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Abstract. The function spaces Dk(Rn) are introduced and studied.
The de�nition of these spaces is based on a regularity property for the
critical Sobolev spaces Ws,p(Rn), where sp = n, obtained by Bourgain
and Brezis, C. R. Math. 338 (2004) (see also Van Schaftingen, C. R.
Math. 338 (2004)). The spaces Dk(Rn) contain all the critical Sobolev
spaces. They are embedded in BMO(Rn), but not in VMO(Rn). More-
over they have some extension and trace properties that BMO(Rn) does
not have.

1. Introduction
1.1. Integrals with divergence-free vector-�elds. When p < n, the
Sobolev space W1,p(Rn) of functions whose distributional derivative is in
Lp(Rn) is continuously embedded in the space Lp

∗
(Rn), with p∗ = np/(n−

p), while when p > n it is embedded in the space of H®lder continuous
function of exponent α, C0,α(Rn), with α = 1− n/p [1, 5, 19].

The case p = n is more delicate. When n > 1, functions in W1,n(Rn) do
not need to be continuous or bounded, but have many properties in common
with such functions. This is expressed for example by the embedding of
W1,n(Rn) in the spaces BMO(Rn) and VMO(Rn) of functions of bounded
and vanishing mean oscillation [6]. These considerations are also valid for
fractional Sobolev spaces Ws,p(Rn), with sp = n.

Another property of critical Sobolev space was recently obtained by Bour-
gain and Brezis [3, 22]: For every vector �eld ϕ ∈ (L1 ∩ C)(Rn;Rn) and
u ∈ Ws,p(Rn), if divϕ = 0 in the sense of distributions, then

(1.1)
∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ ≤ Cs,p‖ϕ‖L1(Rn) ‖u‖Ws,p(Rn).

There is no such property for BMO(Rn) or for VMO(Rn) (see [2] and Re-
mark 5.2).

A natural question is the relationship between (1.1) and the embedding
of Ws,p(Rn) in the spaces BMO(Rn) and VMO(Rn). In order to answer it,
we de�ne, for n ≥ 1, the seminorm

(1.2) ‖u‖Dn−1(Rn) = sup
ϕ∈D(Rn;Rn)

divϕ=0
‖ϕ‖L1(Rn)≤1

∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ .
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and the vector space
Dn−1(Rn) =

{
u ∈ D′(Rn) : ‖u‖Dn−1(Rn) <∞}

.

Here D(RN ;RN ) is the space of compactly supported smooth vector �elds
and D′(Rn) is the space of distributions [16]. The subscript n−1 will be jus-
ti�ed by further extensions. By the inequality (1.1), Ws,p(Rn) is embedded
in Dn−1(Rn).

The question of the previous paragraph is answered as follows: VMO(Rn)
is not embedded in Dn−1(Rn) (Proposition 5.1), and Dn−1(Rn) is embedded
in BMO(Rn) (Theorem 5.3). Moreover, if u ∈ Dn−1(Rn) is continuous, and
k ≥ 2, then ‖u|Rk‖BMO(Rk) ≤ C‖u‖Dn−1(Rn) (Theorems 3.4 and 5.3). This
inequality remains open when k = 1.

The proof of the embedding of Dn−1(Rn) in BMO(Rn) is based on the du-
ality between BMO(Rn) and the Hardy space H1(Rn), and on a decomposi-
tion of every function in H1(Rn) as a sum of some components of divergence-
free vector-�elds, with a suitable control on the norms.

The inequality (1.1) was preceded by a geometric counterpart [4]: For
every closed recti�able curve γ ∈ C1(S1;Rn) and u ∈ (C ∩W1,n)(Rn),

(1.3)
∣∣∣∣
∫

Rn

u(γ(t))γ̇(t) dt
∣∣∣∣ ≤ Cs,p‖γ̇‖L1(S1) ‖u‖Ws,p(Rn).

(See [23] for an elementary proof.) The right-hand side of (1.3) could also
be used to de�ne a seminorm on continuous functions. By the arguments
of [3], based on a decomposition of divergence-free vector-�elds in solenoids
of Smirnov [18], one has in fact

‖u‖Dn−1(Rn) = sup
γ∈C1(S1;Rn)

1
‖γ̇‖L1(S1)

∣∣∣∣
∫

S1

u(γ(t))γ̇(t) dt
∣∣∣∣ .

An open problem is whether restricting the curves on the right-hand side to
be contained in k�dimensional planes, to triangles or to circles would yield
an equivalent norm. The restriction to curves contained in k-dimensional
planes is equivalent to requiring ϕ in (1.2) to have a range whose dimensions
is at most k, see section 6.4 below.

If s ≤ 1, sp = n, and u ∈ Ws,p(Rn), then u+ ∈ Ws,p(Rn). This property
also holds in BMO(Rn). We do not know whether it holds for Dn−1(Rn).
The question whether, for a given ϕ : R → R one has ϕ(u) ∈ Dn−1(Rn)
whenever u ∈ Dn−1(Rn) remains open when ϕ is not a�ne.

1.2. Integrals with curl-free vector-�elds. When s = 1 and p = n = 2,
the inequality (1.1) is in fact a dual statement of the Sobolev�Nirenberg
embedding
(1.4) ‖g‖Ln/(n−1)(Rn) ≤ C‖Dg‖L1(Rn).

When s = 1 and p = n > 2, the estimate (1.1) is stronger than the embedding
(1.4). If n = 3, (1.4) yields by duality that, for every ϕ ∈ D(R3;R3) and
u ∈ W1,3(R3), if curlϕ = 0 in the sense of distributions,

(1.5)
∣∣∣∣
∫

R3

uϕdx

∣∣∣∣ ≤ C‖ϕ‖L1(R3) ‖u‖Wn(R3).
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For u ∈ Ws,p(R3) with sp = 3, this inequality can be deduced from (1.1)
recalling that, for every e ∈ R3

(1.6) div (ϕ× e) = (curlϕ) · e.
In R3, one can now investigate the relationship between (1.1), (1.5), and

the embedding of of Ws,p(Rn) in the spaces BMO(Rn) and VMO(Rn). We
de�ne therefore the seminorm

‖u‖D1(R3) = sup
ϕ∈D(R3;R3)

curlϕ=0
‖ϕ‖L1(R3)≤1

∣∣∣∣
∫

R3

uϕdx

∣∣∣∣

and the vector space
D1(R3) =

{
u ∈ D′(R3) : ‖u‖D1(R3) <∞}

.

While VMO(R3) 6⊂ D1(R3), one has the following continuous embeddings:
D2(R3) ⊂ D1(R3) ⊂ BMO(R3).

The �rst embedding is a consequence of (1.6), and the second of the duality
between BMO(R3) and the Hardy space H1(R3), and of a decomposition of
every function in H1(R3) as a sum of some components of curl-free vector-
�elds.

If u ∈ D1(R2), its extension U(x, y) = u(x) to R3 is in D1(R3). It would
be in D1(R3) if and only if U was bounded. On the other hand, if u ∈ D2(R3)
is continuous, one has the trace inequality ‖u|R2‖D1(R2) ≤ C‖u‖D2(R3). The
problem whether the trace inequalities ‖u|R2‖BMO(R2) ≤ C‖u‖D1(R3) and
‖u|R‖BMO(R) ≤ C‖u‖D2(R3) hold is open.

The seminorm ‖ · ‖D1(R3) can also be characterized geometrically: By the
co-area formula, for every u ∈ C(R3),

‖u‖D1(R3) = sup
Ω

1
H2(∂Ω)

∣∣∣∣
∫

∂Ω
u(y)ν(y) dH2(y)

∣∣∣∣ ,

where the supremum is taken over bounded domains Ω ⊂ R3 with a smooth
connected boundary, ν(y) is the unit exterior normal vector to the boundary
at y ∈ ∂Ω, and H2 is the two-dimensional Hausdor� measure.

