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Abstract

We develop a method to prove that some critical levels for functionals invariant by
symmetry obtained by minimax methods without any symmetry constraint are attained
by symmetric critical points. It is used to investigate the symmetry properties of solutions
of elliptic partial differential equations with Dirichlet or Neumann boundary conditions. It
is also an alternative to concentration-compactness for some symmetric elliptic problems.

1 Introduction

We are concerned by symmetry properties of symmetric elliptic partial differential equations.
Our model problem is {

−∆u = f(|x|, u) in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a ball and u is a real-valued function. When the function f is decreasing in |x|
and u is a positive solution continuous up to the boundary, then Gidas, Ni and Nirenberg’s
celebrated result [6, 7] says that u is radial and ∂u

∂r < 0.
Solutions of (1.1) can be obtained as critical points of the Euler-Lagrange functional ϕ

defined on the Sobolev space H1
0 (Ω) by

ϕ(u) =
∫

Ω

|∇u|2

2
− F (|x|, u) dx,

where F (r, t) =
∫ t
0 f(r, s) ds. In particular one can inquire about the properties of the mini-

mizers of ϕ. The Schwarz symmetrization maps a nonnegative function u ∈ H1
0 (Ω) to a more

symmetric one u∗. It can be shown that if ∂f
∂r 6 0, then ϕ(u∗) 6 ϕ(u). This proves that

if there is a minimizer, then there is a symmetric minimizer. If ϕ is Gateaux-differentiable,
then the minimizer is a critical point. Similarly, using the spherical cap symmetrization, one
can ensure that without any sign restriction on u or on ∂f

∂r , the minimum of ϕ is attained by
a function which depends only on the radius and of one angular variable [11].

Continuous symmetrization — a homotopy linking a function to its symmetrization —
was used by Brock in order to prove that if ∂f

∂r 6 0, then any nonnegative critical point is
locally symmetric, i.e. its domain is the union of annuli on which it is radial and of a set on
which ∇u = 0 almost everywhere [3].

In this paper we consider critical points obtained by minimax principles. We modify a gen-
eral minimax principle of Willem in order to obtain Palais-Smale sequences whose elements are
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more and more symmetric. This can be applied to prove that some critical levels are achieved
by symmetric functions. It also provides an alternative to concentration-compactness.

The paper is organized as follows. Section 2 is devoted to the definition and properties of
symmetrizations and polarizations. We briefly recall the classical properties needed for our
purpose. In particular, the Schwarz symmetrization and the spherical cap symmetrization
can be both approximated by polarizations. We prove that polarizations are continuous in
Sobolev spaces. The essential properties are summarized in an axiomatic framework (section
2.4) for the Schwarz symmetrization and the spherical cap symmetrization. Under these
assumptions, a homotopy linking a polarization of a function with its symmetrization is
constructed. These axioms are easily verified for many variants, e.g. problems in Sobolev-
Orlicz spaces and in weighted spaces, and approximation of the Schwarz symmetrization by
Steiner symmetrizations.

Section 3 is devoted to our symmetric minimax principle (Theorem 3.5) in the abstract
framework of section 2.4. The proof is based on a minimax principle of Willem [15]. The idea
of the proof is to replace a path by its symmetrization. The main difficulty is the fact that
symmetrizations are not continuous in Sobolev spaces; it is overcome by the approximation
of the symmetrization by polarizations.

Finally, section 4 gives examples of applications to semi-linear elliptic partial differential
equations. We prove the symmetry of critical points at some critical levels obtained by the
mountain pass Theorem of Ambrosetti and Rabinowitz and by Rabinowitz’s linking Theorem.
We also show how the symmetric minimax principle provides an alternative to concentration-
compactness methods in symmetric settings.

All the results in this paper hold for partial symmetrizations ((N, k)–Steiner symmetriza-
tion or k–spherical cap symmetrizations). For the sake of clarity, the exposition is made for
the Schwarz and (N − 1)–spherical cap symmetrization, but this restriction can always be
removed with no modification in the arguments. Similarly, the results of section 4.1 concern-
ing the spherical cap symmetrization remain valid without any modification for the Neumann
boundary conditions.

2 Symmetrization and polarization

2.1 Schwarz symmetrization

For f : A → R̄ = R ∪ {−∞,+∞} and c ∈ R̄, let {u > c} = {x ∈ A |u(x) > c}. The set of
infinitely differentiable (resp. continuous) functions whose support is compact in Ω ⊆ RN is
denoted D(Ω) (resp. K(Ω)).

Definition 2.1. The Schwarz symmetrization of a set A ⊂ RN is the unique open ball
centered at the origin A∗ such that LN (A∗) = LN (A), where LN denotes the N -dimensional
outer Lebesgue measure. If LN (A) = 0, then A∗ = φ while A∗ = RN if LN (A) = ∞.

Definition 2.2. The Schwarz symmetrization of a measurable nonnegative function u : Ω →
R̄ is the unique function u∗ : Ω∗ → R̄ such that for all c ∈ R,

{u∗ > c} = {u > c}∗ .

Remark 2.3. The function u∗ is also characterized by u∗(y) = sup{c ∈ R | y ∈ {u > c}∗}.
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Definition 2.4. A measurable function u vanishes at the infinity if for all ε > 0, LN ({|u| > ε}) <
∞.

Definition 2.5. A function is admissible for the Schwarz symmetrization if it is nonnegative
and it vanishes at the infinity.

Proposition 2.6. If u : Ω → R̄ is admissible, then u∗ is admissible and for any Borel
measurable function f : R+ → R+ such that f(0) = 0,∫

RN

f(u∗(x)) dx =
∫

RN

f(u(x)) dx.

In particular, if u ∈ Lp(Ω) is nonnegative, then u∗ ∈ Lp(Ω∗) and ‖u‖p = ‖u∗‖p.

