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Abstract. We study the continuity of functions u whose mixed deriv-
ative ∂1 · · · ∂Nu is a measure. If u ∈ W 1,1(RN), then we prove that
u is continuous. The same conclusion holds for u ∈ W k,p(Q), with
kp > N − 1, where Q denotes a cube in R

N . The key step in the
proof consists in showing that the measure ∂1 · · · ∂Nu does not charge
hyperplanes orthogonal to the coordinate axes.

1. Introduction

The classical Sobolev embedding theorem states that

W k,p(RN ) →֒ Lq(RN ), where
1

q
=

1

p
−

k

N
,

for every k ≥ 1 integer and 1 ≤ p < ∞ such that kp < N . In the borderline
case, namely kp = N , then functions in W k,p(RN ) need not be bounded (or
even locally bounded), except when k = N and p = 1. In fact, (see, e.g., [4])

Proposition 1.1. If u ∈ W N,1(RN ), then u ∈ L∞(RN ) and

(1.1) ‖u‖L∞ ≤

∫

RN

|∂1 · · · ∂Nu|.

Moreover, u is continuous and

(1.2)
∣

∣u(x) − u(y)
∣

∣ ≤

∫

Qε

|∂1 · · · ∂Nu| + C‖∇u‖LN (Qε) ∀x, y ∈ Qε,

where Qε is any parallel cube of side 2ε > 0 and C > 0 does not depend on
ε.

We denote by ∂i the derivative with respect to the xi-variable; a cube
Qε is parallel if its sides are parallel to the hyperplanes [xi = 0] for every
i = 1, . . . , N . In Remark 2 we explain how one proves (1.2); in (1.2) we
make use of the Sobolev embedding W N,1 →֒ W 1,N . The continuity of u

can be deduced either from (1.1) (via approximation of u by convolution)
or directly from (1.2).

If u ∈ W N−1,1(RN ) and DNu is merely a finite measure, then (1.1) still
holds (easily checked via approximation); in particular, one deduces that u ∈
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L∞(RN ). A natural question is whether u is continuous. Simple examples
show that the answer is no if N = 1 (here, W 0,1 = L1). In dimension N ≥ 2,
it turns out that the answer is yes, but it is more delicate to prove. Using
Lorentz spaces, L. Tartar established the following

Theorem 1.2. Let N ≥ 2. If u ∈ W N−1,1(RN ) is such that DNu is a
measure, then u is continuous.

We refer the reader to [2] for the proof of L. Tartar (with a contribution
by A. Cohen).

An alternative approach to prove Theorem 1.2 goes as follows. By ap-
proximation, (1.2) still holds for a.e. x, y ∈ Qε. Since DNu is the derivative
of DN−1u in the sense of distributions, it follows from the theory of BV -
functions (see, e.g., [3]) that

(1.3) |DNu|
(

{z}
)

= 0 ∀z ∈ R
N ,

i.e., the measure |DNu| does not contain Dirac masses. Thus, by dominated
convergence, one deduces that

(1.4) lim
ε→0

∫

Qε

|DNu| = 0

for every family of cubes (Qε)ε>0. The continuity of u then easily follows
from (1.2) and (1.4).

This argument simplifies Tartar’s proof, but it still relies on the theory of
BV -functions. On the other hand, in both inequalities (1.1) and (1.2), only
∂1 · · · ∂Nu comes into play. The goal of this paper is to clarify the role of
∂1 · · · ∂Nu and improve Theorem 1.2.

We assume from now on that N ≥ 2. One of our main results is

Theorem 1.3. If u ∈ W 1,1(RN ) and ∂1 · · · ∂Nu is a measure, then u is
continuous and bounded.

We recall that ∂1 · · · ∂Nu is a measure if there exists C > 0 such that
∣

∣

∣

∣

∫

RN

u∂1 · · · ∂Nϕ

∣

∣

∣

∣

≤ C‖ϕ‖L∞ ∀ϕ ∈ C∞
0 (RN ).

As one sees by considering u equal to the characteristic function of a cube,
the condition that ∂1 · · · ∂Nu is a measure is not sufficient to ensure the con-
tinuity of u. In this example, u belongs to BV (RN ), but not to W 1,1(RN ).

In what follows, we denote by Q = Q1 the cube (−1, 1)N . We point out

that the conclusion of Theorem 1.3 still holds for functions u ∈ W
1,1
0 (Q) such

that ∂1 · · · ∂Nu is a measure; see Corollary 2.1. Without any restrictions on
the boundary, one has the

Theorem 1.4. Let u ∈ W N−1,1(Q) be such that ∂1 · · · ∂Nu is a measure.
Then, u is continuous in Q.