1.3. Integrals along di�erential forms. In higher dimensions, the gener-
alization of (1.1) corresponding to (1.5) in R3 is expressed with di�erential
forms: If 1 ≤ k ≤ n − 1, then, for every compactly supported smooth k�
di�erential form ϕ ∈ D(Rn; ΛkRn) and for every u ∈ Ws,p(Rn) with p ≥ 1
and sp = n, if dϕ = 0, then

(1.7)
∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ ≤ Cs,p‖ϕ‖L1(Rn) ‖u‖Ws,p(Rn).

The previous de�nitions of Dk(Rn) are generalized as follows: For 1 ≤
k ≤ n− 1, we de�ne the seminorm

‖u‖Dk(Rn) = sup
ϕ∈D(Rn;ΛkRn)

dϕ=0
‖ϕ‖L1(Rn)≤1

∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ ,
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and the vector space

Dk(Rn) =
{
u ∈ D′(Rn) : ‖u‖Dk(Rn) <∞}

.

By (1.7), Ws,p(Rn) ⊂ Dk(Rn). These spaces Dk(Rn) also contain other
functions, such as log(

∑k+1
i=1 x

2
i ).

The spaces Dk(Rn) contain neither BMO(Rn) nor VMO(Rn). Our main
result is that Dk(Rn) is embedded in BMO(Rn). We �rst show that Dk(Rn)
is embedded in D1(Rn), then we prove that D1(Rn) is embedded in BMO(Rn),
in the same fashion as the embedding of D1(R3) in BMO(R3) outlined above.

The other known properties of the spaces Dk(Rn) can be summarized as
follows. The seminorm ‖ · ‖Dk(Rn) is a norm modulo constants and the space
Dk(Rn) modulo constants is a Banach space. The spaces Dk(Rn) are all
di�erent and are decreasing with respect to k. The spaces Dk(Rn) also have
a trace property: If u ∈ DK(RN ) is a limit of continuous functions, then it
has a well-de�ned trace in Dk(Rn) if N − K = n − k. On the other hand
the function spaces Dk(Rn) do not have better integrability properties then
the exponential integrability of functions in BMO(Rn).

1.4. Organization of the paper. We de�ne in section 2 the spaces Dk(Rn)
for 1 ≤ k ≤ n by duality on closed smooth forms, and characterize them
by duality on exact forms (Proposition 2.6). The space Dn(Rn) is in fact
L∞(Rn)/R (Proposition 2.9). We characterize geometrically the seminorm
for continuous functions in the cases k = 1 (Proposition 2.10) and k = n− 1
(Proposition 2.11). For 1 < k < n− 1, there is an equivalent seminorm de-
�ned by integration on real polyhedral chains without boundary (Proposition
2.14).

Section 3 reviews the basic properties of the spaces Dk(Rn): mutual in-
jections (Theorem 3.1), extension theory (Theorem 3.2) and trace theory
(Theorem 3.4).

Section 4 gives examples of functions in Dk(Rn) : critical Sobolev spaces
(Theorem 4.1) and other functions (Propositions 4.3, 4.6 and 4.10).

The embedding of the spaces Dk(Rn) in BMO(Rn) is proved in section 5
(Theorem 5.3). This provides an easy proof of the completeness of Dk(Rn)
(Theorem 5.5). We also address the question of improved integrability of
functions in Dk(Rn) (Proposition 5.6).

The paper ends with considerations about further problems in the study
of the spaces Dk(Rn) (section 6).

An appendix is devoted to density properties of closed and exact smooth
forms.

2. Definitions and characterizations
2.1. Preliminaries. The space of k�forms on Rn is denoted by ΛkRn. The
exterior product of α ∈ ΛkRn and β ∈ Λ`Rn is α ∧ β ∈ Λk+`Rn. The space
Λ1Rn is the dual of Rn and has a canonical basis ω1, . . . , ωn biorthogonal
to the canonical basis e1, · · · , en of Rn. Moreover, ΛkRn has a canonical
Euclidean norm denoted by |·|.



BETWEEN BMO AND CRITICAL SOBOLEV SPACES 5

A di�erential form is a function ϕ : Rn → ΛkRn. The exterior di�erential
d is de�ned by

dϕ =
n∑

i=1

ωi ∧ ∂ϕ

∂xi
.

(This makes sense if e.g. ϕ is a C1 function or a distribution.)
If V is �nite-dimensional, the space of V �valued compactly supported

smooth (C∞) functions (test functions) is denoted by D(Rn;V ) and is en-
dowed with its usual topology [16]. The space of distributions D′(Rn) is the
dual of D(Rn) = D(Rn;R).

Lebesgue's measure on Rn is denoted by Ln and the r�dimensional Haus-
dor� measure by Hr.

2.2. De�nition. The spaces Dk(Rn) are de�ned in terms of appropriate
test function spaces.

De�nition 2.1. For 1 ≤ k ≤ n, de�ne

D#(Rn; ΛkRn) =
{
ϕ ∈ D(Rn; ΛkRn) : dϕ = 0 and

∫

Rn

ϕdx = 0
}
,

L1
#(Rn; ΛkRn) =

{
ϕ ∈ L1(Rn; ΛkRn) : dϕ = 0 and

∫

Rn

ϕdx = 0
}
.

Remark 2.2. The restriction 1 ≤ k ≤ n, is justi�ed by the fact that
L1

#(Rn; ΛkRn) = D#(Rn; ΛkRn) = {0}
when k = 0 or k > n.

Remark 2.3. If 1 ≤ k ≤ n − 1, ϕ ∈ L1(Rn; ΛkRn) and dϕ = 0, then∫
Rn ϕ = 0, while for every ϕ ∈ L1(Rn; ΛnRn), dϕ = 0. Therefore, for a
given 1 ≤ k ≤ 1, only one condition in the de�nition is essential.

De�nition 2.4. For 1 ≤ k ≤ n, and u ∈ D′(Rn), let

‖u‖Dk(Rn) = sup
ϕ∈D#(Rn;ΛkRn)
‖ϕ‖L1(Rn)≤1

∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ ,

and de�ne
Dk(Rn) =

{
u ∈ D′(Rn) : ‖u‖Dk(Rn) <∞}

.

The integral appearing in the de�nition of ‖·‖Dk(Rn) should be understood
as a duality product betweenD′(Rn) and D(Rn; ΛkR), which takes its values
in ΛkRn, while |·| is the standard Euclidean norm of this integral. The set
Dk(Rn) is a vector space; the function ‖ · ‖Dk(Rn) is a seminorm on Dk(Rn),
and vanishes for constant distributions.

Remark 2.5. In fact, by Theorem 5.3, if ‖u‖Dk(Rn) = 0, then ‖u‖BMO(Rn) =
0, whence u is constant.

The seminorm ‖·‖Dk(Rn) can also be computed by considering exterior dif-
ferentials of compactly supported smooth forms in place of closed compactly
supported smooth forms.
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Proposition 2.6. Let 1 ≤ k ≤ n. For every u ∈ D′(Rn),

‖u‖Dk(Rn) = sup
ψ∈D(Rn;Λk−1Rn)
‖dψ‖L1(Rn)≤1

∣∣∣∣
∫

Rn

u dψ dx

∣∣∣∣ .

Proof. This follows from Theorems A.5 and A.8. ¤

Theorems A.5 and A.8 also allow to extend u by density to a linear oper-
ator from L1

#(Rn,ΛkRn) to ΛkRn.