Remark 2.7. The Steiner symmetrization is an analogue of the Schwarz symmetrization that
symmetrizes functions only with respect to certain variables. The (k,N)–Steiner symmetriza-
tion of a set A ∈ RN is the unique set A∗ such that for all x′′ ∈ RN−k, {x′ ∈ Rk | (x′, x′′) ∈
A∗} = {x′ ∈ Rk | (x′, x′′) ∈ A}∗. (The ∗ on the right-hand side denotes the Schwarz sym-
metrization in Rk of Definition 2.1.) It is extended to functions as in Definition 2.2; Propo-
sition 2.6 still holds. Steiner-symmetrized functions have cylindrical symmetry: they can be
written as u∗(x′, x′′) = v(|x′|, x′′) where v(·, x′′) is a decreasing function for each x′′ ∈ RN−k.

2.2 Spherical cap symmetrization

The spherical cap symmetrization is defined following Sarvas [9] (see also [11,13,14]).

Definition 2.8. Let P ∈ ∂B(0, 1)∩RN . The spherical cap symmetrization of the set A with
respect to P is the unique set A∗ such that A∗ ∩ {0} = A ∩ {0} and, for any r > 0,

A∗ ∩ ∂B(0, r) = Bg(rP, ρ) ∩ ∂B(0, r) for some ρ > 0 ,

HN−1(A∗ ∩ ∂B(0, r)) = HN−1(A ∩ ∂B(0, r)) ,

where HN−1 is the outer Hausdorff (N − 1)-dimensional measure and Bg(rP, ρ) denotes the
geodesic ball on the sphere ∂B(0, r) of center rP and radius ρ. (By definition, Bg(rP, 0) = φ.)

Definition 2.9. The spherical cap symmetrization of a function u : Ω → R̄ is the unique
function u∗ : Ω∗ → R̄ such that, for all c ∈ R,

{u∗ > c} = {u > c}∗ .

The result of a spherical cap symmetrization is a function that depends on two variables:
u∗(x) = v(|x|, P · x), where v(r, ·) is a nondecreasing function for any r > 0.

Definition 2.10. A set Ω ⊂ RN is invariant with respect to ∗ if Ω∗ = Ω. It is totally
invariant if Ω∗ = Ω and (RN \ Ω)∗ = (RN \ Ω).

Definition 2.11. A function u : Ω → R̄ is admissible for the spherical cap symmetrization if
it is measurable and either Ω is totally invariant or u is nonnegative.

As for the Schwarz symmetrization, we have
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Proposition 2.12. If u : Ω → R̄ is admissible, then u∗ is measurable and for any Borel
measurable function f : R+ × R̄ → R+∫

Ω
f(|x|, u∗(x)) dx =

∫
Ω∗

f(|x|, u(x)) dx.

In particular, if u ∈ Lp(Ω), then u∗ ∈ Lp(Ω∗).

Remark 2.13. The equivalent of Steiner symmetrization for the spherical cap symmetrization
is the k-spherical cap symmetrization with respect to P ∈ Rk+1. The process is the same as
in Remark 2.7 and yields symmetrized functions of the form u∗(x′, x′′) = v(|x′|, P · x′, x′′).

2.3 Polarizations

Definition 2.14. A set H ⊂ RN is a polarizer if it is a closed affine half-space of RN , i.e. H
is the set of all points verifying a · x 6 b for some a ∈ Rk, b ∈ R, |a|2 = 1.

Notation 2.15. For any x ∈ RN and any polarizer H ⊆ Ω, xH denotes the reflection of x
with respect to ∂H. With the notation of Definition 2.14, xH = x− 2(a · x− b)a.

Definition 2.16. The polarization of a function u : RN → R by the polarizer H is the
function uH : Ω → R, with

uH(x) =

{
max {u(x), u(xH)} if x ∈ H,

min {u(x), u(xH)} if x 6∈ H.

Definition 2.17 (Extended polarizers). The set of polarizers is compactified by the ad-
dition of two polarizers at the infinity, defined by uH+∞ = u+ and uH−∞ = −u−, such that
Hn → H+∞ if bn →∞ and Hn → H−∞ if bn → −∞ in the representation of Definition 2.14.
The compactified set of polarizers is denoted H and is homeomorphic to SN .

Definition 2.18. If H ∈ H∗ and Ω ⊂ RN , the polarization of u : Ω → R̄ with respect to H
is defined as uH = ũH |Ω, where ũ is the extension of u to RN by 0 outside of Ω.

Proposition 2.19. Let H ∈ H. Suppose Ω = ΩH ⊆ RN , u, v : Ω → R̄ are measurable and
nonnegative.

If g : Ω × R̄ → R̄+ is a Borel measurable function such that g(xH , s) = g(x, s) for each
(x, s) ∈ Ω× R̄, then ∫

Ω
g(x, uH) dx =

∫
Ω

g(x, u) dx.

If G : Ω × R̄ × R̄ → R̄+ is a Borel measurable function such that G(xH , s, t) = G(x, s, t)
for each (x, s, t) ∈ Ω × R̄ and for any x ∈ Ω, a 6 b and c 6 d, G(x, a, c) + G(x, b, d) >
G(x, a, d) + G(x, b, c), then ∫

Ω
G(x, uH , vH) dx >

∫
Ω

G(x, u, v) dx.

In particular, ‖uH − vH‖p 6 ‖u− v‖p.
If u ∈ W 1,p

0 (Ω), then u ∈ W 1,p
0 (Ω) and ‖∇uH‖p = ‖∇u‖p.

If moreover, (RN \Ω)H = RN \Ω, the results remain valid without any sign restriction on
u and v and if u ∈ W 1,p(Ω), then uH ∈ W 1,p(Ω) and ‖∇uH‖p = ‖∇u‖p.
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For any symmetrization ∗ defined above, the subset of admissible functions in a function
space Y is denoted Y∗, and there is a set H∗ ⊂ H of polarizers such that for any admissible
function u : Ω → R̄,

u = u∗ ⇐⇒ ∀H ∈ H∗, u = uH .