Note however that in dimension N ≥ 3 there are functions u ∈ W N−2,1(Q),
with ∂1 · · · ∂Nu measure, which are not continuous. In fact, take any

v ∈ W N−2,1
(

(−1, 1)N−1
)
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which is discontinuous and define

u(x′, xN ) = v(x′) ∀(x′, xN ) ∈ Q.

Then, ∂1 · · · ∂Nu = 0 but u is not continuous.

In the same spirit, we have the

Theorem 1.5. Let u ∈ W k,p(Q), k ≥ 1 integer and 1 < p < ∞, be such
that ∂1 · · · ∂Nu is a measure. If kp > N − 1, then u is continuous in Q.

According to Theorem 1.4, the conclusion of Theorem 1.5 holds if kp =
N − 1 and p = 1. Simple examples show that this is no longer true if
kp = N − 1 and p > 1.

As a corollary of Theorems 1.4 and 1.5, one immediately deduces coun-
terparts of these results for functions u ∈ W k,p(Ω), where Ω ⊂ R

N is an
open set. In this case, one shows that u is continuous in Ω. Note, however,
that u need not be continuous on Ω, even if Ω is a ball. In fact, for any
a ∈ (0, 1

2 ), let

u(x1, x2) =
1

(1 − x1)a
∀(x1, x2) ∈ B1 ⊂ R

2.

Then, u ∈ W 1,1(B1) and ∂1∂2u = 0 in B1, but u is not uniformly bounded
in B1.

In Theorems 1.3–1.5, the measure ∂1 · · · ∂Nu need not be the derivative
of a BV -function. It is then unlikely that one can rely on the BV -theory
in order to deduce (1.3) as above. One of the main ingredients to establish
Theorems 1.3–1.5 is the next

Proposition 1.6. Let u ∈ W 1,1(Q) be such that ∂1 · · · ∂Nu is a measure.
Then, |∂1 · · · ∂Nu| does not charge hyperplanes of the form [xi = t], ∀i ∈
{1, . . . , N}, ∀t ∈ (−1, 1).

Here,

[xi = t] :=
{

x ∈ R
N ; xi = t

}

is the hyperplane passing through tei and orthogonal to the xi-axis. We say
that a positive measure µ does not charge a measurable set A if µ(A) =
0. Note that the measure |∂1 · · · ∂Nu| can charge other hyperplanes. For
instance, if

u(x) = max
{

1 − |x1|, . . . , 1 − |xN |, 0
}

∀x ∈ R
N ,

then u ∈ W 1,1(RN ) and ∂1 · · · ∂Nu is a measure supported on the diagonals
of the cube Q.

The paper is organized as follows. In Sections 2–3 we establish Theo-
rems 1.3–1.5. In Sections 4–5, we prove some results—including Proposi-
tion 1.6—which we used in Sections 2–3. Finally, in Section 6 we explain
how to deduce counterparts of Theorems 1.3 and 1.5 for fractionary Sobolev
spaces W s,p, with s > 0.
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2. Proof of Theorem 1.3

We assume Proposition 1.6, which will be established in Section 4 be-
low. Let (ρn) be a sequence of nonnegative radial mollifiers such that
ρn ∈ C∞

0 (B1/n), ∀n ≥ 1. Since u ∈ L1(RN ), for every fixed n ≥ 1 the
function ρn ∗u converges uniformly to 0 as |x| → +∞. It is then easy to see
that for each x ∈ R

N

(2.1) ρn ∗ u(x) =

∫ x1

−∞
· · ·

∫ xN

−∞
ρn ∗ (∂1 · · · ∂Nu) =

∫

RN

(ρn ∗ F ) ∂1 · · · ∂Nu,

where

F (y) =

{

1 if yi < xi for every i ∈ {1, . . . ,N},

0 otherwise.

Note in particular that

ρn ∗ F (y) → F (y) for every y ∈ R
N such that yi 6= xi, ∀i ∈ {1, . . . ,N}.

Applying Proposition 1.6 to an arbitrary cube in R
N , we have

(2.2) |∂1 · · · ∂Nu|
(

[yi = t]
)

= 0 ∀t ∈ R, ∀i = 1, . . . ,N.

Hence,

ρn ∗ F → F ∂1 · · · ∂Nu-a.e.

