THE CONTINUITY OF FUNCTIONS WITH N-TH
DERIVATIVE MEASURE

AUGUSTO C. PONCE AND JEAN VAN SCHAFTINGEN

ABSTRACT. We study the continuity of functions v whose mixed deriv-
ative 01 ---Onu is a measure. If u € VV”(]RN)7 then we prove that
u is continuous. The same conclusion holds for u € W¥*?(Q), with
kp > N — 1, where @ denotes a cube in RY. The key step in the
proof consists in showing that the measure 01 ---Onu does not charge
hyperplanes orthogonal to the coordinate axes.

1. INTRODUCTION

The classical Sobolev embedding theorem states that

1 1 k
WFP(RN) — LYRY), where - =-——,
(BY) — L9(RY) -3
for every k£ > 1 integer and 1 < p < oo such that kp < N. In the borderline
case, namely kp = N, then functions in W*P?(RY) need not be bounded (or

even locally bounded), except when £ = N and p = 1. In fact, (see, e.g., [4])
Proposition 1.1. If u € WNYRY), then v € L®(RY) and

(1.1) il o g/ 01+ Onul.
]RN

Moreover, u is continuous and
12)  Jul) —u(y) < /Q 01+ Ol + ClVullpig,) Yoy € Q.

where Q. is any parallel cube of side 2 > 0 and C > 0 does not depend on
€.

We denote by 0; the derivative with respect to the x;-variable; a cube
Qe is parallel if its sides are parallel to the hyperplanes [z; = 0] for every
i =1,...,N. In Remark 2 we explain how one proves (1.2); in (1.2) we
make use of the Sobolev embedding W1 < WHLN_ The continuity of u
can be deduced either from (1.1) (via approximation of u by convolution)
or directly from (1.2).

If u € WN=LYRYN) and DV is merely a finite measure, then (1.1) still
holds (easily checked via approximation); in particular, one deduces that u €
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L‘X’(RN ). A natural question is whether w is continuous. Simple examples
show that the answer is no if N = 1 (here, W%! = L!). In dimension N > 2,
it turns out that the answer is yes, but it is more delicate to prove. Using
Lorentz spaces, L. Tartar established the following

Theorem 1.2. Let N > 2. Ifu € WN=LYRN) is such that DNu is a
measure, then u is continuous.

We refer the reader to [2] for the proof of L. Tartar (with a contribution
by A. Cohen).

An alternative approach to prove Theorem 1.2 goes as follows. By ap-
proximation, (1.2) still holds for a.e. ,y € Q.. Since D™V u is the derivative
of DV~1y in the sense of distributions, it follows from the theory of BV-
functions (see, e.g., [3]) that

(1.3) IDNu|({z}) =0 VzeRY,
i.e., the measure |D™u| does not contain Dirac masses. Thus, by dominated
convergence, one deduces that

(1.4) lim/ IDNu| = 0
a.

e—0

for every family of cubes (Q¢)->0. The continuity of u then easily follows
from (1.2) and (1.4).

This argument simplifies Tartar’s proof, but it still relies on the theory of
BV -functions. On the other hand, in both inequalities (1.1) and (1.2), only
01 - - - Onu comes into play. The goal of this paper is to clarify the role of
01 -+ - Oyu and improve Theorem 1.2.

We assume from now on that N > 2. One of our main results is

Theorem 1.3. If u € WYY (RYN) and 0y ---Oyu is a measure, then u is
continuous and bounded.

We recall that 0, --- dyu is a measure if there exists C' > 0 such that

/ wdy - ONg
RN

As one sees by considering u equal to the characteristic function of a cube,
the condition that 9; - - - dyu is a measure is not sufficient to ensure the con-
tinuity of u. In this example, u belongs to BV (R"), but not to WH!(RN).

In what follows, we denote by @ = Q1 the cube (—1,1). We point out
that the conclusion of Theorem 1.3 still holds for functions u € VVO1 ’1(Q) such
that 91 - - - Oyu is a measure; see Corollary 2.1. Without any restrictions on
the boundary, one has the

< CllollL= VYo € C°(RM).

Theorem 1.4. Let u € WN=LY(Q) be such that 0 ---Onu is a measure.
Then, u is continuous in Q.