If ∗ is the (N, k)–Steiner symmetrization,

H∗ =
{

H ∈ H | {0} × RN−k ⊂ H or H = H+∞

}
.

If ∗ is the k-spherical cap symmetrization,

H∗ =
{

H ∈ H |R+ × {0} × RN−k−1 ⊂ H and {0} × RN−k−1 ⊂ ∂H
}

.

Because polarizations are contractions in Lp(RN ), for any H ∈ H∗ and u ∈ Lp(RN ),
‖uH−u∗‖p 6 ‖u−u∗‖p. In fact they can approximate symmetrizations: in [13], it was shown:

Theorem 2.20. For any symmetrization ∗, there exists a sequence of polarizers (Hm)m>1 ⊂
H∗ such that, for any 1 6 p < ∞, Ω ⊂ RN invariant with respect to ∗ and u ∈ Lp

∗(Ω), the
sequence um = uH1···Hm converges to u∗ :

lim
m→∞

‖um − u∗‖p = 0.

Theorem 2.20 was proved for a fixed function by Brock and Solynin for the Steiner sym-
metrizations [4] and by Smets and Willem for the spherical cap symmetrization [11].

Lemma 2.21. If 1 6 p < ∞, the map

h : H̄ × Lp(RN ) → Lp(RN ) : (H,u) 7→ uH

is continuous at (u, H) if and only if (u, H) ∈ H(Lp(RN )), where

H(X) =
{
(u, H) ∈ X × H̄ |u > 0 if H = H+∞ and u 6 0 if H = H−∞

}
.

Proof. If (u, H) and (v, L) are in H(Lp(RN )), then

‖uH − vL‖p 6 ‖uH − vH‖p + ‖vH − vL‖p.

The first term is bounded by ‖u−v‖p because polarizations are nonexpansive. For the second
term, since polarizations are nonexpansive we can suppose without loss of generality that v
is a compactly supported continuous function. In the latter case vH → vL uniformly on RN

if (v, L) ∈ H(K(RN )) and thus in Lp(RN ).

Proposition 2.22. If ∗ is a symmetrization, Ω is open and invariant with respect to ∗, then
the map h is continuous from Lp

∗(Ω)×H∗ to Lp
∗(Ω).

Proof. This is a direct consequence of Lemma 2.21 and of Theorem 2.20.

The continuity in Sobolev spaces relies on the next standard lemma.

Lemma 2.23. Let 1 < p < ∞, (un)n∈N and u be in W 1,p(Ω) and |·| be a strictly convex norm
in RN . Then un → u in W 1,p(Ω) if and only if un → u in Lp(Ω) and ‖|∇un|‖p → ‖|∇u|‖p.
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Proof. This is a consequence of the strict convexity of the norm ‖|·|‖p.

Proposition 2.24. If ∗ is a symmetrization, Ω is open and is invariant with respect to ∗ and
1 < p < ∞, the map h is continuous from W 1,p

0,+(Ω)×H∗ to W 1,p
0 (Ω).

Moreover, if Ω is totally invariant with respect to ∗ and ∗ is a spherical cap symmetrization,
the map h is continuous from W 1,p

0 (Ω)×H∗ to W 1,p
0 (Ω) and from W 1,p(Ω)×H∗ to W 1,p(Ω).

Proof. This is a consequence of Lemma 2.23, together with Proposition 2.22 and the fact that
‖|∇uH |‖p = ‖|∇u|‖p.

2.4 Abstract symmetrizations and polarizations

Assumption 2.25. Let X, V be Banach spaces, ∗ : S ⊂ X → V : u 7→ u∗, H∗ be a
path-connected topological space and h : S ×H∗ → S : (u, H) 7→ uH . Assume

(i) X is continuously embedded in V ,

(ii) the mapping h is continuous,

(iii) for each u ∈ S and H ∈ H∗, u∗H = uH∗ = u∗ and uHH = uH ,

(iv) there is a sequence (Hm)m>1 ⊂ H∗ such that for each u ∈ S, uH1...Hm → u∗ in V as
m →∞,

(v) for each u, v ∈ S and H ∈ H∗, ‖uH − vH‖V 6 ‖u− v‖V .

Example 2.26 (Schwarz symmetrization for nonnegative functions). Let Ω = B(0, 1) ⊂ RN ,
X = W 1,p

0 (Ω), V = (Lp ∩ Lp∗)(Ω)), with p∗ = Np/(N − p), S be the set of nonnegative
functions of W 1,p

0 (Ω), ∗ denote the Schwarz symmetrization and H∗ be defined as above.
Assumption 2.25 is satisfied by Proposition 2.19, Theorem 2.20 and Proposition 2.24.

Example 2.27 (Schwarz symmetrization). Let Ω = B(0, 1) ⊂ RN , X = W 1,p
0 (Ω), V = (Lp ∩

Lp∗)(Ω)), with p∗ = Np/(N − p), S = W 1,p
0 (Ω), u∗ = |u|? where ? denotes the Schwarz

symmetrization and H∗ is defined as above for the Schwarz symmetrization, but h(u, H) =
|u|H . Assumption 2.25 is satisfied by Proposition 2.19, Theorem 2.20 and Proposition 2.24.

Example 2.28 (Spherical cap symmetrization with Dirichlet boundary condition). Let Ω ⊂ RN

be a ball or an annulus, X = W 1,p
0 (Ω), V = (Lp ∩ Lp∗)(Ω)), with p∗ = Np/(N − p), ∗ denote

the spherical cap symmetrization and H∗ be defined as above. Assumption 2.25 is satisfied
by Proposition 2.19, Theorem 2.20 and Proposition 2.24.

Example 2.29 (Spherical cap symmetrization with Neumann boundary condition). Let Ω ⊂ RN

be a ball or an annulus, X = W 1,p(Ω), V = (Lp ∩ Lp∗)(Ω)), with p∗ = Np/(N − p), ∗ denote
the spherical cap symmetrization and H∗ be defined as above. Assumption 2.25 is satisfied
by Proposition 2.19, Theorem 2.20 and Proposition 2.24.