By dominated convergence, as n → ∞ in (2.1), we then get

(2.3) u(x) =

∫ x1

−∞
· · ·

∫ xN

−∞
∂1 · · · ∂Nu a.e.

In view of (2.2), the right-hand side of (2.3) is well-defined for every x ∈ R
N

and, by dominated convergence, is continuous. Hence, u coincides a.e. with
a continuous function. This concludes the proof of Theorem 1.3.

Remark 1. An easy variant of (2.3) shows that u(x) → 0 uniformly as
|x| → +∞. We leave the details to the reader.

As a consequence of Theorem 1.3, we have

Corollary 2.1. If u ∈ W
1,1
0 (Q) and ∂1 · · · ∂Nu is a measure, then u is

continuous on Q.

Proof. Let ū ∈ W 1,1(RN ) be the extension of u as zero outside Q. By
Lemma 2.2 below, ∂1 · · · ∂N ū is a measure in R

N . Thus, u = ū is continuous
on Q in view of Theorem 1.3. �

We are left to prove the

Lemma 2.2. Let u ∈ W
1,1
0 (Q). If ∂1 · · · ∂Nu is a measure, then

(2.4)

∫

Q
u∂1 · · · ∂Nϕ = (−1)N

∫

Q
ϕ∂1 · · · ∂Nu ∀ϕ ∈ C∞(Q).

Proof. By definition, equality in (2.4) holds for every ϕ ∈ C∞
0 (Q). We

now show that (2.4) still holds for functions ϕ ∈ C∞(Q) with support in
[−1, 1] × (−1, 1)N−1. Consider a sequence (θn) ⊂ C∞

0

(

(−1, 1)
)

such that
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0 ≤ θn ≤ 1 and θn(t) → 1 as n → ∞ for every t ∈ (−1, 1). Let ϕ ∈ C∞(Q)
have its support in [−1, 1] × (−1, 1)N−1. Clearly,

In :=

∫

Q
u(x) ∂1 · · · ∂N

(

θn(x1)ϕ(x)
)

dx = (−1)N
∫

Q
θn(x1)ϕ(x) ∂1 · · · ∂Nu.

Since u ∈ W
1,1
0 (Q), we also have

In = −

∫

Q

(

∂1u(x)
)

θn(x1) ∂2 · · · ∂Nϕ(x) dx.

Thus, applying dominated convergence and using that u ∈ W
1,1
0 (Q),

In → −

∫

Q
(∂1u) ∂2 · · · ∂Nϕ =

∫

Q
u∂1∂2 · · · ∂Nϕ as n → ∞.

On the other hand, since ∂1 · · · ∂Nu is a finite measure, it also follows by
dominated convergence that

∫

Q
θn(x1)ϕ(x) ∂1 · · · ∂Nu →

∫

Q
ϕ∂1 · · · ∂Nu.

We conclude that (2.4) holds with functions supported in [−1, 1]×(−1, 1)N−1.
Repeating the process with respect to the remaining N − 1 variables, one
obtains the conclusion. �

3. Proofs of Theorems 1.4 and 1.5

Theorems 1.4 and 1.5 are based on the following

Theorem 3.1. Let u ∈ W k,p(Q), k ≥ 1 integer and 1 ≤ p < ∞, be such
that ∂1 · · · ∂Nu is a measure. Then, there exist v,w1, . . . , wN ∈ W k,p(Q) and
a constant C > 0 (depending on N) such that

(i) u = v +
∑

j wj ;

(ii) ‖v‖W k,p +
∑

j ‖wj‖W k,p ≤ C‖u‖W k,p;

(iii) v is continuous and

(3.1)
∣

∣v(x) − v(y)
∣

∣ ≤

∫

Q
|∂1 · · · ∂Nu| ∀x, y ∈ Q;

(iv) ∂jwj = 0 in D′(Q), for every j = 1, . . . ,N .

We postpone the proof of Theorem 3.1 to Section 5.

Proofs of Theorems 1.4 and 1.5. Applying Theorem 3.1, we can write u as

(3.2) u = v +

N
∑

j=1

wj ,

where v is continuous and each wj is a function of (N − 1)-variables in

W N−1,1 (W k,p with kp > N−1, resp.). Therefore, each wj is also continuous;
hence, u is continuous as well. �
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Remark 2 (Modulus of continuity of u). Assume p > N − 1. From Theo-
rem 3.1, one deduces the following estimate on the modulus of continuity of
a function u ∈ W 1,p(Q) such that ∂1 · · · ∂Nu is a measure:

(3.3)
∣

∣u(x) − u(y)
∣

∣ ≤

∫

Qε

|∂1 · · · ∂Nu| +
C

ε
1

p

‖∇u‖Lp(Qε) |x − y|1−
N−1

p ,

for every x, y ∈ Qε, where Qε ⊂ Q is an arbitrary parallel cube of side
2ε > 0.

