(A) > 0, γ(A) = 0 if and only if A = φ,
(2) if A1 ⊂ A2, then γ(A1) 6 γ(A2),
(3) γ(A1 ∪A2) 6 γ(A1) + γ(A2),
(4) γ(A) 6 γ(h(A)),
(5) if A ∈ A is compact and 0 6∈ A, then γ(A) <∞ and there is a

neighborhood N of A such that N̄ ∈ A and γ(A) = γ(N̄).

It will be only possible to symmetrize sets with a small Krasnoselskii
genus. In the following proposition it is shown that any set contains a
subset of lower Krasnoselskii genus that contains some prescribed points.
Lemma 4.3. If A ∈ A and if Y ⊂ A is finite, there exists A′ ∈ A such
that Y ⊂ A′ ⊂ A and γ(A′) = γ(A)− 1.

Proof. Let k = γ(A). By definition of γ(A), there exists an odd mapping
h ∈ C(A,Sk−1). Take m ∈ Sk−1 \ h(Y ) and let η = maxy∈Y |m · h(y)|.
Since m 6∈ h(Y ), one has η < 1. Define

A′ = {x ∈ A : |m · h(x)| 6 η} .
Since h is odd and continuous, A′ ∈ A. For x ∈ A′, let σ(x) = h(x)−(m·
h(x))m and ĥ(x) = σ(x)/|σ(x)|. It is clear that ĥ is odd and continuous
on A′ and that ĥ(A′) ⊂ Sk−2. Hence, γ(A′) 6 γ(A)− 1.

Let l = γ(A′). By definition of γ(A′), there exists an even mapping
h′ ∈ C(A′, Sl−1). For x ∈ A, let

h̃(x) =

{
((η − |m · h(x)|)h′(x),m · h(x)) if x ∈ A′,
(0,m · h(x)) if x 6∈ A′.

Then h̃ : A → Rl+1 is continuous and odd on A. The function h̄ =
h̃/|h̃| : A→ Sl is also continuous and odd. Hence γ(A) 6 γ(A′) + 1. �
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4.2. Almost-symmetrization of sets

Throughout this section we assume that Ω = Ω′×Ω′′, where Ω′ ⊂ Rk

is invariant under the action of the group of isometries O(k). To every
any x ∈ Sk−1, we associate the closed affine half subspace Sx = Rx ×
RN−k and a closed affine halfspace ζ(x) =

{
y ∈ RN : x · y > 0

}
.

Proposition 4.4. The map

ζ : Sk−1 →
{
H ∈ H : {0} ×RN−k ⊂ ∂H

}

is a homeomorphism.
For every x, y ∈ Sk−1, ζ(x) ∈ HSx if and only if x · y > 0.

Lemma 4.5. There exists σ̄ ∈ C(W1,p(Ω)× Sk−1 ×R+; W1,p(Ω)) such
that

(1) for every u ∈ W1,p(Ω), σ̄(u, x, t) → uSx in Lp(Ω) as t → ∞,
uniformly in x ∈ Sk−1,

(2) for every (x, t) ∈ Sk−1×R+, there exists H1, . . . , Hbtc+1 ∈ HSx
such that, for each u ∈W1,p(Ω),

σ̄(u, x, t) = uH1...Hbtc+1 ,

(3) for every (u, x, t) ∈W1,p(Ω)× Sk−1 ×R+,

σ̄(−u,−x, t) = −σ̄(u, x, t).

Proof. Let R =
{
R ∈ SO(k) : ∀x ∈ Rk, x ·R(x) > 0

}
. With the oper-

ator norm,R is a separable metric space. Consider a sequence (Rn)n>1 ⊂
R such that for every δ > 0, m > 1 and Q1, . . . , Qm ∈ R, there exists
k > 0 such that for each 1 6 i 6 m,

‖Qi −Rk+i‖ 6 δ.
This construction is possible because R is separable. Since R is path-
connected it is possible to extend the definition of Rt for t ∈ R+ so that
t 7→ Rt is continuous. For (u, x, t) ∈W1,p(Ω)× Sk−1 ×R+, let

σ̄(u, x, t) = uζ(R1(x))...ζ(Rbtc(x))ζ(Rt(x)).

The map σ̄ is continuous by construction of Rt, by Proposition 4.4 and
by Corollary 2.40.

Fix x ∈ Sk−1. Let δ > 0, m > 1 and y1, . . . , ym ∈ Sk−1 such that
x · yi > 0 for each 1 6 i 6 m. For every 1 6 i 6 m, there exists Qi ∈ R
such that Qi(x) = yi. By construction of the sequence (Rn)n>1 there is
k > 0 such that for every 1 6 i 6 m,

|yi −Rk+i(x)| 6 ‖Qi −Rk+i‖ 6 δ.
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Since ζ is continuous and ζ(Rn(x)) ∈ SSx , Theorem 3.2 is applicable
and for every (u, x) ∈W1,p(Ω)× Sk, we obtain

‖σ̄(u, x, n)− uSx‖p → 0, as n→∞.
Since ‖σ̄(u, x, n)− uSx‖p is decreasing with respect to n (Remark 2.21),
‖σ̄(u, x, n)− uSx‖p is continuous with respect to x (Corollary 2.39) and
Sk−1 is compact, by Dini’s Lemma [25], for every u ∈W1,p(Ω), we obtain

‖σ̄(u, x, n)− uSx‖p → 0, as n→∞, uniformly in x ∈ Sk−1.

Finally by Proposition 2.11, we conclude

‖σ̄(u, x, t)− uSx‖p 6 ‖σ̄(u, x, btc)− uSx‖p → 0,

as t→∞, uniformly in x ∈ Sk−1.
The last conclusion is a consequence of Proposition 2.14. �

Lemma 4.6. For every ε > 0, there exists

σ̃ ∈ C(W1,p(Ω)× Sk−1; W1,p(Ω))

such that for every (u, x) ∈W1,p(Ω)× Sk−1

(1) ‖σ̃(u, x)− uSx‖ < ε,
(2) there exists m > 1 and H1, . . . , Hm ∈ HSx such that

σ̃(u, x) = uH1...Hm ,

(3) σ̃(−u,−x) = −σ̃(u, x).

Proof. By the previous lemma, for any u ∈W1,p(Ω), there exists tu > 0
such that for every t > tu and x ∈ Sk−1,

‖σ̄(u, t, x)− uSx‖ 6 ε/3.
The space W1,p(Ω) with the norm of Lp(Ω) is a metric space. It is
thus paracompact and there is a locally finite partition of the unity
(%v)v∈W1,p subordinate to the covering {B(u, ε/3)}u∈W1,p(Ω) [22]. For
every u ∈W1,p(Ω), let

θ(u) =
1
2

∑

v∈W1,p(Ω)

(%v(u) + %v(−u))tv.

It is clear that θ is continuous and even. For (u, x) ∈W1,p(Ω)× Sk, let

σ̃(u, x) = σ̄(u, x, θ(u)).

For every u ∈W1,p(Ω), there exists v ∈W1,p such that tv 6 θ(u) and
either ‖v−u‖p 6 ε/3, or ‖v− (−u)‖p 6 ε/3. If ‖v− (−u)‖p 6 ε/3, then
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using successively Proposition 2.14, Proposition 2.11 and the properties
of v, we obtain

‖σ̃(u, x)− uSx‖p
= ‖σ̄(u, x, θ(u))− uSx‖p = ‖σ̄(−u,−x, θ(u))− (−u)S−x‖p

6 ‖σ̄(−u,−x, θ(u))− σ̄(v,−x, θ(u))‖p
+ ‖σ̄(v,−x, θ(u))− vS−x‖p + ‖vS−x − (−u)S−x)‖p 6 ε.

Similarly ‖σ̃(u, x)− uSx‖p 6 ε whenever ‖v − u‖p 6 ε/3.
The other conclusions follow easily from the properties of σ̄. �

Proposition 4.7. Let A ⊂ W1,p(Ω). If there exists an odd mapping
h ∈ C(A,Sk−1), then for every ε > 0, there exists σ ∈ C(A,W1,p(Ω))
such that for every u ∈ A

(1) ‖σ(u)− uSh(x)‖ < ε,
(2) there exists m > 1 and H1, . . . , Hm ∈ HSx such that

σ(u) = uH1...Hm ,

(3) σ(−u) = −σ(u).

Proof. For every u ∈ A, let σ(u) = σ̃(u, h(u)), where σ̃ is given by the
previous lemma. The properties of σ follow from the properties of σ̃ and
h. �

4.3. Minimax theorem with symmetry information

If ϕ is an even functional of class C1 on a closed symmetric C1,1-
submanifold M of the Banach space V . For any ` 6 γ(M),

F` = {A ∈ A : A ⊂M,γ(A) > `} .
Consider the values

β` = inf
A∈F`

sup
u∈A

ϕ(u).

If the functional ϕ satisfies the Palais–Smale condition at the level β`
and

1 6 ` 6 γ̂(M) = sup {γ(K) : K ⊂M is compact and symmetric}
then there is a critical point u ∈M such that ϕ(u) = β` [26].
Theorem 4.8. Let Ω = Ω′×Ω′′ ⊂ RN be open, with Ω′ ⊂ Rk invariant
under O(k). Let ` 6 k. Let M ⊂W1,p(Ω)\{0} be a complete symmetric
C1,1-manifold. Suppose ϕ ∈ C1(M) is an even functional that satisfies
the Palais–Smale condition at the level β`, and is bounded from below
on M . Also suppose that if H ∈ H, {0} × RN−k ⊂ ∂H and u ∈ M ,
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then uH ∈M and ϕ(uH) 6 ϕ(u). If ` 6 k, then there is a critical point
u ∈M and x ∈ Sk−1 such that ϕ(u) = β` and uSx = u.

Proof. The theorem is proved by Struwe without the conclusion uSx = u
[26]. By a close inspection of his proof, for each sequence (An)n>1 of
F` such that supu∈An ϕ(u) → β`, up to a subsequence of the sequence
(An)n>1, there exists a sequence (un)n>1 in M such that un ∈ An,
un → ū, ϕ(un)→ β` and ū is a critical point.

By Proposition 4.3, we can find a sequence (An)n>1 ⊂ F` such that
γ(An) = ` and supu∈An ϕ(u) → β`. Since ϕ decreases by polarization,
by Proposition 4.7, we can take A′n = σ(An) with ε = 1/n, so that
for each u ∈ A′n, there exists xn ∈ Sk−1 such that ‖u − uSxn‖p <
1/n. Since supu∈A′n ϕ(u) 6 supu∈An ϕ(u) and γ(A′n) > γ(An), there
exists a sequence (un)n>1 such that un ∈ A′n, un → u, ϕ(un) → β` and
u is a critical point of ϕ. Moreover, for each n there exists xn such
that‖un − uSxn‖p < 1/n. Up to a subsequence, xn → x ∈ Sk−1, so that
‖u− uSx‖p = 0. �

For an application, let f ∈ C(Ω×R) such that
(f1) there is C > 0 and 1 6 p 6 (N +2)/(N −2) such that for every

(x, s) ∈ Ω×R, f(x, s) 6 C(1 + |s|p),
(f2) for every (x, t) ∈ Ω×R, f(x, s)s < 0,
(f3) for every (x, t) ∈ Ω×R, f(x,−s) = −f(x, s).

Let F (x, s) =
∫ s

0 f(x, σ) dσ.
First consider the functional

ϕ : W1,2
0 (Ω)→ R : u 7→ 1

2

∫

Ω
F (x, u) dx

restricted to the set M = {u ∈W1,2
0 (Ω) : ‖∇u‖22 + λ‖u‖22 = 1}. Let λ0

denote the first eigenvalue of −∆ with Dirichlet boundary conditions.
Theorem 4.9. Let Ω be as before. For 0 6 ` 6 k and λ > −λ0(Ω),
the functional ϕ has a critical point u` such that ϕ(u`) = β` and u` is
invariant by the symmetrization with respect to Sx, for some x ∈ Sk−1.

Proof. Since λ > −λ0(Ω), M is a C1,1 manifold in W1,2
0 (Ω). The

functional ϕ is even, satisfies the Palais–Smale condition at any level
c 6= 0 and is bounded from below (see Rabinowitz [20]). Since by
(f3), ϕ(u) < 0 for u 6= 0, then β` < 0. Furthermore, if u ∈ M , then
uH ∈W1,2

0 (Ω) and ‖uH‖Lp(Ω) = ‖u‖Lp(Ω) = 1. Therefore, the conclusion
follows from Theorem 4.8. �

Since uSx = u for some x ∈ Sk−1, the function u depends onN−k+2,
variables: u(y, z) = u(|y|, x ·y, z). In particular, when k = N , Ω is a ball
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or an annulus, u depends on two variables. (Similar results were proved
by Smets and Willem [23].)

Similarly we can consider the functional associated to a Neumann
problem

ϕ : W1,2(Ω)→ R : u 7→
∫

Ω
F (x, u) dx

restricted to the set M = {u ∈W1,2(Ω) : ‖∇u‖22 + λ‖u‖22 = 1}.
Theorem 4.10. Let Ω be as before. For 0 6 ` 6 k and λ > 0, the
functional ϕ has a critical point u` ∈M such that ϕ(u`) = β` and u` is
invariant by the symmetrization with respect to Sx, for x ∈ Sk−1.

The restriction ` 6 k of Theorems 4.9, and 4.10 seems natural when
one considers the particular case f(x, s) = −s. If Ω is a sufficiently
thin annulus, then the critical points associated to βN+1 are of the form
u(|x|)H(x/|x|), where u is a fixed function and H is a spherical har-
monic of order two. Among the spherical harmonics, there are the zonal
harmonics, which are invariant under O(N − 1), but there is also the
function H(x) =

∑N−1
i=1 ix2

i −N(N − 1)x2
N/2. The latter has a discrete

symmetry group. Since some of the critical points associated to βN+1

are nonsymmetric in the linear case, it is quite possible that for some
nonlinear problems the critical points at the level βN+1 are not invariant
under any N − 1-dimensional spherical cap symmetrization. The same
kind of heuristic arguments can be developed for βk+1 when k < N .
(The analysis of the symmetry of critical points obtained by the linking
theorem lead to similar considerations [30].)
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CHAPTER IV

Anisotropic Symmetrization

1. Introduction

A symmetrization transforms functions into more symmetrical func-
tions. This transformation preserves or decreases some integral function-
als. This is useful to enquire about minimizers of a functional, which
can then be sought among symmetrical functions. For example, consider
the functional I, defined on W1,p

0 (Ω) by

I(u) =

∫
Ω |∇u(x)|p2 dx(∫
Ω |u(x)|q dx)

p
q

.

If Ω = B(0, 1), then the Schwarz symmetrization ·? maps any nonnega-
tive function u to a radial function u?(x) = v(|x|2), where v : R+ → R+

is a nonincreasing function, such that I(u?) 6 I(u). Therefore one can
search for a minimizer among radial functions.

The symmetrization of functions remains possible whenever Ω has
less symmetry. For example, if Ω = B(0, 1) × RN−k ⊂ RN , then the
Steiner symmetrization of u, also denoted by ·? is a function u? such
that I(u?) 6 I(u) and u(x′, x′′) = v(|x|2 , x′′) for some function v : R+×
RN−k → R that does not increase with respect to its first argument.

The anisotropic symmetrization is a symmetrization adapted to an-
isotropic variational problems. In those problems, the function of the
gradient in the functional does not depend on the euclidian norm, but on
another positively homogeneous function H : RN → R+. Anisotropic
problems have in general too small symmetry groups to obtain symme-
try from uniqueness arguments as it is possible in the isotropic case.
Therefore symmetrization seems to be the most natural way to prove
symmetry of minimizers of anisotropic functionals.

Anisotropic problems arose at the beginning of the twentieth century
in Wulff’s work on crystal shapes and minimization of anisotropic surface

83
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tensions. He considered the minimization problem

min
LN (Ω)=1

∫

∂Ω
H(ν) dσ,

among sufficiently regular domains Ω, and computed the solution whose
optimality was proved by Dinghas and Taylor:

Ω =
{
x ∈ RN : H◦(−x) 6 1

}
, H◦(x) = sup

t∈RN\{0}

〈t, x〉
H(t)

.

This model explains the polyhedral shape of many crystals. The struc-
ture of the functional and of the solution are not the same, but are
dual. A Schwarz anisotropic symmetrization was constructed for non-
linear variational problems by Alvino, Ferone, Lions and Trombetti [3]
with the same duality relation. They proved Pólya–Szegő and Hardy-
Littlewood inequalities for non-partial anisotropic symmetrizations.

In this paper, we study anisotropic symmetrization associated to a
homogeneous convex function G and its associated inequalities. Such hy-
potheses appear in other frameworks in the works of Taylor, Busemann,
and Dacorogna and Pfister [9, 12, 24]. Our main objective is to define
and understand partial anisotropic symmetrizations that generalize the
convex symmetrization of Alvino, Ferone, Lions and Trombetti [3].

For any nonnegative measurable function u : RN → R̄+ whose
positive sublevel sets have finite measure and for any convex function
G ∈ H(Rk), a unique function u∗ : RN → R̄+ is defined such that
u∗(x′, x′′) = v(G(−x′), x′′), for any x′ ∈ Rk and x′′ ∈ RN−k, where
the function v : R+ × RN−k → R̄+ decreases with respect to its first
argument and such that for any c > 0 and x′′ ∈ RN−k,

LN−k({x′ : u∗(x′, x′′) > c
}

) = LN−k({x′ : u(x′, x′′) > c
}

)

(See the beginning of section 2 for precision on the notations.) This func-
tion u∗ is the anisotropic symmetrization of u with respect to G. This
transformation is a rearrangement in the sense of [6, 26]. Therefore all
classical integral inequalities follow easily, e.g. for any Borel measurable
function f : R×RN−k → R+ such that f(0, ·) = 0,

∫

RN

f(u∗, x′′) dx =
∫

RN

f(u, x′′) dx.

