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LIMITING FRACTIONAL AND LORENTZ SPACE ESTIMATES

OF DIFFERENTIAL FORMS

JEAN VAN SCHAFTINGEN

(Communicated by Michael T. Lacey)

Abstract. We obtain estimates in Besov, Triebel–Lizorkin and Lorentz spaces
of differential forms on Rn in terms of their L1 norm.

1. Introduction

The classical Hodge theory states that if u ∈ C∞
c (RN ;

∧�
Rn) and if 1 < p < ∞,

one has

(1) ‖Du‖Lp ≤ C(‖du‖Lp + ‖δu‖Lp).

Here Du is the derivative of u, du is its exterior differential of u, δu is its exterior

codifferential, and
∧�

Rn is the �th exterior product of Rn. This estimate is known
to fail when p = 1 or p = ∞.

When p = 1, J. Bourgain and H. Brezis [2, 3] and L. Lanzani and E. Stein [5]
obtained for 2 ≤ � ≤ n− 2 the estimate

‖u‖Ln/(n−1) ≤ C(‖du‖L1 + ‖δu‖L1),

which would be the consequence by the Sobolev embedding of (1) with p = 1.
When � = 1 or � = n− 1 one has to assume that du or δu vanishes.

I. Mitrea and M. Mitrea [6] have in a recent work extended these estimates
to homogeneous Besov spaces. Using interpolation theory, they could replace the
norm ‖u‖Ln/(n−1) by ‖u‖Ḃs

p,q
with 1

p − s
n = 1 − 1

n and q = 2
1−s . The goal of the

present paper is to improve the assumption on q by relying on previous results and
methods.

The first result is the estimate for the Besov spaces Ḃs
p,q(R

n). We follow
H. Triebel [10] for the definitions of the function spaces.

Theorem 1. For every s ∈ (0, 1), p > 1 and q > 1, if

(2)
1

p
− s

n
= 1− 1

n
,
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then there exists C > 0 such that for every u ∈ C∞
c (Rn;

∧� Rn) with, moreover,
δu = 0 if � = 1 and du = 0 if � = n− 1, one has

‖u‖Ḃs
p,q

≤ C(‖du‖L1 + ‖δu‖L1).

In particular, since ‖u‖Ẇ s,p = ‖u‖Ḃs
p,p

, one has the estimate

(3) ‖u‖Ẇ s,p ≤ C(‖du‖L1 + ‖δu‖L1).

In Theorem 1, we assume that q > 1. If it held for some q ∈ (0, 1], then the

embedding of F 1
1,2(R

n) ⊂ Ḃ0
n/(n−1),q(R

n) would hold. This can only be the case

when q ≥ 1. Therefore, the only possible improvement of Theorem 1 would be the
limiting case q = 1.

Open Problem 1. Does Theorem 1 hold for q = 1?

The estimate of Theorem 1 follows from the corresponding estimate for homo-
geneous Triebel–Lizorkin spaces Ḟ s

p,q(R
n).

Theorem 2. For every s ∈ (0, 1), p > 1 and q > 0, if (2) holds, then there exists

C > 0 such that for every u ∈ C∞
c (Rn;

∧�
Rn) with, moreover, δu = 0 if � = 1 and

du = 0 if � = n− 1, one has

‖u‖Ḟ s
p,q

≤ C(‖du‖L1 + ‖δu‖L1).

Note that here there is no restriction on q > 0. Finally, the latter estimate has
an interesting consequence for Lorentz spaces.

Theorem 3. For every q > 1, there exists C > 0 such that for every u ∈
C∞

c (Rn;
∧� Rn) with, moreover, δu = 0 if � = 1 and du = 0 if � = n − 1, one

has

‖u‖
L

n
n−1

,q ≤ C(‖du‖L1 + ‖δu‖L1).

In Theorem 3 the case q = 1 and � = 0 is equivalent to the embedding of
W 1,1(Rn) in L

n
n−1 ,1(Rn), which was obtained by J. Peetre [8] (see also [15]). This

raises the following question:

Open Problem 2. Does Theorem 3 hold for q = 1 and � ≥ 1?

The proofs of the theorems rely on the techniques developed by the author [11, 12]
and on classical embeddings and regularity theory in fractional spaces.

2. The main tool

Our main tool is a generalization of an estimate for divergence-free L1 vector
fields by the author [12].