In fact, by scaling it suffices to establish (3.3) when Qε = Q is the cube
(−1, 1)N . We then apply Theorem 3.1 and write u as in (i). Note that the
proof of Theorem 3.1 provides the following estimate which is slightly better
than (ii):

N
∑

j=1

‖∇wj‖Lp(Q) ≤ C‖∇u‖Lp(Q)

By condition (iii), we have

∣

∣v(x) − v(y)
∣

∣ ≤

∫

Q
|∂1 · · · ∂Nu| ∀x, y ∈ Q.

Since wj is independent of the variable xj , and wj ∈ W 1,p(Q) with p > N−1,
it follows from Morrey’s inequality in dimension N − 1 that

∣

∣wj(x) − wj(y)
∣

∣ ≤ C‖∇wj‖Lp(Q) |x − y|
1−N−1

p

≤ C‖∇u‖Lp(Q) |x − y|1−
N−1

p ∀x, y ∈ Q.

Combining the inequalities for v and wj , we obtain (3.3) with ε = 1.

4. Proof of Proposition 1.6

The proof of Proposition 1.6 relies on the following two lemmas:

Lemma 4.1. Let v ∈ L1(Q2) be such that ∂1 · · · ∂Nv is a measure. If v is
odd with respect to the variables x1, . . . , xN−1, then there exists ε > 0 such
that

(4.1)
∣

∣v(y, s) − v(y,−t)
∣

∣ ≥
∣

∣(∂1 · · · ∂Nv)(S)
∣

∣

for a.e. y ∈ (1, 1 + ε)N−1 and a.e. s, t ∈ (0, ε).

Here, we use the following notation

Q2 := (−2, 2)N and S := [−1, 1]N−1 × {0}.

Proof of Lemma 4.1. By outer regularity of the Radon measure µ := ∂1 · · · ∂Nv,
there exists ε > 0, such that

(4.2)

∣

∣

∣

∣

∫

Q2

ϕdµ

∣

∣

∣

∣

≥
1

2N−1

∣

∣µ(S)
∣

∣,

for every ϕ ∈ C∞
0 (Q2) such that 0 ≤ ϕ ≤ 1 in Q2, ϕ = 1 on S, and

suppϕ ⊂ (−1 − 2ε, 1 + 2ε)N−1 × (−2ε, 2ε).
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Let (ρn) be a sequence of nonnegative radial mollifiers such that ρn ∈
C∞

0 (B1/n), ∀n ≥ 1. Since v is odd with respect to the variables x1, . . . , xN−1,
one has

ρn ∗ v(y, s) − ρn ∗ v(y,−t) = 2N−1

∫ y1

−y1

· · ·

∫ yN−1

−yN−1

∫ s

−t
ρn ∗ µ.

Take n ≥ 1 large so that supp ρn ⊂ Bε. By (4.2), one has
∣

∣ρn ∗ v(y, s) − ρn ∗ v(y,−t)
∣

∣ ≥ |µ(S)|

for every y ∈ (1, 1 + ε)N−1 and s, t ∈ (0, ε). As n → ∞, we obtain (4.1).
This establishes Lemma 4.1. �

Lemma 4.2. Assume v ∈ W 1,1(Q2) satisfies the assumptions of Lemma 4.1.
Then,

(∂1 · · · ∂Nv)
(

[−1, 1]N−1 × {0}
)

= 0.

Proof. Let ε > 0 as in Lemma 4.1. Given δ > 0, we denote by

Aδ = (1, 1 + ε)N−1 × (−δ, δ).

Since
∫

(1,1+ε)N−1

∫ δ

0

∣

∣v(y, s) − v(y, s − δ)
∣

∣ dy ds ≤ δ

∫

Aδ

|∇v|,

it follows from (4.1) that

εN−1δ
∣

∣(∂1 · · · ∂Nv)(S)
∣

∣ ≤ δ

∫

Aδ

|∇v|.

Dividing both sides by δ and letting δ → 0, we conclude that
∣

∣(∂1 · · · ∂Nv)(S)
∣

∣ = 0.