Similarly, ·∗ is a contraction in Lp spaces (and many other spaces, see
Proposition 2.29). The definitions and basic properties of the anisotropic
symmetrizations are the object of section 2.
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Section 4 is devoted to convolution inequalities for the anisotropic
symmetrization of the form
∫

RN

∫

RN

u(x) v(y)w(x− y) dx dy

6
∫

RN

∫

RN

u∗(x) v∗(y)w∗(x− y) dx dy.

The conclusion is that such inequalities can occur only when the re-
arrangement is made with respect to an euclidian gauge (Propositions 4.2
and 4.4). The same arguments show that the full Riesz–Sobolev re-
arrangement inequality does not hold for the spherical cap symmetriza-
tions and the polarizations (Corollary 4.3). The proof of Proposition
4.4 uses dual characterizations of symmetrized functions studied in sec-
tion 3: For example if, for any ϕ ∈ K+(RN ),

∫

RN

ϕudx 6
∫

RN

ϕ∗u dx ,

then u = u∗ almost everywhere (Lemma 3.1). The case where u is a
measure is also investigated (Lemma 3.3).

Even if convolution inequalities do not hold for the anisotropic sym-
metrization, if ϕ∗ = −(−ϕ)∗ and ϕ is the Fenchel transform of ϕ (Defi-
nition 5.1), there are Klimov inequalities of the form

∫

Ω
ϕ∗(x

′′, u∗(x),∇u∗(x)) dx 6
∫

Ω
ϕ(x′′, u(x),∇u(x)) dx,

(Theorem 6.9). In this inequality only the gauge G appears, but the
dual of Wulff’s crystal is embedded inside the Fenchel transform.

The Pólya–Szegő inequality for anisotropic symmetrization can be
stated as∫

Ω
J(x′′, u∗,H(∇′u∗),∇′′u∗) dx 6

∫

Ω
J(x′′, u,H(∇′u),∇′′u) dx.

where J is convex with respect to its last two variables and G = H◦
(Theorem 6.8). The left-hand side is not necessarily convex in ∇u, since
H is not convex in general, but it is convex on the subset of gradients
of symmetrized functions.

These results emphasize the local character of symmetries of crystals
in contrast with the long-range of isotropic symmetry. Physically, this
could be the fact that we observe anisotropic symmetries for crystals,
whose energy is mainly an interface energy, but not for stars, whose
energy depends of long-distance (gravitational) interaction terms.



86 IV. ANISOTROPIC SYMMETRIZATION

The proof of these inequalities consists a generalization of an aniso-
tropic inequality for Steiner symmetrization of Klimov [17] (section 5),
followed by a change of variable in order to return to anisotropic func-
tionals (section 6). The high degree of generality of the proof makes it
appealing even for the isotropic symmetrization.

Applications of the previous inequalities are given as an anisotropic
isoperimetric inequality (Theorem 7.2) and optimal constants for Sobolev
and Hardy-Sobolev inequalities (Propositions 7.3 and 7.5). Finally, the
existence and symmetry of solutions of two model anisotropic variational
problems is showed (Propositions 7.6 and 7.9).

The definition of symmetrization is interesting also in the isotropic
case because of its good pointwise behavior. As symmetrizations of sets
were originally defined from compact sets to compact sets, they were
nonexpansive mappings with respect to the Hausdorff distance. The
symmetrization inequalities of Sarvas [22] for condensers or capacitors,
defined by a compact set and an open set, required the extension of sym-
metrizations to open sets. Any extension to measurable sets, was only
defined on almost every hyperplane. The use of Lebesgue’s outer mea-
sure gives a precise definition of the symmetrized set which was needed
in this paper since the Fenchel transform is sensitive to modifications on
sets of measure zero.

This paper also clarifies the relationship between the different sym-
metrization inequalities by giving examples of symmetrizations for which
Pólya-Segő and Klimov inequalities hold but Riesz–Sobolev rearrange-
ment inequalities do not hold.

2. Definition and properties of symmetrizations

In this section, the symmetrization with respect to a gauge is defined.
Its basic properties, similar to those of the classical rearrangements, are
studied.
Notation 2.1. For f : X → R̄ and c ∈ R̄, let

{f < c} = {x ∈ X : f(x) < c} .
The characteristic function of a set A is denoted χA. The N–dimensional
outer Lebesgue measure is denoted LN . The extended set of real num-
bers is R̄ = R ∪ {+∞,−∞}. The set of compactly supported contin-
uous functions is denoted K(RN ), while D(RN ) is the set of smooth
functions with compact support. The subscript + denotes the subset
of nonnegative functions of a function space. For 0 6 k 6 N and
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x = (x1, . . . , xN ) ∈ RN , let x′ = (x1, . . . , xk) and x′′ = (xk+1, . . . , xN ).
Similarly, let ∇′u = (∇u)′ and ∇′′u = (∇u)′′.

Definition 2.2. Let X be a vector space. The function H : X → R
belongs to H(X) if
(1) if x ∈ X and λ > 0, then H(λx) = λH(x),
(2) if x ∈ X and x 6= 0, then H(x) > 0,
(3) H is lower semi-continuous.

Definition 2.3. The polar transform of H ∈ H(Rk) is

H◦ : Rk → R : H◦(t) = sup
x∈Rk

〈t, x〉
H(x)

,

where 〈t, x〉 =
∑k

i=1 tixi.

Definition 2.4. The function G : Rk → R is a gauge if G ∈ H(Rk)
and G is convex. For any gauge G, let

KG = k

√
Lk({G(−·) < 1})

ωk
,

where ωk = Lk(B(0, 1)) is the volume of the unit ball in Rk.

Remark 2.5. Any gauge G is a continuous function, and 0 < KG <∞.

Example 2.6. If H ∈ H(Rk), its polar transform H◦ is a gauge.

Definition 2.7. Let G : Rk → R+ be a gauge. The anisotropic sym-
metrization (called convex symmetrization in [3]) of the set A ⊆ Rk

with respect to G is the set

A∗ =
{
x ∈ Rk : G(−x) < K−1

G

(Lk(A)
ωk

)1/k
}
.

Remark 2.8. The set A∗ is chosen among the sets ({G(−x) < r})06r6∞
so that Lk(A∗) = Lk(A). The set A does not have to be measurable.

Definition 2.9. Given a decomposition of RN = L × T , and a gauge
G : L → R+, the (G,L, T )–anisotropic symmetrization of the set A ⊂
RN , is the unique set A∗ such that, for all x′′ ∈ T ,

[A∗]x′′ = [A]x′′
∗,

where [B]x′′ = {x′ ∈ L : (x′, x′′) ∈ B} and the symmetrization on the
right-hand side comes from Definition 2.7.

The symmetrization of a finite-measure set A ⊂ RN with respect to
a gauge G : Rk → R+ is the (G,Rk × {0} , {0} × RN−k)–anisotropic
symmetrization of A.
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Remark 2.10. Even when A is measurable, [A]x′′ is not measurable in
general. Therefore Definition 2.7 embraces nonmeasurable sets.

Remark 2.11. The result A∗ of the anisotropic symmetrization with re-
spect to the gauge G has a cylindrical geometry:

(2.1) A∗ =
{

(x′, x′′) ∈ RN : G(−x′) < K−1
G

(Lk([A]x′′)
ωk

)1/k
}
.

Example 2.12. The (k,N)–Steiner symmetrization with respect to the
subspace T ⊆ RN , is the (G,T⊥, T )–anisotropic symmetrization, where
G : x′′ 7→ |x′′|2. The Steiner symmetrization with respect to RN is the
Schwarz symmetrization (see e.g. [4, 6, 22]).

Example 2.13. If G : RN → R+ is a gauge and is an even function,
then the anisotropic symmetrization with respect to G is the convex
symmetrization with respect to G of Alvino, Ferone, Lions and Trom-
betti [3].

The following proposition summarizes the properties of anisotropic
symmetrization of sets.
Proposition 2.14. Let ·∗ be a (G,L, T )-anisotropic symmetrization on
RN .
(1) (Monotonicity) If A ⊆ B ⊆ RN , then A∗ ⊆ B∗.
(2) (Interior continuity) If (An)n∈N is an increasing sequence of subsets

of RN (i.e. An ⊆ An+1), then( ⋃

n∈N

An

)∗
=
⋃

n∈N

A∗n.

(3) (Preservation of measure) If A ⊂ RN is measurable, then A∗ is
measurable and LN (A) = LN (A∗).

(4) If A ⊂ RN is open, then A∗ is open.

Remark 2.15. Whereas the continuity of symmetrization held in previous
works only up to sets of zero measure [6, 22], this definition ensures
interior continuity. The exterior continuity (Property (2) with reversed
inclusions) still holds up to sets of zero measure, but it is not used in the
sequel. This property was true already for the definitions of the Schwarz
symmetrization which mapped all sets to open sets (see e.g. [18]).

Remark 2.16. Part (3) remains true when A is not measurable if T =
{0}, by definition of the anisotropic symmetrization. If T 6= {0}, then
part (3) implies LN (A∗) 6 LN (A), and for some nonmeasurable sets
A ⊂ RN , the inequality is strict.
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Proof. The notations of Definition 2.9 are used throughout the proof.
Part (1) comes from the monotonicity of outer measures: for any x′′ ∈ T ,
since [A]x′′ ⊂ [B]x′′ , Lk([A]x′′) 6 Lk([B]x′′), and [A∗]x′′ ⊂ [B∗]x′′ . It is
then clear that A∗ ⊂ B∗.

If (An) is any sequence satisfying the hypotheses of (2), for any
x′′ ∈ T , by an elementary property of Lebesgue’s outer measure,

lim
n→∞L

k([An]x′′) = Lk(∪n∈N[An]x′′) = Lk([A]x′′).

(This is a consequence of monotonicity and countable subadditivity of
outer measures, see e.g. [14, 2.1.5] for a proof.) Since the sequence
([An]x′′)n∈N is increasing, by Definition 2.7, ∪n∈N([An]x′′

∗) = [A]x′′
∗.

By Definition 2.9, ∪n∈NAn
∗ = A∗.

Part (3) is a consequence of Remark 2.11 and of Fubini’s Theorem
(see e.g. [14, 2.6.2]):

LN (A∗) =
∫

T
Lk([A]x′′

∗) dx′′ =
∫

T
Lk([A]x′′) dx′′ = LN (A).

Part (4) relies on Remark 2.11. If the set A is open, the right-hand
side of the inequality inside (2.1) is lower semi-continuous, whence the
symmetrized set A∗ is open. �

Following [6, 26, 27], the symmetrization is extended from sets to
functions.
Definition 2.17. The (G,L, T )–anisotropic (decreasing) symmetriza-
tion ·∗ of a function u : RN → R̄ is

u∗ : RN → R̄ : x 7→ u∗(x) = sup
{
c ∈ R̄ : x ∈ {u > c}∗} .

Remark 2.18. Since χ(A∗) = (χA)∗, the symmetrization of functions is
an extension of the symmetrization of sets.

Notation 2.19. For a function u and a sequence of functions (un)n∈N

from a set X to R̄, we write un ↗ u if for all x ∈ X, limn→∞ un(x) =
u(x) and for all n ∈ N, un(x) 6 un+1(x). Similarly, ϕn ↘ ϕ if −ϕn ↗
−ϕ.

The simplest properties of symmetrization of functions are conse-
quence of the corresponding properties of symmetrization of sets [6,26].
Proposition 2.20. Let ·∗ be a (G,L, T )-anisotropic symmetrization.

(1) For any u : RN → R̄,

u∗(x) = sup {c ∈ R : x ∈ {u > c}∗} .
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(2) For any c ∈ R̄ and u : RN → R̄,

{u > c}∗ = {u∗ > c}.
(3) Let u, v : RN → R̄. If u 6 v, then u∗ 6 v∗.
(4) If (un)n∈N is a sequence of functions from RN to R̄, and un ↗ u,

then

un
∗ ↗ u∗.

Remark 2.21. Part (1) is Hildén’s definition of the Schwarz symmetriza-
tion of a function.

Remark 2.22. Part (2) means that if ·∗ is the (G,L, T )-symmetrization,
the hypograph of the symmetrization is the symmetrization of the hy-
pograph:
{

(x, c) ∈ RN ×R : u∗(x) > c
}

=
{

(x, c) ∈ RN ×R : u(x) > c
}∗
.

(The symmetrization on the right-hand side is the (G,L×{0} , T ×R)-
anisotropic symmetrization in RN ×R.) This is essentially Pólya and
Szegő’s definition of the symmetrization of a function [21].

Remark 2.23. Part (2) implies in particular that if u(x) > c for almost
every x ∈ RN , then u∗(x) > c for all x ∈ RN . If the function u does
not take the value −∞, neither does its symmetrization u∗.

Remark 2.24. The equality of sets in part (2) holds pointwise. This is not
the case for most of the usual definitions of rearrangements, for which
the equality in part (2) holds only up to a set of zero measure. This
comes from the fact our definition of symmetrization ensures interior
continuity in a pointwise sense.

Part (2) holds with the strict inequality sign, but not with the non-
strict inequality (if u∗ is a nonconstant continuous function, then for
some c the set {u∗ > c} is closed, while {u > c}∗ is not closed).

Remark 2.25. In part (4), limn→∞ un(x) = u(x) holds everywhere. That
is crucial in section 5, since the Fenchel transform is continuous for
increasing sequences converging everywhere.

Proof of Proposition 2.20. Part (3) is a consequence of the monotonicity
of the anisotropic symmetrization.

For part (1), let ũ(y) denote the right-hand side of the inequality.
It is clear from monotonicity of the symmetrization that for any ε > 0,
u∗(y) 6 ũ(y) 6 (u+ ε)∗(y) = u∗(y)+ε. The conclusion follows as ε→ 0.
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By the interior continuity of the symmetrization of sets (Proposi-
tion 2.14), for any c ∈ R,

{u > c}∗ ⊆ {u∗ > c}

⊆
⋃

n∈N

{u > c+ 1
n}
∗ =

( ⋃

n∈N

{u > c+ 1
n}
)∗

= {u > c}∗.

The proof is the same for c = −∞, provided c+ 1/n is replaced by −n,
while for c = +∞, both sides are the empty set. This proves part (2).

Part (4) is a consequence of the interior continuity of symmetriza-
tion of sets (Proposition 2.14, part (2)) and of the description of the
symmetrization of a function of part (2). �

Remark 2.26. The proof of Proposition 2.20 only relies on the corre-
sponding properties for the symmetrization of sets (Proposition 2.14,
parts (1) and (2)).

The preservation of measure for the symmetrization of sets has as
counterpart integral equalities and inequalities for the symmetrization of
functions. A natural class for studying integrals is the class of functions
vanishing at the infinity (see Lieb and Loss [18]). This class contains the
functions spaces Lp(RN ) and C0(RN ) (continuous functions such that
lim|x|2→∞ u(x) = 0).

Definition 2.27. A measurable function u : RN → R̄ vanishes at the
infinity with respect to a k–dimensional linear subspace L ⊂ RN if for
all c > 0 and x ∈ RN , Lk({u > c} ∩ (L + x)) < ∞. We also say
that u vanishes at the infinity with respect to the (G,L, T )–anisotropic
symmetrization.

Proposition 2.28. (Cavalieri principle) Let ·∗ be the anisotropic sym-
metrization with respect to a gauge G : Rk → R+.
If u : RN → R̄+ vanishes at the infinity with respect to ·∗ and f :
R×RN−k → R̄+ is a Borel measurable function such that f(0, x′′) = 0
for almost every x′′ ∈ RN−k, then

∫

RN

f(u∗, x′′) dx =
∫

RN

f(u, x′′) dx.

(Hardy-Littlewood inequality)Let F : R × R × RN−k → R be a
function such that

(i) F (s, t, ·) is measurable for every (s, t) ∈ R×R,
(ii) F (·, ·, x′′) is continuous for almost every x′′ ∈ T ,
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(iii) for almost every x′′ ∈ RN−k, and for any a, b, c, d ∈ R, if a 6 b,
c 6 d,

F (a, c, x′′) + F (b, d, x′′) > F (a, d, x′′) + F (b, c, x′′),

If u, v are nonnegative measurable functions defined on RN and if the
functions F (u, 0, x′′), F (0, v, x′′) and F (u, v, x′′) are summable, then

∫

RN

F (u, v, x′′) dx 6
∫

RN

F (u∗, v∗, x′′) dx.

Proof. The result is true without any dependence on x′′ (see [20, 26]).
For any x′′, there holds∫

RN−k
f(u∗(x′, x′′), x′′) dx′ =

∫

RN−k
f(u(x′, x′′), x′′) dx′.

Since f is a Borel measurable function, f(u(·), ·) is measurable and is
almost everywhere equal to a Borel measurable function. The result
comes from the application of Fubini’s Theorem.

For the second inequality uses the fact that F is a Carathédory
function and that such functions are almost everywhere equal to a Borel
measurable function. The conclusion comes from the corresponding in-
equality in [10,27] and Fubini’s Theorem. �

Proposition 2.29. Let ·∗ be the anisotropic symmetrization with re-
spect to G and g : R × RN−k → R̄+. Suppose that for almost every
x′′ ∈ RN−k, g(·, x′′) is a convex and lower semi-continuous function
and g(0, x′′) = 0, and that for all s ∈ R, g(s, x′′) is measurable. If u and
v are measurable functions, then∫

RN

g(u∗(x)− v∗(x), x′′) dx 6
∫

RN

g(u(x)− v(x), x′′) dx.