Proposition 2.7. If u ∈ Dk(Rn), then 〈u, ϕ〉 ∈ ΛkRn is well-de�ned for
every ϕ ∈ L1

#(Rn,ΛkRn).

We shall also consider the subspace generated by continuous functions.
De�nition 2.8. The space Vk(Rn) is the closure of the set of bounded
continuous functions in Dk(Rn).
2.3. Characterization of Dn(Rn). The space Dn(Rn) is well-known; it is
L∞(Rn)/R.
Proposition 2.9. The spaces Dn(Rn) and L∞(Rn)/R are isometrically iso-
morphic.

Proof. If u ∈ L∞(Rn), then for every ϕ ∈ D#(Rn; ΛnRn) and λ ∈ R,
∣∣∣∣
∫

R
uϕdx

∣∣∣∣ =
∣∣∣∣
∫

Rn

(u− λ)ϕdx
∣∣∣∣ ≤ ‖u− λ‖L∞(Rn)‖ϕ‖L1(Rn).

Conversely, if u ∈ Dn(Rn), then

ϕ 7→ `(ϕ) =
∫

Rn

uϕdx,

is a linear continuous mapping from L1
#(Rn,ΛnRn) to ΛnRn ∼= R. By

the Hahn�Banach Theorem there is an extension ¯̀ to L1(Rn,ΛnRn). This
extension is represented as ¯̀(ϕ) =

∫
Rn ūϕ dx with ‖ū‖L∞(Rn) ≤ ‖u‖Dn(Rn).

Since
∫
Rn ūϕ dx =

∫
Rn uϕdx for every ϕ ∈ D#(Rn,ΛnRn), there is λ ∈ R

such that u− λ = ū. ¤

2.4. Geometric characterization of V1(Rn). The de�nition of Dk(Rn),
and hence that of Vk(Rn), rely on compactly supported closed smooth forms
(De�nition 2.4), or equivalently on compactly supported exact forms (Propo-
sition 2.6). Compactly supported smooth forms ensure that the de�nition
makes sense for distributions. There is a more geometrical characterization
for continuous functions, which extends by density to V1(Rn) and Vn−1(Rn).
Proposition 2.10. For every u ∈ C(Rn),

(2.1) ‖u‖D1(Rn) = sup
Ω

1
Hn−1(∂Ω)

∣∣∣∣
∫

∂Ω
u(y)ν(y) dHn−1(y)

∣∣∣∣ ,

where the supremum is taken over bounded domains Ω with a smooth con-
nected boundary, and ν(y) is the unit exterior normal vector to the boundary
at y ∈ ∂Ω.
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Proof. Let Ω be a bounded domains with a smooth connected boundary. Let
ρ ∈ D(B(0, 1)) be such that ρ ≥ 0 and

∫
Rn ρ dx = 1, let ρε(x) = ρ(x/ε)/εn,

and de�ne

ϕε(x) =
1

Hn−1(∂Ω)

∫

∂Ω
ρε(y − x)ν(y) dHn−1(y).

Since ‖ϕε‖1 ≤ 1 and dϕε = 0,
∣∣∣∣
∫

Rn

uϕε dx

∣∣∣∣ ≤ ‖u‖D1(Rn).

Since u is continuous, ρε ∗ u → u as ε → 0 uniformly on every compact
subset of Rn, and

∣∣∣∣
∫

Rn

uϕε dx

∣∣∣∣ =
1

Hn−1(∂Ω)

∣∣∣∣
∫

∂Ω
(ρε ∗ u)(y)ν(y) dHn−1(y)

∣∣∣∣

→ 1
Hn−1(∂Ω)

∣∣∣∣
∫

∂Ω
u(y)ν(y) dHn−1(y)

∣∣∣∣ ,

as ε→ 0. Therefore

1
Hn−1(∂Ω)

∣∣∣∣
∫

∂Ω
u(y)ν(y) dHn−1(y)

∣∣∣∣ ≤ ‖u‖D1(Rn).

Conversely, let A denote the right-hand side of (2.1). First note that for
every bounded open set Ω with a smooth boundary that is not necessarily
connected,

∣∣∣∣
∫

∂Ω
u(y)ν(y) dHn−1(y)

∣∣∣∣ ≤ AHn−1(∂Ω).

By Proposition 2.6, we need to evaluate, for ϕ ∈ D(Rn,Λ0R),
∣∣∣∣
∫

Rn

u∇ϕdx
∣∣∣∣ =

∣∣∣∣
∫

Rn

ϕ∇u dx
∣∣∣∣ .

One has
∫

Rn

ϕ∇u dx =
∫ ∞

0

∫

{x∈Rn : ϕ(x)>s}
∇u(x) dx ds−

∫ 0

−∞

∫

{x∈Rn : ϕ(x)<s}
∇u(x) dx ds.

For every s > 0, the set {x ∈ Rn : ϕ(x) > s} is open and bounded. More-
over, by Sard's Lemma, for almost every s > 0, for every y ∈ ϕ−1({s}),
∇ϕ(y) 6= 0. Hence ∂ {x ∈ Rn : ϕ > s} is smooth and

∣∣∣∣∣
∫

{x∈Rn : ϕ>s}
∇u(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

∂{x∈Rn : ϕ(x)>s}
u(y)ν(y) dHn−1(y)

∣∣∣∣∣
≤ AHn−1(∂ {x ∈ Rn : ϕ(x) > s}).
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A similar reasoning for s < 0, and the integration with respect to s allow to
conclude with the co-areaa formula [9, 10]:

∣∣∣∣
∫

Rn

u∇ϕdx
∣∣∣∣

≤ A

∫

R+

Hn−1(∂ {x ∈ Rn : ϕ(x) > s})+Hn−1(∂ {x ∈ Rn : ϕ(x) < −s}) ds

= A

∫

Rn

|∇ϕ| dx.
¤

2.5. Geometric characterization of Vn−1(Rn).
Proposition 2.11. If n ≥ 2, for every u ∈ C(Rn),

‖u‖Dn−1(Rn) = sup
γ∈C1(S1;Rn)

1
‖γ̇‖L1(S1)

∣∣∣∣
∫

S1

u(γ(t))γ̇(t) dt
∣∣∣∣ .

The proof repeats the argument of Bourgain and Brezis for the equivalence
between the inequality (1.7) and∫

S1

u(γ(t))γ̇(t) dt ≤ Cs,p‖γ̇‖L1(S1)‖u‖Ws,p(Rn),

for every u ∈ Ws,p(Rn) with sp = n [3].
Proof. First note that

‖u‖Dn−1(Rn) = sup
f∈D(Rn;Rn)

div f=0
‖f‖L1(Rn;Rn)≤1

∣∣∣∣
∫

Rn

uf dx

∣∣∣∣ .

Let ρ ∈ D(B(0, 1)) be such that ρ ≥ 0 and
∫
Rn ρ dx = 1, and let ρε(x) =

ρ(x/ε)/εn. De�ne

fε(x) =
1

‖γ̇‖L1(S1)

∫

S1

ρ(γ(t)− x)γ̇(t) dt.

One has ‖fε‖L1(Rn) ≤ 1 and div fε = 0, therefore
∣∣∣∣
∫

Rn

ufε dx

∣∣∣∣ ≤ ‖u‖Dn−1(Rn).