Proposition 2.1. For every s ∈ (0, 1), p > 1 and q > 0 with sp = n, there exists

C > 0 such that for every f ∈ (C∞
c ∩L1)(Rn;

∧n−1 Rn) and ϕ ∈ C∞
c (Rn;

∧1 Rn),
if df = 0, ∫

Rn

f ∧ ϕ ≤ C‖f‖L1‖ϕ‖Ḟ s
p,q

.
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Here and in the sequel, ∧ denotes the exterior product of forms. The proof of this
proposition follows the method introduced by the author [4, 11, 12, 14] and followed
subsequently by L. Lanzani and E. Stein [5] and by I. Mitrea and M. Mitrea [6].
The extension to the case q = p is suggested in a previous work of the author [12,
Remark 5] (see also [2, Remark 1], [3, Remark 11], [14, Remark 2], and [4]); the
proposition can be deduced therefrom by following a remark in a subsequent paper
[13, Remark 4.2].

Proof. Write ϕ = ϕ1dx1 + · · ·+ ϕndxn and f = f1dx2 ∧ · · · ∧ dxn − f2dx1 ∧ dx3 ∧
· · · ∧ dxn + · · · + (−1)nfndx1 ∧ · · · ∧ dxn−1. Without loss of generality, we shall
estimate ∫

Rn

f1ϕ
1.

Fix t ∈ R, and consider the function ψ : Rn−1 → R defined by ψ(y) = ϕ1(t, y).
Choose ρ ∈ C∞

c (Rn) such that
∫
Rn−1 ρ = 1, and set for ε > 0 and y ∈ Rn−1

ρε(y) = 1
εn−1 ρ(

y
ε ). For every α ∈ (0, 1), there is a constant C > 0 that only

depends on ρ and α such that

‖∇ρε ∗ ψ‖L∞ ≤ Cεα−1|ψ|C0,α(Rn−1)

and
‖ψ − ρε ∗ ψ‖L∞ ≤ Cεα|ψ|C0,α(Rn−1),

where |ψ|C0,α(Rn−1) is the C0,α seminorm of ψ, i.e.,

|ψ|C0,α(Rn−1) = sup
y,z∈Rn−1

|ψ(z)− ψ(y)|
|z − y|α .

One has on the one hand∫
Rn−1

f1(t, ·)(ψ − ρε ∗ v) ≤ C‖f1(t, ·)‖L1(Rn−1)ε
α|ψ|C0,α(Rn−1).

On the other hand, by integration by parts, and since
∑n

i=1 ∂ifi = 0,
∫
Rn−1

f1(t, ·)ρε ∗ ψ =

n∑
i=2

(−1)i
∫
Rn−1

∫
R+

fi(t, y)∂i(ρε ∗ ψ)(y) dt dy

≤ C‖f1(t, ·)‖L1(Rn−1)ε
α−1|ψ|C0,α(Rn−1).

Taking ε = ‖f‖L1(Rn)/‖f(t, ·)‖L1(Rn−1), one obtains

(4)

∫
Rn−1

f1ψ ≤ C‖f‖αL1(Rn)‖f1(t, ·)‖1−α
L1(Rn−1)|ψ|C0,α(Rn−1).

Now, by the embedding theorem for Triebel–Lizorkin spaces, one has the esti-
mate

|ψ|C0,α ≤ C‖ψ‖Ḟ s
p,q(R

n−1)

with α = 1
p ; hence from (4) we deduce the inequality∫

Rn−1

f1ψ ≤ C‖f‖
1
p

L1‖f1(·, t)‖
1− 1

p

L1 ‖ψ‖Ḟ s
p,q(R

n−1).

Now, recalling that as a direct consequence of the Fubini property of Triebel–
Lizorkin spaces ([10, Theorem 2.5.13], [1, Théorème 2], [9, Theorem 2.3.4/2])(∫

R

‖ϕ(t, ·)‖p
Ḟ s

p,q(R
n−1)

dt
)
≤ C‖ϕ‖p

Ḟ s
p,q(R

n)
,
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one concludes, using Hölder’s inequality, that∫
Rn

f1u
1 ≤ C‖f‖

1
p

L1

∫
R

(
‖f1(·, t)‖

1− 1
p

L1 ‖ϕ(t, ·)‖Ḟ s
p,q(R

n−1)

)
dt ≤ C ′‖f‖L1‖ϕ‖Ḟ s

p,q(R
n).