For any 1 6 p 6 +∞ and for any measurable functions u and v,

‖u∗ − v∗‖p 6 ‖u− v‖p .
Remark 2.30. There are no integrability assumptions in this Proposition.

Proof. By Fubini’s Theorem, we have to prove∫

Rk

∫

RN−k
g(u∗ − v∗, x′′) dx 6

∫

Rk

∫

RN−k
g(u− v, x′′) dx.

The inequality will be proved for the interior integral. Without loss of
generality we can thus assume k = N and g(s, x′′) = g(s). Let

c = inf
{
s : LN ({u > s}) <∞} d = inf

{
s : LN ({v > s}) <∞}
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If g(c − d) > 0, then, without loss of generality, we can assume
that c > d. By definition of c and d, for any ε > 0, LN ({v > d +
ε}) < +∞ and LN ({u > c − ε}) = +∞, hence the measure of the set
Ωε = {u > c− ε} ∩ {v 6 d+ ε} is infinite. Furthermore, for any x ∈ Ωε,
u(x)− v(x) > c− d− 2ε. Since g is convex and g(0) = 0, it is increasing
on R+. Hence, for ε 6 c−d

2 ,

(2.2) g(u(x)− v(x)) > g(c− d− 2ε).

Since g is lower semi-continuous, the right-hand side of (2.2) is positive
for sufficiently small ε. This means

∫

RN

g(u(x)− v(x)) dx = +∞.

The inequality is then trivial.
If g(c − d) = 0, without loss of generality we can assume that c =

d = 0. If g is continuous, the function F : (s, t) 7→ −g(s− t) verifies the
hypotheses of the last part of Proposition 2.28. If un = min(n,max(u−
1/n, 0)), and vn = min(n,max(v − 1/n, 0)), then g(un), g(−vn) and
g(un − vn) are summable and, by Proposition 2.28,

∫

RN

g(u∗n(x)− v∗n(x)) dx 6
∫

RN

g(un(x)− vn(x)) dx.

Furthermore, un ↗ u+, vn ↗ v+ and g(un−vn)↗ g(u+−v+) 6 g(u−v),
whence un

∗ ↗ u∗, and vn
∗ ↗ v∗. Moreover, lim infn→∞ g(un∗(x) −

vn
∗(x)) > g(u∗(x) − v∗(x)) since g is continuous. Fatou’s Lemma and

Levi’s monotone convergence Theorem bring the conclusion. If g is not
continuous, it can be approximated by an increasing sequence of contin-
uous convex functions and Levi’s monotone convergence Theorem gives
the conclusion.

The second part is a consequence of the first part, with g = |t|p if
1 6 p < +∞. If p = +∞, let g(t) = 0 for t 6 ‖u− v‖∞ and g(t) = +∞
else. �

The anisotropic symmetrizations can be defined for functions which
are defined on totally invariant sets.
Definition 2.31. A set Ω ⊂ RN is totally invariant with respect to a
hyperplane L if Ω + L = Ω. The set Ω is totally invariant with respect
to the (G,L, T )-anisotropic symmetrization if it is totally invariant with
respect to L.

A function f : RN → R̄ is totally invariant with respect to a hyper-
plane L if f(x+ l) = f(x) for any l ∈ L.
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If Ω is totally invariant with respect to the (G,L, T )-anisotropic
symmetrization ·∗, then for any A ⊂ RN , (A ∩ Ω)∗ = A∗ ∩ Ω.
Definition 2.32. If ·∗ is an anisotropic symmetrization, Ω is totally
invariant with respect to ·∗, then the symmetrization of u : Ω → R̄ is
u∗ = ũ∗|Ω, where ũ denotes an extension of u to RN .

The definition of u∗ does not depend on the extension ũ. All the
previous results remain valid with Ω in place of RN , provided the set Ω
is measurable for the integral inequalities.

The increasing symmetrization is a natural counterpart to the de-
creasing symmetrization.
Definition 2.33. The (G,L, T )–anisotropic increasing symmetrization
of a function ϕ : RN → R̄ is

ϕ∗(y) = inf {s ∈ R : y ∈ {ϕ < s}∗} .
The increasing and decreasing anisotropic symmetrization are essen-

tially the same transformation.
Proposition 2.34. For any function ϕ : RN → R̄,

ϕ∗(y) = −(−ϕ)∗(y).

Remark 2.35. This means that all the properties of the decreasing sym-
metrization are true for the increasing symmetrization up to obvious
modifications.

Proof. For any y ∈ RN ,
ϕ∗(y) = inf {s ∈ R : y ∈ {ϕ < s}∗}

= − sup {c ∈ R : y ∈ {ϕ < −c}∗}
= − sup {c ∈ R : y ∈ {−ϕ > c}∗} = −(−ϕ)∗(y). �

3. Dual characterization of symmetrized functions

This section is devoted to dual characterizations of symmetrized
functions that are used in the proof of Proposition 4.4.
Lemma 3.1. Let ·∗ be an anisotropic symmetrization and u ∈ L1

+(RN ).
If for any compact set K ⊂ RN ,

(3.1)
∫

K
u dx 6

∫

K∗
u dx,

then u = u∗ almost everywhere.
If, for any ϕ ∈ K+(RN ),

(3.2)
∫

RN

ϕudx 6
∫

RN

ϕ∗u dx,
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then u = u∗ almost everywhere.

Remark 3.2. This Lemma is reminiscent of the bathtub principle and of
the necessary condition of equality of the Hardy-Littlewood inequality
(see [18]).

Proof. If the inequality (3.1) holds for any compact set K, then it holds
also for any measurable set B by interior continuity of the anisotropic
symmetrization and by Levi’s monotone convergence Theorem. The
inequality (3.1) is equivalent to

(3.3)
∫

B\B∗
u dx 6

∫

B∗\B
u dx,

for any measurable set B. For c ∈ R, let B = {u > c}. Then the
inequality (3.3) holds if and only if LN (B \ B∗) = 0. The function u
is then almost everywhere equal to a function ũ such that {ũ > c} =
{u > c}∗ = {u∗ > c}. By the characterization of the symmetrization by
sublevel sets (Proposition 2.20), ũ = u∗.

Suppose now that the inequality (3.2) holds for any ϕ ∈ K+(RN ).
Let K ⊂ RN be compact. Let ϕn = χB(0,1/n) ∗ χK , where ∗ denotes
the convolution product. Then ϕn is continuous, ϕn → χK in L1(RN ).
Hence, by Proposition 2.29, ϕn∗ → χK∗ in L1(RN ). Up to a subsequence
ϕn
∗(x) → χB∗(x) and ϕn

∗(x) 6 1 for almost every x ∈ RN . Hence by
Lebesgue’s dominated convergence Theorem, the inequality (3.1) holds,
and the conclusion comes from the first part of the proof. �

Lemma 3.3. Let G : Rk → R+ be a gauge, ·∗ be the anisotropic sym-
metrization with respect to G. Suppose µ is a nonnegative Radon mea-
sure such that for any ϕ ∈ K+(Rk),

∫

Rk

ϕdµ 6
∫

Rk

ϕ∗ dµ.

Then there exists w ∈ L1
+(Rk) and a > 0 such that w = w∗ and

∫

Rk

ϕdµ = aϕ(0) +
∫

Rk

wϕdx.

Proof. Let ψ ∈ D+(B(0, 1)) and ψρ(x) = ψ∗(ρ−1x). Fix x ∈ Rk \ {0}.
For any ρ > 0 and ε > 0, if ρ + ε < |x|2, then (ψρ(· − x) + ψε(·))∗ =
ψ(ρk+εk)1/k . The function f(ρ) =

∫
RN ψρ dµ is smooth on (0,+∞). The
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hypothesis applied to the function ψρ(· − x) + ψε(·) gives
∫

Rk

ψε(· − x) dµ 6
∫

Rk

ψ(ρk+εk)1/k dµ−
∫

Rk

ψρ dµ

6 sup
06ε′6ε

∣∣∣f ′( k
√
ρk + εk)

∣∣∣ ε′k−1

k
√
ρk + ε′k

ε 6 Cxεk,

where Cx is a constant that depends only on x and ρ for ε in a neigh-
borhood of 0. Hence µ is absolutely continuous on Rk \ {0} and by the
Radon-Nikodym Theorem of decomposition of a measure, the support
of the singular part of µ lies in the set {0}. Therefore, there exists a ∈ R
and w ∈ L1(Rk) such that∫

Rk

ψ dµ = aψ(0) +
∫

Rk

w dx

Since w ∈ L1(Rk), for any fixed x 6= 0,

0 = lim
ρ→0

∫

Rk

ψρ(· − x) dµ 6 lim
ρ→0

∫

Rk

ψρ dµ = aψ(0).

Because ψ(0) > 0, a > 0.
Now, let ϕ ∈ K(Rk \ {0}). For sufficiently small ε > 0, it is clear

that (
ϕ+ ϕ∗(

·
ε

)
)∗

= ϕ∗
( ·

(1 + εk)1/k

)
.

Hence,
∫

Rk

(
ϕ(x) + ϕ∗(xε )

)
w(x) dx+ aϕ∗(0) =

∫

Rk

ϕ(x) + ϕ∗(xε ) dµ

6
∫

Rk

ϕ∗
(

x
(1+εk)1/k

)
dµ =

∫

Rk

ϕ∗
(

x
(1+εk)1/k

)
w(x) dx+ aϕ∗(0).

If ε → 0, inequality (3.2) follows. For a general ϕ ∈ K+(Rk), there
exists a sequence (ϕm)m∈N in K+(Rk \ {0}) such that ϕm ↗ ϕ almost
everywhere. As m → ∞, the inequality (3.2) follows. The conclusion
comes from Lemma 3.1. �

4. Riesz-Sobolev rearrangement inequalities

In this section we prove that the Riesz-Sobolev rearrangement in-
equalities do not hold for an anisotropic symmetrizations unless it is the
classical Steiner symmetrization. That is the crucial difference between
Steiner and anisotropic symmetrizations. This justifies the approach of
the following sections for the Pólya-Szegő inequalities.
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If ·? denotes a Steiner symmetrization, the Riesz–Sobolev inequality
(4.1)∫

RN

∫

RN

u(x) v(y)w(x− y) dx dy 6
∫

RN

∫

RN

u?(x) v?(y)w?(x− y) dx dy

holds for any nonnegative functions vanishing at infinity u, v and w (see
Brascamp, Lieb and Luttinger [5], and Lieb and Loss [18]).

Lemma 4.1. Let A ⊂ RN and E ⊂ RN . If E is an ellipsoid, A is
measurable, LN (A) = LN (E), and
∫

R2N

χE(x)χE(y)χE(x− y) dx dy 6
∫

R2N

χA(x)χA(y)χA(x− y) dx dy,

then A is an ellipsoid centered qround the origin up to a set of measure
0.

Proof. Since the inequality remains invariant through affine change of
variables, suppose E = B(0, 1) without loss of generality. Let ·? be the
Schwarz symmetrization. Then A? = B(0, 1) = E? = E. Since the
inequality (4.1) holds for the Schwarz symmetrization,
∫

RN

∫

RN

χE(x)χE(y)χE(x− y) dx dy

6
∫

RN

∫

RN

χA(x)χA(y)χA(x− y) dx dy

6
∫

RN

∫

RN

χA?(x)χA?(y)χA?(x− y) dx dy.

The first and the last term of the inequality are equal. By the work of
Burchard on the necessary conditions for equality in the Riesz–Sobolev
inequality, A is an ellipsoid centered around the origin up to a set of
measure zero [7]. �

Proposition 4.2. If ·∗ is an anisotropic symmetrization and the in-
equality (4.1) holds for any u, v, w ∈ K+(RN ), then G is an euclidian
norm on Rk.

Proof. By standard arguments, the inequality (4.1) holds also for char-
acteristic functions of open sets. Lemma 4.1 with A = B(0, 1)∗ brings
the conclusion. �

The same arguments shows also that the Riesz-Sobolev rearrange-
ment inequality does not hold for the spherical cap symmetrization and
for the polarization (see [4, 22,26] for definitions).
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Corollary 4.3. If ·∗ denotes the spherical cap symmetrization or the po-
larization, the inequality (4.1) does not hold for any u, v, w ∈ K+(RN ).

Proof. Suppose by contradiction that the inequality (4.1) holds for any
u, v, w ∈ K+(RN ). By standard arguments, the inequality (4.1) holds
also for characteristic functions of open sets. By Lemma 4.1, the set E∗
should be an ellipsoid when E is an ellipsoid. This is not the case: for
the spherical cap symmetrization, take e.g. the ellipsoid

{
x ∈ RN :

N∑

i=1

ix2
i

}
< 1

, and for a polarization take an ellipsoid centered on the polarization
plane and which is not symmetric with respect to it. This is possible for
N > 1.

IfN = 1 and the boundary of the polarizing halfspace is {c}, then the
inequality fails for u = χ[2c−1,2c+1], v = χ[−c−1,−c+1] and w = χ[c−1,c+1].

�

The Riesz-Sobolev rearrangement inequality is a strong inequality,
which requires good properties with respect to the convolution product.
For the spherical cap symmetrization or the polarization the weaker
inequality
∫

RN

∫

RN

u(x)v(y)w(|x− y|) dx dy 6
∫

RN

∫

RN

u∗(x)v∗(y)w(|x− y|) dx dy

holds for any u, v ∈ K(RN ) and for any decreasing function w : R+ →
R+ [4,6,26]. This is not the case for nontrivial anisotropic symmetriza-
tion.
Proposition 4.4. Let G : Rk → R+ be a gauge, and ·∗ be the anisotropic
symmetrization with respect to G. Let µ be a nonnegative Radon measure
such that

∫
RN |x|22 dµ < +∞. If the inequality

(4.2)
∫

RN

∫

RN

u(x−y)v(y) dµ(x) dy 6
∫

RN

∫

RN

u∗(x−y)v∗(y) dµ(x) dy.

holds for any u, v ∈ K+(RN ), then either µ is concentrated on Rk×{0}
or G(x′) =

√
x′tAx′ for some positive definite symmetric matrix A ∈

Rk×k. Furthermore, for any u ∈ K+(RN ),

(4.3)
∫

RN

u dµ 6
∫

RN

u∗ dµ.



4. RIESZ-SOBOLEV REARRANGEMENT INEQUALITIES 99

If k = N , then µ = w∗ + aδ0, where w ∈ L1
+(RN ), a > 0 and δ0 is

Dirac’s measure.

Remark 4.5. If µ = w ∈ L1
+(RN ), the condition (4.3) and Lemma 3.1

ensure w = w∗.

Remark 4.6. The inequality (4.2) always hold for measures concentrated
on T . This is a consequence of the Hardy-Littlewood inequality (Propo-
sition 2.28).

Proof. First suppose k = N . Without loss of generality, µ(RN ) = 1.
If (4.2) holds for any u, v ∈ K+(RN ), by density it holds also for any
u ∈ L1

+(RN ) and for any v ∈ K+(RN ). Take u1 ∈ K+(RN ) such that∫
RN u1 dx = 1,

∫
RN u1 |x|22 dx < ∞, and u1

∗ = u1. For n > 1, let
un+1(x) =

∫
RN un(x−y) dµ(y). By Fubini’s Theorem,

∫
RN un+1 dx = 1.

Furthermore, since un ∈ L1(RN ), inequality (4.2) holds with un in place
of u, and then, by Lemma 3.3, un+1

∗ = un+1. Let

x̄ =
∫

RN

x dµ.

Consider the sequence of independent identically distributed random
variables (Xn)n>2 with probability law µ and the independent random
variable X1 with distribution law u1. All Xi have mean x̄ for i > 2. The
function un is the probability distribution of

∑n
i=1Xi. By Lindeberg

and Lévy’s central-limit Theorem (see Stromberg [23]), the sequence
n−1/2

∑n
i=1(Xi − x̄) converges in law to a normal distribution ν with

mean 0, i.e. for any bounded continuous function ϕ : RN → R

(4.4)
∫

RN

ϕ(n−1/2(x− nx̄))un(y) dx→
∫

RN

ϕdν,

where ν is characterized by∫

RN

ϕ(x) dν = (2π)−N/2
∫

RN

ϕ(Mx)e−x
2/2 dx

for some fixed linear operator M : RN → RN . (When M is the identity
one recovers the standard normal distribution. The operator M is not
necessarily invertible.)

For every ϕ ∈ K+(RN ), since un∗ = un, one has

(4.5)
∫

RN

ϕ(n−1/2(x− nx̄))un(y) dx 6
∫

RN

ϕ∗(n−1/2x)un(y) dx.

Since ν(RN ) = 1, there is ϕ ∈ K+(RN ) such that ϕ 6 1 and∫

RN

ϕdν >
1
2
.
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Therefore, for large n both sides of the inequality (4.5) must be strictly
greater than 1/2. Since ∫

RN

un dx = 1,

this implies that the supports of ϕ(n−1/2(· − nx̄)) and ϕ(n−1/2·) have a
nonempty intersection for large n. This is only possible if x̄ = 0.

Since x̄ = 0, letting n→∞ in (4.5) yields, by (4.4),
∫

RN

ϕdν 6
∫

RN

ϕ∗ dν.