The proof continues as for the �rst part of Proposition 2.10.
The converse inequality comes from on a result of Smirnov [18], which

states that for every R > 0 and for every f ∈ D(B(0, R);Rn) there exists
(γ`m)1≤m,` in C1(S1;B(0, R)) and (λ`m)1≤m,` in R such that for every m ≥ 1,

∑

`≥1

|λ`m| ‖γ̇`m‖L1(S1) ≤ ‖f‖L1(Rn),

and for every u ∈ C(B(0, R))
∞∑

`=1

λ`m

∫

S1

u(γ`m(t))γ̇`m dt→
∫

Rn

uf dx,

as m→∞. ¤



BETWEEN BMO AND CRITICAL SOBOLEV SPACES 9

2.6. Geometric characterization of Vk(Rn). The characterization of the
seminorm ‖·‖Dk(Rn) of Proposition 2.10, relies essentially on the fact that the
seminorm could be evaluated by considering di�erential of scalar functions,
while in Proposition 2.11 it relied on the decomposition result of Smirnov.
Those facts do not hold anymore for 1 < k < n−1, but there is an equivalent
geometrical seminorm expressed in terms of real polyhedral chains. Let us
�rst recall some basic facts and notations about currents and polyhedral
chains [10,17].
De�nition 2.12. The space of k�dimensional currents Dk(Rn) is the topo-
logical dual of D(Rn; ΛkRn).

The boundary of a current T ∈ Dk(Rn), is ∂T ∈ Dk−1(Rn) de�ned by
〈∂T, ϕ〉 = 〈T, dϕ〉.

The mass of a current is
M(T ) = sup

{
〈T, ϕ〉 : ϕ ∈ D(Rn; ΛkRn) and ∀x ∈ Rn, |ϕ(x)| ≤ 1

}
.

The support suppT of a current T ∈ Dk(Rn) is the complement of the largest
open set U such that 〈T, ϕ〉 = 0 when suppϕ ⊂ U . For every integer k, let

Sk =
{
λ ∈ Rk :

k∑

i=1

λk ≤ 1 and ∀1 ≤ i ≤ k, λi ≥ 0
}
.

For every �nite collection (xi)1≤i≤k in Rn, the current [[x0, . . . , xk]] ∈ Dk(Rn)
is de�ned by

〈[[x0, . . . , xk]], ϕ〉 =
∫

Sk

〈ϕ(x0 +
k∑

i=1

λixi), x1 − x0 ∧ . . . ∧ xk − x0〉 dλ.

De�nition 2.13. A current T ∈ Dk(Rn) is a real polyhedral chain if there
is (xij)1≤i≤m,1≤j≤k in Rn and (µi)1≤i≤m in R such that

T =
m∑

i=1

µi[[xi0, . . . , x
i
k]].

The set of k�dimensional real polyhedral chains is denoted by Pk(Rn).
Every real polyhedral chain has a compact support and a �nite mass. Hence,
〈T, u〉 is well-de�ned when u : Rn → ΛkRn is continuous. Moreover, if
u : Rn → R is continuous then 〈T, u〉 ∈ (ΛkRn)′ ∼= ΛkRn is naturally
de�ned.
De�nition 2.14. If u : Rn → R is continuous, let

‖u‖Ṽk(Rn) = sup
P∈Pn−k(Rn)

∂P=0
M(P )≤1

〈P, u〉.

The seminorm ‖u‖Ṽk(Rn) measures the oscillation of the function u though
its integral on k�dimensional real polyhedral chains without boundary.
Theorem 2.15. For every n ≥ 1 and 1 ≤ k ≤ n− 1, there exist c > 0 such
that for every u ∈ C(Rn),

‖u‖Ṽk(Rn) ≤ ‖u‖Dk(Rn) ≤ c‖u‖Ṽk(Rn).
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Proof. Given P in Pn−k(Rn), let
ϕε(x) = 〈P, ρε(· − x)〉,

where ρε = ρ(·/ε)/εn with ρ ∈ D(Rn), ρ ≥ 0 and
∫
Rn ρ dx = 1 and where

∗ denotes the Hodge duality between ΛkRn and Λn−kRn. One checks that
dϕε = 0, ‖ϕε‖L1(Rn) ≤ M(P ) and

∫

Rn

uϕε dx = ∗〈P, ρε ∗ u〉.

Since ρε ∗ u→ u uniformly as ε→ 0,
‖u‖Vk(Rn) ≤ ‖u‖Dk(Rn).

The converse inequality is based on the deformation Theorem for currents
[10, 17]. It states that given T ∈ Dk(Rn) with M(T ) + M(∂T ) < ∞, for
every ε > 0, there exists P ∈ Pk(Rn), S ∈ Dk(Rn) and R ∈ Dk+1(Rn) such
that

T − P = ∂R+ S,

with
M(P ) ≤ cM(T ), M(∂P ) ≤ cM(∂T ),

M(R) ≤ cεM(T ), M(S) ≤ cεM(∂T ),

and
suppP ∪ suppR ⊂ {

x ∈ Rn : dist(x, suppT ) < 2
√
n+ k

}
,

supp ∂P ∪ suppS ⊂ {
x ∈ Rn : dist(x, supp ∂T ) < 2

√
n+ k

}
.

This implies that if T ∈ Pk(Rn) and U ⊂ Rn is open and bounded, and
suppT ⊂ U and ∂T = 0, there exists a sequence (Pε)ε>0 in Pk(Rn) with
∂Pε = 0 and suppPε ⊂ U such that for every u ∈ C(Rn;Rn),
(2.2) M(Pε) ≤ cM(T ),

and
(2.3) 〈Pε, u〉 → 〈T, u〉
as ε→ 0.

Now given ϕ ∈ D#(Rn; ΛkRn), consider T ∈ Dn−k(Rn) de�ned by

〈T, v〉 =
∫

Rn

ϕ ∧ v dx.

Since T has compact support, ∂T = 0 and M(T ) ≤ ‖ϕ‖L1(Rn), there is a
sequence (Pε)ε>0 in Pn−k(Rn) such that ∂Pε = 0, suppPε ⊂ U , (2.2) and
(2.3), where U is a �xed open bounded set such that suppT ⊂ U . ¤

3. Basic properties of Dk(Rn)

3.1. Mutual injections. The collection of spaces Dk(Rn) is a decreasing
sequence of spaces.
Theorem 3.1. Let k ≤ `. If u ∈ D`(Rn), then u ∈ Dk(Rn), and

‖u‖Dk(Rn) ≤ C‖u‖D`(Rn),

where C does not depend on u.
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Proof. Let ϕ ∈ D#(Rn; ΛkRn). If α ∈ Λ`−kRn, then α∧ϕ ∈ D#(Rn; Λ`Rn).
Therefore∣∣∣∣

∫

Rn

uα ∧ ϕdx
∣∣∣∣ ≤ ‖u‖D`(Rn)‖α ∧ ϕ‖L1(Rn) ≤ ‖u‖D`(Rn) |α| ‖ϕ‖L1(Rn).

Taking the supremum over α ∈ Λ`−kRn with |α| ≤ 1 leads to the conclusion.
¤

3.2. Extension theory. If n < N , functions in Dk(Rn) can be extended
to functions in Dk(RN ). This extension operator is an isomorphism on its
image.
Theorem 3.2. Let u ∈ D′(Rn). De�ne U ∈ D′(RN ) by∫

RN

U(z)ϕ(z) dz =
∫

Rn

u(x)
∫

RN−n

ϕ(x, y) dy dx.

For every 1 ≤ k ≤ n,
c‖U‖Dk(RN ) ≤ ‖u‖Dk(Rn) ≤ C‖U‖Dk(RN ),

where c, C > 0 are independent of u and U .
Proof. By induction, it is su�cient to consider the case N = n+ 1.

First let us estimate ‖U‖Dk(RN ). Consider Φ ∈ D#(RN ; ΛkRN ). It can
be written as

Φ = Φ0 + Φ1 ∧ ωN ,
where Φ0 ∈ D#(RN ; ΛkRn) and Φ1 ∈ D#(RN ; Λk−1Rn). De�ne

ϕ(x) =
∫

R
Φ(x, t) dt, ϕ0(x) =

∫

R
Φ0(x, t) dt, ϕ1(x) =

∫

R
Φ1(x, t) dt.