�

We can now establish Proposition 1.6.

Proof of Proposition 1.6. Without loss of generality, we may assume that
t = 0 and i = N . We split the proof in two steps.

Step 1. We show that

(∂1 · · · ∂Nu)(Sr) = 0,

where Sr := [−r, r]N−1 × {0}, with 0 < r < 1
2 .

Define v : Q1 → R as

v(x1, . . . , xN ) =
∑

αi∈{0,1}
1≤i≤N−1

(−1)|α|u
(

(−1)α1x1, . . . , (−1)αN−1xN−1, xN

)

,

where |α| =
∑N−1

i=1 αi. One immediately checks that v is odd with respect
to the variables x1, . . . , xN−1 and that

(∂1 · · · ∂Nv)(Sr) = 2N−1(∂1 · · · ∂Nu)(Sr).

Moreover, v ∈ W 1,1(Ω); thus, the previous lemma gives the conclusion.

Step 2. Proof of the proposition completed.
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Let S̃ be any square of the form
∏N−1

i=1 [ai, bi]
N−1 × {0}. By a variant of

Step 1, we have
(∂1 · · · ∂Nu)(S̃) = 0.

Thus, by inner regularity of ∂1 · · · ∂Nu,

(∂1 · · · ∂Nu)(ω × {0}) = 0,

for every open set ω ⊂ (−1, 1)N−1. This implies that

|∂1 · · · ∂Nu|(S) = 0.

The proof of the proposition is complete. �

5. Proof of Theorem 3.1

We first introduce some notation. Let v : Q → R and let P ⊂ Q be an
(oriented) parallelepiped. If N = 1 and P = [a, b], then define

∆P v = v(b) − v(a).

If N > 1 and P = P ′ × [a, b], then let

∆P v = ∆P ′v(·, b) − ∆P ′v(·, a).

In particular, if v ∈ C∞(Q), then one has the identity

(5.1) ∆P v =

∫

P
∂1 · · · ∂Nv.

The proof of Theorem 3.1 is based on the next

Lemma 5.1. Let u ∈ W k,p(Q), with k ≥ 1 integer and 1 ≤ p < ∞. Then,
for a.e. a ∈ Q there exist v,w1, . . . , wN ∈ W k,p(Q) such that

(i) u = v +
∑

j wj ;

(iii′) for every x ∈ Q,

v(x) = ∆[a1,x1]×···×[aN ,xN ]u;

(iv) ∂jwj = 0 in D′(Q), for every j = 1, . . . ,N .

Moreover, a ∈ Q can be chosen so that

(5.2) ‖v‖W k,p +
N

∑

j=1

‖wj‖W k,p ≤ C‖u‖W k,p ,

for some C > 0 independent of u.

The proof of Lemma 5.1 is based on a standard Fubini-type argument.
We present here a sketch of the proof.

Proof of Lemma 5.1. For every a ∈ Q, let

va(x) = ∆[a1,x1]×···×[aN ,xN ]u and ga(x) = u(x) − va(x).

Observe that ga can be written as a sum of N functions w1,a, . . . , wN,a

depending on at most (N − 1) components of x, and each wj,a is obtained
by (sums of) restrictions of u with respect to parallel affine subspaces passing
through a.
Let (un) be a sequence in C∞(Q) such that

un → u in W k,p(Q).
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For each a ∈ Q, define vn,a and gn,a accordingly. By Fubini, for a.e. a ∈ Q

we have

(5.3) gn,a → ga in W k,p(Q).

Therefore,

vn,a → va in W k,p(Q).

In order to obtain (5.2), note that by Fubini there exists a set of positive
measure A ⊂ Q such that

‖wj,a‖W k,p ≤ C‖u‖W k,p ∀a ∈ A,

where the constant C > 0 depends on the (Lebesgue) measure of A. To
obtain estimate (5.2), it suffices to take a ∈ A for which (5.3) holds. �

Proof of Theorem 3.1. Applying Lemma 5.1, we can find v,w1, . . . , wN ∈
W k,p(Q) such that (i), (ii) and (iv) hold. We now show that

(5.4) v(x) =

∫ x1

a1

· · ·

∫ xN

aN

∂1 · · · ∂Nu.

Recall that, by Proposition 1.6,

(5.5) |∂1 · · · ∂Nu|
(

[yi = t] ∩ Q
)

= 0 ∀t ∈ (−1, 1) ∀i = 1, . . . ,N.