In view of Lemma 3.3, either the normal distribution ν is concentrated at
zero, or ν = w ∈ L1

+(RN ), with w(x) = e−xtAx, w = w∗ and A ∈ RN×N
is a positive-definite symmetric matrix. In the first case, this implies
that

∫
RN |x|22 dµ =

∫
RN |x|22 dν = 0, and thus that the support of µ lies

in T . In the second case, w = w∗ means G(x) = λ
√
xtAx for some

λ > 0.
Now, if k < N , let µ̄ denote the projection of µ on Rk, i.e., if ϕ ∈

K(Rk),
∫
Rk ϕdµ̄ =

∫
RN ϕ(x′) dµ. Then the inequality (4.2) holds for µ̄.

By the first part of the proof, either G is euclidian or µ̄ is concentrated
at 0, whence µ is concentrated on {0} ×Rk = T .

For (4.3), take ρ ∈ K+(RN ) with
∫
RN ρ dx = 1 and ρε = ε−Nρ( ·ε).

Inequality (4.2) with v = ρε gives (4.3) as ε→ 0. �

The Riesz–Sobolev type inequalities (4.1) and (4.2) are useful to
prove Pólya–Szegő inequalities (see [4, 18]). Propositions 4.2 and 4.4
show that this is not a valid method for the anisotropic symmetrization.

5. Anisotropic inequalities for Steiner symmetrizations

The objective of this section is to prove that for any Steiner sym-
metrization ·?, any suitable weakly differentiable u and any function
ϕ : RN → R̄+ such that ϕ(0) = 0, the inequality

∫

RN

ϕ?(u
?) dx 6

∫

RN

ϕ(u) dx.

holds. Recall that ϕ? denotes the increasing Steiner symmetrization of
ϕ, i.e. ϕ? = −ϕ(−·)? (see Definition 2.33 and Proposition 2.34). Klimov
proved this inequality for the Steiner symmetrization with respect to a
hyperplane when ϕ : RN → R is convex and even [17]. He suggested
the inequality for a general Steiner symmetrization. We first prove the
inequality for the Steiner symmetrization with respect to a hyperplane
and then extend it to general Steiner symmetrizations.
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Definition 5.1. The Fenchel transform of ϕ : RN → R̄ is

ϕ : RN → R̄ : t 7→ ϕ(t) = sup
x∈RN

〈t, x〉 − ϕ(x).

Remark 5.2. By an abuse of notation, when ϕ comes from a functional
of the form ∫

Ω
ϕ(x, u,∇u) dx,

then ϕ denotes the Fenchel transform and the symmetrization with re-
spect to the gradient coordinates: ϕ(x, s, ·) = ϕ(x, s, ·). The same abuse
of notation is made for the symmetrization: ϕ?(x, s, ·) = (ϕ(x, s, ·))?.
Proposition 5.3. Let ϕ and ψ be functions from RN to R̄. If ϕ 6 ψ,
then ϕ > ψ.
Let (ϕn)n>1 and ϕ be functions from RN to R̄. If ϕn↘ ϕ, then ϕn ↗ ϕ.

Proof. Immediate. �

Definition 5.4. An open set Ω is an extension domain if there exists a
bounded linear operator EΩ : W1,1(Ω)→W1,1(RN ), such that, for each
u ∈W1,1(Ω), (EΩu)|Ω = u.

Example 5.5. A Lipschitz domain is an extension domains [1].

Proposition 5.6 (1–dimensional Steiner symmetrization inequal-
ity for anisotropic functionals). Let ϕ : RN → R̄+ with ϕ(0) = 0.
If T is a (N − 1)–dimensional vector subspace of RN , ·? is the Steiner
symmetrization with respect to T , Ω is an extension domain, Ω is totally
invariant with respect to T and u ∈W1,1

+ (RN ), then

(5.1)
∫

Ω
ϕ?(∇u?) dx 6

∫

Ω
ϕ(∇u) dx.

Remark 5.7. The hypothesis ϕ(0) = 0 ensures ϕ(t) > 0 for t ∈ RN ,
while ϕ > 0 implies ϕ(0) 6 0.

Definition 5.8. A function u : Ω → R is simplicial if it is continuous,
it has a bounded support, and if there exists a finite collection of open
sets (Si)16i6n, such that ũ|Si is an affine function for each 1 6 i 6 n
and u vanishes outside the closure of ∪ni=1Si.

It is standard that if Ω is an extension domain, then simplicial func-
tions are dense in W1,1(Ω) [13, Chapter X, section 2.1]. Furthermore,
simplicial functions with ∂u

∂x1
6= 0 in ∪ni=1Si are also dense in W1,1(Ω).
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Proof of Proposition 5.6. The proof is an adaptation from the proof of
Klimov [17], with modifications allowing more general functions ϕ and
other domains than RN . For simple functions, it relies on the geometric
results in Lemma 5.12 and a coarea formula. The result is extended
by density to non-simplicial functions with some restriction on ϕ and
is finally generalized to any function ϕ by Levi’s monotone convergence
Theorem.
Step 1: u is a simplicial function. Without loss of generality, let
T = {0}×RN−1, and Ω = R×Ω′′. Suppose u ∈W1,1(Ω) is a nonnegative
simplicial function such that ∂1u 6= 0 on

⋃n
i=1 Si. On each set Si, ∇u is

constant. We have thus

∫

Si

ϕ(∇u)dx =
∫

Ω′′

∫

{x1∈R : (x1,x′′)∈Si}
ϕ(∇u) dx1 dx

′′

=
∫

Ω′′

∫n
s>0 : (u|Si∩{(x′′,t) : t∈R})−1({s})6=φ

oϕ(∇u)
|∂1u| ds dx

′′

=
∫

Ω′′

∫

s>0

∑

(x1,x′′)∈(u−1({s})∩Si)

ϕ(∇u(x1, x
′′))

|∂1u(x1, x′′)| ds dx1,

where the sum contains zero or one term. Summing over i gives, since
∇u(x) = 0 for almost all x 6∈ ⋃n

i=1 Si, and ϕ(0) = 0 by Remark 5.7,

∫

Ω
ϕ(∇u)dx =

∫

Ω′′

∫

s>0

∑

(x1,x′′)∈u−1({s})

ϕ(∇u(x1, x
′′))

|∂1u(x1, x′′)| ds dx
′′.

For each x′′ ∈ Ω′′, the sum contains always a finite number of terms (at
most n). Furthermore, the number of terms for which ∂1u(x1, x

′′) > 0
is equal to the number of terms for which ∂1u(x1, x

′′) < 0. Similarly,

∫

Ω
ϕ?(∇u?) dx =

∫

Ω′′

∫

s>0

∑

(x1,x′′)∈u−1(s)

ϕ?(∇u?(x1, x
′′))

|∂1u?(x1, x′′)| ds dx′′

= 2
∫

Ω′′

∫

s>0

ϕ?(∇u?)
|∂1u?|

(
(u?|Ω′′×R+)−1({s})) ds dx′′.
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For all x′′ ∈ Ω′′, the definition of the Steiner symmetrization gives, for
all but a finite number of s ∈ (0, supu(·, x′′)),

2
∇′′u?
|∂1u?|

(
(u?|R+×{x′′})

−1(s)
)

=
∑

(x1,x′′)∈u−1(s)

∇′′u(x1, x
′′)

|∂1u(x1, x′′)| ,

2
1

|∂1u?|
(
(u?|R+×{x′′})

−1(s)
)

=
∑

(x1,x′′)∈u−1(s)

1
|∂1u(x1, x′′)| .

Then by Lemma 5.12, inequality (5.1) holds for u.
Step 2: extension to u ∈ W1,1

+ (Ω). Suppose u ∈ W1,1
+ (Ω) and that

there exists R ∈ R such that ϕ(x) = ∞ if |x|2 > R. Then ϕ(t) 6
|t|2 /R and ϕ?(t) 6 |t|2 /R (since the right-hand side of the inequality
is symmetrization-invariant). The functionals on both sides of (5.1) are
continuous in W1,1(Ω). Since simplicial functions are dense in W1,1(Ω)
and the Steiner symmetrization is continuous in W1,1(Ω) [8], the in-
equality follows.

(Alternatively, the nonexpansiveness of symmetrization in L1(Ω) and
the classical Pólya–Szegő inequality can be used to prove that if un → u
in W1,1(Ω), then un

? ⇀ u? in W1,1(Ω). The inequality comes then
from the weak lower semi-continuity of the left-hand side with respect
to u ∈W1,1(Ω).)
Step 3: general ϕ. For general u ∈W1,1

+ (Ω) and ϕ : RN → R̄+, let

ϕn(x) =

{
ϕ(x) if |x|2 6 n,
+∞ if |x|2 > n

for n > 1. Since ϕn↘ ϕ for x ∈ Ω, Propositions 2.20 and 5.3 imply
ϕn?↘ ϕ?, ϕn ↗ ϕ and ϕn? ↗ ϕ?. The inequality follows by Levi’s
monotone convergence Theorem. �

We now prove Klimov’s geometric Lemma used in the proof of the
inequality for the 1–dimensional Steiner symmetrization. The simplest
case is when ϕ is the indicator function of some set A:

ϕ(x) =

{
0 if x ∈ A,
+∞ if x 6∈ A.

Definition 5.9. The function

δA(t) = ϕ(t) = sup
x∈A
〈t, x〉

is the support function of A.
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Lemma 5.10. Let ·? be the Steiner symmetrization with respect to {0}×
RN−1 and A ⊆ RN . For any a, b ∈ RN−1,

δA(1, a) + δA(−1, b) > δA?(2, a+ b).

Remark 5.11. Klimov proves this result for a convex compact set A. His
representation of the set A = {(x1, x

′′) : h(x′′) 6 x1 6 g(x′′)} is not
anymore valid, but his arguments can be adapted to sets which are not
bounded, measurable and convex.

Proof. For x′′ ∈ RN−1, let

mA(x′′) = inf
{
x1 : (x1, x

′′) ∈ A} ,
MA(x′′) = sup

{
x1 : (x1, x

′′) ∈ A} .

Then

δA(1, a) = sup
x′′∈RN−1

〈a, x′′〉+MA(x′′),

δA(−1, b) = sup
x′′∈RN−1

〈b, x′′〉 −mA(x′′).

The identities hold with A? in place of A. The inequality comes from the
fact that that for all x′′ ∈ RN−1, 2MA?(x′′) = 2mA?(x′′) 6 MA(x′′) −
mA(x′′) by definition of the Steiner symmetrization. �

Lemma 5.12 (Klimov). Let ϕ : RN → R̄, ai, bi ∈ RN−1, αi, βi ∈ R+,
for all 1 6 i 6 m. If α =

∑m
i=1 αi, β =

∑m
i=1 βi, a =

∑m
i=1 ai and

b =
∑m

i=1 bi, then
(5.2)

m∑

i=1

ϕ

(
1
αi
,
ai
αi

)
αi + ϕ

(
− 1
βi
,
bi
βi

)
βi > ϕ?

(
2

α+ β
,
a+ b

α+ β

)
(α+ β).

Proof. Without loss of generality, the left hand side of (5.2) is finite. By
definition of the Fenchel transform,

ϕ(t) = sup
x∈RN

〈t, x〉 − ϕ(x) = sup
x∈{ϕ<λ}
λ∈R

〈t, x〉 − λ

= sup
λ∈R

[
sup

x∈{ϕ<λ}
〈t, x〉 − λ

]
= sup

λ∈R

(
δ{ϕ<λ}(t)− λ

)
.
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Thus for any λ ∈ R,

(5.3)
m∑

i=1

[
ϕ

(
1
αi
,
ai
αi

)
αi + ϕ

(
− 1
βi
,
bi
βi

)
βi

]

>
m∑

i=1

[
δ{ϕ<λ}

(
1
αi
,
ai
αi

)
− λ
]
αi +

[
δ{ϕ<λ}

(
− 1
βi
,
bi
βi

)
− λ
]
βi

=

[
m∑

i=1

δ{ϕ<λ}(1, ai) + δ{ϕ<λ}(−1, bi)

]
− λ(α+ β).

By Lemma 5.10, and since the function δ{ϕ6λ}?(t1, t′′) increases with
respect to t1 when t1 > 0,

m∑

i=1

[
ϕ

(
1
αi
,
ai
αi

)
αi + ϕ

(
− 1
βi
,
bi
βi

)
βi

]

> δ{ϕ<λ}?(2m, a+ b)− λ(α+ β)

> δ{ϕ<λ}?(2, a+ b)− λ(α+ β).

This implies the inequality since, from the first part of the proof and
from Proposition 2.20,

ϕ?(t) = sup
λ∈R

[
δ{ϕ?<λ}(t)− λ

]
= sup

λ∈R

[
δ{ϕ<λ}?(t)− λ

]
. �

We extend the inequality to Steiner symmetrizations with respect to
higher dimensional subspaces by approximation, as suggested by Klimov
[17]. Since the approximation procedure in Hausdorff distance of open
sublevel sets is unusual, we give a complete proof.

Proposition 5.13 (Steiner symmetrization inequality for aniso-
tropic functionals). Let T ⊂ RN be a vector space, Ω a totally invari-
ant extension domain, ·? denote the Steiner symmetrization with respect
to T , u ∈W1,1

+ (Ω) and ϕ : RN → R̄+ such that ϕ(0) = 0. If u vanishes
at the infinity with respect to ·?, and for any M > 0,

(5.4) sup
LN (A)=M

∫

A
|∇u|2 + |u| dx < +∞,

then u? ∈W1,1
loc(Ω) and

(5.5)
∫

Ω
ϕ?(∇u?) dx 6

∫

Ω
ϕ(∇u) dx.



106 IV. ANISOTROPIC SYMMETRIZATION

Remark 5.14. In general, when u ∈ W1,1
loc(Ω), it is not true that u∗ ∈

W1,1
loc(Ω). The condition (5.4) is a slightly stronger than u ∈ W1,1

loc(Ω)
and guarantees that u∗ ∈W1,1

loc(Ω).

Proof. The inequality is established by approximation of the symmetri-
zation for u ∈W1,1

+ (Ω) and ϕ with a finite image, and then extended to
general ϕ and then general u.
Step 1: ϕ has a finite image. First suppose u ∈ W1,1

+ (Ω), ϕ is
lower semi-continuous and coercive, and ϕ has a finite image, i.e. the
set ϕ(RN ) is finite. The conclusion is contained in Proposition 5.6 if
dimT = N − 1. From now on, dimT < N − 1. By classical approxima-
tion results in symmetrization theory [5,6,18,25], there exists a sequence
of (N−1)–dimensional hyperplanes (Tn)n>1 such that, if ·Tn denotes the
Steiner symmetrization with respect to Tn,

(i) for any n > 1, T ⊂ Tn,
(ii) the iterated sequence of symmetrizations un = uT1···Tn converges

to u?:

un ⇀ u? in W1,1(Ω),

un → u? in L1(Ω);

(iii) if A is measurable and A? is bounded and open, then the sequence
of iterated symmetrizations An = AT1···Tn , converges to A? in the
sense that small neighborhoods of An contain A?:

(5.6) lim
n→∞ sup

x∈A?
dist(x,An) = 0.

This last assertion is proved in Lemma 5.16.

Since the function ϕ is lower semi-continuous and lim|t|2→∞ ϕ(t) = +∞,
the set {ϕ < λ} is open and bounded for each λ > 0. Hence the
set {ϕ < λ}∗ is open and bounded. Since ϕ has a finite image, the
convergence of sublevel sets is uniform with respect to levels in (5.6):

lim
n→∞ sup

λ>0
x∈{ϕ?<λ}

dist(x, {ϕ < λ}T1...Tn) = 0.

Thus for any ε > 0, there exists n0 > 0 such that for all n > n0,
x ∈ RN , there exists y ∈ RN such that |x− y|2 6 ε and ϕ?(x) >
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ϕn(y) = ϕT1···Tn(y). Therefore

ϕ?(t) = sup
x∈RN

〈t, x〉 − ϕ?(x)

6 ε |t|2 + sup
y∈RN

〈t, y〉 − ϕn(y) = ε |t|2 + ϕn(t).

and ∫

Ω
ϕ?(∇un) 6 ε ‖∇un‖1 +

∫

Ω
ϕn(∇un).

Since ϕ? is convex and lower semi-continuous in RN , the left-hand side
is lower semi-continuous in W1,1(Ω). By induction on Proposition 5.6
and by letting n→∞,

∫

Ω
ϕ?(∇u?) dx 6 lim inf

m→∞

∫

Ω
ϕ?(∇un) dx

6 lim inf
m→∞ ε ‖∇un‖1 + lim inf

m→∞

∫

Ω
ϕn(∇un) dx

6 ε ‖∇u‖1 +
∫

Ω
ϕ(∇u) dx.

Since ε > 0 is arbitrary, the result follows.
Step 2: general ϕ. If ϕ does not have a finite image or is not coercive,
but is lower semi-continuous, then it can be approximated by a de-
creasing sequence of coercive and lower semi-continuous functions with
a finite image ϕn ↘ ϕ. Because ϕn ↗ ϕ, the result follows by Levi’s
monotone convergence Theorem. If ϕ is not lower semi-continuous, let
ψ(x) = lim infy→x ϕ(y). Then ψ = ϕ and ψ? > ϕ?, whence the inequal-
ity for ϕ follows from the inequality for ψ.
Step 3: general u. Let um = max(u − 1/m, 0). It is clear that um
converges uniformly to u, so that um? converges to u? uniformly and
in L1

loc(Ω). Furthermore um converges to u in W1,1
loc(Ω) by Lebesgue’s

dominated convergence Theorem. The sequence of functions |∇um?|2
in L1

loc(Ω) is also nondecreasing. By a result of Alvino, Ferone and
Lions [2], for any compact subset K of Ω,

∫

K
|∇um?|2 6 sup

LN (L)=LN (K)

∫

L
|∇um|2 .