Example 2.30 (Schwarz symmetrization approximated by Steiner symmetrization). Let Ω =
B(0, 1) ⊂ RN , X = W 1,p

0 (Ω), V = (Lp ∩ Lp∗)(Ω)), with p∗ = Np/(N − p), S be the set of
nonnegative function of W 1,p

0 (Ω), ∗ denote the Schwarz symmetrization, H∗ denote the set of
hyperplanes passing through the origin and uH be the Steiner symmetrization with respect
to H. Assumption 2.25 is satisfied (see [5] and [13]).

Proposition 2.31. Under Assumption 2.25, for any u, v ∈ S, ‖u∗ − v∗‖V 6 ‖u− v‖V .
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Proof. By Assumption 2.25, for any m > 1,

‖u∗ − v∗‖V 6 ‖u∗ − uH1...Hm‖V + ‖uH1...Hm − vH1...Hm‖V + ‖vH1...Hm − v∗‖V

6 ‖u∗ − uH1...Hm‖V + ‖u− v‖V + ‖vH1...Hm − v∗‖V .

The conclusion comes from the property (iv) as m →∞.

Proposition 2.32. Under Assumption 2.25, for any H0 ∈ H∗, there exists a continuous
mapping (u, t) ∈ S × R+ 7→ ut such that limt→∞ ut = u∗ in V . Furthermore, for each t > 0,
there exists Ht ∈ H∗ such that ut = uH0H1···HbtcHt, where btc denotes the largest integer less
or equal to t.

Proof. Let Ht be a such that t 7→ Ht is continuous in H∗. For t ∈ [n− 1, n], n ∈ N, let

ut = uH0···Hn−1Ht .

This map is well-defined since un = uH0···Hn−1Hn = uH0···Hn−1HnHn . It is clear that for any
u ∈ V

‖ut − u∗‖V 6 ‖ubtc − u∗‖V → 0 as t →∞.

The continuity of (u, t) 7→ ut in X comes from the continuity of (u, H) 7→ uH and of t 7→
Ht.

3 Symmetry and variational principles

Symmetrization allows to restrict the search of a minimizer to the subset of symmetric func-
tions. Similarly we show here that on certain critical levels, there is a critical point which is
symmetric. Let us first recall a general minimax principle.

Theorem 3.1 (Willem [15]). Let X be a Banach space. Let M0 be a closed subspace of the
metric space M and Γ0 ⊂ C(M0, X). Define

Γ = {γ ∈ C(M,X) | γ|M0 ∈ Γ0} .

If ϕ ∈ C1(X, R) satisfies

∞ > c = inf
γ∈Γ

sup
t∈M

ϕ(γ(t)) > a = sup
γ0∈Γ0

sup
t∈M0

ϕ(γ0(t))

then for every ε ∈]0, (c− a)/2[, δ > 0 and γ ∈ Γ such that

sup
M

ϕ ◦ γ 6 c + ε,

there exists u ∈ X such that

a) c− 2ε 6 ϕ(u) 6 c + 2ε,

b) dist(u, γ(M)) 6 2δ,

c) ‖ϕ′(u)‖ 6 8ε/δ.
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Remark 3.2. A slight modification of the proof gives the better estimate

dist(u, γ(M) ∩ ϕ−1([c− 2ε, c + 2ε]) 6 2δ.

Theorem 3.1 yields a Palais-Smale sequence (un)n>1 such that ϕ′(un) → 0 and ϕ(un) → c.
This is an important step in order to prove that c is a critical value of ϕ. This is the case
if ϕ satisfies the (PS)c condition: any sequence (un) such that ϕ′(un) → 0 and ϕ(un) → c
contains a subsequence that converges strongly.

It should be possible to have more information on the symmetry of u under Assumption
2.25 provided ϕ(u∗) 6 ϕ(u). A naive idea consists in replacing the path γ by is its sym-
metrization γ∗ : t ∈ M 7→ γ(t)∗. Then u given by Theorem 3.1 would be near of the set
γ∗(M). Unfortunately, when N > 1, X = W 1,p(RN ) and ∗ is the Schwarz symmetrization, ∗
is not continuous on X [1] so that the symmetrized path γ∗ could be discontinuous.

This idea works if the symmetrization is approximated uniformly by continuous trans-
formations. The convergence of the approximation scheme of the symmetrization ∗ by po-
larizations of Theorem 2.32 is not uniform; it becomes uniform by an appropriate change of
variable.

Proposition 3.3. Suppose M is a metric space, M0 and M1 are disjoint closed sets of M
and γ ∈ C(M,X). Suppose that X, V , ∗ and H∗ satisfy Assumption 2.25, H0 ∈ H∗ and
γ(M) ⊂ S. For any ε > 0, there exists γ̃ ∈ C(M,X) such that

γ̃(t) = γ(t)H1...HbθcHθ ∀t ∈ M,with θ > 0 and Hτ ∈ H∗ for τ > 0, (3.1)

γ̃(t) = γ(t)H0 ∀t ∈ M0, (3.2)
‖γ̃(t)− γ(t)∗‖V 6 ε ∀t ∈ M1. (3.3)

Proof. For any t ∈ M1, let δt be such that B(t, δt)∩M0 = φ and such that for all s ∈ B(t, δt),
‖γ(s)−γ(t)‖V 6 ε/3 (this is possible because γ is continuous and X is continuously embedded
in V ). For every t ∈ M1, there exists θt such that ‖γ(t)θ − γ(t)∗‖V 6 ε/3 for θ > θt, with
the notation of Proposition 2.32. The collection O = {M \M1} ∪ {B(t, δt)}t∈M1

forms an
open covering of the metric space M . There exists thus a partition of the unity (ρi)i∈O
subordinate to this covering [10, Theorems (T2, XXII, 5; 1) and (T2, XXII, 5; 5)]. Let
Θ(t) =

∑
s∈M1

ρs(t)θs. The function Θ is continuous. Let γ̃(t) = γ(t)Θ(t). If t ∈ M0, then
Θ(t) = 0 and γ̃(t) = γ(t)H0 . If t ∈ M1, there exists s ∈ M such that ρs(t) > 0 and θs 6 Θ(t);
hence by Proposition 2.31

‖γ̃(t)− γ(t)∗‖V 6 ‖γ̃(t)− γ̃(s)‖V + ‖γ̃(s)− γ(s)∗‖V + ‖γ(s)∗ − γ(t)∗‖V

6 ‖γ(s)Θ(t) − γ(s)∗‖V + 2‖γ(s)− γ(t)‖V 6 ε

since t ∈ B(s, δs) implies ‖γ(s)− γ(t)‖V 6 ε/3.