In particular, the right-hand side of (5.4) is well-defined. Let (ρn) be a
sequence of mollifiers such that supp ρn ⊂ B1/n. By (iii′) and (5.1), we have

ρn ∗ v(x) =

∫ x1

a1

· · ·

∫ xN

aN

∂1 · · · ∂N (ρn ∗ u)

for every x ∈ Q such that d(x, ∂Q) > 1
n . Proceeding as in the proof of

Theorem 1.3, we deduce (5.4). It then follows from (5.5) that v is continuous
on Q; moreover, (3.1) holds. This establishes Theorem 3.1. �

6. Further results

Most of our results can be extended to fractionary Sobolev spaces W s,p

with s > 0 and 1 ≤ p < ∞.
We first recall the definition of W s,p(Ω) for a domain Ω ⊂ R

N . Given
0 < s < 1, we say that u ∈ W s,p(Ω) if

u ∈ Lp(Ω) and

∫

Ω

∫

Ω

|u(x) − u(y)|p

|x − y|N+sp
dx dy < ∞.

If s > 1, s 6∈ N, then we say that u ∈ W s,p(Ω) if

u ∈ W k,p(Ω) and Dku ∈ W s−k,p(Ω),

where k ∈ N is such that k < s < k + 1.

The counterparts of Theorems 1.3 and 1.5 for W s,p are

Theorem 6.1. If u ∈ W 1/p,p(RN ), 1 < p < ∞, and ∂1 · · · ∂Nu is a measure,
then u is continuous and bounded.

Theorem 6.2. Let u ∈ W s,p(Q), s > 0 and 1 < p < ∞, be such that
∂1 · · · ∂Nu is a measure. If sp > N − 1, then u is continuous on Q.
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Simple examples show that the conclusion of Theorem 6.1 is no longer true
if sp < 1 (take for instance u = χQ, the characteristic function of Q). The
proofs of Theorems 6.1 and 6.2 are based on counterparts of Lemma 5.1
and Proposition 1.6 for W s,p. The analogue of Lemma 5.1 can be still
established via a Fubini-type argument using the equivalent form of the
Gagliardo seminorm in R

N (see [1]):

(6.1) |u|pW s,p :=
N

∑

i=1

∫ ∞

0
dτ

∫

RN

|u(x + τei) − u(x)|p

τ1+sp
dτ .

We shall focus on the counterpart of Proposition 1.6:

Proposition 6.3. Let u ∈ W s,p(Q) be such that ∂1 · · · ∂Nu is a measure. If
sp ≥ 1, then

(6.2) |∂1 · · · ∂Nu|
(

[xi = t] ∩ Q
)

= 0 ∀t ∈ (−1, 1), ∀i = 1, . . . ,N.

We need the analogue of Lemma 4.2 in W s,p for sp ≥ 1:

Lemma 6.4. Assume s > 0, p > 1 and sp ≥ 1. Let v ∈ W s,p(Q) satisfy the
assumptions of Lemma 4.1. Then

(∂1 · · · ∂Nv)(S) = 0,

where S = [−1, 1]N−1 × {0}.

Proof. If s ≥ 1, then this follows from Lemma 4.2 and the embedding
W s,p(Q) ⊂ W 1,1(Q). We now assume 0 < s < 1. If the conclusion did
not hold, then, by Lemma 4.1, there would exist ε, δ > 0 such that

∣

∣v(y, s) − v(y,−t)
∣

∣ ≥ δ > 0

for a.e. y ∈ (1, 1 + ε)N−1 and a.e. s, t ∈ (0, ε). Together with sp ≥ 1, this
would yield

(6.3)

∫

(1,1+ε)N−1

∫ ε

0

∫ ε

0

|v(y, s) − v(y,−t)|p

(s + t)1+sp
ds dt dy ≥

≥ εN−1

∫ ε

0

∫ ε

0

δp

(s + t)1+sp
ds dt = +∞.

In view of the equivalent seminorm (6.2), this would be in contradiction
with the hypothesis u ∈ W s,p(Ω). �

Proof of Proposition 6.3. One proceeds exactly as in the proof of Proposi-
tion 1.6, replacing Lemma 4.2 by Lemma 6.4. We leave the details to the
reader. �
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[4] A. Kufner, O. John and S. Fuč́ık, Function spaces, Monographs and Textbooks on
Mechanics of Solids and Fluids, Noordhoff International Publishing, Leyden, 1977.



THE CONTINUITY OF FUNCTIONS WITH N-TH DERIVATIVE MEASURE 11
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