For m = 1, 2,

dϕm(x) =
n∑

i=1

ωi ∧ ∂ϕm
∂xi

=
∫

R

N∑

i=1

ωi ∧ ∂Φm

∂xi
dt = 0,

and ∫

Rn

ϕm dx =
∫

Rn

∫

R
Φm dt dx = 0.

Since ϕ = ϕ0 + ϕ1 ∧ ωN , one has∫

RN

UΦ dz =
∫

Rn

uϕdx =
∫

Rn

uϕ0 dx+
∫

Rn

uϕ1 dx ∧ ωN .

and therefore,∣∣∣∣
∫

RN

UΦ dz
∣∣∣∣ ≤ ‖u‖Dk(Rn)‖ϕ0‖L1(Rn) + ‖u‖Dk−1(Rn)‖ϕ1‖L1(Rn) |ωN | .

When k > 1, the conclusion comes from Theorem 3.1 and from the inequality

‖ϕ0‖L1(Rn) + ‖ϕ1‖L1(Rn) ≤ ‖Φ0‖L1(Rn) + ‖Φ1 ∧ ωN‖L1(Rn)

≤ ‖Φ0 + Φ1 ∧ ωN‖L1(Rn),

The last inequality comes from the fact that Φ0(x) and Φ1(x) ∧ ωN are
orthogonal for every x ∈ RN . When k = 1, one has ϕ1 = 0, and the
conclusion comes similarly.
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Conversely, let us now estimate ‖u‖Dk(Rn) by Proposition 2.6. Let ψ ∈
D(Rn; Λk−1Rn). Consider a family (ηλ)λ>0 in D(R) such that ηλ ≥ 0,∫
R ηλ dt = 1 and

∫
R |η′λ| dt → 0 as λ → ∞, and let Ψλ(x, t) = ηλ(t)ψ(x).

For every λ > 0,∫

RN

UdΨλ dz =
∫

RN

U(dηλ ∧ ψ + ηλdψ) dz = 0 +
∫

Rn

udψ dx.

Therefore,
∣∣∣∣
∫

Rn

u dψ dx

∣∣∣∣ =
∣∣∣∣
∫

RN

UdΨλ dz

∣∣∣∣
≤ ‖U‖Dk(RN )

(‖ψ‖L1(Rn) + ‖dψ‖L1(Rn)‖η′λ‖L1(R)

)
.

Letting λ→∞ yields the conclusion. ¤

Remark 3.3. When k < n, the result of Theorem 3.2 is optimal: There are
functions in Dk(Rn) whose extension to RN does not belong to DK(RN ) for
K > k (see Proposition 4.6). On the other hand, the extension of a function
in Dn(Rn) lies in DN (RN ) by Proposition 2.9. In view of the trace theory
of the next section, one could wonder whether when 1 ≤ k < n, there is
another extension in DK(RN ) with K > k.

3.3. Trace theory. The restriction of continuous functions from RN to Rn

can be extended to a continuous operator from VK(Rn) to Vk(Rn) when
N −K = n− k.
Theorem 3.4. Let n ≤ N , 1 ≤ K ≤ N and k = K − (N − n). Let
U ∈ Vk(RN ) be continuous. De�ne for x ∈ Rn,

u(x) = U(x, 0).

Then u ∈ Vk(Rn), and
‖u‖Dk(Rn) ≤ ‖U‖DK(RN ).

Proof. By induction, we can assume N = n + 1. Let ϕ ∈ D#(Rn; ΛkRn),
let ρ ∈ D(R) such that ρ ≥ 0 and

∫
R ρ dt = 1 and let ρε(t) = ρ(t/ε)/ε. Let

Φε(x, t) = ρε(t)ψ(x)∧ωN . Since Φε ∈ D#(RN ; ΛKRN ) and u is continuous,
∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ = lim
ε→0

∣∣∣∣
∫

Rn

∫

R
uΦε dt dx

∣∣∣∣
≤ ‖U‖DK(RN ) lim

ε→0
‖Φε‖L1(RN ) ≤ ‖U‖DK(RN )‖ϕ‖L1(Rn).

¤

4. Examples of functions in Dk(Rn)

4.1. Sobolev spaces. The �rst class of functions in the space Dk(Rn) are
functions in critical Sobolev spaces, which motivated the de�nition.
Theorem 4.1 (Bourgain and Brezis [3]). If u ∈ Ws,p(Rn), p > 1 and
sp = n, then for every 1 ≤ k ≤ n− 1, u ∈ Dk(Rn), and

‖u‖Dk(Rn) ≤ Ck,s,p‖u‖Ws,p(Rn)
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The seminorm on the right is the Sobolev semi-norm. For 0 < s < 1 it is
de�ned as

‖u‖pWs,p(Rn) =
∫

Rn×Rn

|u(x)− u(y)|p
|x− y|n+sp dx dy.

Proof. This follows from the inequality
∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ ≤ Cs,p‖u‖Ws,p‖ϕ‖L1(Rn)

for every ϕ ∈ D#(Rn; ΛkRn) and u ∈ Ws,p(Rn) [3, 22]. ¤

Remark 4.2. The Besov spaces Bs,pq (Rn) and the Triebel�Lizorkin spaces
Fs,pq (Rn), with sp = n and 1 < q < ∞, are embedded in Dk(Rn) for 1 ≤
k ≤ n. This follows from the standard embeddings of these spaces in

Ws′,p′(Rn) = Bs
′,p′
p′ (Rn) = Fs

′,p′
p′ (Rn),

when 0 < s′ < min(s, 1), p′ ≥ q and s′p′ = n [14, 21].

4.2. Locally Lipschitz functions in Rn \ {0}. The space Dn−1(Rn) is
larger than critical Sobolev spaces. There is a simple condition for locally
Lipschitz functions in Rn \ {0} to be in Dn−1(Rn), which is satis�ed e.g. by
the function log |x|.
Proposition 4.3. Let n ≥ 2 and u ∈ W1,1

loc(R
n \ {0}). If |x|∇u ∈ L∞(Rn),

then u ∈ Dn−1(Rn) and
‖u‖Dn−1(Rn) ≤ ‖ |x|∇u‖L∞(Rn).

Remark 4.4. In general, u 6∈ Dn(Rn) as shows the function u(x) = log |x|.
Proof. Let f ∈ D(Rn \ {0} ;Rn) be such that div f = 0. Lemma 4.5 yields

∣∣∣∣
∫

Rn

uf dx

∣∣∣∣ =
∣∣∣∣
∫

Rn

x (∇u · f) dx
∣∣∣∣ ≤ ‖∇u |x| ‖L∞(Rn)‖f‖L1(Rn).

Therefore, for every ϕ ∈ D#(Rn \ {0} ;Rn),
∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ ≤ ‖∇u |x| ‖L∞(Rn)‖ϕ‖L1(Rn).

Since {0} has vanishing n�capacity (Lemma A.2), D#(Rn \ {0} ; Λn−1R) is
dense in D#(Rn; Λn−1R) (Theorem A.5). This concludes the proof. ¤

Lemma 4.5. Let u ∈ W1,1
loc(R

n\{0}) and f ∈ D(Rn\{0} ;Rn). If div f = 0,
then ∫

Rn

uf dx = −
∫

Rn

x (f · ∇u) dx.

Proof. By integration by parts,
∫

Rn

x (f · ∇u) dx = −
∫

Rn

x (div f)u dx−
∫

Rn

uf dx.