Corollary 3.4 (Uniform approximation of symmetrization). For any ε > 0, there
exists a continuous mapping T : S → S such that ‖Tu− u∗‖V < ε for each u ∈ S.

Proof. Apply Proposition 3.3 with M0 = φ, M = M1 = S and γ(u) = u. Let Tu = γ̃(u).

We can now state and prove a symmetric variational principle.
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Theorem 3.5 (Symmetric variational principle). Suppose X, V , ∗ and H∗ satisfy As-
sumption 2.25. Let M0 be a closed subspace of the metric space M and Γ0 ⊂ C(M0, X).
Define

Γ = {γ ∈ C(M,X) | γ|M0 ∈ Γ0} .

If ϕ ∈ C1(X, R) satisfies

∞ > c = inf
γ∈Γ

sup
t∈M

ϕ(γ(t)) > a = sup
γ0∈Γ0

sup
t∈M0

ϕ(γ0(t))

and if for any H ∈ H∗ and u ∈ S, ϕ(uH) 6 ϕ(u), then for every ε ∈]0, (c− a)/2[, δ > 0 and
γ ∈ Γ such that

(i) supM ϕ ◦ γ 6 c + ε,

(ii) γ(M) ⊂ S,

(iii) there exists H0 ∈ H∗ such that γ|M0
H0 ∈ Γ0,

there exists u ∈ X such that

a) c− 2ε 6 ϕ(u) 6 c + 2ε,

b) ‖u− u∗‖V 6 2(2K + 1)δ,

c) ‖ϕ′(u)‖X′ 6 8ε/δ,

where K is the norm of the injection of X into V .

Proof. Without loss of generality, we can assume that c − 2ε > a. Let M1 = (ϕ ◦ γ)−1([c −
2ε, c + ε]). This set is clearly closed. Proposition 3.3, yields a path γ̃ ∈ C(M,X) such that
(3.1) holds with δ in place of ε. Theorem 3.1 with γ̃ in place of γ gives u such that

a) c− 2ε 6 ϕ(u) 6 c + 2ε,

b) dist(u, γ̃(M1)) 6 dist(u, γ̃(M) ∩ ϕ−1([c− 2ε, c + 2ε])) 6 2δ,

c) ‖ϕ′(u)‖ 6 8ε/δ.

Since the symmetrization ∗ is a contraction in V by Proposition 2.31,

‖u− u∗‖V 6 inf
t∈M1

(‖u− γ̃(t)‖V + ‖γ̃(t)− γ(t)∗‖V + ‖γ(t)∗ − u∗‖V ) 6 2(2K + 1)δ.

Informally Theorem 3.5 says that when a functional does not increase by any polarization
and if the minimax construction is invariant by one polarization (existence of H0 that preserves
Γ0), then there exists an almost symmetric Palais-Smale sequence.

It is not equivalent for a functional to decrease by symmetrization and to decrease by po-
larizations. In fact, many symmetrization inequalities can be proved by polarization inequal-
ities [4]; but some inequalities, e.g. the Riesz-Sobolev inequality, hold for the symmetrization,
but they do not hold for polarizations [12].

The condition γ|H0
M0

∈ Γ0 on the paths may seem weak, since it does not require invariance
by symmetrization. In applications, finding such a polarizer can be impossible because of the
highly noninjective character of the polarization. This imposes some kind of minimality to
the energy levels on which it is possible to ensure the existence of symmetric critical points.
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4 Applications

4.1 Symmetric critical points

We first investigate the symmetry properties of solutions of the semilinear elliptic problem{
−∆u + a(x)u = f(x, u) in Ω,
u = 0 on ∂Ω,

(4.1)

where Ω is a ball or an annulus and f(x, u) = f̃(|x|, u) and a(x) = ã(|x|) are continuous.
Those are critical points of the functional

ϕ(u) =
∫

Ω

|∇u|2

2
+

a(x)u2

2
− F (x, u) dx,

defined on H1
0 (Ω), where F (x, t) =

∫ t
0 f(x, s) ds if t > 0 and F (x, t) = 0 if t 6 0.

Here we assume

(a1) a ∈ LN/2(Ω) if N > 3, a ∈ Lq(Ω) for q > 1 if N = 2 and a ∈ L1(Ω) if N = 1.

Under assumption (a1), the operator u 7→ −∆u + a(x)u has a nondecreasing sequence of
eigenvalues λ1 6 λ2 6 . . . 6 λi 6 . . . , repeated according to their multiplicity and with
associated orthonormal eigenfunctions (ei)i>1 in L2(Ω) [15].

We also assume

(f1) f ∈ C(Ω× R) and for some 1 < p < 2∗ = 2N/(N − 2) and C > 0,

|f(x, u)| 6 C(1 + |u|p−1),

(f2) there exists α > 2 and R > 0 such that

|u| > R ⇒ 0 < αF (x, u) 6 uf(x, u),

(f3) |f(x, u)| = o(|u|), |u| → 0, uniformly on Ω.