Hence, if g(x) = limn→∞∇um(x), by Levi’s monotone convergence the-
orem, ∫

K
|g|2 < +∞.
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This implies, by Lebesgue’s dominated convergence Theorem, that

∇um? → g in L1
loc(Ω).

Thus u? ∈W1,1
loc(Ω). The inequality follows by Levi’s monotone conver-

gence Theorem. �

We have to prove the convergence result of iterated symmetrizations
of sets. Since our definition of symmetrization is different from the
classical one that maps compact sets into compact sets, we cannot use
the classical results on approximation in Hausdorff distance. Lemma
5.15 is a general measure-theoretic convergence result.
Lemma 5.15. Suppose (An)n>1 is a sequence of measurable sets in RN ,
G ⊂ RN is open, bounded, and nonempty. If

(5.7) lim
n→∞L

N (G \An) = 0,

then
lim
n→∞ sup

x∈G
dist(x,An) = 0,

where
dist(x,A) = inf

y∈A
dist(x, y).

Proof. Suppose the conclusion is false. Then there exists an increasing
sequence (nk)k∈N in N, a sequence xk ∈ G and δ > 0 such that, for each
k ∈ N,

d(xk, Ank) > δ.

Since G is a bounded subset of RN , the sequence (xk)k∈N has a subse-
quence (xk`)`∈N that converges to x̃ ∈ Ḡ. If ` is sufficiently large,

φ 6= B(x̃, δ2) ∩G ⊂ B(xk` , δ) ∩G ⊆ G \Ank` .
Because B(x̃, δ2) ∩G is open and not empty,

LN (G \Ank` ) > L
N (B(x̃, δ2) ∩G) > 0,

in contradiction with (5.7). �

Lemma 5.16. Suppose G ∈ RN is a bounded open set and (Gn)n>1 is
the sequence of sets obtained by iterated Steiner symmetrizations of G.
Then

lim
n→∞ sup

x∈G?
dist(x,Gn) = 0.

Proof. This comes from the fact that G? is open, the convergence in
measure of Gn to G? and Lemma 5.15. �
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Proposition 5.17. Let Ω be a totally invariant domain, ϕ : Ω×R+ ×
RN → R̄+ and u ∈W1,1

loc,+(Ω) vanishing at the infinity with respect to ·∗.
If ϕ(·, s, ξ) is totally invariant with respect to ·? for each (s, ξ) ∈ R+ ×
RN , ϕ(·, ·, 0) = 0, ϕ(·, ·, ξ) is lower semi-continuous for each ξ ∈ RN

and if each x ∈ Ω has a totally invariant neighborhood Nx ⊂ Ω such that
for any M > 0,

(5.8) sup
A⊂Nx
LN (A)=M

∫

A
|∇u|2 + |u| dx < +∞,

then ∫

Ω
ϕ?(x, u

?(x),∇u?(x)) dx 6
∫

Ω
ϕ(x, u(x),∇u(x)) dx.

Proof. Without loss of generality, T = Rk and Ω = RN−k × Ω′′. Let

Bm =
{
β = RN−k ×

(`N−k+1

2m
,
`N−k+1 + 1

2m
)
× · · ·

· · · ×
( `N

2m
,
`N + 1

2m
)
×
( n

2m
,
n+ 1
2m

)
:

`i ∈ Z, n ∈ N, β ⊂ Ω×R+

and u verifies (5.8) with Nx = P (β)
}
.

where P is the projection P : Ω × R+ → Ω : (x, s) 7→ x. Let Ωm =
P (∪β∈Bmβ). For (x, s) ∈ Ωm×R+, let βm(x) denote the unique β ∈ Bm
such that (x, s) ∈ β. Let ωm(x) = P (βm(x)). For any (x, s) ∈ Ωm×R+,
let

ϕm(x, s, ξ) = sup
(y,t)∈βm(x,s)

ϕ(y, t, ξ).

Fix ` > 0. From Proposition 5.13, it is clear that for any ωm(x) ⊂
Ωm, and un,m = max( n

2m ,min(u, n+1
2m )),

∫

ωm(x)
ϕm?(x, un,m

?,∇un,m?) 6
∫

ωm(x)
ϕm(x, un,m,∇un,m)

since ϕm(·, ·, ξ) is constant on β for any ξ ∈ RN . Since Ω` ⊂ Ωm up to a
set of measure zero, the sum with fixed m for all ωm(x) with ωm(x) ⊂ Ω`

and n > 0 is ∫

Ω`

ϕm?(x, u
?,∇u?) 6

∫

Ω`

ϕm(x, u,∇u).

Since ϕ(·, ·, ξ) is lower semi-continuous, ϕm(·, ·, ξ)↘ ϕ(·, ·, ξ) as k →∞.
Therefore ϕm(x, s, ·) ↗ ϕ(x, s, ·) and ϕm?(x, s, ·) ↗ ϕ?(x, s, ·), so that



110 IV. ANISOTROPIC SYMMETRIZATION

by Levi’s monotone convergence Theorem,
∫

Ω`

ϕ?(x, u
?,∇u?) 6

∫

Ω`

ϕ(x, u,∇u).

The conclusion comes from Levi’s monotone convergence Theorem for
`→∞ and from the fact that ∪`∈NΩ` = Ω up to a set of zero measure.

�

Proposition 5.18. Let I : Ω ×R+ ×RN → R̄+ be lower semi-conti-
nuous, suppose I(·, s, ξ) is totally invariant with respect to L and, for
any x ∈ Ω, I(x, ·) is convex and lim|s|+|ξ|2→∞ I(x, s, ξ) = +∞. If

∫

Ω
I(x, u,∇u) dx <∞,

then for any x ∈ Ω, there exists a neighborhood Nx totally invariant with
respect to L such that for any M > 0,

sup
A⊂Nx
LN (A)=M

∫

A
|∇u|2 + |u| dx < +∞.

Proof. Let x ∈ RN . Since I(x, ·) is coercive, there exists R > 0 such
that I(x, s, ξ) > 1 if |s| + |ξ|2 = R. Since I is lower semi-continuous
and the set {x}× {(s, ξ) : |s|+ |ξ|2 = R} is compact, this remains true
in a neighborhood of this set. Hence, there is a neighborhood Nx of x
such that I(y, s, ξ) > 1 if |s| + |ξ|2 = R and y ∈ Nx. Since I(·, s, ξ) is
totally invariant, without loss of generality, Nx is totally invariant. By
convexity of I(x, ·), I(y, s, ξ) > (|s|+|ξ|2)/R if (|s|+|ξ|2) > R. Therefore
I(y, s, ξ) > (|s|+ |ξ|2)/R− 1. If A ⊂ Nx and LN (A) = M , then

∫

A
|(u,∇u)|2 dx 6 R

∫

A
I(x, u,∇u) + 1 dx

6 R
∫

A
I(x, u,∇u) dx+RLN (A)

6 R
∫

Ω
I(x, u,∇u) +RM < +∞.

Since the right-hand side does not depend on A, the proof is complete.
�
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6. Inequalities for anisotropic symmetrization

Definition 6.1. The vector t ∈ RN is a subdifferential of f : RN → R
at x ∈ RN if for all y ∈ RN ,

f(y) > f(x) + 〈t, y − x〉.
The set of the subdifferentials of f at x is denoted ∂f(x).

It is standard in the theory of convex functions that if ϕ : RN → R
is convex, then ∂ϕ(x) is nonempty for every x ∈ RN . If ϕ is also
Gateaux-differentiable at x ∈ RN , then ∂ϕ(x) = {∇ϕ(x)} .
Proposition 6.2. If H ∈ H(Rk), then for all t ∈ Rk, there exists
x ∈ ∂H◦(t) such that H(x) = 1. In particular, if H◦ is differentiable at
t, H(∇H◦(t)) = 1.

Proof. Let t ∈ Rk. By definition of H◦ and by positive homogeneity of
H,

H◦(t) = sup
y∈RN

y 6=0

〈t, y〉
H(y)

= sup
|y|2=1

〈t, y〉
H(y)

.

Since the function on right-hand side is upper semi-continuous, its least
upper bound is attained for some x ∈ RN . Since H is positively homo-
geneous, without loss of generality, H(x) = 1 and H◦(t) = 〈t, x〉. For
any s ∈ Rk

H◦(s) > 〈s, x〉 = H◦(t) + 〈s− t, x〉. �

Lemma 6.3. If G1, G2 : RN → R+ are gauges, then the function

Ψ : RN → RN : x 7→ x
G1(x)
G2(x)

is Lipschitz-continuous.

Proof. Since |Gi(x)−Gi(y)| 6 Gi(x− y), there holds

|Ψ(x)−Ψ(y)|2
6
∣∣∣xG1(x)
G2(x) − x

G1(y)
G2(x)

∣∣∣
2

+
∣∣∣xG1(y)
G2(x) − x

G1(y)
G2(y)

∣∣∣
2

+
∣∣∣xG1(y)
G2(y) − y

G1(y)
G2(y)

∣∣∣
2

6 |x− y|2
[

sup
z∈RN

G1(z)
|z|2 · sup

x∈RN

|x|2
G2(x)

+ sup
x∈RN

|x|2
G2(x) · sup

y∈RN

G1(y)
G2(y) · sup

z∈RN

G2(z)
|z|2 + sup

z∈RN

G1(z)
G2(z)

]
.
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Since all least upper bounds can be restricted to the unit sphere in RN

and G1, G2 and |·|2 are continuous and do not vanish on the unit sphere,
the function Ψ is Lipschitz-continuous. �

Proposition 6.4 (Gauge change of variable). Let Ω′′ ⊂ RN−k, Ω =
Rk × Ω′′, w : R+ × Ω′′ → R, H ∈ H(Rk), u(x) = w(K−1

H◦ |x′|2 , x′′) and
v(x) = (H◦(−x′), x′′). Then, u ∈W1,1

loc(Ω) if and only if v ∈W1,1
loc(Ω).

Furthermore, for any f : Ω′′ ×R+ ×R+ ×RN−k → R,∫

Ω
f(x′′, v,H(∇′v),∇′′v) dx =

∫

RN

f(x′′, u,KH◦
∣∣∇′u∣∣

2
,∇′′u) dx,

provided one of the integral exists.

Remark 6.5. Recall that for any gauge G : Rk → R, KG is the positive
constant given by Definition 2.4.

Proof. Since v is a obtained by a bi-Lipschitzian mapping from weakly
differentiable u, it is also weakly differentiable [28, Theorem 2.2.2, p. 52].

Since H◦ is Lipschitz, it is almost everywhere differentiable, its weak
derivative coincides almost everywhere with its unique subgradient, and,
by Proposition 6.2, H(−∇H◦(−x′)) = 1 almost everywhere. Hence

f(x′′, u,KH◦
∣∣∇′u∣∣

2
,∇′′u)(x′, x′′)

= f(x′′, w,−∂rw,∇′′w)(K−1
H◦
∣∣x′∣∣

2
, x′′)

and

f(x′′, v,H(∇′v),∇′′v)(x′, x′′)

= f(x′′, w(H◦(−x′), x′′),H(∂rw,∇H◦(−x′)),∇′′w(H◦(−x′), x′′))
= f(x′′, w,−∂rw,∇′′w)(H◦(−x′), x′′).

Since Lk({H◦(−x′) < λ}) = Lk({|x′|2 < λKH◦}) for all λ ∈ R, the
equality follows. �

Corollary 6.6. Let H ∈ H(Rk), ·∗ denote the (G,L, T )-anisotropic
symmetrization and ·? denote the Steiner symmetrization with respect
to T . If Ω is totally invariant with respect to ·∗, f : R+×RN ×Ω→ R,
f(·, s, η, ξ) is totally invariant for each (s, η, ξ) ∈ R+ ×R+ ×RN−k, u
vanishes at the infinity with respect to ·∗ and u∗ ∈W1,1

loc(Ω), then
∫

RN

f(x, u∗,H(∇′u∗),∇′′u∗) dx =
∫

RN

f(u?,KH◦
∣∣∇′u?∣∣

2
,∇′′u?) dx,

provided one of the integrals exist.
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Lemma 6.7. Let J : R+ ×RN−k → R̄+, H ∈ H(Rk), and

ϕ(x) = J(H◦(x′), x′′).

If J(0) = 0, then

ϕ(t) = J(H◦◦(t′), t′′) 6 J(H(t′), t′′).

Proof. By definition of the Fenchel transform,

ϕ(t) = sup
x∈RN

〈t, x〉 − J(H◦(x′), x′′)

= sup
λ∈R+

x∈RN ,H◦(x′)=λ

〈t′, x′〉+ 〈t′′, x′′〉 − J(λ, x′′)

= sup
λ∈R+

x′′∈RN−k

H◦◦(t′)λ+ 〈t′′, x′′〉 − J(λ, x′′)

= J(H◦◦(t′), t′′) 6 J(H(t′), t′′),

the last inequality coming from the convexity of J , and the fact J(0) = 0
and J > 0. �

Theorem 6.8. Let H ∈ H(Rk), ·∗ be the anisotropic symmetrization
with respect to H◦, let Ω ⊂ RN be an open set totally invariant with
respect to ·∗ and J : Ω × R+ × R+ × RN−k → R̄+. If J(·, s, η, ξ)
is totally invariant for each (s, η, ξ) ∈ R+ ×R+ ×RN−k, J(x, s, ·, ·) is
convex and lower semi-continuous for each (x, s) ∈ Ω×R+, J(·, ·, η, ξ) is
lower semi-continuous for each (η, ξ) ∈ R+×RN−k and u ∈W1,1

loc,+(Ω),
and there exists I : Ω × R+ × RN → R̄+ such that I is lower semi-
continuous, I(·, s, ξ) is totally invariant for each (s, ξ) ∈ R+ × RN ,
I(x, ·) is convex and lim|s|+|ξ|2→∞ I(x, s, ξ) = +∞ for each x ∈ Ω and

∫

Ω
I(x, u,∇u) dx <∞,

then u∗ ∈W1,1
loc(Ω) and

∫

Ω
J(x, u∗,H(∇′u∗),∇′′u∗) dx 6

∫

Ω
J(x, u,H(∇′u),∇′′u) dx.

Proof. Let ϕ(x, s, t) = J(x, s,H◦(t′), t′′). Then, by Lemma 6.7,

ϕ(x, s, θ) = J(x, s,H◦◦(θ′), θ′′) 6 J(x, s,H(θ′), θ′′),

ϕ?(x, s, t) = J(x, s,
∣∣t′∣∣

2
/KH◦ , t

′′),

ϕ?(x, s, θ) = J(x, s,KH◦
∣∣θ′∣∣

2
, θ′′).
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The function u verifies the hypotheses of Proposition 5.17 by Proposition
5.18. Hence, by Proposition 5.17
∫

Ω
J(x, u?,KH◦

∣∣∇′u?∣∣
2
,∇′′u?) dx 6

∫

Ω
J(x, u,H(∇′u),∇′′u) dx.

The conclusion comes from Proposition 6.4. �

Theorem 6.9 (Anisotropic symmetrization inequality for aniso-
tropic functional). Let ·∗ be the anisotropic symmetrization with re-
spect to a gauge G : Rk → R+, let Ω be a totally invariant open set,
ϕ : Ω ×R+ ×RN → R̄+ and u ∈ W1,1

loc,+(Ω). If ϕ(·, ·, 0) = 0, ϕ(·, s, ξ)
is totally invariant with respect to ·? for each (s, ξ) ∈ R+ × RN and
ϕ(·, ·, ξ) is lower semi-continuous for each ξ ∈ RN , and there exists
I : Ω×R+ ×RN → R̄+ such that I is lower semi-continuous, I(·, s, ξ)
is totally invariant for each (s, ξ) ∈ R+ ×R+ ×RN−k, I(x, ·) is convex
and lim|s|+|ξ|2→∞ I(x, s, ξ) = +∞ for each x ∈ Ω, and

∫

Ω
I(x, u,∇u) dx <∞,

then u∗ ∈W1,1
loc(Ω) and

∫

Ω
ϕ∗(x, u

∗(x),∇u∗(x)) dx 6
∫

Ω
ϕ(x, u(x),∇u(x)) dx,

where the symmetrization and the Fenchel transform of ϕ are taken with
respect to the last variable.

Proof. There exists a unique function J : Ω×R+ ×R+ ×RN−k → R̄+

such that for each (x, s, ξ) ∈ Ω×R+ ×RN ,

ϕ?(x, s, ξ
′, ξ′′) = J(x, s,K−1

G

∣∣ξ′∣∣
2
, ξ′′),

ϕ∗(x, s, ξ
′, ξ′′) = J(x, s,G(−ξ′), ξ′′);

Lemma 6.7 implies

ϕ?(x, s, t
′, t′′) = J(x, s,KG

∣∣t′∣∣
2
, t′′),

ϕ∗(x, s, t
′, t′′) = J(x, s,G◦(−t′), t′′);

with Proposition 6.4 we have
∫

Ω
ϕ∗(x, s,∇u∗) dx =

∫

Ω
ϕ?(x, s,∇u?) dx;

and the conclusion follows from Proposition 5.6. �



7. APPLICATIONS 115

Definition 6.10. For u ∈W1,1
loc,+(Ω), F ∈ H(Rk) and a Borel measur-

able function J : Ω×R+×R+×RN−k → R+ such that J(x, ·) is convex
for each x ∈ Ω, let

‖u‖J,F,Ω = inf
{
λ > 0 :

∫

Ω
J
(
x, uλ , F (∇

′u
λ ), ∇

′′u
λ

)
dx < +∞

}

and let

W1,J,F
+ (Ω) =

{
u ∈W1,1

loc,+(Ω) : ‖u‖J,F,Ω < +∞}.
Corollary 6.11. Suppose F : Rk → R is a gauge, ·∗ is the anisotropic
symmetrization with respect to F ◦, Ω ⊂ RN is a totally invariant open
set and J : Ω × R+ × R+ × RN−k → R+ is lower semi-continuous,
J(x, s, 0, 0) = 0 for each (x, s) ∈ Ω × R+, J(x, ·) is convex for each
x ∈ Ω, J(·, ·, η, ξ) is lower semi-continuous for each (η, ξ) ∈ R+×RN−k,
and for each x ∈ Ω,

lim
|s|+|η|+|ξ|2→∞

J(x, s, η, ξ) =∞.