Note however that in dimension N > 3 there are functions u € WN=21(Q),
with 0; - - - Oyu measure, which are not continuous. In fact, take any

v E WN—2,1 ((_1’ 1)N—1)
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which is discontinuous and define
u(@' zy) =v(@") V(' zy) € Q.
Then, 0y --- Onyu = 0 but u is not continuous.
In the same spirit, we have the

Theorem 1.5. Let u € WFP(Q), k > 1 integer and 1 < p < oo, be such
that 01 - - - Onu is a measure. If kp > N — 1, then u is continuous in Q.

According to Theorem 1.4, the conclusion of Theorem 1.5 holds if kp =
N — 1 and p = 1. Simple examples show that this is no longer true if
kp=N —1and p > 1.

As a corollary of Theorems 1.4 and 1.5, one immediately deduces coun-
terparts of these results for functions u € W*P(Q), where Q C RY is an
open set. In this case, one shows that u is continuous in 2. Note, however,
that u need not be continuous on €2, even if € is a ball. In fact, for any
a€(0,3), let

1

— B; C R?.
(1—331)“ V(ajl,xg)E 1 C

u(xy, o) =
Then, v € WH(By) and 9102u = 0 in By, but u is not uniformly bounded
in Bl.

In Theorems 1.3-1.5, the measure 0, - -- Oyu need not be the derivative
of a BV-function. It is then unlikely that one can rely on the BV-theory
in order to deduce (1.3) as above. One of the main ingredients to establish
Theorems 1.3-1.5 is the next

Proposition 1.6. Let u € WH(Q) be such that 9y ---Onu is a measure.
Then, |01 ---Onu| does not charge hyperplanes of the form [z; = t], Vi €
{1,...,N}, Vte (—1,1).

Here,
[z; =t] == {xERN;xi:t}

is the hyperplane passing through te; and orthogonal to the z;-axis. We say
that a positive measure p does not charge a measurable set A if pu(A) =
0. Note that the measure |0; - --Onu| can charge other hyperplanes. For
instance, if

u(z) = max {1 — |z1],...,1— |zn|,0} Vz e RV,

then u € WHH(RYN) and 9y - - - Onyu is a measure supported on the diagonals
of the cube Q.

The paper is organized as follows. In Sections 2-3 we establish Theo-
rems 1.3-1.5. In Sections 4-5, we prove some results—including Proposi-
tion 1.6—which we used in Sections 2-3. Finally, in Section 6 we explain
how to deduce counterparts of Theorems 1.3 and 1.5 for fractionary Sobolev
spaces W*P with s > 0.
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2. PROOF OF THEOREM 1.3

We assume Proposition 1.6, which will be established in Section 4 be-
low. Let (p,) be a sequence of nonnegative radial mollifiers such that
pn € C§(Bin), Vn > 1. Since u € LY(RN), for every fixed n > 1 the
function p,, * u converges uniformly to 0 as |x| — 4o00. It is then easy to see
that for each z € RY

T TN
(2.1) pn*u(:n):/ / pn*(al---aNu):/N(pn*F)81---8Nu,
—00 —o0 R

where

Fly) = {(1) ftlgiie;ia:e'for every i € {1,..., N},
Note in particular that

pn* F(y) — F(y) for every y € RY such that y; # 2, Vi€ {1,...,N}.
Applying Proposition 1.6 to an arbitrary cube in RY, we have
(2.2) 01+ Onul(fyi =1]) =0 VteR, Vi=1,...,N.

Hence,
pnx F — F 0---Onu-a.e.

By dominated convergence, as n — oo in (2.1), we then get

(2.3) u(a;):/_:.-/_Zal---aNu a.e.

In view of (2.2), the right-hand side of (2.3) is well-defined for every x € RY
and, by dominated convergence, is continuous. Hence, u coincides a.e. with
a continuous function. This concludes the proof of Theorem 1.3.

Remark 1. An easy variant of (2.3) shows that u(x) — 0 uniformly as
|x| — +o00. We leave the details to the reader.

As a consequence of Theorem 1.3, we have

Corollary 2.1. If u € Wol’l(Q) and 01 ---OnNu is a measure, then u is
continuous on Q.