The conclusion comes from the assumption div f = 0. ¤
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4.3. Examples of functions in Dk(Rn). Proposition 4.3 and Theorem 3.2
yield examples of functions in the spaces Dk(Rn) showing that these spaces
are distinct.

Proposition 4.6. If 1 ≤ ` ≤ n, then

log
( ∑̀

i=1

|xi|2
) ∈ Dk(Rn)

if and only if 1 ≤ k < `.

Remark 4.7. An immediate consequence of Proposition 4.6 is that the spaces
Dk(Rn) are all di�erent.

Remark 4.8. Proposition 4.6 is consistent with the isomorphism Dn(Rn) ∼=
L∞(Rn)/R (Proposition 2.9).

Proof of Proposition 4.6. For every x ∈ Rn \{0}, |x| |∇(log |x|)| = 1. There-
fore, for ` ≥ 2, by Proposition 4.3,

log
( ∑̀

i=1

|xi|2
) ∈ D`−1(R`).

By Theorem 3.2, this remains valid for the extension to Rn

log
( ∑̀

i=1

|xi|2
) ∈ D`−1(Rn).

Hence, by Theorem 3.1, if 1 ≤ k < `,

log
(∑̀

i=1

|xi|2
) ∈ Dk(Rn).

On the other hand, suppose for contradiction that, for some k ≥ `,

log
(∑̀

i=1

|xi|2
) ∈ Dk(Rn).

By Theorem 3.1, this would be true for k = `. By Theorem 3.2,

log
(∑̀

i=1

|xi|2
) ∈ D`(R`) = L∞(R`)/R,

which is absurd. ¤

Proposition 4.6 includes as a special case estimates obtained by Bourgain
and Brezis:

Corollary 4.9 (Bourgain and Brezis [3]). Let f ∈ L1(R2;R2). If div f = 0
in the sense of distributions, then

log
1
|x| ∗ f ∈ L∞(R2;R2).

Other interesting examples can be obtained in a similar way:
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Proposition 4.10. If 1 ≤ ` ≤ n and 0 < α ≤ 1, then
(∣∣log(

∑̀

i=1

|xi|2)
∣∣ + 1

)α
∈ Dk(Rn)

if and only if 1 ≤ k < `.
Note that

(∣∣log(
∑̀

i=1

|xi|2)
∣∣ + 1

)α
6∈ Ws,p

loc(R
n)

when ` < n (otherwise it would be continuous on almost every hyperplane).
Hence the examples provided here do not belong to critical Sobolev spaces.

5. Relation with BMO(Rn)

5.1. Preliminaries. Let us �rst recall some facts about the space of func-
tions with bounded mean oscillation BMO(Rn) [20].

The space BMO(Rn) is de�ned as the set of functions u ∈ L1
loc(R

n) such
that

‖u‖BMO(Rn) = sup
B

1
Ln(B)2

∫

B

∫

B
|u(x)− u(y)| dx dy <∞,

where the supremum is taken on balls B ⊂ Rn.
The space BMO(Rn) is the dual space of the real Hardy space H1(Rn),

which can be characterized as the space of functions f ∈ L1(Rn) such that
Rif ∈ L1(Rn), where Ri denotes the Riesz transform (de�ned by Rif =
xi/ |x|n+1 ∗ f when f ∈ D(Rn)). One can take

‖f‖H1(Rn) = ‖f‖L1(Rn) +
n∑

i=1

‖Rif‖L1(Rn).

If Kn denotes the fundamental solution of the Laplacian ∆ =
∑n

i=1 ∂
2/∂x2

i

(i.e. Kn is Newton's kernel), and f ∈ H1(Rn), one has:
∂2

∂xi∂xj

(
Kn ∗ f

)
∈ L1(Rn),

and ∥∥∥ ∂2

∂xi∂xj

(
Kn ∗ f

)∥∥∥
L1(Rn)

≤ C‖f‖H1(Rn).

Finally, D(Rn) ∩H1(Rn) is dense in H1(Rn).
The space of functions with vanishing mean oscillations VMO(Rn;Rn) is

the closed subspace of VMO(Rn) that is characterized by

lim
ε→0

sup
Ln(B)≤ε

1
Ln(B)2

∫

B

∫

B
|u(x)− u(y)| dx dy = 0,

where the supremum is taken over balls B ⊂ Rn. The critical Sobolev spaces
Ws,p(Rn) with sp = n are embedded in VMO(Rn).

Going back to the examples of the preceding section, for every ` ≥ 1,

log
( ∑̀

i=1

|xi|2
) ∈ BMO(Rn),
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but it does not belong to VMO(Rn), while for 0 < α < 1 and ` ≥ 1,
(∣∣log(

∑̀

i=1

|xi|2)
∣∣ + 1

)α
∈ VMO(Rn).

(It is still in BMO(Rn) when α = 1.) Comparing with Proposition 4.10,
this gives a �rst insight on the relationship between Dk(Rn), VMO(Rn) and
BMO(Rn):
Proposition 5.1. For every 1 ≤ k ≤ n, the space VMO(Rn) is not embedded
in Dk(Rn).
Remark 5.2. There is thus no inequality∣∣∣∣

∫

Rn

u ϕdx

∣∣∣∣ ≤ C‖u‖BMO(Rn)‖ϕ‖L1(Rn),

for u ∈ VMO(Rn). This was remarked indirectly by Bethuel, Orlandi and
Smets [2].
5.2. Embedding in BMO. The spaces Dk(Rn) do not contain BMO(Rn)
nor VMO(Rn). Since L∞(Rn)/R ⊂ Dk(Rn) for 1 ≤ k ≤ n, they are not
contained in VMO(Rn), but there is an embedding of Dk(Rn) in BMO(Rn):
Theorem 5.3. Let 1 ≤ k ≤ n. If u ∈ Dk(Rn), then u ∈ BMO(Rn), and

‖u‖BMO(Rn) ≤ C‖u‖Dk(Rn),

where C is independent of u.
Proof. By Theorem 3.1, we can assume k = 1. The seminorm of u in
BMO(Rn) will be estimated by duality with the Hardy space H1(Rn).

Let f ∈ D(Rn) ∩H1(Rn). Let

ϕi =
n∑

j=1

∂2

∂xi∂xj

(
KN ∗ f

)
ωj .

Note ϕj ∈ L1
#(Rn; Λ1Rn). Moreover

(5.1)
∣∣∣∣
∫

Rn

fu dx

∣∣∣∣ ≤
n∑

i=1

∣∣∣∣
∫

Rn

∂2f/∂x2
iu dx

∣∣∣∣ ≤
n∑

i=1

∣∣∣∣
∫

Rn

ϕi u dx

∣∣∣∣

≤ ‖u‖D1(Rn)

n∑

i=1

‖ϕi‖L1(Rn) ≤ C‖u‖D1(Rn)‖f‖H1(Rn).

(Note that Proposition 2.7 about the wellde�nitenesss of the duality product
between D1(Rn) on and L1

#(Rn; Λ1Rn) was used.) ¤

Remark 5.4. A similar argument shows that for 1 < p <∞

‖u‖Lp(Rn) ≤ sup
ϕ∈D#(Rn;Rn)
‖ϕ‖Lp(Rn)≤1

∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ .

The extension of the spaces Dk(Rn) to the case 1 < p <∞ would thus not
be interesting.
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5.3. Completeness of Dk(Rn). The injection of Dk(Rn) provides an easy
proof of the completeness of Dk(Rn).

Theorem 5.5. For 1 ≤ k ≤ n, the space Dk(Rn) is a complete Banach
space modulo constants.