If u ∈ W1,J,F
+ (Ω) vanishes at the infinity with respect to ·∗, then u∗ ∈

W1,J,F
+ (Ω) and

‖u∗‖J,F,Ω 6 ‖u‖J,F,Ω .

7. Applications

7.1. Anisotropic isoperimetric inequalities

The results can be extended to BV (RN ) and to isoperimetric in-
equalities. Since our approach uses perimeters in the sense of Cacciopoli
defined by duality, it cannot prove anything for non-convex perimeter
functions like the ones arising in Wulff’s theory of crystals.
Definition 7.1. For any u ∈ L1(RN ), let

PH(u) = sup
{ N∑

i=1

∫

RN

u
∂hi
∂xi

: h ∈ D(RN ), ∀x ∈ RN ,

H◦
(−h(x)

)
6 1
}
.

Theorem 7.2 (Anisotropic isoperimetric inequality in BV (RN )).
Let H : RN → R be a gauge. Let ·∗ denote the anisotropic symmetriza-
tion with respect to H◦. If u ∈ L1(RN ), then

PH(u∗) 6 PH(u).
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Proof. This will be deduced as a corollary of Theorem 6.8. Note that
PH is convex and lower semi-continuous in L1(RN ). If u ∈ D(RN ), then

PH(u) = sup
{∫

RN

〈∇u, h〉 : H◦(h) 6 1
}

=
∫

RN

H◦(∇u).

Let (ρn)n∈N be a sequence of nonnegative smooth mollifiers. By lower
semi-continuity of PH ,

lim inf
n→∞ PH(ρn ∗ u) > PH(u).

Conversely, for h ∈ D(RN ), if H(−h) 6 1, then the convexity of H
implies H(−ρn ∗ h) 6 1, whence

PH(ρn ∗ u) 6 PH(u).

We have thus limn→∞ PH(ρn ∗u) = PH(u). Since ρn ∗u→ u in L1(RN ),
then (ρn ∗ u)∗ → u∗ in L1(RN ). Since PH is lower semi-continuous in
L1(RN ), by Theorem 6.8,

PH(u∗) 6 lim inf
n→∞ PH(ρn ∗ u∗) 6 lim inf

n→∞ PH(ρn ∗ u) = PH(u). �

A consequence of this proposition is the following isoperimetric in-
equality: For any measurable set A ⊂ RN ,

PH(A∗) = PH(χA∗) 6 PH(A) = PH(χA).

7.2. Anisotropic Sobolev and Hardy-Sobolev inequalities

Proposition 7.3. Suppose F ∈ H(Rk), ·∗ is the anisotropic sym-
metrization with respect to F ◦, Ω ⊂ RN is a totally invariant open set
and J : Ω×R+ ×R+ ×RN−k → R+ is lower semi-continuous, J(x, ·)
is convex for each x ∈ Ω, J(x, s, 0, 0) = 0 for each (x, s) ∈ Ω × R+,
J(·, ·, η, ξ) is lower semi-continuous for each (η, ξ) ∈ R+ ×RN−k, and
for each x ∈ Ω, lim|s|+|η|+|ξ|2→∞ J(x, s, η, ξ) = ∞. Suppose ‖·‖X is a
norm that is invariant with respect to ·∗. Suppose for any u ∈W1,J,F

+ (Ω)
that vanishes at the infinity with respect to ·∗,
(7.1) ‖u‖X 6 ‖u‖J,F,Ω ,
then for any E ∈ H(Rk) such that KE◦ = KF ◦,

‖u‖X 6 ‖u‖J,E,Ω .
If there exists u ∈W1,J,F

+ (Ω) that vanishes at the infinity with respect to
·∗ such that ‖u‖X = ‖u‖J,F,Ω, then ‖u?‖X = ‖u?‖J,E,Ω, where ·? denotes
the anisotropic symmetrization with respect to E◦.
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Proof. First note that ‖·‖X is invariant with respect to ·?. In fact, for
any u, ‖u‖X = ‖u∗‖X = ‖u?‖X , since u?∗ = u∗ and ‖·‖X is invariant
with respect to ·∗.

It is then clear that

‖u‖X = ‖u∗‖X 6 ‖u∗‖F,J,Ω = ‖u?‖E,J,Ω 6 ‖u‖E,J,Ω ,
where the first inequality comes from the hypothesis (7.1) and the second
from Corollary 6.11. The conclusions follow. �

Remark 7.4. Sobolev inequalities thus do not rely essentially neither
on the convexity nor on the evenness of the euclidian norm. It is not
surprising that such inequalities are possible since for any F ∈ H(Rk),
there exists α > 0 such that F (y) > α |y|2. The striking fact is that
optimal Sobolev-Orlicz constants depend on F ∈ H(RF ) only through
KH◦ .

Proposition 7.5. For any H ∈ H(RN ) and any u ∈ D(RN ) and 1 <
p < N , ∫

RN

H(∇u)p dx >
(
N − p
p

)p ∫

RN

|u|p
H◦(x)p

dx.

The constant is optimal for any fixed H ∈ H(Rk).

Proof. Without loss of generality, KH◦ = 1. Let ·? denote the Schwarz
symmetrization. Then, by Theorem 6.8, the classical Hardy-Sobolev
inequality [27] and by Proposition 2.28,
∫

RN

H(∇u)p dx >
∫

RN

|∇u?|p2 dx

>
(N − p

p

)p ∫

RN

|u?|p
|x|p2

dx >
(N − p

p

)p ∫

RN

|u|p
H◦(x)p

dx.

The fact that the constant is optimal comes from the same reasoning
with the symmetrization ·∗ with respect to H◦ and the fact that the
constant is optimal in the isotropic case [27]. �

7.3. Recovering continuity and compactness

Proposition 7.6. Suppose H ∈ H(Rk), J : R+ ×RN−k → R+, J(t, ·)
is a gauge for each t ∈ R+ and 1 < p < N . Let ·∗ denote the anisotropic
symmetrization with respect to H◦ and Ω be totally invariant with respect
to ·∗. If f ∈ Lq(Ω), q−1 + p−1 = 1 +N−1 and f∗ = f , then the function
E : D1,p

0,+(Ω)→ R (where D1,p
0 is the completion of D(Ω) with respect to
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the norm ‖u‖ =
(∫

Ω |∇u|p
)1/p),

u 7→ E(u) =
∫

RN

J(H(∇′u),∇′′u)p − fu dx

has a minimizer u = u∗.

Remark 7.7. If (un) is a minimizing sequence for E, it is bounded in
D1,p(Ω), hence up to a subsequence, un ⇀ u in D1,p(Ω). Then∫

Ω
fun dx→

∫

Ω
fu dx.

But if H is not convex it is not true in general that∫

Ω
J(H(∇′u),∇′′u)p dx 6 lim inf

n→∞

∫

Ω
J(H(∇′un),∇′′un)p dx

(see [11]).
In a different setting, the symmetry of the domain helps to recover

the existence for some nonconvex problems [15]. On the other hand,
some crystalline problems close to Wulff’s problem do not have any
solution (except in the varifold sense) when the energy is not convex [24].

Remark 7.8. Even if the minimizer is unique (if e.g. J is strictly convex),
that does not guarantee the symmetry of the minimizer since, except
in the radial case, the problem is not invariant under the action of a
continuous group.

Proof. Let un be a minimizing sequence. Then (vn) = (un∗) is also a
minimizing sequence. Up to a subsequence vn ⇀ v in D1,p

0 (RN ), hence∫

Ω
fvn dx→

∫

Ω
fv dx.

Furthermore∫

Ω
J(H(∇′v),∇′′v)p dx 6 lim inf

n→∞

∫

Ω
J(H(∇′vn),∇′′vn)p dx,

since the functional u 7→ ∫
Ω J(H(∇′u),∇′′u)p dx is convex on the image

set of ·∗. Then v is a minimizer for the functional E. Hence v = v∗ is a
minimizer of E. �
Proposition 7.9. Suppose H ∈ H(Rk), ·∗ is the anisotropic sym-
metrization with respect to H◦, Ω is totally invariant with respect to
·∗, J : Ω × R+ × R+ × RN−k → R+ is such that J(·, ·, η, ξ) is lower
semi-continuous and totally invariant with respect to ·∗ for each (η, ξ) ∈
R+×RN−k, and J(x, ·) is convex for each x ∈ Ω. Let f : Ω×R+ → R+

be such that for almost every x ∈ Ω, f(x, 0) = 0 and f(x, ·) is continuous
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for each x ∈ Ω and f(·, s) is measurable and totally invariant for each
s ∈ R+.

For any u ∈W1,p
0,+(Ω), let

E(u) =
∫

Ω
J(x, u(x),H(∇′u(x)),∇′′u(x)) dx,

and

M =
{
u ∈W1,p

0,+(Ω) :
∫

Ω
f(x, u(x)) dx = 1

}
.

If there exists 1 < p < +∞, 0 < α < β, p < q < Np
N−p and γ > 0 such

that
α(|s|+ |η|+ |ξ|2)p 6 J(x, s, η, ξ) 6 β(|s|+ |η|+ |ξ|2)p

and
|f(x, s)| 6 γ(|s|p + |s|q),

and if lims→0 supx∈Ω
|f(x,s)|
|s|p = 0, then there exists u ∈ M such that

E(u) = infv∈ME(v). Furthermore, u∗ = u.

Proof. Let (un)n∈N be a minimizing sequence of E in M. By Theo-
rem 6.8 with I(x, s, ξ) = α(|s|+ |ξ′|2 + |ξ′′|2)p, E(un∗) 6 E(un) and by
Proposition 2.28, un∗ ∈ M. Without loss of generality, un∗ = un for
each n ∈ N. Since E(un) is bounded, the sequence (un) is bounded in
W1,p

0 (Ω). Hence up to a subsequence it converges weakly to u ∈W1,p
0 (Ω).

By Lemma 3.1, u∗ = u. Since the functional E is convex on the
set of symmetrized functions and is strongly lower semi-continuous on
W1,p

0 (Ω), it is weakly lower semi-continuous on the set of symmetrized
functions, whence

E(u) 6 lim inf
n→∞ E(un) = inf

v∈M
E(v).

Let ·? denote the Steiner symmetrization with respect to {0}×RN−k.
By a theorem of Lions on compact embeddings of sets of symmetric
functions [19] the sequence (un?) is compact in Lq(Ω). Therefore, the
sequence (un) = (un?∗) is compact in Lq(Ω).

Up to a subsequence, un → u almost everywhere. Since

lim
s→0

sup
x∈Ω

|f(x, s)|
|s|p = 0,

for any ε > 0, there exists γε > 0 such that

|f(x, s)| 6 ε |s|p + γε |s|q .
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By Fatou’s Lemma and by the weak convergence of the sequence (un)
in Lp(Ω),

ε ‖u‖pp + γε ‖u‖qq +
∫

Ω
f(x, u) dx

6 lim inf
n→∞

∫

Ω
ε |un|+ γε |vn|q − f(x, un) dx

6 ε lim inf
n→∞ ‖un‖

p
p + γε ‖u‖qq + lim inf

n→∞

∫

Ω
f(x, un) dx.

As ε→ 0 this becomes∫

Ω
f(x, u) dx 6 lim inf

n→∞

∫

Ω
f(x, un) dx.

The same argument holds also for −f , hence∫

Ω
f(x, u) dx = lim

n→∞

∫

Ω
f(x, un) dx = 1,

u ∈M and E(u) = infv∈ME(v). �

Bibliography

[1] R. A. Adams, Sobolev spaces, Pure and Applied Mathematics, vol. 65, Academic
Press, New York-London, 1975.

[2] A. Alvino, G. Trombetti, and P.-L. Lions, On optimization problems with pre-
scribed rearrangements, Nonlinear Anal. 13 (1989), no. 2, 185–220.

[3] A. Alvino, V. Ferone, G. Trombetti, and P.-L. Lions, Convex symmetrization
and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 2,
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Part 2

L1 estimates





Introduction

1. The critical Sobolev embedding

If p < N , the Sobolev space W1,p(RN ) is continuously embedded in
Lp
∗
(RN ) for p∗ = Np/(N − p), while if p > N , it is embedded in the

space of Hölder continuous functions C0,α(RN ) for α = 1−N/p. In the
limit case p = N , these embeddings suggest an embedding of the space
W1,N (RN ) in the space of bounded continuous functions C(RN ). There
is no such embedding when N > 1, but some natural consequences of
this embedding still hold. For example, there is a degree theory for maps
in W1,N (SN ;SN ) [3].

Another surprising property of W1,N (RN ) was discovered recently
by Bourgain, Brezis and Mironescu: For every u ∈W1,N (RN ; RN ) and
every rectifiable closed curve Γ of length |Γ| and unit tangent vector t,
the inequality

(1.1)
∫

Γ
u · t 6 CN |Γ| ‖Du‖N

holds, where the constant CN is independent of u and Γ. The proof was
based on a Paley–Littlewood decomposition [2]. In contrast with the
existence of the degree which comes from the embedding of W1,N (RN )
in VMO(RN ), there is no such estimate for u ∈ VMO(RN ; RN ). In
chapter V, we provide an elementary proof of this inequality, which relies
on the Morrey–Sobolev embedding in RN−1 and the Hölder inequality.

Bourgain and Brezis generalized this inequality as follows [1]: Let
f ∈ L1(RN ; RN ), and u ∈ W1,N (RN ; RN ). If div f = 0 in the sense of
distributions, then

∫

RN

f · u dx 6 CN‖f‖1 ‖Du‖N ,

where the constant CN is independent of f and u. Using a Paley–
Littewood decomposition, they proved a stronger inequality, where ‖f‖1
is replaced by ‖f‖L1+W−1,N/(N−1) .
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In chapter VI we prove, that if f ∈ L1(RN ; RN ), div f ∈ L1(RN )
and u ∈ (W1,N ∩ L∞)(RN ; RN ), then

(1.2)
∫

RN

f · u dx 6 CN (‖f‖1‖Du‖N + ‖div f‖1‖u‖N ).

In chapter VII, we prove that if fij ∈ L1(RN ) and gi ∈ L1(RN ) for
1 6 i 6 2 and i 6 j 6 N satisfy the condition

2∑

i=1

N∑

j=i

∂2fij
∂xi∂xj

=
2∑

i=1

∂gi
∂xi

,

and if u ∈W1,N (RN ), then for every 1 6 i 6 2 and i 6 j 6 N ,

(1.3)
∫

RN

fiju dx 6 CN (‖f‖1‖Du‖N + ‖g‖1‖u‖N ).

This kind of inequality was suggested by Häım Brezis.

2. Regularity estimates

These estimates can be reformulated by a simple application of the
Hahn-Banach Theorem and the Riesz representation Theorem. If f ∈
L1(RN ; RN ) with div f ∈ L1(RN ), then by (1.2) the linear functional

〈`, u〉 =
∫

RN

f · u dx

is a linear and continuous on W1,N (RN ; RN ) which can be considered
as a closed linear subspace of LN (RN ; RN+N2

) under the injection u 7→
(u,Du). By the Hahn–Banach Theorem, there is an extension ¯̀ of ` to
LN (RN ; RN+N2

) such that

〈`, (u, v)〉 6 CN (‖f‖1‖v‖N + ‖div f‖1‖u‖N ).

From the Riesz representation Theorem, there is f0 ∈ LN/(N−1)(RN )N

and F ∈ LN/(N−1)(RN )N
2

such that

〈¯̀, u〉 =
∫

RN

f0 · u+ F · v dx.

Moreover, f0 and F satisfy the estimates

‖f0‖N/(N−1) 6 CN‖div f‖1
‖F‖N/(N−1) 6 CN‖f‖1.

Since ¯̀ is the extension of `, for every u ∈ D(RN ; RN )

〈`, u〉 =
∫

RN

f · u dx =
∫

RN

f0 · u+ F ·Dudx.
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Therefore
f = f0 + divF

in the sense of distributions.
New regularity estimates for elliptic systems can be obtained as an

application. For example, if N > 4, f ∈ L1(RN ; RN ) and div f ∈
L1(RN ), then the fundamental solution of

−∆u = f

is given by u = KN ∗ f , where

KN =
(N/2)!

(N − 2)NπN/2
1

|x|N−2

is Newton’s kernel. Then u can be decomposed as

u = KN ∗ f0 +KN ∗ (divF ) = KN ∗ f0 + div(KN ∗ F ).