Proof. Let @ € WHL(RY) be the extension of u as zero outside Q. By
Lemma 2.2 below, 0; - - - dyu is a measure in RY. Thus, u = @ is continuous
on @ in view of Theorem 1.3. O

We are left to prove the
Lemma 2.2. Let u € Wol’l(Q). If 01 - - - Onu is a measure, then
(2.4) /ual---awz(—nN/ oo Oyu Ve e C(Q).
Q Q
Proof. By definition, equality in (2.4) holds for every ¢ € C5°(Q). We

now show that (2.4) still holds for functions ¢ € C*°(Q) with support in
[-1,1] x (=1,1)N~1. Consider a sequence (6,) C C§°((—1,1)) such that
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0<6,<1and,(t) —»1asn — oo for every t € (—1,1). Let ¢ € C>°(Q)
have its support in [—1,1] x (=1,1)N~1. Clearly,

= [ @)oo (Bulr)p) de = (DY [ )o@y o
Since u € Wol’l(Q), we also have
I = - /Q (Oru()) On(21) Do - O ol d.
Thus, applying dominated convergence and using that u € W, (Q),
I, — —/Q(alu)ag---awz/QualaQ---aW as n — oo.

On the other hand, since 0; --- dyu is a finite measure, it also follows by
dominated convergence that

/9n($1)¢($)51"'3Nu—>/9061---8Nu.
Q Q

We conclude that (2.4) holds with functions supported in [—1, 1]x (=1, 1)V "1,
Repeating the process with respect to the remaining N — 1 variables, one
obtains the conclusion. U

3. PROOFS OF THEOREMS 1.4 AND 1.5

Theorems 1.4 and 1.5 are based on the following

Theorem 3.1. Let u € WFP(Q), k > 1 integer and 1 < p < oo, be such
that Oy - - - Onu is a measure. Then, there exist v,wy, ..., wy € WFP(Q) and
a constant C > 0 (depending on N ) such that

(1) u=v+3 ;wj;
(@2) vllwes + 225 lwillwes < Cllullyrs;
(#i1) v is continuous and

(3.1) lo(z) — v(y)| < /Q 01Ol Y,y € Q;

(iv) Ojw; =0 in D'(Q), for every j=1,...,N.
We postpone the proof of Theorem 3.1 to Section 5.

Proofs of Theorems 1.4 and 1.5. Applying Theorem 3.1, we can write u as
N

(3.2) u:v—i-ij,
j=1

where v is continuous and each wj is a function of (N — 1)-variables in
WwhN-L1 (Wk’p with kp > N —1, resp.). Therefore, each w; is also continuous;
hence, u is continuous as well. O
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Remark 2 (Modulus of continuity of u). Assume p > N — 1. From Theo-
rem 3.1, one deduces the following estimate on the modulus of continuity of
a function u € W1P(Q) such that 9 - -- Oyu is a measure:

N-1

(33)  |ulx) / 0y - O] + 1\|Vu||m<@6 o -y,

for every z,y € Q., where Q. C @ is an arbitrary parallel cube of side
2e > 0.

In fact, by scaling it suffices to establish (3.3) when Q. = @ is the cube
(—1,1)N. We then apply Theorem 3.1 and write u as in (i). Note that the
proof of Theorem 3.1 provides the following estimate which is slightly better
than (i4):

N
Z vaj”LP(Q) < CHVUHLP(Q)
By condition (iii), we have
lv(z) —v(y)| < / |01---Onul Vz,y € Q.
Q

Since wj is independent of the variable z;, and w; € WhP(Q) withp > N—1,
it follows from Morrey’s inequality in dimension N — 1 that
1_N-1
|w; () = w;(y)] < ClIVw; o) le =y~
1-N=1
<CO|Vullpgylz—yl'™ 7 Vo,yeQ.

Combining the inequalities for v and w;, we obtain (3.3) with ¢ = 1.

4. PROOF OF PROPOSITION 1.6
The proof of Proposition 1.6 relies on the following two lemmas:

Lemma 4.1. Let v € L'(Q2) be such that Oy ---Onv is a measure. If v is

odd with respect to the variables x1,...,xn_1, then there exists € > 0 such
that
(4.1) [u(y,s) = v(y, —t)| > |(D1--- Inv)(S)]

for a.e. y € (1,1 4+e)N1 and a.e. s,t € (0,¢).
Here, we use the following notation
Qo :=(—2,2)Y and S:=[-1,1]N"1 x {0}.