�
Proposition 2.2. For every s ∈ (0, 1), p > 1 with 1

p + s
n = 1, q > 1 and 1 ≤ � ≤

n− 1, there exists C > 0 such that for every f ∈ C∞
c (Rn;

∧�
Rn) with df = 0, one

has
‖f‖Ḟ−s

p,q
≤ C‖f‖L1 .

Proof. The proposition will be proved by downward induction. The proposition is
true for � = n− 1 by Proposition 2.1. Assume now that it holds for �+ 1, and let

f ∈ C∞
c (Rn;

∧� Rn). Since d(f ∧ dxi) = 0, Proposition 2.1 is applicable and

‖f‖Ḟ−s
n

n−s
,q
≤

n∑
i=1

‖f ∧ dxi‖Ḟ−s
n

n−s
,q
≤ C

n∑
i=1

‖f‖L1 = Cn‖f‖L1 . �

A useful corollary of the previous proposition is

Corollary 2.3. For every s ∈ (0, 1), p > 1 with 1
p+

s
n = 1, q > 1 and 1 ≤ � ≤ n−1,

there exists C > 0 such that for every f ∈ C∞
c (Rn;

∧�
Rn) with df = 0, one has

‖f‖Ḃ−s,p
q

≤ C‖f‖L1 .

Proof. This follows from classical embeddings between Besov and Triebel–Lizorkin
spaces; see the proof of Theorem 1 below. �

3. Proofs of the main results

We begin by proving Theorem 2.

Proof of Theorem 2. To fix ideas, assume that 2 ≤ � ≤ n− 1. Recall that one has

u = d
(
K ∗ (δu)

)
+ δ

(
K ∗ (du)

)
,

where the Newton kernel is defined for n ≥ 3 by K(x) =
Γ(n

2 )

2π
n
2 |x|n−2

and for n = 2 by

K(x) = − 1
2π log|x|. By the classical elliptic estimates for Triebel–Lizorkin spaces,

‖K ∗ (δu)‖Ḟ s+1
p,q

≤ C‖δu‖Ḟ s−1
p,q

and ‖K ∗ (δu)‖Ḟ s+1
p,q

≤ C‖δu‖Ḟ s−1
p,q

.

Now, since d(du) = 0, Proposition 2.2 is applicable and yields

‖K ∗ (du)‖Ḟ s+1
p,q

≤ C‖δu‖L1 .

Since δ(δu) = 0, one can, by the Hodge duality between d and δ, treat ‖K∗(du)‖Ḟ s+1
p,q

similarly. �
We can now deduce Theorem 1 from Theorem 2.

Proof of Theorem 1. First assume that q ≥ p. Then one has

‖u‖Ḃs
p,q

≤ C‖u‖Ḟ s
p,q

,

and Theorem 1 follows from Theorem 2. Otherwise, if q < p, then by the embedding
theorems of Besov spaces,

‖u‖Ḃs
p,q

≤ C‖u‖Ḟ r
q,q

,

with r = s+ n( 1q − 1
p ), and Theorem 1 also follows from Theorem 2. �
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We finish with the proof of Theorem 3. It relies on

Lemma 3.1. For every s > 0, p > 1 and q > 1 with sq < n and

(5)
1

p
=

1

q
− s

n
,

there exists C > 0 such that for every u ∈ C∞
c (Rn),

‖u‖Lp,q ≤ C‖u‖Ḟ s
q,2

.

Proof. One has

u = Is ∗ ((−∆)
s
2 u),

where the Riesz kernel Is is defined for x ∈ Rn by

Is(x) =
Γ(n−α

2 )

π
n
2 2sΓ( s2 )|x|n−s

.

One then has, by the Sobolev inequality for Riesz potentials in Lorentz spaces of
R. O’Neil [7] (see also e.g. [15, Theorem 2.10.2]),

‖u‖Lr,p ≤ C‖(−∆)
s
2 u‖Lp .

One concludes by noting that ‖(−∆)
s
2 u‖Lp and ‖u‖Ḟ s

p,2
are equivalent norms [10,

Theorem 2.3.8 and section 5.2.3]. �

Proof of Theorem 3. Choose s > 0 so that (5) holds with p = n
n−1 . Since

1
q − s

n =

1− 1
n , one can combine Theorem 2 and Lemma 3.1 to obtain the conclusion. �
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[8] J. Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble) 16
(1966), fasc. 1, 279–317. MR0221282 (36:4334)

[9] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlin-
ear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications,
vol. 3, Walter de Gruyter & Co., Berlin, 1996. MR1419319 (98a:47071)

[10] H. Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Ver-
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