By the classical Calderón–Zygmund theory of singular integrals (see e.g.
[4]), if 1 < p <∞, and g ∈ Lp(RN ), then D2(KN ∗ g) ∈ Lp(RN ), and

‖D2(KN ∗ g)‖p 6 CN,p‖g‖p,
where the constant CN,p is independent of g andD2g denotes the Hessian
of g in the weak sense. From this and the classical Sobolev embedding
Theorem it follows that

u1 ∈ LN/(N−2)(RN ; RN )

u2 ∈ LN/(N−3)(RN ; RN ).

Moreover, one has the following estimates

‖D1u1‖N/(N−1) 6 CN‖f‖1,
‖D2u2‖N/(N−1) 6 CN‖div f‖1.

Other applications to div− curl systems which given by Bourgain and
Brezis in [1], are presented in chapter VI.
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CHAPTER V

A simple proof of an inequality of Bourgain,
Brezis and Mironescu

1. Introduction

Bourgain, Brezis and Mironescu proved in [1] the following inequal-
ity.

Proposition 1.1. Let Γ be a closed, oriented, rectifiable curve of R3,
and denote by ~t the unit tangent vector along Γ; let ~k ∈ W1,3(R3; R3).
Then ∣∣∣

∫

Γ

~k · ~t
∣∣∣ 6 C ‖k‖W1,3 |Γ| .

The proof of proposition 1.1 in [1] is technically involved. We provide
an elementary proof and a generalization to k dimensional surfaces and
N -dimensional space. For simplicity, we begin with the case of a curve
in RN .

Proposition 1.2. Let Γ be an oriented, compact and closed Lipschitz
curve of RN , N > 2; let u ∈W1,1

loc(RN ). If ∇u ∈ LN (RN ), then

(1.1)
∣∣∣
∫

Γ
u dγ

∣∣∣ 6 CN ‖∇u‖LN (RN ) |Γ| ,

where |Γ| denotes the length of curve Γ.

Remark 1.3. When N = 1, the left-hand side of (1.1) is 0; when N = 2
and γ is a Jordan curve, proposition 1.2 is a simple consequence of
Green theorem and the isoperimetric inequality; and when N = 3 it is
equivalent to proposition 1.1.

This chapter was originally published in the Comptes Rendus Mathématiques,
Académie des Sciences, Paris, 338 (2004), no. 1, 23-26.
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2. Proof of Proposition 1.2

Proof. Without loss of generality, the curve Γ is connected and is the
image of S1 by a Lipschitz map γ. We assume first that u and γ : S1 →
RN are of class C1. We start with the same strategy as [1], bounding

e ·
∫

S1

u(γ(x))γ̇(x) dx ,

for an arbitrary unit-norm vector e ∈ RN .
Let

Γt =
{
x ∈ S1 : e · γ(x) = t

}
.

Since e · γ(s) is of class C1, Sard’s lemma implies that for almost every
t ∈ R, Γt is finite and e · γ̇(s) 6= 0 if γ(s) ∈ Γt. We have then

(2.1) e ·
∫

S1

u(γ(x))γ̇(x) dx =
∫

S1

u(γ(x)) e · γ̇(x) dx

=
∫

R

∑

x∈Γt

σ(x)u(x) dt ,

where σ(x) = sign (e · γ̇(x)). Since Γ is closed, for almost every t ∈ R
we can write Γt =

{
P1, . . . , Pr(t)

} ∪ {N1, . . . , Nr(t)

}
so that σ(Pi) = 1,

σ(Ni) = −1 and
∑r

i=1 |γ(Pi)− γ(Ni)| is minimal (in particular, it is
bounded by |Γ|).

In order to estimate
∑

x∈Γt
σ(x)u(x), we proceed differently from

[1]. They used a Littlewood–Paley decomposition. Instead, we ap-
ply Morrey’s inequality (see e.g. [2, theorem IX.12]) in RN−1 for ut =
u|{y∈RN : e·y=t} before applying the discrete Hölder inequality to the sum

∑

x∈Γt

σ(x)u(x) 6 CN ‖∇ut‖N
r(t)∑

i=1

|γ(Pi)− γ(Ni)|
1
N

6 CN ‖∇ut‖p |Γ|
1
N r(t)

N−1
N .

We are now ready to estimate the integral of (2.1):
∫

R

∑

x∈Γt

σ(x)u(x) dt 6 CN |Γ|
1
N

∫

R
‖∇ut‖N r(t)

N−1
N dt

6 CN |Γ|
1
N

(∫

R
‖∇ut‖NN dt

) 1
N
(∫

R
r(t) dt

)N−1
N

6 C ′p,N |Γ| ‖∇u‖N
since 2

∫
R r(t) dt =

∫
S1 |e · γ′(x)| dx 6 ∫S1 |γ′(x)| dx = |Γ|.
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The result is extended to general Γ and u by standard smoothing
arguments. �

3. Generalization to surfaces

Proposition 1.2 generalizes straightforwardly to k-dimensional sur-
faces defined as follows.

Definition 3.1. A pair Γ = (M,γ) is a Cr k-dimensional Lipschitz
surface of RN if

(1) M is a compact oriented k-dimensional Cr manifold without
boundary,

(2) γ : M → RN is a Lipschitz function.

When Γ = (M,γ) is a k-dimensional Lipschitz surface of RN , it
is possible, since M is oriented, to define the integral of Borel func-
tion u : RN → R as the k-vector

∫
Γ u dγ(x), where dγ(x)[a1, . . . , ak] =

γ′(x)a1 ∧ . . . ∧ γ′(x)ak, and the mass of Γ as |Γ| =
∫
M |dγ|, where |·|

denotes the euclidean norm of a k-vector.

Proposition 3.2. Let Γ be a Ck k-dimensional surface. Then

(3.1)
∣∣∣
∫

M
u dγ

∣∣∣ 6 CN ‖∇u‖N |Γ| ,

where the norm on the left is the comass-norm (see [3]).

Proof. Since the proof is similar to the proof of proposition 1.2, we only
give a sketch. For an arbitrary simple unit covector e = e1 ∧ · · · ∧ ek, we
write

e ·
∫

Γ
u dγ =

∫

Rk

∑

x∈Γy

σ(x)u(x) dy,

where

Γy = {x ∈M : ei · γ(x) = yi, 1 6 i 6 k}
and

σ(x) = sign (e1γ
′(x) ∧ . . . ∧ ekγ′(x)).

This formula is valid by Sard’s lemma because M is a Ck manifold.
Then, using Morrey’s and Hölder’s inequalities, with the notations of
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the proof of Proposition 1.2,
∫

Rk

∑

x∈Γy

σ(x)u(x) dy

6
∫

R
‖∇uy1‖N

(∫

Rk−1

r(y)∑

i=1

|γ(Pi)− γ(Ni)| dy′′
)1/(N−1)

(∫

Rk−1

r(y) dy′′
)N/(N−1)

dy1,

where y′′ = (y2, . . . , yk) and one concludes using
∫

Rk−1

r(y)∑

i=1

|γ(Pi)− γ(Ni)| dy′′ 6 |Γ| ,

Hölder’s inequality and 2
∫
Rk r(y) dy 6 |Γ|. �

Remark 3.3. Proposition 3.2 can also be proved by induction on k. The
case k = 1 is proposition 1.2 and for k > 1, Γ is cut into slices of di-
mension k − 1, for which the estimate of proposition 3.2 holds. The
integration of this estimate, with Hölder’s inequality gives the conclu-
sion.

Remark 3.4. The inequality (3.1) is the limit case of∣∣∣∣
∫

Γ
u dγ

∣∣∣∣ 6 Cp,Nδ(Γ)1−N
p |Γ| ‖∇u‖p ,

where p > N , ∇u ∈ Lp(RN ) and δ(Γ) denotes the diameter of Γ. It is a
simple consequence of Morrey’s inequality.
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CHAPTER VI

Estimates for L1-vector fields

1. Introduction

In a recent work [2], Bourgain and Brezis considered in R3 the system{
curlZ = f,
divZ = 0.

for a given divergence-free vector field f . The vector field

Z = (−∆ )−1 curl f

is a solution of this system. If f ∈ Lp#(R3; R3) (here and in the sequel,
the subscript # denotes the subspace of vector fields whose divergence
vanishes in the sense of distributions), then by the standard Calderón–
Zygmund estimates and Sobolev’s imbedding, ‖Z‖p∗ 6 Cp ‖f‖p , where
p∗ = 3p/(3 − p) and 1 < p < 3. The Calderón–Zygmund theory does
not hold when p = 1, but surprisingly, when p = 1 one still has

Theorem 1.1 (Bourgain and Brezis [2]). There exists C, such that
for any f ∈ L1

#(R3; R3),

‖Z‖3/2 6 C ‖f‖1 .
Bourgain and Brezis gave two proofs of this result. The first one

relies on the following
Theorem 1.2. Given g ∈ L3

#(R3; R3), there exists Y ∈ L∞(R3; R3)
with ∇Y ∈ L3(R3; R3) satisfying

curlY = g

and the estimate
‖Y ‖∞ + ‖∇Y ‖3 6 C ‖g‖3 .

The proof of Theorem 1.2 is rather involved and uses a Littlewood-
Paley decomposition; no simple proof has been found so far.

This chapter was originally published in the Comptes Rendus Mathématiques,
Académie des Sciences, Paris, 339 (2004), no. 3, 181-186.
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Proof of Theorem 1.1 using Theorem 1.2. It suffices to show that
∣∣∣∣
∫

R3

Z · h
∣∣∣∣ 6 C ‖f‖1 ‖h‖3

for every h ∈ L3(R3; R3) with some universal constant C. Given any
h ∈ L3(R3; R3) consider its Hodge decomposition h = g + grad p with
g ∈ L3

#(R3; R3) and ‖g‖3 6 C ‖h‖3. Then
∫

R3

Z · h =
∫

R3

Z · (g + grad p) =
∫

R3

Z · g.

Next, by Theorem 1.2, we may write g = curlY for some Y with ‖Y ‖∞ 6
C ‖g‖3 (here one uses only part of Theorem 1.2) and then
∣∣∣∣
∫

R3

Z · h
∣∣∣∣ =

∣∣∣∣
∫

R3

curlZ · Y
∣∣∣∣ =

∣∣∣∣
∫

R3

f · Y
∣∣∣∣ 6 ‖f‖1 ‖Y ‖∞

6 C ‖f‖1 ‖g‖3 6 C ‖f‖1 ‖h‖3 . �

The second proof in [1] uses two ingredients. The first one is

Theorem 1.3 (Bourgain, Brezis and Mironescu [1]). Let Γ be a
closed rectifiable curve in RN with unit tangent vector t and let u ∈
C(RN ; RN ). If ∇u ∈ LN (RN ), then

∣∣∣∣
∫

Γ
u · t

∣∣∣∣ 6 C |Γ| ‖∇u‖N ,

where |Γ| denotes the length of Γ. The constant C is independent of the
curve Γ and the vector-field u.

See [4] for a simple proof of Theorem 1.3.
The next ingredient is Smirnov’s theorem which asserts roughly

speaking that any divergence free vector field is a limit of convex combi-
nations of the form

∑
i αiH1xΓiti, where H1xΓ is Hausdorff’s one-dimensio-

nal measure restricted to Γ and ti is the tangent vector to Γi.
Combining this with Theorem 1.3, Bourgain and Brezis obtain the

following

Corollary 1.4. There exists a constant CN such that for each f ∈
L1

#(RN ; RN ) and u ∈ L∞(RN ; RN ) such that ∇u ∈ LN (RN ),
∣∣∣∣
∫

RN

f · u dx
∣∣∣∣ 6 CN ‖f‖1 ‖∇u‖N .

Note that Theorem 1.3 is a special case of Corollary 1.4.
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Proof of Theorem 1.1 using Corollary 1.4. Indeed we start as in the first
proof of Theorem 1.1. Write as above

∫

R3

Z · h =
∫

R3

Z · g.

Next, by standard Lp estimates we may solve curl Ỹ = g and div Ỹ = 0;
and then ‖∇Ỹ ‖3 6 ‖g‖3. (Here we do not use the difficult part in
Theorem 1.2 which gives some Y ∈ L∞(R3; R3).) Thus

∫

R3

Z · h =
∫

R3

Z · curl Ỹ = −
∫

R3

f · Ỹ .

so that by Corollary 1.4,
∣∣∣∣
∫

R3

Z · h
∣∣∣∣ 6 C ‖f‖1 ‖∇Ỹ ‖3 6 C ‖f‖1 ‖g‖3 6 C ‖f‖1 ‖h‖3 . �

Remark 1.5. Note that Corollary 1.4 is an easy consequence of Theo-
rem 1.1. Indeed write, using Theorem 1.1,
∣∣∣∣
∫

R3

f · u
∣∣∣∣ =

∣∣∣∣
∫

R3

(curlZ) · u
∣∣∣∣ =

∣∣∣∣
∫

R3

Z · curlu
∣∣∣∣

6 ‖Z‖3/2 ‖curlu‖3 6 C ‖f‖1 ‖∇u‖3 .
Remark 1.6. Another consequence of Theorem 1.7 already mentioned
in [2] is that ∆u = f ∈ L1

#(RN ) implies ‖∇u‖3/2 6 C ‖f‖1. This is
proved as follows. Let Z solve curlZ = f and divZ = 0. Then ∆Z =
curl f , so that, by Theorem 1.1, ‖∆−1 curl f‖3/2 6 C ‖f‖1. Therefore
‖curlu‖3/2 = ‖∆−1 curl ∆u‖3/2 6 C ‖f‖1. Finally, since div u = 0,

‖∇u‖3/2 6 C(‖curlu‖3/2 + ‖div u‖3/2) 6 C ‖f‖1 .
The goal of this note is to give a direct and elementary proof of

Corollary 1.4. In fact we present a slightly more general version.

Theorem 1.7. There exists a constant CN such that for each f ∈
L1(RN ; RN ) such that div f ∈ L1 and u ∈ (L∞ ∩W1,N )(RN ; RN ),

∣∣∣∣
∫

RN

f · u dx
∣∣∣∣ 6 CN (‖f‖1 ‖∇u‖N + ‖div f‖1 ‖u‖N ).

In a work in preparation we prove an extension of Corollary 1.4 in
which the condition div f = 0 is replaced by a weaker second order
condition [5].
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2. Proof of Theorem 1.7

First the estimate will be made under the additional assumptions
that f and u are in C1(RN ; RN ). The first term in the scalar product
is

∫

RN

f1u1 dx =
∫

R

∫

RN−1

f1u1 dy dx1.

The inside integral is estimated as follows. Let ρ ∈ L1(B(0, 1) ∩
RN−1) be such that

∫
RN−1 ρ = 1. Let ρε(·) = ε1−Nρ( ·ε), u

x1(y) =
u(x1, y) and fx1(y) = f(x1, y). The integral can be decomposed as

∫

RN−1

fx1
1 ux1

1 dy

=
∫

RN−1

fx1
1 (ux1

1 − ρε ∗ ux1
1 ) dy +

∫

RN−1

fx1
1 (ρε ∗ ux1

1 ) dy.

By the Morrey–Sobolev imbedding in RN−1 (see e.g. [3, theorem IX.12]),

∫

RN−1

fx1
1 (ux1

1 − ρε ∗ ux1
1 ) dy 6 C ′Nε1/N ‖fx1‖1 ‖∇ux1

1 ‖N .

On the other hand,

∫

RN−1

fx1
1 (ρε ∗ ux1

1 ) dy

=
∫

RN−1

∫ x1

−∞

∂

∂x1

(
f(t, y) (ρε ∗ ux1

1 )(y)
)
dt dy

=
∫

(−∞,x1)×RN−1

div
(
f(t, y) (ρε ∗ ux1

1 )(y)
)
dt dy

=
∫

(−∞,x1)×RN−1

f(t, y) · (0,∇(ρε ∗ ux1
1 )(y))

+ (div f(t, y))(ρε ∗ ux1
1 )(y) dt dy

6 C ′′Nε(1/N)−1(‖f‖1 ‖∇ux1
1 ‖N + ‖div f‖1 ‖ux1

1 ‖N )

where C ′N et C ′′N are constants which depend only on the dimension
N (and of ρ). (The third equality relies on the vector calculus identity
div(Zf) = (div f)Z+f ·∇Z, and the last inequality comes from Hölder’s
inequality.) For each x1 ∈ R such that ‖fx1‖1 ‖∇ux1

1 ‖N 6= 0, let ε =
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(‖f‖1 ‖∇ux1
1 ‖N + ‖div f‖1 ‖ux1

1 ‖N )/(‖fx1‖1 ‖∇ux1
1 ‖N ), so that

∫

RN−1

fx1
1 ux1

1 dy 6 C ′′′N (‖fx1‖1 ‖∇ux1
1 ‖N )(N−1)/N

(‖f‖1 ‖∇ux1
1 ‖N + ‖div f‖1 ‖ux1

1 ‖N )1/N .

If ‖fx1‖1 ‖∇ux1
1 ‖N 6= 0, choosing ε → ∞ gives the same inequality;

hence the inequality is true for any x1 ∈ R.
Finally, Hölder’s inequality yields

(2.1)
∫

RN

f1u1 dx 6
∫

R
C ′′′N (‖fx1‖1 ‖∇ux1

1 ‖N )(N−1)/N

(‖f‖1 ‖∇ux1
1 ‖N + ‖div f‖1 ‖ux1

1 ‖N )1/N dx1

6 C ′′′N ‖f‖
1
N
1

(∫

R
‖fx1‖1 dx1

)N−1
N
(∫

R
‖∇ux1‖NN dx1

)N−1
N2

(∫

R
(‖f‖1 ‖∇ux1

1 ‖N + ‖div f‖1 ‖ux1
1 ‖N )N dx1

) 1
N2

6 CN (‖f‖1 ‖∇u‖N )(N−1)/N (‖f‖1 ‖∇u‖N + ‖div f‖1 ‖u‖N )1/N .

The same estimate holds for
∫
RN uifi, 1 6 i 6 N . By classical ap-

proximation arguments, the inequality is true for any f ∈ L1
#(RN ; RN )

and u ∈ (L∞ ∩W1,N )(RN ; RN ). �

Remark 2.1. In fact the proof yields a slighly stronger inequality where
‖∇u‖N is replaced by

∑
i 6=j ‖∂iuj‖N , from which the inequality (2.1)

can be recovered by a scaling argument.