Proof. Let (um)m≥1 be a Cauchy sequence in Dk(Rn): limm,l→∞ ‖um −
u`‖Dk(Rn) = 0. By Theorem 5.3, (um)m≥1 is a Cauchy sequence in the
Banach space BMO(Rn) and has thus a limit u ∈ BMO(Rn). For every
ϕ ∈ D#(Rn; ΛkRn) and m ≥ 1

∣∣∣∣
∫

Rn

(um − u)ϕdx
∣∣∣∣ = lim

l→∞

∣∣∣∣
∫

Rn

(um − ul)ϕdx
∣∣∣∣

≤ lim
l→∞

‖um − ul‖Dk(Rn) ‖ϕ‖L1(Rn).

Taking the supremum over ϕ ∈ D#(Rn; ΛkRn) with ‖ϕ‖L1(Rn) ≤ 1, one
obtains u ∈ Dk(Rn) and um → u in Dk(Rn) as m→∞.

Finally, if u ∈ Dk(Rn) then, by Theorem 5.3, ‖u‖BMO(Rn) = 0, and
therefore u is constant. ¤

5.4. Integrability of functions in Dk(Rn). If u ∈ BMO(Rn), ‖u‖BMO(Rn) ≤
1 and

∫
B(0,1) u dx = 0, the John-Nirenberg Theorem states that

(5.2)
∫

B(0,1)
exp(µ |u|) dx ≤ c,

where µ > 0 and c > 0 can bechosenn independently of u. Since the spaces
Dk(Rn) are embedded in BMO(Rn), this might be improved on Dk(Rn).

On the other hand if sp = n, 0 < s < 1, u ∈ Ws,p(Rn), ‖u‖Ws,p(Rn) ≤ 1
and

∫
B(0,1) f dx = 0, then

(5.3)
∫

B(0,1)
exp

(
µ |u|p/(p−1)) dx ≤ c

where the constants c and µ are independent of u [12]. The exponent p/(p−1)
can not be improved, since log(1/ |x|)α+ ∈ Ws,p(Rn) when α < p/(p− 1) [14,
p. 47]. There is not much room between (5.2) and (5.3), and it is therefore
not surprising that (5.2) is optimal also in Dk(Rn).

Proposition 5.6. Suppose that for everycompactlyy supported u ∈ C(Rn),
if ‖u‖Dk(Rn) ≤ 1 and

∫
B(0,1) u = 0,

∫

B(0,1)
F (u) dx <∞,

then there exists λ > 0 such that∫ ∞

0
Φ(s)e−λs ds <∞.

Proof. Choose y ∈ Rn with |y| = 1/2. Consider the functions (um)m≥1

de�ned by
um(x) = min

(
m,

(
log(2 |x− y|))−

)−min
(
m,

(
log(2 |x+ y|))−

)
.
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By Proposition 4.3, ‖um‖Dk(Rn) is bounded uniformly in m. Choose α > 0
such that ‖αum‖Dk(Rn) ≤ 1. On the other hand,

∫

B(0,1)
Φ(αum) dx = 21−n

∫

B(0,1)
Φ

(
αmax

(
log(1/ |x|),m))

dx

= K

∫ e−m

1
Φ(−α log r)rn−1 dr =

K

α

∫ αm

0
Φ(s)e−ns/α ds ≤ c.

Letting m→∞ yields the conclusion with λ = n/α. ¤

The improvement of Dk(Rn) on BMO(Rn) should thus not be seen as an
improvement of the integrand, but as an improvement on the domains of
integration: By the trace Theorem 3.4, the embedding Theorem 5.3, and the
John�Nirenberg inequality, functions in Vk(Rn) areexponentiallyy integrable
on n− k + 1�dimensional subspaces.

6. Further problems
6.1. Traces of V1(Rn) on VMO(Rn−1). By Theorem 3.4 and Theorem 5.3,
functions in Vk(Rn) have VMO traces on n−k+1�dimensional spaces. The
dimension n − k seems more natural: Functions in Vn(Rn) are continuous,
and hence have traces on 0�dimensional spaces, i.e. points. If there was such
a trace inequality, one could de�ne D0(Rn) = BMO(Rn). This notation
would be consistent with the mutual injection Theorem 3.1, the extension
Theorem 3.2 and the examples of Proposition 4.6. It would then be nice to
have a de�nition of Dk(Rn) whichencompassess the case k = 0. The two-
dimensional case would already solve the problem of traces of Vn−1(Rn) on
lines.

6.2. Geometric characterizations. By Propositions 2.10 and 2.11, the
spaces V1(Rn) and Vn−1(Rn) can be de�ned by oscillations respectively
along boundaries of bounded domains and along closed curves. Further re-
�nements would restrict the set of domains and of curves. The most striking
result would be if the oscillation could be simply evaluatedrespectivelyy on
spheres and on circles.

The spaces Vk(Rn) for 1 < k < n − 1 do not have such a simple char-
acterization. Proposition 2.14 gives an equivalent seminorm, obtained by
integration on closed real polyhedral chains without boundary. This result
needs to be improved by restricting the class of sets on which the oscillations
are computed for example to integer polyhedral chains without boundary, or
to embedded oriented n− k�dimensional manifolds without boundary.

6.3. Closure of the space of continuous functions. The two equivalent
de�nitions of VMO(Rn) [15] suggest the de�nition of the closure of the
bounded uniformly continuous functions Uk(Rn) and of

Wk(Rn) = {u ∈ Dk(Rn) : Nk(u) = 0}
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where

Nk(u) = lim
ε→0

sup
ϕ∈D#(B(x,r);ΛkRn)

‖ϕ‖L1(Rn)≤1

x∈Rn

r≤ε

∣∣∣∣∣
∫

B(x,r)
uϕdx

∣∣∣∣∣ .

The space Uk(Rn) is contained in none of the spaces Vk(Rn), Wk(Rn)
and VMO(Rn), while Vk(Rn) is not contained in VMO(Rn). The re-
maining problems are thus the understanding of the mutual relationship
between Wk(Rn) and VMO(Rn)∩Dk(Rn) and of their possible embeddings
in Vk(Rn) and in Uk(Rn).

6.4. Similar spaces Ek(Rn). It would have been possible to de�ne another
family of spaces with properties similar to Dk(Rn). For 1 ≤ k ≤ n, let

D#,k(Rn;Rn) =
{
ϕ ∈ D(Rn;Rn) : divϕ = 0

and the dimension of the range of ϕ is at most k
}
.

(The set D#,k(Rn;Rn) is not a vector space when k < n.) De�ne, for
1 ≤ k ≤ n− 1,

‖u‖Ek(Rn) = sup
ϕ∈D#,k+1(R

n;Rn)
‖ϕ‖L1(Rn)≤1

∣∣∣∣
∫

Rn

uϕdx

∣∣∣∣ .

For 1 ≤ k ≤ n− 1, the space Ek(Rn) is continuously embedded in Dk(Rn),
and En−1(Rn) is isomorphic to Dn−1(Rn). Therefore, the critical Sobolev
spaces are embedded in Ek(Rn) which in turn are embedded in BMO(Rn).
Moreover, the trace property of Theorem 3.4 holds for the closure of contin-
uous function in Ek(Rn). Continuous functions in Ek(Rn) can be character-
ized by Proposition 2.11 provided one restricts in the supremum γ(S1) to be
contained in a k + 1-dimensinal a�ne plane. The question is about where
Ek(Rn) lies between the spaces Dk(Rn) or to Dn−1(Rn). In particular, is it
isomorphic to one of those?