Proof of Lemma 4.1. By outer regularity of the Radon measure p := 0y - - - Iy,
there exists € > 0, such that

(12 [ o] = s

for every ¢ € C§°(Q2) such that 0 < ¢ <1in @2, p =1 o0on S, and

suppp C (=1 — 26,1 +2e)V 71 x (—2¢, 2¢).
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Let (pn) be a sequence of nonnegative radial mollifiers such that p, €

C(‘)’O(Bl/n), Vn > 1. Since v is odd with respect to the variables x1,...,xn_1,
one has
Y1 YN-1 s
pn*v(y,S)—pn*v(y,—t)=2N_1/ / P * J.
—Y1 —yn-1J—t

Take n > 1 large so that supp p, C B.. By (4.2), one has
|pn # 0(y,8) = pnx v(y, —t)| > |(S)]

for every y € (1,1 +¢)V~! and s,t € (0,e). As n — oo, we obtain (4.1).
This establishes Lemma 4.1. O

Lemma 4.2. Assumev € W11(Q2) satisfies the assumptions of Lemma 4.1.
Then,

(01 - Onv) ([-1, 1]V x {0}) = 0.
Proof. Let € > 0 as in Lemma 4.1. Given § > 0, we denote by
As = (1,1 4+ )V x (=6,0).

/ /05|u(y,s) —o(y,s — 8)| dyds < 5/A§|W|,

(1,14e)N-1
it follows from (4.1) that

eN_15|(81---8Nv)(S)‘ < 5/A |Vol.

Since

Dividing both sides by § and letting § — 0, we conclude that
‘(81 cee 8}\7?))(5)‘ =0.

We can now establish Proposition 1.6.

Proof of Proposition 1.6. Without loss of generality, we may assume that
t =0 and ¢ = N. We split the proof in two steps.

Step 1. We show that
(1 - Onu)(S,) =
where S, := [—r, r]N 71 x {0}, with 0 < r < 3.
Define v: Q1 — R as

v(@y,.an) = Y (=Du((=D)Mm, . ()Y ey, 2y,

a;€{0,1}
1<i<N—1

0,

where |a] = YN 1 a;. One immediately checks that v is odd with respect
to the variables x1,...,zy_1 and that

(81 -+ ONv)(S,) = 2V 71Dy -+ - O u)(S)).
Moreover, v € WH1(Q); thus, the previous lemma gives the conclusion.

Step 2. Proof of the proposition completed.
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Let S be any square of the form [[X [a;, b))V~ x {0}. By a variant of
Step 1, we have

(01 Onu)(S) = 0.
Thus, by inner regularity of 0; - - - Onu,
(01 Oyu)(w x {0}) =0,
for every open set w C (—1, 1)N —1. This implies that
|0y -+ - Onul(S) = 0.
The proof of the proposition is complete. O

5. PROOF OoF THEOREM 3.1

We first introduce some notation. Let v : Q — R and let P C @ be an
(oriented) parallelepiped. If N =1 and P = [a, b], then define

Apv =v(b) —v(a).
If N >1and P= P x [a,b], then let
Apv = Apv(-,b) — Apv(-,a).
In particular, if v € C*°(Q), then one has the identity

(5.1) APU:/ 0y -+ ONv.
P

The proof of Theorem 3.1 is based on the next
Lemma 5.1. Let u € kap(Q), with k > 1 integer and 1 < p < co. Then,
for a.e. a € Q there exist v, w1, ..., wy € WFP(Q) such that

(i13") for every x € Q,

U(:E) = A[al,xl]x---x[aN,xN]u;

(iv) Ojw; =0 in D'(Q), for every j=1,...,N.

Moreover, a € Q can be chosen so that

N
(5.2) [ollwse + D lwjllwes < Cllellyns,
j=1

for some C > 0 independent of u.

The proof of Lemma 5.1 is based on a standard Fubini-type argument.
We present here a sketch of the proof.

Proof of Lemma 5.1. For every a € @, let

Va(T) = Ay a1]xxfan,en]® a0 go(7) = u(z) — va(T).
Observe that g, can be written as a sum of N functions wig,...,WN,
depending on at most (N — 1) components of z, and each w;, is obtained
by (sums of) restrictions of u with respect to parallel affine subspaces passing
through a.
Let (u,) be a sequence in C°°(Q) such that

u, —u in WPP(Q).
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For each a € @, define v, , and g, , accordingly. By Fubini, for a.e. a € Q
we have

(5.3) Gna — ga i WHP(Q).
Therefore,
Upq — Ug iD Wk’p(Q).