Under assumption (f1), the functional ϕ is of class C1(H1
0 (Ω), R). Under assumptions

(f1) and (f2), the functional ϕ satisfies the Palais-Smale condition: Any sequence (un)n∈N ⊂
H1

0 (Ω) such that d = supn ϕ(un) < ∞ and ϕ′(un) → 0 contains a convergent subsequence [15].
Consider the class

Γ =
{
γ ∈ C([0, 1],H1

0 (Ω) | γ(0) = 0 and ϕ(γ(1)) < 0
}

,

and let
c = inf

γ∈Γ
sup

t∈[0,1]
ϕ(γ(t)).

By the mountain pass Theorem, there is a critical point such that ϕ(u) = c [15]. Under
symmetry assumptions, we obtain slightly more symmetry.

Theorem 4.1. Under assumptions (a1) and (f123), if λ1 > 0, Ω is a ball, a(x) 6 a(y) and
−f(x,−s) = f(x, s) > f(y, s) for x, y ∈ Ω with |x|2 6 |y|2 and s ∈ R+, then there exists a
nonnegative critical point u invariant by Schwarz symmetrization such that ϕ(u) = c.
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Proof. For each n > 1, let γ ∈ Γ be such that

max
t∈[0,1]

ϕ(γ(t)) 6 c + 1/n.

Since ϕ(u+) 6 ϕ(u), we can assume γ(t) > 0 for each t ∈ [0, 1]. Theorem 3.5 with δ = 1/n1/2

and ε = 1/n yields un ∈ H1
0 (Ω) such that |ϕ(un) − c| 6 2/n, ‖ϕ′(un)‖H−1

0 (Ω) 6 8/n1/2 and

‖un − u∗n‖L2(Ω) 6 2(2K + 1)/n1/2, where ∗ denotes the Schwarz symmetrization. Since ϕ
satisfies the Palais-Smale condition, up to a subsequence, un → u in H1

0 (Ω), with ϕ(u) = c,
ϕ′(u) = 0 and u = u∗.

Remark 4.2. The method of proof is robust with respect to changes in the minimax principle.
If Γ was defined as

Γ = {γ ∈ C([0, 1] | γ(0) = 0 and γ(1) = e} ,

where e ∈ H1
0 (Ω) is a fixed nonnegative function and ϕ(e) < 0, then the conclusions of

Theorem 4.1 would remain valid.

If a and f are slightly more regular, the moving plane method proves that any nonnegative
critical point is invariant by Schwarz symmetrization. Theorem 4.1 sheds some light on the
limit case where a and f are merely continuous functions.

If Ω is not a ball, a and f are not both monotone, or f(x, ·) is not even anymore, then
the moving plane method fails, but there is still some symmetry in the solutions.

Theorem 4.3. Under assumptions (a1) and (f123), if λ1 > 0, Ω is a ball or an annulus,
a(x) = a(y) and f(x, s) = f(y, s) if x, y ∈ Ω with |x|2 = |y|2 and s ∈ R, then there exists a
nonnegative critical point u invariant by spherical cap symmetrization such that ϕ(u) = c.

Proof. The proof is similar to the proof of Theorem 4.1.

Remark 4.4. The method of proof is robust with respect to changes in the minimax principle.
Assume e ∈ H1

0 (Ω) is a fixed function, ϕ(e) < 0 and that there exists a polarizer H0 with
0 ∈ ∂H0 and uH0 = u. If Γ is defined as

Γ = {γ ∈ C([0, 1] | γ(0) = 0 and γ(1) = e} ,

then the conclusions of Theorem 4.3 remain valid.

Theorem 4.3 generalizes the symmetry result of Smets and Willem for homogeneous prob-
lems [11].

If λ1 6 0, it is not possible anymore to obtain solutions by the mountain pass Theorem.
Let k be such that λk 6 0 < λk+1. Solutions of (4.1) can be obtained by Rabinowitz’s linking
Theorem.

Theorem 4.5 (Rabinowitz). Let X = Y ⊕ Z be a Banach space with dim Y < ∞. Let
ρ > r > 0 and let z ∈ Z be such that ‖z‖ = r. Define

M = {u = y + λz | ‖u‖ 6 ρ, λ > 0, y ∈ Y } ,

M0 = {u = y + λz | y ∈ Y, ‖u‖ = ρ and λ > 0 or ‖u‖ 6 ρ and λ = 0} ,

N = {u ∈ Z | ‖u‖ = r} .

11



Let ϕ ∈ C1(X, R) be such that
b = inf

N
ϕ > a = max

M0

ϕ.

If ϕ satisfies the (PS)c condition with

c = inf
γ∈Γ

max
u∈M

ϕ(γ(u)) (4.2)

Γ = {γ ∈ C(M,X) | γ|M0 = id} , (4.3)

then c is a critical value of ϕ.

It is a particular case of the general minimax Theorem 3.1 [15]. In order to find solutions
of (4.1) assume

(f4) λk
u2

2 6 F (x, u) for u ∈ R.

Let

Y = span(e1, e2, . . . , ek),

Z =
{

u ∈ X | ∀v ∈ Y,

∫
Ω

uv = 0
}

,

z = ek+1.

For some 0 < r < ρ, c defined by (4.2) is a critical value under assumptions (a1) and
(f1234) [15].

Theorem 4.6. Under assumptions (a1) and (f1234), suppose that Ω is a ball or an annulus,
a is Hölder-continuous and that a(x) = a(y) and f(x, s) = f(y, s), for each x, y ∈ Ω with
|x|2 = |y|2 and s ∈ R. If e1, . . . , ek are radial functions, then there exists a nonnegative
critical point u invariant by spherical cap symmetrization u such that ϕ(u) = c.

Proof. For each n > 1, let γ ∈ Γ be such that

max
t∈M

ϕ(γ(t)) 6 c + 1/n.