6.5. Composition of functions in Dk(Rn). Let F : R → R be a Lipchitz
function. If u ∈ Ws,p(Rn) with 0 < s ≤ 1 and sp = n, then F ◦u ∈ Ws,p(Rn)
[24]. If u ∈ BMO(Rn), then F ◦ u ∈ BMO(Rn) [20]. Is F ◦ u ∈ Dk(Rn)
when F is a Lipschitz smooth function? A simpler problem is whether |u| ∈
Dk(Rn) whenever u ∈ Dk(Rn)?

If F : Rn → Rn is smooth, the mapping u 7→ u◦F is a continuous operator
on W1,n(Rn) and BMO(Rn) if and only if F is quasiconformal [13], i.e.

sup
x∈Rn

|DF (x)|n
|detDF (x)| <∞.

Is it true that u 7→ u ◦ F is continuous from Dk(Rn) to Dk(Rn) if F is
quasiconformal, or even for F smooth and bilipschitzian?
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6.6. Localization of Dk(Rn). There should be localized versions of the
spaces Dk(Rn). There are two di�erent de�nitions, depending on whether
the supremum

sup
‖ϕ‖L1(Rn)≤1

∣∣∣∣
∫

Ω
uϕdx

∣∣∣∣

is taken over smooth closed forms on Ω or over smooth closed forms on Rn

with support in Ω. They contain respectively W1,n
0 (Ω) and W1,n(Ω) [7]. It

would be natural for these spaces to be embedded respectively in bmoz(Ω̄)
(functions whose extension by 0 to Rn is in BMO(Rn)) and the second in the
larger space bmor(Ω̄) (restrictions of functions in BMO(Rn) to Ω) (see [8]
for the de�nitions).

Appendix A. Density of compactly supported forms
A.1. The closure of closed k�forms. This appendix is devoted to the
study of dense sets in the space L1(Rn; ΛkRn) of summable closed forms.

De�nition A.1. Let 1 ≤ p < ∞ and Ω ⊂ Rn be open and bounded. The
p�capacity of a compact set Σ ⊂ Ω is de�ned as

capap(Σ,Ω) = inf
{∫

Ω
|∇η|p : η ∈ D(Ω), η = 1 in a neighborhood of Σ

}
.

In general capap(Σ,Ω) depends on Ω, but if capap(Σ,Ω) = 0 for some
bounded open set Ω, then capap(Σ,Ω′) = 0 for every bounded open set
Ω′ ⊃ Σ. Therefore it makes sense to speak of sets with vanishing p�capacity
without specifying Ω.

Lemma A.2. If n ≥ 2, for every a ∈ Rn, the set {a} has vanishing n�
capacity.

Proof. Consider the sequence
ηm(x) = θ

(
log(1/ |x− a|)/m)

,

with θ ∈ C∞(R) and supp θ′ ⊂ (0, 1), θ(0) = 0 and θ(1) = 1. ¤

Remark A.3. More generally, if the 0�dimensional Hausdor� measure of Σ
vanishes, then H0(Σ) = 0. Conversely, if capan(Σ) = 0, then for every s > 0,
the s�dimensional Hausdor� measure of Σ vanishes [9].

In a similar way, one can prove

Lemma A.4. There exists a sequence (ζm)m in D(Rn) such that 0 ≤ ζm ≤
1, ζm → 1 almost everywhere and

∫

Rn

|∇ζm|n dx→ 0

as m→∞.

Theorem A.5. If Σ ⊂ Rn is compact and has vanishing n�capacity, then
d
(D(Rn \ Σ;Λk−1Rn)

)
is dense in L1

#(Rn; ΛkRn).

The proof makes use of a result of Bourgain and Brezis.
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Theorem A.6 (Bourgain and Brezis [3]). Let 1 ≤ k ≤ n − 1. For every
ϕ ∈ L1

#(Rn; ΛkRn), there exists ψ ∈ Ln/(n−1)(Rn; Λk−1Rn) such that
{
dψ = ϕ,

δψ = 0.

Here δ denotes the codi�erential, i.e. the adjoint of d with respect to
Hodge star. This result is based on inequality (1.7). When k = 1, the
meaningless condition δψ = 0 is dropped and this is equivalent with the
Nirenberg�Sobolev embedding.
Proof of Theorem A.5. Since the exterior di�erential d commutes with trans-
lations, by classical smoothing arguments, (C∞ ∩ L1

#)(Rn; ΛkRn) is dense
in L1

#(Rn; ΛkRn).
Let ϕ ∈ (C∞∩L1

#)(Rn; ΛkRn) and let Σ ⊂ Ω ⊂ Rn be open and bounded.
Since Σ has vanishing capacity, there is a sequence (ηm)m≥1 in D(Ω) such
that 0 ≤ ηm ≤ 1, ηm = 1 on a neighborhood of Σ and ‖∇ηm‖Ln(Rn) → 0 as
n → ∞. Moreover, by Poincaré's inequality, up to a subsequence, ηm → 0
almost everywhere.

Consider now the sequence
ψm = (1− ηm)ζmψ,

where ζm is given by Lemma A.4. By de�nition, ψm ∈ D(Rn; Λk−1Rn). We
claim that dψm → ϕ in L1(Rn; ΛkRn).

In fact,
(A.1) dψm = −ζm dηm ∧ ψ + (1− ηm) dζm ∧ ψ + (1− ηm) ζm ϕ.

By H®lder's inequality,
‖ − ζm dηm ∧ ψ‖L1(Rn) ≤ ‖ζm‖L∞(Rn)‖dηm‖Ln(Rn)‖ψ‖Ln/(n−1)(Rn).

Since ‖∇ηm‖Ln(Rn) → 0 and ‖ψ‖Ln/(n−1)(Rn) < ∞, the �rst term in (A.1)
tends to zero. A similar reasoning holds for the second term, and the last
term converges to ϕ as m→∞ by Lebesgue's dominated convergence The-
orem. ¤
Corollary A.7. The set D#(Rn; ΛkRn) is dense in L1

#(Rn; ΛkRn).

A.2. The closure of exact n�forms. Theorem A.6 fails when k = n, and
therefore the proof Theorem A.5 fails in this case, but there is in fact a
stronger result.
Theorem A.8. The set d

(D(Rn; Λn−1Rn)
)
is dense in D#(Rn; ΛnRn).

Remark A.9. The density is with respect to the usual topology on the space
of test functions [16].
Proof. Let ϕ ∈ D#(Rn; ΛnRn). Therefore ϕ = f ω1 ∧ · · · ∧ ωn, with f ∈
D(Rn) and

∫
Rn f dx = 0. Let (ρε)ε>0 be a sequence of molli�ers. De�ne

gε ∈ D(Rn;Rn) by

gε(z) =
2

‖f‖L1(Rn)

∫

Rn×Rn

(x−y)
∫ 1

0
ρε

(
z−tx−(1−t)y) f+(x)f−(y) dt dx dy.



22 J. VAN SCHAFTINGEN

Next, note
(A.2)

div gε(z) =
2

‖f‖L1(Rn)

∫

Rn×Rn

∫ 1

0
(x−y)·∇ρε

(
z−tx−(1−t)y) f+(x)f−(y) dt dx dy

=
2

‖f‖L1(Rn)

∫

Rn×Rn

(
ρε(z − x)− ρε(z − y)

)
f+(x)f−(y) dx dy

= (ρε ∗ f)(z).

Therefore div gε → f in D(Rn) as ε→ 0. Letting

ψε =
n∑

i=1

giε(−1)i+1ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn,

one concludes
dψε = div gε ω1 ∧ · · · ∧ ωn → f ω1 ∧ · · · ∧ ωn = ϕ,

as ε→ 0. ¤
Remark A.10. The construction (A.2) is inspired from the construction of
a non-optimal mass displacement plan in the Monge�Kantorovich mass dis-
placement problem [11].
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