Remark 2.2. The same arguments show that Theorem 1.7 remains true
when f is a measure whose divergence is a measure.

Remark 2.3. As Bourgain and Brezis pointed out for Theorem 1.3 in [2],
the proof works also when ‖∇u‖N is replaced by any fractional Sobolev
semi-norm |·|s,p, with 1 < p <∞, 0 < s < 1, sp = N and

|u|ps,p =
∫

RN

∫

RN

|u(x)− u(y)|p
|x− y|2N dx dy.
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CHAPTER VII

Estimates for L1 vector fields with a second
order condition

1. Introduction

This note originates in the inequality proved by the author in [3].
Theorem 1.1. There exists a constant CN such that for each f ∈
L1(RN ; RN ) such that div f ∈ L1 and u ∈ (L∞ ∩W1,N )(RN ; RN ),∣∣∣∣

∫

RN

f · u dx
∣∣∣∣ 6 CN (‖f‖1 ‖∇u‖N + ‖div f‖1 ‖u‖N ).

Theorem 1.1 was proved when div f = 0 by Bourgain and Brezis [1].
In this note, a variant of Theorem 1.1 is proved where the divergence is
replaced by a second order operator.
Theorem 1.2. Let u ∈ (L∞ ∩W1,N )(RN ) and fij ∈ L1(RN ), gi ∈
L1(RN ) for N − 1 6 i 6 N and 1 6 j 6 i. If

(1.1)
∑

N−16i6N
16j6i

∂2fij
∂xi∂xj

=
∑

N−16i6N

∂gi
∂xi

,

in the sense of distributions, then for each N −1 6 i 6 N and 1 6 j 6 i∣∣∣∣
∫

RN

fiju

∣∣∣∣ 6 CN (‖f‖1 ‖∇u‖N + ‖g‖1 ‖u‖N ),

where
‖f‖1 =

∑

N−16i6N
16j6i

‖fij‖1

and
‖g‖1 =

∑

N−16i6N
‖gi‖1 .

This chapter was first published in the Bulletin de la Classe des Sciences de
l’Académie Royale de Belgique (6) 15 (2004), 103-112
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Remark 1.3. Theorem 1.2 implies Theorem 1.1. Indeed, suppose f sat-
isfies the hypotheses of Theorem 1.1. If fNj = fj , fN−1j = 0 for each
j, gN = div f and gN−1 = 0, then f and g satisfy the hypotheses of
Theorem 1.2. The conclusion of Theorem 1.2 implies the conclusion of
Theorem 1.1.

The restriction N − 1 6 i 6 N does not seem natural when N > 3.
In particular, Theorem 1.2 does not answer the question whether∣∣∣∣

∫

R3

f · u dx
∣∣∣∣ 6 CN ‖f‖1 ‖∇u‖3 .

for each u ∈ (L∞ ∩W1,3)(R3; R3) and f ∈ L1(R3; R3) such that
3∑

i=1

∂2
i fi = 0

excepted when one of the components fi vanishes. More generally one
can ask whether Theorem 1.2 is true under more natural assumptions:
Open Problem 1. Let u ∈ (L∞ ∩ W1,N )(RN ), fij ∈ L1(RN ) and
gi ∈ L1(RN ) for 1 6 i 6 N and 1 6 j 6 i. If

∑

16i6N
16j6i

∂2fij
∂xi∂xj

=
∑

16i6N

∂gi
∂xi

,

in the sense of distributions, then is it true that for each 1 6 i 6 N and
1 6 j 6 i, ∣∣∣∣

∫

RN

fiju

∣∣∣∣ 6 CN (‖f‖1 ‖∇u‖N + ‖g‖1 ‖u‖N ),

where
‖f‖1 =

∑

16i6N
16j6i

‖fij‖1

and
‖g‖1 =

∑

16i6N
‖gi‖1?

The problem is open even in the simple case where gi = 0 for all i
and fij = 0 for i 6= j.
Open Problem 2. Suppose u ∈ (L∞ ∩ W1,N )(RN ; RN ) and f ∈
L1(RN ; RN ). If

N∑

i=1

∂2fi
∂xi2

= 0,
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in the sense of distributions, then is it true that
∣∣∣∣
∫

RN

f · u
∣∣∣∣ 6 CN ‖f‖1 ‖∇u‖N?

2. Proof of Theorem 1.2

The key estimate is in the following

Lemma 2.1. Let u ∈ C1(RN−1). Let fij ∈ L1(RN ) and gi ∈ L1(RN )
for N − 1 6 i 6 N and 1 6 j 6 i. If (1.1) holds in the sense of
distributions, then for each t ∈ R,

∣∣∣∣
∫

RN−1

fNN (x, t)u(x) dx
∣∣∣∣ 6

1
2

(
‖fNN‖1 ‖∂N−1u‖∞

+
∑

N−16i6N
16j6N−1

‖fij‖1 ‖∂ju‖∞ +
∑

N−16i6N
‖gi‖1 ‖u‖∞

)
.

Proof. Let y ∈ RN−2 and z ∈ R. Write the integrand as

fNN (y, z, t) =
1
2

∫ 0

−∞

(
∂

∂xN−1
+

∂

∂xN

)
fNN (y, z + s, t+ s)

+
(

∂

∂xN−1
− ∂

∂xN

)
fNN (y, z + s, t− s) ds.

This gives

(2.1) 2
∫

RN−1

fNN (y, z, t)u(y, z) dz dy

=
∫

RN−1

∫ 0

−∞
u(y, z)

( ∂fNN
∂xN−1

(y, z + s, t+ s)

+
∂fNN
∂xN−1

(y, z + s, t− s)
)
ds dz dy

+
∫

RN−1

∫ 0

−∞
u(y, z)

(∂fNN
∂xN

(y, z + s, t+ s)

− ∂fNN
∂xN

(y, z + s, t− s)
)
ds dz dy.
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The first term is estimated by integration by parts

(2.2)
∫

RN−2

∫ 0

−∞

∫

R
u(y, z)

( ∂fNN
∂xN−1

(y, z + s, t+ s)

+
∂fNN
∂xN−1

(y, z + s, t− s)
)
dz ds dy

= −
∫

RN−2

∫ 0

−∞

∫

R

∂u

∂xN−1
(y, z)

(
fNN (y, z + s, t+ s)

+ fNN (y, z + s, t− s)
)
dz ds dy

= −
∫

RN−2

∫ 0

−∞

∫

R

∂u

∂xN−1
(y, z′ − s)

(
fNN (y, z′, t+ s)

+ fNN (y, z′, t− s)
)
dz′ ds dy

6
∥∥∥∥

∂u

∂xN−1

∥∥∥∥
∞

∫

RN

|fNN | .

For any y, z, t and s, the integrand of the second term of (2.1) can
be written as

(2.3)
∂fNN
∂xN

(y, z + s, t+ s)− ∂fNN
∂xN

(y, z + s, t− s)

=
∫ s

−s

∂2fNN
∂xN 2

(y, z + s, t+ τ) dτ.

Bringing (2.3) and (1.1) together yields

∫

RN−2

∫

R

∫ 0

−∞
u(y, z)

(∂fNN
∂xN

(y, z + s, t+ s)

− ∂fNN
∂xN

(y, z + s, t− s)
)
ds dz dy

=
∫

RN−2

∫

R

∫ 0

−∞
u(y, z)

∫ s

−s

∂2fNN
∂xN 2

(y, z + s, t+ τ) dτ ds dz dy
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= −
∑

N−16i6N
16j6N−1

∫

RN−2

∫

R

∫ 0

−∞
u(y, z)

∫ s

−s

∂2fij
∂xi∂xj

(y, z + s, t+ τ) dτ ds dz dy

+
∑

N−16i6N

∫

RN−2

∫

R

∫ 0

−∞
u(y, z)

∫ s

−s

∂gi
∂xi

(y, z + s, t+ τ) dτ ds dz dy.

Each term of the sum will now be bounded separately. For i = N
and 1 6 j 6 N − 1, one has

(2.4)
∫

RN−2

∫

R

∫ 0

−∞
u(y, z)

∫ s

−s

∂2fNj
∂xN∂xj

(y, z + s, t+ τ) dτ ds dz dy

=
∫ 0

−∞

∫

RN−2

∫

R
u(y, z)

(∂fNj
∂xj

(y, z + s, t+ s)

− ∂fNj
∂xj

(y, z + s, t− s)
)
dz dy ds

= −
∫ 0

−∞

∫

RN−2

∫

R

∂u

∂xj
(y, z)

(
fNj(y, z + s, t+ s)

− fNj(y, z + s, t− s)
)
dz dy ds

6
∥∥∥∥
∂u

∂xj

∥∥∥∥
∞

∫

RN

|fNj | .

If i = N − 1 and 1 6 j 6 N − 1, then

(2.5)
∫

RN−2

∫

R

∫ 0

−∞

∫ s

−s
u(y, z)

∂2fN−1j

∂xN−1∂xj
(y, z + s, t+ τ) dτ ds dz dy

=
∫

RN−2

∫

R

∫

R

∫ −|τ |
−∞

u(y, z)
∂2fN−1j

∂xN−1∂xj
(y, z + s, t+ τ) ds dτ dz dy

=
∫

RN−2

∫

R

∫

R
u(y, z)

∂fN−1j

∂xj
(y, z − |τ | , t+ τ) dτ dz dy

=
∫

R

∫

RN−2

∫

R
u(y, z)

∂fN−1j

∂xj
(y, z − |τ | , t+ τ) dz dy dτ
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=
∫

R

∫

RN−2

∫

R

∂u

∂xj
(y, z)fN−1j(y, z − |τ | , t+ τ) dz dy dτ

6
∥∥∥∥
∂u

∂xj

∥∥∥∥
∞

∫

RN

|fN−1j | .

The reasoning is similar for the terms with gi. The sum of all these
inequalities yields the result. �

Next lemma proves an estimate for u ∈W1,N (RN ) when there is an
estimate of the type of Lemma 2.1 for v ∈ C1(RN−1).
Lemma 2.2. Let f ∈ L1(RN ) and a, b ∈ R+ such that, for any function
v ∈ C1(RN−1) and for any t ∈ R,∣∣∣∣

∫

RN−1

f(x, t)v(x) dx
∣∣∣∣ 6 a ‖∇v‖∞ + b ‖v‖∞ ,

then, for any u ∈ (L∞ ∩W1,N )(RN ),∣∣∣∣
∫

RN

fu

∣∣∣∣ 6 CN (‖f‖1 ‖∇u‖N )1−(1/N)(a ‖∇u‖N + b ‖u‖N )1/N .

Proof. Let ρ : RN−1 → R be a measurable bounded function with
compact support such that

∫
RN−1 ρ = 1 and let ρε(·) = ε1−Nρ( ·ε). If

ut(y) = u(t, y) and f t(y) = f(t, y), then∫

RN−1

f tut dy =
∫

RN−1

f t(ut − ρε ∗ ut) dy +
∫

RN−1

f t(ρε ∗ ut) dy.

The Morrey–Sobolev embedding in RN−1 gives∣∣∣∣
∫

RN−1

f t(ut − ρε ∗ ut) dy
∣∣∣∣ 6 C ′Nε1/N

∥∥f t∥∥
1

∥∥∇ut∥∥
N
.

On the other hand∣∣∣∣
∫

RN−1

f t(ρε ∗ ut) dy
∣∣∣∣ 6 C ′′Nε(1/N)−1(a

∥∥∇ut∥∥
N

+ b
∥∥ut∥∥

N
).

The constants C ′N and C ′′N depend only on the dimension N (and of
ρ). For each t ∈ R, if

∥∥f t∥∥
1

∥∥∇ut∥∥
N
6= 0, the choice ε = (a

∥∥∇ut∥∥
N

+
b
∥∥ut∥∥

N
)/(
∥∥f t∥∥

1

∥∥∇ut∥∥
N

) yields
∣∣∣∣
∫

RN−1

f tut dy

∣∣∣∣
6 C ′′′N (

∥∥f t∥∥
1

∥∥∇ut∥∥
N

)1−(1/N)(a
∥∥∇ut∥∥

N
+ b

∥∥ut∥∥
N

)1/N .

If
∥∥f t∥∥

1

∥∥∇ut∥∥
N
6= 0, let ε → ∞ to obtain the same inequality. The

inequality is thus valid for any t ∈ R.
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Finally, by Hölder’s inequality
∣∣∣∣
∫

RN

fu dx

∣∣∣∣

6
∫

R
C ′′′N (

∥∥f t∥∥
1

∥∥∇ut∥∥
N

)1−(1/N)(a
∥∥∇ut∥∥

N
+ b

∥∥ut∥∥
N

)1/N dt

6 C ′′′N
(∫

R

∥∥f t∥∥
1
dt

)(N−1)/N (∫

R

∥∥∇ut∥∥N
N
dt

)(N−1)/N2

(∫

R
(a
∥∥∇ut1

∥∥
N

+ b
∥∥ut1
∥∥
N

)N dt
)1/N2

6 CN (‖f‖1 ‖∇u‖N )(N−1)/N (a ‖∇u‖N + b ‖u‖N )1/N . �

The combination of Lemmas 2.1 and 2.2 yields a special case of
Theorem 1.2.
Lemma 2.3. Under the hypotheses of Theorem 1.2,

∣∣∣∣
∫

RN

fNNu

∣∣∣∣ 6 CN (‖f‖1 ‖∇u‖N + ‖g‖1 ‖u‖N ),

where CN is a constant independent of f , g and u.

Proof. This is a direct consequence of Lemmas 2.1 and 2.2. �

By appropriate changes of variable, Theorem 1.2 can be deduced
from Lemma 2.3.

Proof of Theorem 1.2. By Lemma 2.3, the result is true for i = j = N .
It is also true for i = j = N − 1, by interverting N and N − 1 in the
hypotheses.

If j < N − 1 and i = N , define new variables by x′j = xj − xN and
x′k = xk if k 6= j and a new vector field f ′, defined by f ′NN = fNN + fNj
and f ′NN−1 = fNN−1 + fN−1j (for the other components, let f ′ij = fij).
Let g′ = g. One checks that f ′ verifies the same hypotheses as f and
that ‖f ′‖1 6 2 ‖f‖1. Since the inequality is true for f ′NN and for fNN ,
it is true for f ′NN − fNN = fNj .

The situation is somewhat more tedious when j = N − 1. Define
new variables by x′N−1 = xN−1 − xN and x′k = xk for k 6= N − 1. Let

f ′Nk =





fNk + fN−1k if k < N − 1,
fNN−1 + 2fN−1N−1 if k = N − 1,
fNN + fNN−1 − fN−1N−1 if k = N,
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and f ′N−1k = fN−1k. Let g′N−1 = gN−1 and g′N = gN + gN−1. The
condition (1.1) is checked by f ′ and g′. Since the inequality holds for
fNN , fN−1N−1 and f ′NN , it holds for fNN−1. �

3. Relationship with a Korn-Sobolev inequality

The Sobolev-Gagliardo-Nirenberg inequality

‖u‖N/(N−1) 6 C ‖∇u‖1
can be obtained by a combination of Theorem 1.1 and the classical
Calderón–Zygmund estimates.

In a similar way a Korn–Sobolev inequality of Strauss results from
Theorem 1.2 and the classical Calderón–Zygmund estimates.
Theorem 3.1 (Strauss [2]). For any u ∈ D(RN ; RN ),

‖u‖ N
N−1
6 KN

∑

16i6j6N
‖∂iuj + ∂jui‖1 .

Sketch of the proof of Theorem 3.1 using Theorem 1.2. Let

H ∈ D(RN ; RN ).

Let A be the differential operator defined for RN -valued functions by

(Au)ij = (∂iuj + ∂jui).

Its formal adjoint is defined for RN2
-valued functions by

(A∗v)i = −
N∑

j=1

(∂jvij + ∂jvji).

Consider the system A∗Ap = H. It is equivalent to

(3.1) ∆pi + ∂i

N∑

j=1

∂jpj = −Hi

2
.

This system is elliptic and has a solution

p ∈ (W1,∞ ∩W2,1
loc)(RN ; RN2

).

Furthermore, there exists a constant BN independent of H such that
∥∥D2p

∥∥
N
6 BN ‖H‖N .

Since p solves (3.1),
∫

RN

uH =
∫

RN

uA∗Ap =
∫

RN

AuAp.
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Recalling ∂2
i (Au)jj+∂2

j (Au)ii = 2∂i∂j(Au)ij , the application of Theorem
1.2 to each 2× 2 submatrix of Au gives
∣∣∣∣
∫

RN

uH

∣∣∣∣ =
∣∣∣∣
∫

RN

AuAp

∣∣∣∣ 6 CN ‖Au‖1 ‖∇Ap‖N
6 BNCN ‖Au‖1 ‖H‖N .

Since H is arbitrary, the result follows. �
Remark 3.2. The proof of Theorem 3.1 needs only a weak version of
Theorem 1.2 where fij = 0 and gi = 0 for j < N−1 and N−1 6 i 6 N .
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