Since e1, . . . , ek are radial and since by Lemma 4.7 ek+1 is invariant with respect to a spherical
cap symmetrization, there exists H0 such that for any u ∈ (Y + R+ek+1), uH0 = u. Hence
if γ0 ∈ Γ0, then γH0

0 ∈ Γ0. Theorem 3.5 with δ = 1/n1/2 and ε = 1/n yields un ∈ H1
0 (Ω)

such that |ϕ(un) − c| 6 2/n, ‖ϕ′(un)‖H−1
0 (Ω) 6 8/n1/2 and ‖un − u∗n‖L2(Ω) 6 K/n1/2, where

∗ denotes a spherical cap symmetrization. Since ϕ satisfies the Palais-Smale condition, up to
a subsequence un → u in H1

0 (Ω), with ϕ(u) = c, ϕ′(u) = 0 and u = u∗.

Lemma 4.7. If a is Hölder-continuous and radial, and ei is radial for each 1 6 i 6 k, there
exists P ∈ SN−1 such that ek+1 is invariant under the spherical cap symmetrization with
respect to P .

Proof. The proof is a slight variation on a proof of Bartsch, Weth and Willem [2]. Recall that
ek+1 minimizes

R(u) =
∫

Ω
|∇u|2 + a(x)
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on the set

V =
{

u ∈ H1
0 (Ω) | ‖u‖L2(Ω) = 1 and

∫
Ω

uei = 0 for 1 6 i 6 k

}
.

Any minimizer u of R on V satisfies the equation

−∆u + a(x)u = λk+1u, (4.4)

with R(u) = λk+1. Since a is Hölder continuous, by standard regularity estimates, u is twice
differentiable and is continuous up to the boundary.

Let H be a polarizer such that 0 ∈ ∂H. One checks that eH
k+1 ∈ V since the eigenfunctions

ei are radial for 1 6 i 6 k and that R(eH
k+1) = R(ek+1). Therefore eH

k+1 is a minimizer of
R on V , and it satisfies the equation (4.4). The function ek+1 and eH

k+1 are thus both twice
continuously differentiable and continuous up to the boundary. For x ∈ H ∩ Ω, |ek+1(x) −
ek+1(xH)| = 2ek+1

H − (ek+1(x) + ek+1(xH)). Therefore |ek+1 − ek+1
H | ∈ C2(H ∩ Ω) ∩

C0(H ∩ Ω). Since ek+1(·H) also solves (4.4),

−∆|ek+1(x)− ek+1(xH)|+ (aH(x)− λk+1)+|ek+1(x)− ek+1(xH)|
= (a(x)− λk+1)−|ek+1(x)− ek+1(xH)| > 0.

By the strong maximum principle either |u − uH | = 0 on Ω, or |u − uH | > 0 on the interior
of H ∩ Ω.

Now take x0 in the interior of Ω such that

ek+1(x0) = max {u(x) |x ∈ Ω, |x| = |x0|} .

For any polarizer such that x0 is in the interior of H and 0 ∈ ∂H, by the preceding reasoning,
uH = u. Hence u is invariant by spherical cap symmetrization with respect to P = x0/|x0|.

It is not possible to go further in the analysis of symmetry breaking. In fact, if Ω is a
ball and ei is not radial for some 1 6 i 6 k but is spherical cap symmetric, then Theorem 3.5
is not applicable anymore since ei and all its rotations can not be invariant under the same
spherical cap symmetrization. This obstruction remains even when the (N − 1)–spherical
cap symmetrization is replaced by any k–spherical cap symmetrization. This is not surpris-
ing when compared with the situation of spherical harmonics: the first eigenfunction of the
Laplace-Beltrami operator on the sphere is the constant function. Then the eigenfunctions
associated to the second eigenvalue are restrictions of linear functions, and depend on only
one variable. For the third eigenvalue, the eigenfunctions are restrictions of harmonic poly-
nomials of degree two: among these some depend up to rotation on only one variable (the
zonal harmonics), but some others depend on all the variables (since spherical harmonics of
degree n are restrictions of homogeneous harmonic polynomials of degree n, this follows from
Proposition 4.8). This explains why it is not possible to prove any symmetry properties of
eigenfunctions of −∆ + a(x) for eigenvalues above the first nonradial eigenfunction. This
suggests that when ei, for some 1 6 i 6 k is not radial, a critical point of a nonlinear problem
could be noninvariant with respect to any nontrivial rotation group.

Proposition 4.8. There exists a homogeneous harmonic polynomial h of degree two such that
the group G of linear isometries T of RN that satisfy h ◦T = h is generated by the reflections
with respect to N orthogonal hyperplanes. In particular, G is finite.
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Proof. In general if a function f ∈ C1(RN ) is invariant with respect to a linear isometry T if
and only if for any x ∈ RN , ∇f = T ∗∇f(Tx), where T ∗ denotes the adjoint of T . If h is a
second order harmonic polynomial, it can be written as h(x) = x · Ax, where A : RN → RN

is linear and selfadjoint. The polynomial h is invariant with respect to T if and only if for
each x ∈ RN , 2Ax = 2T ∗ATx, i.e. TA = AT . Choose A with eigenvalues of multiplicity one
and vanishing trace. Since A and T commute, the eigenvectors of A must be eigenvectors of
T . Since T is an isometry, Tv = v or Tv = −v for each eigenvector v of A. Therefore if h is
invariant with respect to T , then T is in the group generated by reflections with respect to
hyperplanes orthogonal to the eigenvectors of A.

The method of this section is also adapted to Neumann boundary conditions. If the
functional ϕ is defined on the set H1(Ω) in place of H1

0 (Ω), then the critical points of ϕ are
weak solutions of {

−∆u + a(x)u = f(x, u) in Ω,
∂u/∂n = 0 on ∂Ω.

We are in the setting of Example 2.29; Theorems 4.3 and 4.6 remain valid for the new
functional ϕ.

4.2 Noncompact problems

Consider the following semilinear partial differential equation:{
−∆u + V (x)u = f(x, u) in RN ,

u > 0,

where f ∈ C(RN × R+). Solutions are critical points of

ϕ : H1(RN ) → R : u 7→ 1
2

∫
RN

|∇u|2 + V (x)|u|2 dx−
∫

RN

F (x, u) dx,

where F (x, t) =
∫ t
0 f(x, s) ds if t > 0 and F (x, t) = 0 if t 6 0.