In order to obtain (5.2), note that by Fubini there exists a set of positive
measure A C @ such that

[wjallwrr < Clluflwrs  Va € A,

where the constant C' > 0 depends on the (Lebesgue) measure of A. To
obtain estimate (5.2), it suffices to take a € A for which (5.3) holds. O

Proof of Theorem 3.1. Applying Lemma 5.1, we can find v, w1,...,wy €
WFP(Q) such that (i), (i) and (iv) hold. We now show that

(5.4) v(z / / o -

Recall that, by Proposition 1.6,
(5.5) 01+ Onul(lyi =t)NQ) =0 Vte(-1,1) Vi=1,...,N.

In particular, the right-hand side of (5.4) is well-defined. Let (p,) be a
sequence of mollifiers such that supp p, C By,,. By (iii’) and (5.1), we have

pn*v / / 81 pn*u)

for every € @ such that d(z,0Q) > % Proceeding as in the proof of
Theorem 1.3, we deduce (5.4). It then follows from (5.5) that v is continuous
on ); moreover, (3.1) holds. This establishes Theorem 3.1. O

6. FURTHER RESULTS

Most of our results can be extended to fractionary Sobolev spaces W*P
with s >0 and 1 < p < oo.

We first recall the definition of stp(Q) for a domain 2 C RY. Given
0 < s <1, we say that u € WP(Q) i

u e LP() and // ’|$_y|N+SP dx dy < oo.

If s > 1, s ¢ N, then we say that u € W*P(Q) if
we WrP(Q) and DFue W FkP(Q),
where k € N is such that £ < s < k+ 1.
The counterparts of Theorems 1.3 and 1.5 for W*P are

Theorem 6.1. Ifu € Wl/p’p(RN), 1< p<oo,anddy---Onu is a measure,
then u is continuous and bounded.

Theorem 6.2. Let u € W*P(Q), s > 0 and 1 < p < o0, be such that
01 ---0Onu is a measure. If sp > N — 1, then u is continuous on Q.
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Simple examples show that the conclusion of Theorem 6.1 is no longer true
if sp < 1 (take for instance u = x(, the characteristic function of Q). The
proofs of Theorems 6.1 and 6.2 are based on counterparts of Lemma 5.1
and Proposition 1.6 for W*P. The analogue of Lemma 5.1 can be still
established via a Fubini-type argument using the equivalent form of the
Gagliardo seminorm in RY (see [1]):

N
r (x +7e;) —u(z)P
60 =3 [ [ B 0

We shall focus on the counterpart of Proposition 1.6:

Proposition 6.3. Let u € W*P(Q) be such that 0y - - - Onu is a measure. If
sp>1, then

(6.2) 01+ Onul([zs =t)NQ) =0 Vte(-1,1), Vi=1,...,N.
We need the analogue of Lemma 4.2 in W*P for sp > 1:

Lemma 6.4. Assume s >0, p > 1 and sp > 1. Let v e WP(Q) satisfy the
assumptions of Lemma 4.1. Then

(81 T 8]\7?})(5) =0,
where S = [—1,1)V =1 x {0}.
Proof. If s > 1, then this follows from Lemma 4.2 and the embedding

WeP(Q) ¢ WHH(Q). We now assume 0 < s < 1. If the conclusion did
not hold, then, by Lemma 4.1, there would exist ¢, > 0 such that

[v(y, s) — vy, —t)| > 6> 0

for a.e. y € (1,1 +¢)V~! and a.e. s,t € (0,). Together with sp > 1, this
would yield

“ vy, s) — vy, —t)”
(6.3) / // s+t1+51’ dsdtdy >

(1,14e)N-1
S € RY4
N-1
————dsdt = .
> /0/0 (S—I—t)1+3p S +00

In view of the equivalent seminorm (6.2), this would be in contradiction
with the hypothesis u € W*P(Q). O

Proof of Proposition 6.3. One proceeds exactly as in the proof of Proposi-
tion 1.6, replacing Lemma 4.2 by Lemma 6.4. We leave the details to the
reader. O
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