Such problems were treated by Rabinowitz [8] without symmetry assumptions. When the
problem is invariant by rotations, solutions may be found in the space of radial functions by
Palais’s symmetric criticality principle [15]. But then global minimizing properties are lost.
In our approach, we consider the minimax principle for the unrestricted functional

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

where Γ =
{
γ ∈ C([0, 1],H1(RN )) | γ(0) = 0 and ϕ(γ(1)) < 0

}
. Therefrom, we construct an

almost symmetric Palais-Smale sequence. This proves that c is a symmetric critical level, i.e.
there exists a symmetric u ∈ H1(RN ) such that ϕ′(u) = 0 and ϕ(u) = c. This provides an
alternative in some cases to concentration-compactness.

Our assumptions are:

(f1) There exist C > 0, 2 < p < 2∗ = 2N/(N − 2), such that for all s ∈ R+ and x ∈ RN

f(x, s) 6 C(|s|+ |s|p−1)
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(f2) there exists x ∈ RN and s > 0 such that F (x, s) > 0,

(f3) there exists α > 2 such that for each x ∈ RN and s ∈ R+,

αF (x, s) 6 sf(x, s),

(f4) for x, y ∈ RN , if |x| 6 |y| then for all s ∈ R+, f(x, s) > f(y, s),

(f5) f(x, s) = o(|s|), as |s| → 0, uniformly in x ∈ RN ,

(V1) there exists m,M ∈ R such that for any x ∈ RN , 0 < m 6 V (x) 6 M ,

(V2) for x, y ∈ RN , if |x| 6 |y| then V (x) 6 V (y).

Remark 4.9. The condition V (x) 6 M can be dropped provided that the functional ϕ is
defined on the subset of functions u of H1

0 (Ω) such that
∫
Ω V (x)u2 dx < ∞.

Theorem 4.10. Under the preceding assumptions, c is a critical value and there is a radial
symmetric decreasing critical point u such that ϕ(u) = c.

Lemma 4.11. Under assumptions (f12345) and (V12), there exists a sequence (un)n>1 ⊂
H1(RN ) such that

ϕ(un) → c,

ϕ′(un) → 0 strongly in H−1(RN ),

un − u∗n → 0 in (L2 ∩ L2∗)(Ω),

where ∗ denotes the Schwarz symmetrization.

Proof. Note first the set Γ =
{
γ ∈ C([0, 1],H1(RN )) | γ(0) = 0 and ϕ(γ(1)) < 0

}
is not empty.

From assumptions (f2) and (f3), there exists K1 and an open set U ⊂ RN such that for x ∈ U
and s ∈ R+,

F (x, s) > K1(|s|α − 1),

Let u ∈ D+(U) be nonzero. For any τ > 0

ϕ(τu) 6
τ2

2

∫
RN

|∇u|2 + V (x)u2 dx− ταK1‖u‖α
α + K1LN (supp u).

Since α > p, there exists τ̄ > 0 such that ϕ(τ̄u) < 0. Let γ(t) = ut/τ̄ . It is clear that γ ∈ Γ.
By assumptions (f4) and (f5), there is C ′ > 0 such that |f(x, s)| 6 m|s|/2 + C ′|s|p−1.

That implies

ϕ(u) > min(1,m)
‖u‖2

H1

2
−
‖u‖2

L2

2
− C ′ ‖u‖

p
Lp

p

> (min(1,m)−m/2)
‖u‖2

H1

2
− C ′′ ‖u‖

p
H1

p
.

Therefore, there exists ρ > 0 such that ϕ(u) > 0 if ‖u‖H1 6 ρ and ϕ(u) > µ > 0 if ‖u‖H1 = ρ.
Hence if γ ∈ Γ, ‖γ(1)‖H1 > ρ and so maxt∈[0,1] ϕ(γ(t)) > µ > 0. This shows that c > a in
Theorem 3.5. For any polarizer, by Proposition 2.19, ϕ(uH) = ϕ(u). Let H0 be any fixed
polarizer. Then γ(0)H0 = 0 = γ(0) and ϕ(γ(1)H0) 6 ϕ(γ(1)). The conclusions follow from
the symmetric minimax principle (Theorem 3.5).
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Proof of Theorem 4.10. Let (un) be the sequence given by Lemma 4.11. For sufficiently large
n, we have

1 + c + ‖un‖H1(RN ) > ϕ(un)− 1
α
〈ϕ′(un), un〉 >

(
1
2
− 1

α

)
‖un‖2

H1(RN );

since α > 2, the sequence (un) is bounded in H1(RN ).
The sequence (u∗n) is also bounded in H1(RN ) by the Polya-Szegö inequality (see e.g. [4])

and by Strauss’ Theorem [15], (u∗n) is compact in Lp(RN ). Finally, since ‖un − u∗n‖p → 0,
the sequence (un) is also compact in Lp(RN ). We can thus suppose that un → u weakly in
H1(RN ) and strongly in Lp(RN ).

Finally, we need to prove that∫
RN

(f(x, un)− f(x, u))(un − u) dx → 0

as n →∞. By (f4) and (f5), for any ε > 0, there is cε such that

|f(x, s)| 6 ε|s|+ cε|s|p−1.

Then

lim sup
n→∞

∣∣∣∣∫
RN

(f(x, un)− f(x, u))(un − u) dx

∣∣∣∣
6 2ε‖u‖2

H1(RN ) + 2cε‖u‖p−1
Lp(RN )

lim sup
n→∞

‖un − u‖Lp(RN ),

and our claim is proved since u is in H1(RN ) and converges in Lp(RN ). Since the sequence
(un) is Palais-Smale, by standard arguments, un → u in H1(RN ) and thus u is a critical point
of ϕ and ϕ(u) = c. Furthermore u∗ = u.
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